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Abstract

While it has become widely appreciated that defining (higher) gauge theories requires, in
addition to ordinary phase space data, also “flux quantization” laws in generalized differential co-
homology, there has been little discussion of the general rules, if any, for lifting Poisson-brackets
of (flux-)observables and their quantization from traditional phase spaces to the resulting higher
moduli stacks of flux-quantized gauge fields.

In this short note, we present a systematic analysis of (i) the canonical quantization of flux
observables in Yang-Mills theory and (ii) of valid flux quantization laws in abelian Yang-Mills,
observing (iii) that the resulting topological quantum observables form the homology Pontrjagin
algebra of the loop space of the moduli space of flux-quantized gauge fields.

This is remarkable because the homology Ponrjagin algebra on loops of moduli makes imme-
diate sense in broad generality for higher and non-abelian (non-linearly coupled) gauge fields,
such as for the C-field in 11d supergravity, where it recovers the quantum effects previously
discussed in the context of “Hypothesis H”.
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Electromagnetic fluxes in (higher) gauge theories are generally subject to “quantization laws”
(“flux quantization”, “charge quantization”, going back to [Di1931][Al85, §2] and others, we follow
[FSS23, Intro][SS23c] with exposition in [SS24], see also [Fr00] and §2 below), broadly in the sense of
“discretization”: In the familiar abelian case without self-sourcing of fluxes, these laws imply that
total fluxes through (and hence charges inside) closed hypersurfaces form lattices (“charge lattices”),
hence are integer multiples of certain unit fluxes (unit charges). This picture generalizes (with the
recent construction of the non-abelian character map in [FSS23]) to theories with non-abelian fluxes
(a famous example being the C-field in 11d supergravity, see [SS24, Ex. 2.12][GSS24]), now flux-
quantized in non-abelian differential cohomology as discussed in the companion article [SS23c]. In
any case, such flux-quantization applies already to classical gauge fields (as soon as they serve as
background fields for charged quantum probes).

On top of this, there is the actual quantization of fluxes, whereby quantum observables on fluxes
form a non-commutative star-algebra (e.g. [BLOT90, §6]), reflecting quantum uncertainties (see
§1).

It should be clear that a deeper understanding of quantum gauge field theory requires an
understanding of the combination of these two quantum effects, namely of quantum observables
on quantized fluxes (cf. §4). However, existing discussions of the two aspects are mostly disjoint,
among the exceptions being [FMS07a][FMS07b][BBSS17] (to which we relate in the following, as
we proceed).

In this brief note we mean to clarify some general principles behind topological quantum observ-
ables on flux-quantized gauge fields, by making some observations (Thms. 1.1, 1.2 & 3.1) which are
not hard to prove but whose import seems not to have been appreciated before, while they arguably
touch on the heart of the matter. Background discussion and proofs are relegated to appendix A.

Acknowledgement. We thank Alberto Cattaneo for useful discussion.

1 Quantum observables on Yang-Mills fluxes

The phase space of fluxes. The following fundamental statement about classical observables on
fluxes in Yang-Mills theory is implied by standard facts about the phase space structure (cf. [FP83,
§3][BLS84, §2]) but seems not to have been noticed before, in its entirety (key observations are due
to [CP17]). Consider g a metric Lie algebra with pairing ⟨−,−⟩, Σ a closed orientable surface (not
necessarily connected) embedded in spacetime, and consider maps α ∈ C∞(Σ, g) as observables
on fluxes that send the electric/magnetic flux density to its integral over Σ against ⟨α,−⟩.

Theorem 1.1 (Phase space of Yang-Mills fluxes). The phase space of electromagnetic fluxes in g-
Yang-Mills theory, through a closed orientable surface Σ, is the Lie-Poisson manifold (e.g. [We83,
§3]) associated with the Fréchet Lie algebra of smooth maps into the semidirect product, via the
adjoint action, of g (with Lie bracket rescaled by ℏ ∈ R>0) on its underlying abelian Lie algebra g0:

C∞(
Σ, (gℏ ⋉ad

g0)
)︸ ︷︷ ︸

Linear observables on fluxes

≃ C∞(
Σ , gℏ

)︸ ︷︷ ︸
electric

⋉
ad
C∞(

Σ , g0
)︸ ︷︷ ︸

magnetic

. (1)

Proof. We discuss this in appendix A.1.

Quantum flux observables as group algebras. This is remarkable, because the non-perturbative
(aka “strict-” or “C∗-algebraic-”deformation or “Rieffel-”) quantizations ([Ri89][Ri94], review in
[La99, §2][LR01, §4][Ha08, §2]) of Lie-Poisson phase spaces are well-knonw [Ri90][LR01, Ex. 11.1]
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[La99, Ex. 2]. Indeed, upon choosing a Lie group integrating the given Lie algebra, the non-
perturbative quantum observables on the Lie-Poisson space form its group algebra under the con-
volution product, formed with due attention to analytic issues. One may think of this (cf. [LR01,
Ex. 11.3] and [BHR07]) as a version of the time-honored quantization step from canonical commu-
tation relations in the form of Heisenberg Lie algebras to their exponentiated Weyl form ([vN1931,
p. 571]) of quantum observables.

Concretely in the case of Thm. 1.1, choose G a Lie group (not necessarily connected) with
Lie algebra g, and choose a linear representation of G on the underlying vector space of g which
on the connected component Ge restricts to the adjoint action. Then for Λ ⊂ g a lattice (not
necessarily of full dimension, in fact possibly zero) which is preserved under this action, we obtain
the corresponding semidirect product Lie group of G with the (partial) torus g0/Λ and hence a
Fréchet Lie group of maps Lie-integrating (1):

C∞(
Σ, G ⋉ (g0/Λ)

)︸ ︷︷ ︸
Exponentiated linear
observables on fluxes

≃ C∞(
Σ, G

)︸ ︷︷ ︸
electric

⋉ C∞(
Σ, (g0/Λ)

)︸ ︷︷ ︸
magnetic

. (2)

A typical example of the choices involved for g = su(2) is given by G ≡ SU(2) and Λ = 0 ⊂
su(2). However, it is important to notice the freedom of choosing G to be non-connected, which here
is part of the usual freedom in choosing quantizations. For instance, already for g = u(1) ≃ R we
may choose G to be the direct product group U(1)×Z2, Λ = Z ⊂ R and the action of U(1)×Z2 on
u(1) ≃ R to factor through the Z2-action by multiplication with −1. With this choice, the coefficient
group in (2) is the non-abelian group U(1)×Z2⋉U(1), reflecting a non-trivial commutator between
electric and magnetic flux observables; see Ex. 1.4 below.

Topological quantum observables on fluxes. Here we are not concerned with the analytical
fine-print of the convolution algebra on (2); instead, we focus on just its subsector of topological
flux observables, namely those that are locally constant as functions on the group manifold, and
as such form the subalgebra which is the ordinary group algebra (58) of the group of connected
components of (2). Interestingly, this group of connected components of (2) is, by the smooth Oka
principle (46), equivalently a (possibly non-abelian) cohomology group of Σ:

π0C
∞(

Σ, G ⋉ (g0/Λ)
)︸ ︷︷ ︸

Topological sectors of
exponentiated linear
observables on fluxes

≃ π0Map
(
Σ, G⋉BΛ

)
by (46)

≃ π0Map
(
Σ, G

)
⋉ π0Map

(
Σ, BΛ

)
by (47)

≃ H0
(
Σ; G

)︸ ︷︷ ︸
electric

⋉H1
(
Σ; Λ

)︸ ︷︷ ︸
magnetic

by (52).
(3)

In the last line, we retain the topology on the cohomology coefficients G; see Rem. A.1.

In conclusion, combining Thm. 1.1 with Rieffel-quantization of Lie-Poisson structures yields:

Theorem 1.2 (Non-perturbative topological quantum observables on Yang-Mills fluxes). The con-
volution group algebra (58) on the (possibly non-abelian) cohomology group (3)

C
[
π0Map(Σ; G⋉BΛ)

]
≃ C

[
H0(Σ;G)⋉H1(Σ; Λ)

]
(4)

is a subalgebra of topological observables in a non-perturbative Rieffel-quantization of the phase
space from Thm. 3.1 of fluxes in g-Yang-Mills.

Example 1.3 (Non-perturbative topological quantum observables on Maxwell fluxes). For u(1)-
Yang-Mills theory (vacuum Maxwell theory) an evident choice in (2) of Lie group G and lattice Λ
is G ≡ U(1) and Λ = Z ↪! R ≃R u(1). In this case H0(Σ; G) ≃ H1(Σ;Z) (see (53)) and also
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H1(Σ; Λ) = H1(Σ; Z), so that the algebra of topological flux quantum observables from (4) is this
group algebra: C

[
Map

(
Σ, U(1)︸︷︷︸

electric

× U(1)︸︷︷︸
magnetic

)]
≃ C

[
H1(Σ; Z)︸ ︷︷ ︸

electric

×H1(Σ; Z)︸ ︷︷ ︸
magnetic

]
. (5)

Notice that, while this algebra is commutative, it is in general distinct from (and non-isomorphic
to) the algebra of classical observables with its pointwise (non-convoluting) product. The point-
wise product sees the topological flux sectors as “superselection” sectors, whose Hilbert space
decomposes as a direct sum indexed by electric and magnetic flux, such that all observables are
block-diagonal with respect to this decomposition.

In contrast, the quantum algebra (5) has operator representations by tuples of unitary operators,
mutually commuting with each other but each acting by shifting by a unit through the lattice of
topological sectors. (This result is different from the proposal in [FMS07b, p. 20], but not unlike
in spirit.)

Concretely, consider the simple case that Σ ≃ T2 is a torus. Then H1
(
T2; Z

)
≃ Za ×Zb, such

that, under the identification with H0
(
T2;S1

)
(see (53)), an element n⃗ ≡ (na, nb) ∈ Za × Zb is

the homotopy class of a u(1)-valued smearing function (24) on T2 exponentiated to a U(1)-valued
function T2 ! U(1) which winds na and nb times around U(1) ≃ S1 as its arguments travel once
around one or the other nontrivial cycle of T2, respectively. Denoting by

H1
(
T2; Z

)
×H1

(
T2; Z

)
C
[
H1

(
T2; Z

)
×H1

(
T2; Z

)](
n⃗ el, n⃗mag

)
O
(
n⃗ el, n⃗mag

)
7−!

the observable corresponding to these classes of smearing functions, the quantum (operator) product
on them is O

(
n⃗ el, n⃗mag

)
· O

(
m⃗el, m⃗mag

)
= O

(
n⃗ el + m⃗el, n⃗mag + m⃗mag

)
,

as befits observables in Weyl form ([vN1931, p. 571]).

Notice that (the exponentials of) the total flux observables e
i
ℏ
∫
T2 E and e

i
ℏ
∫
T2 FA , whose smearing

functions are constant, are summands of O
(
(0, 0), (0, 0)

)
. From this, all other topological flux

observables are obtained by acting with the generators O
(
(±1, 0), (0, 0)

)
and O

(
(0,±1), (0, 0)

)
etc., which observe the sectors of the first Fourier modes of fluxes through T2.

Example 1.4 (Quantum observables on “large fluxes”). In generalizing Ex. 1.3, notice that in
quantizing we do have the freedom of choosing in (2) a non-connected Lie group G with Lie algebra
u(1) – such as G ≡ U(1) × Z2, even while retaining u(1)/Z ≃ U(1) as the gauge group of the
magnetic fluxes, as usual. If we think of the flux observables in (1) as G-gauge transformations –
indeed this is how they appear more manifestly below in (19) – then the non-connected components
of G correspond to what are known as “large gauge transformations” (e.g. [HT92, p. 31]). In this
vein here we may speak of “large fluxes”. Now since Z2 ≃ Aut(Z) we may consider a non-trivial
action of G on g0/Λ in (2). This leads, via (4), to a quantum algebra of topological flux observables:

C
[
π0Map

(
Σ, (U(1)× Z2︸ ︷︷ ︸

electric

⋉U(1)︸︷︷︸
magnetic

)
)]

≃ C
[
H1(Σ; Z)×H0(Σ; Z2)︸ ︷︷ ︸

electric

⋉H1
(
Σ; Z

)︸ ︷︷ ︸
magnetic

]
, (6)

which is non-commutative, due to a non-trivial commutator between magnetic and large electric
fluxes. More generally, we could as well choose a semidirect product group G ≡ U(1) ⋊ Z2 for
the electric fluxes, in which case already the electric topological flux observables among themselves
have non-trivial commutators, as is generally the case for non-abelian non-topological flux observ-
ables (1). Yet more generally we may replace Z2 by any discrete group equipped with a pair of
homomorphisms K ! Z2, to obtain the following quantum algebras of topological fluxes:

C
[
π0Map

(
Σ, (U(1)⋊K︸ ︷︷ ︸

electric

⋉U(1)︸︷︷︸
magnetic

)
)]

≃ C
[
H1(Σ; Z)⋊H0(Σ; K)︸ ︷︷ ︸

electric

⋉H1
(
Σ; Z

)︸ ︷︷ ︸
magnetic

]
. (7)
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In these examples, the choice of non-connected integrations of the gauge Lie algebra is, while
certainly mathematically admissible, unusual in traditional discussions of gauge theory. We next
highlight, in §2, that such global choices of gauge group structure are part of the general phe-
nomenon of flux quantization and as such have a clear relevance that deserves attention.

2 Flux quantization in abelian Yang-Mills

The electromagnetic flux density (the Faraday tensor) F ∈ Ω2
dR(X

4) on a spacetime manifold X4

(cf. [SS23c, Ex. 3.1]) can be thought of as a map F : X ! Ω2
clsd to the closed-differential form

classifier in the topos of smooth sets (cf. [Sc13, §1.2.3.2][GiS23, §2.3][Sc24, p. 4]). A fundamental
and now classical insight into quantum gauge theory is the observation that this needs to be
accompanied by a map χ : X ! B2Z to the classifying space for integral 2-cohomology and by
a homotopy Â in the ∞-topos of smooth ∞-groupoids (cf. [FSS23, Prop. 1.24]1, exposition in
[FSS14][Sc24]). This identifies the images of the two in real cohomology (see [FSS23, Ex. 9.4]):

Ω2
clsd

X4 B2R .

B2Z︸︷︷︸
BU(1)

de Rham map

Â

∼

F

χ exte
nsion

of sc
alars

(8)

This extra data exhibits flux quantization (often: “Dirac charge quantization”, for further discussion
and pointers see [Al85, §2][Fr00, §2][FSS23, p. 4][SS23c, §3.1][SS24]) in that it ensures that the
integrated magnetic flux through any 2-sphere submanifold S2 ↪! X is an integer

∫
S2 F ∈ Z ,

counting the number of elementary magnetic solitons enclosed by S2. For instance, if

X ≡ R1,1
+ ∧ R2

∪{∞}
is Minkowski spacetime with the “point at infinity” of a spatial hyperplane adjoined – encoding
the constraint that fields vanish at infinity along this plane, as is the case for a real laboratory
magnetic field through a slab of material in the laboratory – and if

S2 ≃ {0, 0} × R2
∪{∞} ↪−! X

is the resulting sphere, then flux quantization reflects the experimentally observed phenomenon of
integer numbers of Abrikosov vortices in a type-II superconducting material (cf. [SS24, §2.1]).

While this situation in Maxwell theory is commonly felt to be settled, it is not outright clear (and
has hardly received consideration) which corresponding quantization condition is to be imposed on
the electric flux density represented by the Hodge-dual 2-form ⋆F . To even state the question
properly, we need to get hold of ⋆F as an independent flux variable that can be subjected to flux
quantization.

Premetric fluxes. This is accomplished by the equivalent “pre-metric” formulation of Maxwell’s
equations ([Cartan1924, §80], cf. [Fr00, Ex. 3.8][HIO16][BBSS17, Rem. 2.3][LS22, Def. 1.16][LS23,
Def. (3)][SS23c, §3.1][SS24, §2.4]), which (in vacuum) subjects not one but two closed flux density
variables (F, E) : X ! Ω2

clsd×Ω2
clsd to a further constitutive relation enforcing their Hodge-duality

on X4:
E = ⋆4F . (9)

1When we refer to equation-, definition-, proposition-, page-numbers in [FSS23] we refer to the version published
by World Scientific — see ncatlab.org/schreiber/show/The+Character+Map#PublishedVersion — which differs
from the numbering in the arXiv version (otherwise the content is the same).
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Trivially equivalent as this re-formulation is, it makes manifest the maximal “decoupling” of the
cohomological from the metric content of Maxwell’s equations, clearly suggesting that a choice of
flux quantization of the pair (F, E) needs to be made along the lines of (8), and only afterward
the Hodge-duality condition (9) to be reimposed, in some fashion.

Notice that this is just the same approach which in supergravity/string theory is known ([SS24,
§2.4]) as the “duality-symmetric” or “democratic” formulation (eg. [MV23, p. 2]) underlying
notably the common Hypothesis K that RR-fluxes are quantized in topological K-theory (see [GrS22,
p.3][SS24, §4.1] for pointers), and likewise for the fields in M-theory (see [Sa10, §4]), here underlying
the analogous “Hypothesis H” ([SS24, §4.2], see p. 7 below).

In fact, we may observe (we expand on this in the companion article [SS23c]) that the pre-
metric/democratic formulation of vacuum Maxwell theory essentially coincides with its canonical
phase space formulation (cf. appendix A.1):

Namely on a globally hyperbolic spacetime X4 ≃ R0,1 × X3 in temporal gauge (A0 = 0) the
Faraday tensor in Ω2(X4)clsd decomposes as a magnetic flux density F ∈ Ω2(X3)clsd and a temporal
component, whose Hodge dual is the electric flux density E ∈ Ω2(X3)clsd which takes the role of
the field’s canonical momentum, and whose closure condition dE = 0 now plays the role of the
Gauß law constraint (23). This way, F and E are indeed independent field variables on X3 and
the constitutive relation (9) is all absorbed into the prescription by which initial value data (F,E)
on X3 induces temporal evolution in X4 = R0,1 ×X3 (cf. [SS23c, §3.1]).

Phase space flux quantization. Hence we need to ask: What are the admissible flux quantization
laws for flux densities (F,E) : X3 ! Ω2

clsd ×Ω2
clsd? The general answer is given in [FSS23]: These

are given by choices of topological spaces2 A whose rationalization is equivalent to B2Q×B2Q:

A B2Q×B2Q B2R×B2R .
rationalization

R-rationalization

extension

of scalars
(10)

For any such choice, the corresponding flux-quantized pre-metric gauge fields are given by homo-
topies of smooth ∞-groupoids of the following form ([FSS23, Def. 9.3], but for our purpose here
the reader need not further be concerned with the details of this construction):

Ω2
clsd ×Ω2

clsd

X3 B2R×B2R

A

de Rham map

ÂEM

∼

(F,E)

χ
R-ratio

naliza
tion

(11)

Notice that there are many available choices for such A, and that each choice is a statement (a
prediction) about the corresponding physics. For instance, any connected topological space Q all
of whose homotopy groups are finite (e.g. classifying spaces of finite groups)

K ∈ Grpfin ⊢ BK ∗rationalization (12)

has trivial rationalization. This implies that with A also any A×Q is an admissible flux quantization
law (10) for pre-metric electromagnetism.

We make explicit some of the possible choices of electromagnetic flux quantization:
• In view of (8), a suggestive choice may be the one that subjects ⋆F to same integral flux quan-
tization as F A ≡ BU(1)︸ ︷︷ ︸

magnetic

×BU(1)︸ ︷︷ ︸
electric

, (13)

2 Here we restrict attention to classifying spaces A which are simply connected with finite-dimensional rational
cohomology in each degree. This is not to get sidetracked by technical complications which, while of interest to the
issue of flux quantization, are more esoteric and beyond the intended scope of this note, cf. [FSS23, Rem. 5.1].
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This corresponds to the choice made in [FMS07a, (1.26)][BBSS17, Rem. 2.3][LS22, Def. 4.1][LS23,
Def. 4.3]. In [FMS07b, (3.4)] it says that it “follows immediately” from the Hodge self-duality of
Maxwell’s equations; but this is to presuppose the answer to the question: Whether flux quan-
tization laws retain all the symmetries of the underlying differential form data is a hypothesis
that would ultimately need to be decided by experiment. Mathematically it is consistent, but so
would be many other choices.

• Indeed, the mathematical physics literature commonly implies no further condition on the electric
flux density ⋆F , apart from it being the Hodge-dual of the magnetic flux density. In particular,
common discussions of electromagnetism assume that the topological content of an EM-field
configuration is all encoded in the class χ : X ! B2Z of a single U(1)-principal bundle, nothing
else. This assumption is reflected in the choice

A ≡ BU(1)︸ ︷︷ ︸
magnetic

× B2Q︸︷︷︸
electric

. (14)

• In either case, we highlight that the flux quantization laws (10) are subject to choices of pure
torsion components in the classifying space. Even if we remain within the traditional assumption
that magnetic flux is classified exactly by BU(1) and that also electric flux should satisfy an
integrality constraint as in (13), there is still the freedom to postulate that electric flux is classified
by a non-connected extension of U(1), such as U(1)⋊K for any finite group K with any action
on U(1): A ≃ B

(
U(1)︸︷︷︸

magnetic

⋊K ⋉U(1)︸ ︷︷ ︸
electric

)
. (15)

(This freedom of choosing “global” non-abelian structure even in abelian Yang-Mills theory has
also been observed, from a different angle, in [LS22].)
We will see in §3 that it is not entirely a coincidence that the group in (15) is the one controlling
the topological flux observables in (7).

Hypotheses about flux quantization laws. In listing the above examples, our aim is not to
dwell on phenomenological questions of experimental quantum electromagnetism (though these are
worthwhile, cf. [FMS07b, p. 28][KMW07]), but rather to amplify the previously underappreciated
mathematics parameterizing the space of consistent possibilities. Namely, it is important to realize
that analogous choices of flux quantization laws need to be made in higher gauge theories, and
absent further rules any such choice is a hypothesis on the fundamental nature of these theories.

Notably, when making the popular statement that RR-flux forms in type I/II supergravity
theory are quantized in topological K-theory (for pointers see [GrS22][SS23c, §1.3], we refer to this
traditional hypothesis as “Hypothesis K” following [SS23b, Rem. 4.1]), there is secretly a choice
that has been made and existing consistency checks of this choice rarely try to differentiate it from
other possible choices.

Perhaps more importantly, a similar choice of flux-quantization law needs to be made when
considering the C-field fluxes in D = 11 supergravity. The similarly canonical-looking choice
in this case is “Hypothesis H” ([Sa13, §2.5][FSS19][SS20][FSS21a][FSS21b][SS21a][FSS22][SS23a]).
For this choice, we had observed [SS22][CSS23] that the Pontrjagin algebra of the loop space of the
moduli space of flux-quantized C-fields looks a lot like an algebra of non-perturbative topological
quantum observables on (fluxes sourced by) M-branes (see also §4).

Next, in §3, we observe that the analogous statement is already true for plain electromagnetism.

Notice that another role of non-perturbative Rieffel quantization in relation to C-field fluxes
has been considered in [MS15].
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3 Pontrjagin algebras of Quantum observables

In unification of §1 and §2, we observe here that algebras of topological flux observables (4) arise
as the homology Pontrjagin algebras of the loop spaces of moduli spaces of flux-quantized fields.

Topological fields and KK-Reduction. We consider globally hyperbolic spacetimes which,
besides the temporal direction, have a line factor singled out, i.e., are product spaces of the form

R0,1︸︷︷︸
time

×
(
R1 × Σ

)︸ ︷︷ ︸
Cauchy surface

= R1,1 × Σ . (16)

Here we may regard (by (19) below) the R1-factor as a “decompactified” KK-compactification fiber
(i.e., the fully non-perturbative situation, as KK-theory goes). Indeed, a “spontaneous” compacti-
fication is automatically implied if we consider topological fields vanishing at spatial infinity (42),
as usual (43) for solitonic fields, because:

Map∗/
(
R0,1
⊔{∞} ∧

(
R1 × Σ

)
∪{∞}, B(G⋉BΛ)

)
moduli space of topological fields
vanishing at spatial infinity

≃
whe

Map∗/
((

R1 × Σ
)
∪{∞}, B(G⋉BΛ)

)
by (45)

≃ Map∗/
((

S1 ∧ Σ⊔{∞}, B(G⋉BΛ)
)

by (37).

(17)

(Here we are assuming, just for brevity for exposition, that Σ is already compact itself.)

Elementary as this is mathematically, it is somewhat remarkable as it exhibits the moduli space
of topological fields as a loop space:

Map∗/
(
R0,1
⊔{∞} ∧

(
R1 × Σ

)
∪{∞}, B(G⋉BΛ)

)
moduli space of topological fields
vanishing at spatial infinity

≃
whe

Map∗/
((

S1 ∧ Σ⊔{∞}, B(G⋉BΛ)
)

by (17)

≃ Map∗/
(
S1, Map∗/

(
Σ⊔{∞}, B(G⋉BΛ)

))
by (30)

≃ ΩMap
(
Σ, B(G⋉BΛ)

)
by (38) & (31).

(18)

But this also means that:

Map∗/
(
R0,1
⊔{∞} ∧

(
R1 × Σ

)
∪{∞}, B(G⋉BΛ)

)
moduli space of topological fields
vanishing at spatial infinity

≃ ΩMap
(
Σ, B(G⋉BΛ)

)
by (18)

≃ Map
(
Σ, (G⋉BΛ)

)
by (51).

(19)

Hereby the topological fields on
R1 × Σ are re-expressed as fields
on Σ, as befits a KK-reduction.
(This is the based version of
double dimensional reduction via
free looping [BMSS19, §2.2]).

Fusion of topological KK-fields. Unwinding
the definitions, one sees that the operation of
loop concatenation in (18) corresponds to the
“fusion” of field solitons in the KK-direction.
For abelian fields, this fusion of solitons is re-
flected in the addition of their charges.

Σ

∞ ∞
R1

Σ

∞ ∞
R1

Σ

∞ ∞R1
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Pontrjagin algebra as Quantum observables. To see how to obtain quantum observables of
such moduli, let us step back for a moment and reconsider the notion of quantum observables in
the most simplistic non-trivial case, namely on a set S ∈ Set of disconnected (“superselection”)
sectors of a physical system. The algebra of such quantum observables is just the linear span C[S]
(whose canonical basis elements are the observations: “system is in sector s ∈ S”) equipped with
the S-element wise product of complex numbers, and regarded as a star-algebra under S-element
wise complex conjugation.

Now regard this simplistic case from a more sophisticated perspective by regarding S ∈ Set ↪!
kTopSp as a topological space that happens to carry a discrete topology. Then we may equivalently
say that the observables span the homology H•(S; C) ≃ C[S] of the space of sectors of configura-
tions of the physical system. This is noteworthy, because the notion of homology makes sense, of
course, for general topological spaces. The main point is that, while homology groups do not gen-
erally form a natural algebra structure – much less a star-algebra structure as required on quantum
observables (e.g. [BLOT90, §6]) – they do so on loop spaces (38) (generally on “H-spaces”):

To that end, let TopFieldsΣ be a topological moduli space of topological field configurations
of a given physical system, equipped with some basepoint. Then the homology of its loop space
becomes a star-algebra (in fact a Hopf algebra) whose product is induced by the concatenation
of loops (“Pontrjagin product” [Po39][BoSa53], cf. [Ha02, pp. 287]) and whose star-involution
(“dagger”-operation) is induced by reversal of loops:

ΩTopFieldsΣ × ΩTopFieldsΣ ΩTopFieldsΣ

H•
(
ΩTopFieldsΣ; C

)
⊗H•

(
ΩTopFieldsΣ; C

)
H•

(
ΩTopFieldsΣ; C

)
,

conc

concatenate loops

(−)·(−) := conc∗

Pontrjagin product

ΩTopFieldsΣ ΩTopFieldsΣ

H•
(
ΩTopFieldsΣ; C

)
H•

(
ΩTopFieldsΣ; C

)

H•
(
ΩTopFieldsΣ; C

)
.

rev

reverse loops

(−)†Pontrjagin dagger

rev∗

Pontrjagin antipode

(−)
complex

conjugation

(20)

In these terms, we now obtain the following main observation of this note:

Theorem 3.1 (Pontrjagin ring of topological quantum observables on Maxwell fluxes). The Pon-
trjagin Hopf-algebra (20) of the moduli space of topological u(1)-gauge fields (18) subject to the
flux-quantization law (15) is, in degree=0, isomorphic to the Hopf algebra of topological quantum
observables from Ex. 1.4 on fluxes in u(1)-Yang-Mills:

H0

(
Map∗/

(
R0,1
⊔{∞} ∧

(
R1 × Σ

)
∪{∞}, B

(
U(1)2 ⋊K

))
; C

)
≃ C

[
H1(Σ; Z)2 ⋊H0(Σ; K)

]
.

Proof. We discuss this in appendix A.2.

This observation seems noteworthy in that it obtains the topological quantum flux observables
directly from the topology of the flux quantization law, short-cutting the analysis of Poisson brack-
ets, and as such immediately generalizes to higher non-abelian gauge theories subject to rather
more subtle flux quantization laws, such as the RR-fluxes in string theory and the C-field fluxes in
M-theory mentioned on p. 7. We comment on the potential impact in the following outlook §4.
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4 Conclusion and Outlook

Above we have focused on Pontrjagin algebras (of loop spaces of moduli spaces of topological
gauge fields) in degree=0, showing that these reproduce non-perturbative topological quantum
observables on fluxes. It is interesting to notice that also in higher degrees these Pontrjagin algebras
look like (higher) algebras of (higher) quantum observables:

Pontrjagin algebras as higher quantum algebras. The rational homotopy type of a simply
connected topological space A (as in footnote 2) is all encoded in its rational Whitehead L∞-algebra
lA ∈ L∞Alg (essentially its “Quillen model”, see [FSS23, Prop. 5.11]), and the Pontrjagin algebra
of its loop space is [MM65, p. 262][FHT00, Thm. 16.13] the universal graded enveloping algebra
U(−) of the underlying binary Whitehead Lie algebra bracket [−,−] (a graded super-Lie algebra,
but this generalizes to the enveloping A∞-algebra of the full Whitehead L∞-algebra [M-F22, Thm.
4.1]): A simply connected ⇒ H•

(
ΩA; R

)
≃ U

(
lA, [−,−]

)
.

Now, of course, the passage from Lie algebras to universal enveloping algebras is again the (now
“formal”) deformation quantization of the corresponding Lie-Poisson structure [Gu83, (.42)][Gu11,
§22][PV00, p. 3], now all in a higher-geometric sense reflected in the grading.

For example, if A ≡ S4 is the homotopy type of the 4-sphere, then lS4 has generators v3
in degree 3 and v6 in degree-6, with non-trivial super-Lie bracket being the M-theory gauge Lie
algebra [v3, v3] = v6 ([CJLP98, (2.5)][Sa10, §4][SV23, Ex. 2.2][SS24, (27)]), whose graded universal
enveloping algebra is hence

H•
(
ΩS4; C

)
≃ C

[
v3, v6

]/(
v23 − v6

)
. (21)

This may be thought of as a quantum deformation of the cohomology of the 3-sphere S3 ↪! ΩS4

just as, up to degree shifts, the quantum cohomology of CP 1 (cf. [Wi90, p. 275][DGR10]):

QH•(CP 1; C
)

≃ C[v2, v4]
/(

v22 − v4
)

is a deformation of the ordinary cohomology of CP 1 (and, of course, S3 forms a circle bundle over
CP 1, the Hopf fibration, as befits an M-theory lift.)

In view of Thm. 3.1 this suggests that passage to Pontrjagin algebras of loop spaces of moduli
spaces may generally be a valid form of quantization, at least for topological observables, applicable
in particular also to higher gauge theories. Since this construction shortcuts known forms of
quantization, one is led to ask how to think of it as a quantization process in more detail:

Topological Light-cone quantization? A key aspect of Pontrjagin algebras of loops in moduli
spaces is (18) that their product operation corresponds to sequencing along a singled-out spatial
direction in spacetime. But, since the operator product order of quantum observables is well-known
to reflect their temporal ordering [Fey42, p. 35][Fey48, p. 381] (cf., e.g., [Na99, pp. 33]), it stands
to reason that the Pontrjagin product on loop space homology regarded as a quantum operator-
product must be reflecting sequences of events which happen by joint progression
along a “time-axis” and along an effectively periodic spatial direction. This is of
course the case in (“discretized”) light-cone quantization (review in [He01]), such
as famously used for non-perturbative quantization of Yang-Mills theory (review
in [FS10, §12]) and of sectors of M-theory (review in [Yd18, §3.9/7.9]).

ti
m
e

periodic space

Indeed, the discussion in [SS22, §4.9] with the result of [CSS23] indicate that the method
of Pontrjagin algebra quantization applied to topological fluxes sourced by intersecting M-branes
reproduces the quantum states of transversal M2/M5-brane bound states in discretized light-cone
quantization as previously discussed in the BMS matrix model.

The results presented here suggest that this is not a coincidence, but part of a general role that
Pontrjagin algebras play in quantization of fluxes in (higher) gauge theories, cf. [SS23d, §2].
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A Background and Proofs

Here we spell out technical details and prove the claims in the previous sections.
§A.1 – Phase space of fluxes in Yang-Mills theory
§A.2 – Homotopy theory of topological field sectors

A.1 Phase space of Yang-Mills fluxes

Phase space of Yang-Mills theory. We start by recalling the canonical phase space structure of
Yang-Mills theory in temporal gauge (e.g. [FP83, §3][BLS84, §2]), following the insightful account
of [CP17].3 We slightly generalize these accounts by admitting any metric Lie algebra as gauge
algebra, and by admitting non-trivial topological sectors of gauge potentials.

Consider:
• g a finite-dimensional real metric Lie algebra, hence equipped with a symmetric ad-invariant
non-degenerate (but not necessarily definite) bilinear form ⟨−,−⟩ : g⊗ g ! R .

• G a Lie group with Lie algebra g, being the Yang-Mills gauge/structure group.

• X a smooth 3-manifold, thought of as a Cauchy surface in globally hyperbolic spacetime R0,1×X.

• X̂ ↠ X any differentiably good open cover, i.e., X̂ ≡ ⊔
i∈I

Ui for
{
Ui

ιi
↪−! X

}
i∈I a set of open

subsets which cover, ∪
i∈I

Ui = X, and all whose non-empty finite intersections are diffeomorphic

to an open ball.

• g•,• : X̂×X X̂ ! G a smooth (“transition”-)function, hence with components gij : Ui∩Uj ! G,
such that on any Ui∩Uj ∩Uk we have gij ·gjk = gik, encoding a topological sector (a G-principal
bundle) P of G-Yang-Mills theory on R0,1 ×X.

Write:

• Ω•
dR

(
X̂; g

)
≡ Ω•

dR

(
X̂
)
⊗ g for the de Rham complex of smooth differential forms on X̂ with

coefficients in g,

• [−,−] : Ω•
dR

(
X̂; g) ⊗ Ω•

dR

(
X̂; g

)
! Ω•

dR

(
X̂; g

)
for the induced super-Lie bracket, given by the

wedge product of differential forms in the given order, tensored with the Lie bracket of their
coefficients,

• ⟨−,−⟩ : Ω•(X; gP ) ⊗ Ω•(X; gP ) ! Ω•(X) for the induced graded pairing, given by the wedge
product of differential forms in the given order tensored with the pairing of their coefficients –
and then regarded as a plain differential form on X, via the ad-invariance of the pairing,

• ΓTX

(
TP/G

)
=

{
A ∈ Ω1

dR(X̂)⊗ g
∣∣∀ij Aj = dgij +Adgij (Ai) on Ui ∩ Uj

}
for the set of gauge

potentials in the sector P (principal connections on P ),

• Ω•
dR(X; gP ) =

{
ω ∈ Ω•

dR(X̂)⊗ g
∣∣∀i,j ωj = Adgij (ωi) on Ui ∩Uj

}
for the de Rham complex of

smooth differential forms on X with values in sections of the P -adjoint bundle,

• dA : Ω•
dR(X; gP ) ! Ω•

dR(X; gP ) for the covariant de Rham differential (of degree=1) with
respect to a given A ∈ ΓTX(TP/G): dAω ≡ dω + [A,ω],

• FA ≡ dA+ 1
2 [A,A] ∈ Ω2(X; gP ) for the magnetic flux density of A (the curvature form).

Now:

3The discussion in [CP17] is motivated by Ashtekar’s phase space of first-order Einstein-gravity, which famously
coincides with that of SU(2)-Yang-Mills theory subject to further constraints. But these further constraints play no
role in [CP17] and the restriction to G ≡ SU(2) is inessential otherwise.
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The phase space of G-Yang-Mills theory in temporal gauge on R0,1 ×X with respect to the back-
ground field sector P is globally coordinatized by:
• A ∈ ΓTX(TP/G), the gauge potential in temporal gauge, serving as the canonical coordinate,
• E ∈ Ω2

dR(X; gP ) the electric flux density, constituting the canonical momentum,
hence with the non-trivial Poisson bracket being{∫

X

〈
ω,E

〉
, A(x̂)

}
= ω(x̂) for ω ∈ Ω1

dR(X; gP )cpt (22)

subject to a first-order constraint:
• the Gauß-Law dAE = 0 . (23)

Linear flux observables in Yang-Mills theory. Consider in addition:
• Σ ↪! X a closed oriented 2-dimensional submanifold (not necessarily connected), being the
surface through which electromagnetic flux is to be observed,

• Φα
E :=

∫
Σ⟨α,E⟩ for α ∈ Ω0

dR(Σ, gP ), the electric flux through Σ integrated against a weight α,

• Φβ
B :=

∫
Σ⟨β, FA⟩ for β ∈ Ω0

dR(Σ, gP ), the magnetic flux through Σ integrated against weight β,
where the weights (or: “smearing functions”) are smooth Lie-algebra valued functions, precisely:

α, β ∈ Ω0
dR(Σ; gP ) ≃ ΓΣ

(
g⋊ad P

)
. (24)

The subtlety pointed out and resolved in [CP17] is that these Φα
E , Φβ

B are not technically
observables on the phase space, since their would-be associated Hamiltonian vector fields are not
smooth; but that gauge-equivalent regularized observables are obtained by considering:

• Σ̂ ↪! X the exterior component of a tubular neighborhood of Σ in X, hence a non-compact
3-dimensional submanifold with boundary ∂Σ̂ = Σ;

• Φ̂α
E :=

∫
Σ̂
⟨dAα,E⟩ for compactly supported α ∈ Ω0

dR

(
Σ̂; gP

)
cpt

, the electric flux observable;

• Φ̂α
E :=

∫
Σ̂
⟨dAβ, FA⟩ for compacty supported β ∈ Ω0

dR

(
Σ̂; gP

)
cpt

, the magnetic flux observable.

The above two forms of the magnetic flux observable are actually equal, due to the Bianchi identity,

Φ̂β
B ≡

∫
Σ̂
⟨dAβ, FA⟩

=
∫
Σ̂
⟨dAβ, FA⟩+

∫
Σ̂
⟨β, dAFA︸ ︷︷ ︸

0

⟩

=
∫
Σ̂
d ⟨β, FA⟩

=
∫
Σ d⟨β, FA⟩

= Φβ
B ,

(25)

and the analogous computation, but now using the Gauß law (23), shows that the two forms of the
electric flux observables coincide on the constraint surface (i.e. up to a term proportional to dAE):

Φ̂α
E ≈ Φα

E . (26)

With the canonical Poisson bracket (22), one finds the Poisson brackets of these regularized
electromagnetic linear flux observables, first for electric/electric fluxes (cf. [CP17, (7)]){

Φ̂α
E , Φ̂

β
E

}
≡

{∫
Σ̂
⟨dAα, E⟩,

∫
Σ̂
⟨dAβ, E⟩

}
=

{∫
Σ̂
⟨dAα, E⟩,

∫
Σ̂

〈
[A, β], E

〉}
+
{∫

Σ̂

〈
[A,α], E

〉
,
∫
Σ̂
⟨dAβ, E⟩

}
=

∫
Σ̂

〈
[dAα, β], E

〉
−
∫
Σ̂

〈
[α, dAβ], E

〉
=

∫
Σ̂

〈
dA[α, β], E

〉
≡ Φ̂

[α,β]
E ,

(27)
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and for the electric/magnetic fluxes (a statement which seems not to have been recorded before):{
Φ̂α
E , Φ̂

α
B

}
≡

{∫
Σ̂
⟨dAα, E⟩,

∫
Σ̂
⟨dAβ, FA⟩

}
≡

{∫
Σ̂
⟨dAα, E⟩,

∫
Σ̂

〈
dβ + [A, β], dA+ 1

2 [A,A]
〉}

=
∫
Σ̂

〈
[dAα, β], FA

〉
+
∫
Σ̂

〈
dAβ, dA dA α

〉
=

∫
Σ̂

〈
[dAα, β], FA

〉
+
∫
Σ̂

〈
dAβ, [FA, α]

〉
=

∫
Σ̂

〈
[dAα, β], FA

〉
+
∫
Σ̂

〈
[α, dAβ], FA

〉
=

∫
Σ̂

〈
dA[α, β], FA

〉
≡ Φ̂

[α,β]
B ,

(28)

where we used that ⟨−, [−,−]⟩ : g⊗ g⊗ g ! R is invariant under cyclic permutations.

This completes the proof of Thm. 1.1.

A.2 Homotopy theory of topological field sectors

Topology of fields vanishing at infinity. As usual in algebraic topology, we work in the category
kTopSp of compactly-generated topological spaces (for pointers see [SS21b, p. 21], and we will just
say “topological spaces”, for short), where for X,Y, Z ∈ kTopSp the mapping spaces Map(−,−)
and the product spaces (−)× (−) are related (“Cartesian closure”) by natural homeomorphisms of
the form

Map
(
X × Y, Z

)
≃ Maps

(
X, Maps(Y, Z)

)
.

This property is inherited by the category of pointed spaces

kTopSp∗/ :=
{
X ∈ kTop, ∞X ∈ X

}
(which here we think of as spaces equipped with a “point at infinity”, see around [SS23a, Ntn.
3.3] for more), now with respect to the mapping sub-space Map∗/(−,−) of point-preserving maps
and the “smash product” (−)∧ (−), which identifies everything “at infinity” with a single point at
infinity:

X,Y ∈ kTopSp∗ ⊢ X ∧ Y :=
X × Y

X×{∞X} ∪ {∞Y }×Y
, (29)

in that
Map∗/

(
X ∧ Y, Z

)
≃ Map∗/

(
X, Map∗/(Y, Z)

)
. (30)

There are several ways to turn a topological space X into a pointed topological space. We write:
• X⊔{∞} for X with a disjoint base point adjoined, so that none of the original points of X
is “at infinity”. Accordingly, preserving a disjoint point at infinity is no extra condition on
maps:

Map∗/
(
X⊔{∞}, −

)
≃ Map(X, −) . (31)

• X∪{∞} for X with a basepoint adjoined whose open neighborhoods are the complements of
closed compact subsets of X (called the “Alexandroff one-point compactification” of X, cf.
[Cu20, pp. 5]). This means that continuous paths may reach the “point at infinity”.

• X for connected spaces, regarded as pointed by any one of their points (as on the right of
(32) and (38) below).

For example:
• Identifying the “ends” (cf. [Pe90]) of Euclidean space with a point at infinity yields a sphere
(cf. [SS23a, p. 7]):

(Rn≥1)∪{∞} ≃
homeo

Sn. (32)
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• Adjoining the point at infinity to a product is the smash product of the factor with their separate
points-at-infinity [Cu20, Prop. 1.6]:

(X × Y )∪{∞} ≃ X∪{∞} ∧ Y∪{∞} . (33)

For example, with (32) this gives

Sn1 ∧ Sn2 ≃ Sn1+n2 . (34)

• If a space Σ is already compact, then the adjoined point at infinity is disjoint:

Σ compact ⇒ Σ∪{∞} ≃ Σ⊔{∞} . (35)

• The (reduced) suspension

S1 ∧X⊔{∞} ≡
R1
∪{∞} ×X

{∞} ×X
(36)

is to be thought of as the cylinder R1 ×X with both ends regarded as being at infinity.
• If Σ is already compact, then its suspension (36) is equivalently the compactification of its
product with the real line:(

R1 × Σ
)
∪{∞} ≃ R1

∪{∞} ∧ Σ∪{∞} by (33)

≃ S1 ∧ Σ⊔{∞} by (32) & (35).
(37)

• The based loop space of any X ∈ kTopSp∗/ is the pointed mapping space from the circle:

ΩX = Map∗/(S1, X) , (38)

where the circle is equipped with any basepoint.
• The n-th homotopy group ofX ∈ kTopSp∗/ is the connected components of the pointed mapping
space out of the n-sphere:

πn(X,∞X) = π0Map∗/
(
Sn, X

)
. (39)

• With G a topological group, its classifying space BG (pointers in [SS21b, §2.3]) is connected
and its based loop space (38) is weakly homotopy equivalent (44) to the underlying space of G:

ΩBG ≃
whe

G . (40)

For example,
S1 ≃

whe
BZ . (41)

For classifying spaces of (topological sectors of) physical fields, we are to think of their point
at infinity as classifying the vanishing field, because the constant pointed classifying map, which
factors as

X −−! {∞BG} ↪−! BG ,

classifies the trivial field. It is in this way that general pointed classifying maps literally vanish at
infinity (cf. [SS22, §2.1][SS23a, Rem. 2.3]):

X BG

{∞X} {∞BG} .
(42)

For example, the familiar classification of Yang-Mills instanton sectors — as SU(2)-valued gauge
fields on R4 which vanish at infinity — is obtained as follows:

π0Map∗/
(
R4
∪{∞}, BSU(2)

)
≃ π0Map∗/

(
S4, BSU(2)

)
by (32)

≃ π0Map∗/
(
S3 ∧ S1, BSU(2)

)
by (33)

≃ π0Map∗/
(
S3, Map∗/

(
S1, BSU(2)

))
by (30)

≃ π0Map∗/
(
S3, SU(2)︸ ︷︷ ︸

≃S3

)
by (40)

≃ π3(S
3) = Z by (39).

(43)
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Homotopy theory of topological field sectors. A weak homotopy equivalence is a continuous
map that induces isomorphisms on all homotopy groups (39):

f : X
∼

−−−!
whe

Y ⇔


π0(f) : π0(X)

∼
−! π0(Y ),

∀
n∈N≥1

x∈X

πn(f, x) : πn(X,x)
∼
−! πn

(
Y, f(y)

)
,

(44)

making X and Y be “the same for all purposes” of topological homotopy theory (see [FSS23, Ex.
1.1] for review).

For example:
• The smash product (29) of smooth manifolds with contractible smooth manifolds4 is the identity
up to weak homotopy equivalence, and the pointed mapping space construction is insensitive,
up to weak homotopy equivalence, to maps out of contractible manifolds:

X,Y ∈ SmthMfd,

X ≃
whe

∗

 ⇒


X ∧ Y ≃

whe
Y ,

Map∗/(X ∧ Y, −) ≃
whe

Map∗/(Y, −) .

(45)

• If Σ and Y have the structure of smooth manifolds with Σ compact, then there is a weak

homotopy equivalence (44) from the Fréchet manifold of smooth functions Σ
smooth
−−−! Y to the

mapping space of the underlying topological spaces — an instance of the smooth Oka principle
[SS21b, Thm. 3.3.63]:

C∞(
Σ, Y

)
≃
whe

Map(Σ, Y ) . (46)

As such, this depends only on the weak homotopy type of Σ and Y themselves. For instance,
if Y ≡ Rn/Zn is a torus, whose weak homotopy type is that of the classifying space BZn (41),
then

C∞(
Σ, Rn/Zn

)
≃
whe

Map(Σ, BZn) . (47)

Cohomology classifying topological field sectors. That the space BG (40) is “classifying”
refers to the homotopy classes of maps into it corresponding to isomorphism classes of G-principal
bundles over smooth manifolds (at least), hence to the degree=1 non-abelian cohomology with
coefficients in G (cf. [FSS23, Ex. 2.2]):

π0Map
(
Σ, BG

)
≃ H1(Σ; G) . (48)

In the case when G ≡ A is abelian there is (abelian) topological group structure on BA itself
so that we iteratively obtain higher classifying space Bn+1A := BnA. For A discrete, these are
“Eilenberg-MacLane spaces” K(A,n) which classify ordinary cohomology in higher degrees (cf.
[FSS23, Ex. 2.1]):

π0Map
(
Σ, BnA

)
≃ Hn(Σ; A) . (49)

Notice that, under this equivalence, the usual group structure on ordinary cohomology comes
from the pointwise group structure of maps into a topological group.

Hence in general, for any topological group G, we may think of maps into a BG as 1-cocycles
of (possibly non-abelian) G-cohomology, and of homotopies between such maps as coboundaries
between the corresponding cocycles. In this sense, the mapping space into BG is the cocycle space of
G-cohomology ([FSS23, Def. 2.1]) and its connected components are the (non-abelian) cohomology
classes:

4The assumption in (45) that X and Y be smooth manifolds is not necessary for this statement, we make it only
for brevity of the discussion. A sufficient condition is that X and Y admit the structure of CW-complexes (which is
the case for smooth manifolds by the triangulation theorem).
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Map(Σ, BG) =

 Σ BG

c
cocycle

c′
cocycle

coboundary

 , H1(Σ; G) := π0Map(Σ, BG) . (50)

Similarly, the loop space of the mapping space into BG is the mapping space into G

ΩMap
(
Σ; BG

)
≃ Map∗/

(
S1, Map∗/

(
Σ⊔{∞}; BG

))
by (38) & (31)

≃ Map∗/
(
Σ+, Map∗/

(
S1; BG

))
by (30)

≃ Map∗/
(
Σ⊔{∞}, G

)
by (40)

≃ Map
(
Σ, G

)
by (31),

(51)

whose connected components are the 0-cohomology with coefficients in G:

H0(Σ; G) := π0Map(Σ, G) . (52)

Remark A.1 (Ordinary cohomology with topological group coefficients). Notice, with (41), that

H0(Σ; S1) ≃ H1(Σ; Z) (53)

and beware that the usual notation “Hn(Σ;U(1))” tacitly refers to the circle coefficient under-
stood with its discrete topology, hence is quite different. To make this explicit, if we write ♭A for
the underlying discrete group of a topological abelian group, then the usual notion of ordinary
cohomology with coefficients in A is Hn(Σ; ♭A) in the above notation (49).

The following derivations are standard for homotopy theorists but may serve as instructive
examples of the above notions for other readers :

Lemma A.2. Map(Σ, S1) ≃
whe

H1(Σ; Z)×B
(
H0(Σ; Z)

)
. (54)

Proof. First, observe that the connected components are

π0Map(Σ, S1) ≃ H0
(
Σ; S1

)
by (49)

≃ H1
(
Σ; Z

)
by (53).

Moreover, the fundamental group at the basepoint is

π1
(
Map(Σ, S1), 0

)
≃ π0

(
ΩMap(Σ, S1)

)
by (39)

≃ π0
(
Map(Σ, Z)

)
by (51) & (41)

≃ H0(Σ; Z) by (49).

(55)

Also, all higher homotopy groups at the basepoint vanish:

πn≥2

(
Map(Σ, S1), 0

)
≃ π0

(
Ωn≥2Map(Σ, S1)

)
by (39)

≃ π0

(
Map

(
Σ, Ωn≥2 S1︸ ︷︷ ︸

≃
whe

∗

))
by (51) & (34)

≃ ∗ .

(56)

Hence the connected component of the neutral element of Map(Σ, S1) is weakly homotopy equiv-
alent to B

(
H1(Σ; Z)

)
.
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But the topological group structure on Map(Σ, S1) implies that the multiplication operation of
any of its elements constitutes a homeomorphism from the connected component of that element
to that of the neutral element. Therefore, the underlying spaces of all connected components are
isomorphic. This implies (54).

Homology Pontrjagin algebras. We consider homology with complex coefficients, throughout.5

For Γ ∈ Grp(Set) a discrete group, regarded as the loop space of its classifying space, Γ ≃
whe

ΩBG,

see (40), its homology is just the linear span of the underlying set

H•(Γ; C) = H0(Γ; C) ≃ C[Γ], Γ C[Γ]
γ 7−! O(γ)

(57)

so that
C[Γ] =

{∑
γ∈Γ

cγ · O(γ)
∣∣∣ cγ ∈ C, supp(c(−)) is finite

}
.

Furthermore, the Pontrjagin product (20) is the convolution product of the group algebra ([We1931,
§III.13], cf. [FH91, §3.4]):

C[Γ]⊗C C[Γ] C[Γ]

O(γ)⊗O(γ′) 7−! O(γ · γ′)

(−)·(−)

(58)(∑
γ∈Γ

cγ · O(γ)

)
·
( ∑

γ′∈Γ
c′γ′ · O(γ′)

)
=

( ∑
γ′′∈Γ

( ∑
γ∈Γ

cγ · c′γ−1·γ′′

)
· O(γ′′)

)
.

Now, since homology is invariant under weak homotopy equivalence (44), i.e.,

X ≃
whe

Y ⇒ H•(X; C) ≃ H•(Y ; C) , (59)

and by the Künneth Theorem (e.g. [Ha02, Cor. 3B.7])

Hn(X × Y ; C) ≃
⊕

n1+n2=n

Hn1(X; C)⊗C Hn2(Y ; C) , (60)

this remains the case in degree=0 for products with connected CW-complexes (whose homology in
degree 0 is C), such as with classifying spaces of abelian groups, Γ×BA ≃

whe
ΩB(Γ×BA):

H0(Γ×BA; C) ≃ H0(Γ; C) . (61)

Using all this, we establish Thm. 3.1 as follows:

H0

(
Map∗/

(
R0,1
⊔{∞} ∧ (R1 × Σ)∪{∞}, B

(
U(1)2 ⋊K

))
; C

)
≃ H0

(
ΩMap

(
Σ, B

(
U(1)2 ⋊K

))
; C

)
by (18) & (59)

≃ H0

(
Map

(
Σ, U(1)2 ⋊K

)
; C

)
by (19) & (59)

≃ H0

(
H1

(
Σ; Z

)2 ×B
(
H0(Σ; Z)

)
⋊H0(Σ; K) ; C

)
by (54)

≃ H0

(
H1

(
Σ; Z

)2 ⋊H0(Σ; K) ; C
)

by (61)

≃ C
[
H1

(
Σ; Z

)2 ⋊H0(Σ; K)
]

by (57).

5Much further interesting structure appears when considering homology with integer coefficients, but this is beyond
the intended scope of the present note.
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