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Abstract

It is well-appreciated that (intuitionistic but otherwise) classical (functional, programming) language is
essentially the internal logic to cartesian closed categories (of data types), in particular to (higher) toposes
— and that epistemology and other modality expressing physical observations and effects are reflected by
(idempotent) co/monads on these categories.

We explore how this classical situation naturally extends to subsume quantum logic of quantum systems
controlled and measured by classical observers:

Here doubly closed monoidal categories (of entangled quantum data types parameterized by classical data),
such as higher tangent toposes, reflect in their linear slices the substructural (no-deleting/no-cloning) quantum
coherence, while their base change co/monads between linear slices turn out to know everything about decoherent
quantum measurement (wavefunction collapse), including the ancient Born rule as well as contemporary spider-
fusion in ZX-calculus string diagrams.

For example, the infamous quantum measurement paradox resolves in the internal logic to the deferred mea-
surement principle which obtains a rigorous proof as the Kleisli equivalence of the quantum necessity modality.

We close with application of this general theory to the concrete question of operating quantum-gates and
-measurement on anyonic topological order in fractional quantum Hall systems.
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Motivation

quantum circuit
computing:

coherent arrangement (programming) of indi-
vidual quantum processes on fin-dim Hilbert
spaces (“qbits”)

universal quantum
computing:

this embedded into classical computing back-
drop controlling and conditioned on quantum
measurement (non-deterministic!)

universal quantum
language:

a programming language for these tasks,
effectively a formalization of quantum theory
with fin-dim state spaces

practical promise: potentially enormous compute speedups for
certain problems like prime factorization; in
any case: insights into fundamental physics

practical hurdle –
intrinsic tension:

quantum systems amenable to local manipu-
lation and observation are also quickly deco-
hered by local noise

salvation strategy “QEC”:
quantum error correction:

on a highly redundant quantum register, clas-
sical computer continuously measures error
syndromes and intervenes accordingly

salvation strategy “TQC”:
quantum error protection:

utilize non-local “topological” ground states
intrinsically protected against noise and oper-
ated adiabatically

practice and perspective: currently almost all credible activity towards QEC,
but TQC plausibly inevitable for the real deal

both need much more fundamen-
tal development for commercial-
value scale quantum computing,

- QEC needs certifiable universal
quantum programming languages

- TQC needs better formalization of
topological quantum systems

Both are issues of more accurate quantum language.

Here is a concrete motivating question for
the following development, whose answer we
will have explained by the end of this course:

Topological(ly ordered) quantum materials are ef-
fectively governed by topological quantum field the-
ory (TQFT), hence by a form of “generally covari-
ant” QFT (like quantum gravity is expected to be).

In such generally covariant systems
“bulk diffeos are gauge symmetries”, while
“boundary diffeos are physical evolutions”.

1 BulkGaugeDiffeos Diffeos BoundaryDiffeos 1

Question: What is the most usefully
pedantic (⇒ programmable!) description
of operable & measurement quantum gates
that applies to such topological systems?
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Synopsis

Classical Computational Trinitarianism:
(Constructive but otherwise) Classical Logic
& Functional Programming Laguages
have “operational semantics” in
LCC categories of classical data types.

Question:
What becomes of this statement
as we generalize to allow also
quantum logic & quantum computing?

Answer:

Quantum Computational Trinitarianism:
Classical/Quantum Logic & Universal
Quantum Programming Languages
have operational semantics
in categories of linear data types

fibered over classical data types:

classically controlled quantum data .

Remarkably I:
Systematic unwinding of the
definable monads on such quantum data
reveals all about fundamental quantum effects :
quantum measurement, state collapse, Born rule, ...
(as an incarnation of Grothendieck’s motivic yoga!).

Remarkably II:
Then generalizing to
higher classical data types
namely: homotopy types

captures topological quantum phenomena.

whence generally we are dealing
with dependent linear homotopy types

verbalizing topological quantum data .

Next to explain what all this means...
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1 Categories of Classical Data Types:
Propositions, Quantifiers, Modalities, Effects

The simple but far-reaching Paradigm of Data Types (jargon: just types):

All data d is to be of some type D

notation d : D ,
specifying how to construct & read the data.

Programs p constructs output- from input data
notation i : I ⊢ p(i) : O ,
respecting their data type specification.

This makes a category Type,
whose objects are data types,
and whose morphisms are programs.

input data
type I O

output data
type

p

program

Type formation. Given data types L,R:
data of pair type (l, r) : L×R is
constructed by providing l : L and r : R,
& extracted by retaining either, so that
L×R is the cartesian product in Type.

data of function type f : L −→ R is
constructed by providing f(l) : R for l : L,
& extracted by evaluating at l : L
so that L −→ R is the internal hom in Type.

deduction rule:
(γ, l) : Γ× L ⊢ pγ(l) : R

γ : Γ ⊢ pγ : L −→ R
⇔

Γ× L R
p

Γ [L,R]
p̃

product/hom
adjointness

This makes Type a cartesian closed category (CCC).

Typing paradigm to be applied relentlessly:

Data types D themselves are data and hence of some type, D : Typei,
hence also Typei : Typei+1, and so on.
This makes Type a category with a hierarchy of universes.

Hence programs may output data types,
jargon: dependent types
notation: γ : Γ ⊢ Dγ : Typei

Dγ D T̂ypei
dependent

types

∗ Γ Typei
base
type

(pb) (pb)

fibration

γ ⊢D

& data of varying type: γ : Γ, iγ : Iγ ⊢ pγ(i) : Dγ

This makes CCC slice categories Type/Γ,
hence makes Type locally cartesian closed (LCCC).

I D

Γ
Γ-dependent
input data

p

flagged program
Γ-dependent
output data

Dependent type formation. Now given dependent data types l : L ⊢ Rl : Type:

data of dependent pair type (l, r) :
∐
l :L

Rl

is constructed by providing l : L and rl : Rl

data of dependent function type f :
∏
l :L

Rl

is constructed by providing f(l) : Rl for l : L

such that these form the left/right adjoint
base change functors between slice categories:

Type/Γ Type

∐
Γ

⊥
(−)×Γ

⊥∏
Γ

dependent co-product
forms total space

pullback forms
trivial fibration

dependent product
forms space of sections

The archetypical example is Type := Set with a hierarchy of Grothendieck universes.

L
o
g
ic

o
f
d
a
ta

ty
p
e
s.

Certificates for properties P of Γ-data
are data of sub-type P : TypeΓ
(“propositions are types”)

P
{
γ : Γ

∣∣ γ verifies P
}

Γ

:= Propositions as fibrations
whose fibers are either
empty or singletons.

On such propositional types,
the above type formation rules
implement first-order logic
constructively (“BHK interpretation”).

Thereby any program outputting p(i) : O
is also a constructive proof/certificate
that p(i) adheres to the specification O!

this data certifies that

γ : P1 × P2 P1 and P2 hold for γ

γ : P1 ⊔ P2 P1 or P2 hold for γ

c :
∐

Γ P there exists γ for which P holds

c :
∏

Γ P for all γ, P holds

c :
∏

Γ (P1 → P2) P1 implies P2
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Consider then the description of some measurement
with W : Typei of possible measurement outcomes,
hence of “possible worlds” seen after the measurement;
and some proposition P : Type/W about the outcomes.

measurement outcome /
possible world measured w : W

proposition about the possible
measurement outcomes/worlds P ∈ Type/W

Recalling that every adjunction
induces a monad and a comonad

Type′ TypeC := L◦R
induced
co-monad

left adjoint
L

R
right adjoint

⊥ R◦L≡: E
induced
monad

the dependent type formation/base change
induces a pair of adjoint pairs
of (co)monads

This carries rich logical meaning:

actual
data Type/W Type

potential
data

♢
W

possibly

⊥

□
W

necessarily

dependent co-product∐
W

(-)×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

On the left ,
inspection
shows that:

□W
P means: Pw means: ♢

W
P means:

“P does or is known to
hold necessarily”

namely, no matter which
world w is measured.

“P does or is known to
hold actually”

namely for the given
world w measured.

“P does or is known to
hold possibly”

namely for some possibly
measured world w.

Moreover, the (co)units ret♢ (obt□) of these
(co)monads reflect the expected logical en-
tailments of these modal propositions:

necessarily P

□W
P

actually P

P

possibly P

♢
W
P

w : W ⊢
∏

w′ :W
P

w′ Pw
∐

w′ :W
Pw′

entails

obt
□W
P

entails

ret
♢
W
P

(dw′ :W ) 7→ dw dw 7→ (w, dw)

Logic with such operators ♢ ⊣ □
is known as (“S5”) modal logic, and
the operators are known as modalities
— read: “modes of being (true)”.

The topic of modal logic is ancient and
much studied, and yet its above emer-
gence from dependent type formation/base
change remains under-appreciated.

But we will see that this per-
spective is the golden path to
proper quantum logic, knowing
about quantum measurement.

On the right, 9W ⊣ ⃝W

known as (co)reader (co)monads,
express computations with
potential data, that remain
indefinite up to specification of
random readout (in the sense of RAM):
namely of the measurement outcome w.

The monad’s
type formation:

⃝W : Type Type

D 7−→ [W, D]

and its
operations:

[
W, [W, D]

]
≃ [W×W, D] [W, D] [∗, D] ≃ D

W ×W W ∗

join
⃝W
D

≡ [diagW , D]

ret
⃝W
D

≡ const

diag
W ∃!

bind
⃝W

D,D′
:
(
D → (W → D′)

)binding of W -
indefiniteness effects

−−−−−−−−→
(
(W → D)→ (W → D′)

)
bind

⃝W

D,D′
≡
(
d 7→

(
w 7→ d′w(d)

))
program producing output

depending on
a global W -parameter

7→
((
w 7→ dw

)
7→
(
w

gl
ob
al
pa
ra
m
et
er

7→

ge
ts

pa
ss
ed

to

d′w(dw)

al
l s
ub

se
qu
en
t

pr
og
ra
m
s

))

We will see in the quantum case that
the above adjunction is in fact mondadic
(for finite W ) whence in quantum modal logic
left/right perspectives are essentially equivalent,
providing two perspectives on measurement:
on the left as for parameterized quantum circuits,
on the right as formalized in ZX-calculus.

In order to achieve this,
all we need to do now is pass
to dependent linear data types...
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2 Categories of Quantum Data Types:
Quantization, Classicization, Entanglement

Basic among the rules for handling classical data are the seemingly tautological “structural rules” which say that:

Idea Syntax Semantics

data may be
systematically
duplicated

C
Γ, p1 :P, p2 :P ⊢ tp1,p2 : T

Γ, p :P ⊢ tp,p : T

Γ× P × P T

Γ× P Γ× P × P T

⊢t

idΓ×diagP
⊢t

Contraction rule Diagonal map (cloning)

data may be
systematically

discarded

W
Γ ⊢ P : Type Γ ⊢ t : T

Γ, P ⊢ t : T

Γ T

Γ× P Γ T

⊢t

prΓ ⊢t

Weakening rule Projection map (deletion)

stru
c
tu

ra
l
ru

le
s

fo
r
c
la
ssic

a
l
d
a
ta

But a hallmark of coherent quantum data is that these rules do not apply: the no-cloning/no-deleting property.

Computationally this means that coherent quan-
tum programs invoke any input variable d : H

 at least once (not discarding it)
at most once (not duplicating it)
hence exactly once: linearly!

Therefore the logic of coherent quantum data
is known as (sub-structural) linear logic.

The archetypical category of coherent quantum data
is Mod

(fd)
C : (finite-dimensional) vector spaces.

Hence the quantum ver-
sion of the BHK paradigm
identifies quantum data
certificates/propositions
with quantum sub-types
– this yields Birkhoff-
vonNeumann quantum
logic:

proposition logical “and” logical “or”

in abstract slice
QuType/H

sub-object
categorical
product

truncated
coproduct

diagram

P

H

P1 P1 ∩ P2 P2

H

P1

〈
P1,P2

〉
P2

H
in slice of vector
spaces CModfd

/H

linear
subspace

subspace
intersection

linear
span

Entanglement.
But the above shows that cloning/deleting
is encoded in the diagonal/projection map
of the cartesian product × of data types.

Therefore the coherent product ⊗ of
quantum data must be a non-cartesian
hence a (symmetric) tensor product.

In fact, the cartesian product on
CModfd coincides with the coproduct,
both being the direct sum × = ⊕.

cartesian product × = ⊕ describes parallelization

tensor product ⊗ describes coupling/entangling

 of quantum data

With respect to ⊗, the category CMod is
closed, with internal hom (-) ⊸ (-) being
the linear space of linear maps:

H1 ⊗H2 H3

H1

(
H2⊸H3

) but it is not closed with respect to
× = ⊕, hence does
not reflect classical logic anymore.

Towards combined classical/quantum logic.
But in the vein of Bohr’s dictum, one eventually needs
classical logic to report on results of quantum logic.

At least, classical and quantum data types are related
by a quantization ⊣ classicization adjunction

S C⟨S⟩ linearspan

Set CMod

Hom
(
C, H

)
underlying

set

H

quantization

Q

⊥
C

!
exponential
modality

classicization

which is suitably monoidal so that
the induced monad/modality “!”
takes direct sums to tensor products

!
(
H1 ⊕H2

)
≃ (!H1)⊗ (!H2)

! 0 ≃ 1

This allows a “hack” where
some classical logic is re-imported
as “exponentiated quantum logic”.

While this approach has found much
attention by linear logicians,
we will next see a more natural & encompassing approach...
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Namely, in general quantum data is parameterized by classical data,

notoriously so by the classical measurement outcomes (“worlds”) but also by parameters for quantum state preparation

H⊗QBit H

H⊗QBit H

1
}

1
}

{ 0 { 0

∑
b |ψb⟩⊗|b⟩ 7−→ |ψ1⟩⊗|1⟩

∑
b |ψb⟩⊗|b⟩ 7−→ |ψ0⟩⊗|0⟩

,

quantum measurement process

,

cl
as
si
ca
l

w
or
ld
s

H⊗QBit H

H⊗QBit H

1
}

1
}

{ 0 { 0

|ψ⟩⊗|1⟩ ←−[ |ψ⟩

|ψ⟩⊗|0⟩ ←−[ |ψ⟩

,

conditional state preparation

,

cl
as
si
ca
l

p
ar
am

et
er
s

This means that coherent quantum
data is fibered or bundled over classi-
cal data, with archetypical category
that of vector bundles over any sets:


H•

W


cl
as
si
ca
l w

or
ld
s

/
pa
ra
m
et
er
s

bu
nd

le
of

qu
an
tu
m

da
ta

Hw

{w}

ov
er

de
fin

it
e

w
or
ld
/p
ar
am

.

si
ng
le
qu
an
tu
m

da
ta

ty
pe

More generally, quantum data may
transform under adiabatic move-
ment of classical parameters. This
makes it form (higher) flat vec-
tor bundles over (higher) groupoids,
aka (higher) local systems. More on
this in §4. For now we have that:

Syntax Semantics

Types Category Morphisms

ClType
classical types

Set
sets

W W ′
f

maps

QuType
linear types

CMod
vector spaces

H H′ϕ

linear maps

QuType
W

W -dependent linear types

CModW

W -indexed vector space

[H•
↓
W

] [
H′•
↓
W

]ϕ•

W -indexed linear maps

Type
linear bundle types

∫
W : Set

CModW

Grothendieck construction

[H•
↓
W

] [H′•
↓
W ′

]ϕ•

f

map covered by indexed linear map

Remarkably, the category of

parameterized quantum data is both:

1. cartesian closed – expressing classical logic

2. tensor-closed – expressing quantum logic

(jargon: doubly closed monoidal)

Concretely, as shown on the right,

The classical product is the
“external direct sum”:
the product of classical base types, covered by
fiberwise direct sum of quantum types.

The quantum product is the
“external tensor product”:
the product of classical base types, covered by
fiberwise tensor product of quantum types.

The internal quantum hom “⊸”
is the internal hom of pure quantum data
fibered over the hom-set of classical parameters.

But the internal classical hom “→”
is surprisingly rich: the
base is set of combined classical/quantum maps
& the fibers are pullbacks of the codomain.

We see next that this has
interesting consequences.

(It is an elementary exercise to check all this,
but it has not been widely appreciated.)

Hom(

Pair types

X ·X′, X′′) ≃ Hom
(
X,

Function types

[X′, X′′]
)

W ×W ′
cartesian product

W ′ → W ′′
set of maps

⊕
S
H′

direct sum

♮(H′ → H′′)
set of linear maps

H⊗H′
tensor product

H′ ⊸ H′′
vector space of linear maps

⊕
S
H′•

direct sum

∏
w
♮
(
H′w → H′′w

)
set of indexed linear maps

H⊗H′•
index-wise tensor product

∏
w

(
H′w ⊸ H′′w

)
vector space of indexed linear maps

[ H•
↓
W

]
×

[ H′•
↓
W ′

]

=

[ H• ⊕H′•
↓

W×W ′

]
external direct sum

[H′•
↓
W ′

]
→

[H′′•
↓

W ′′

]
=



∏
w′ H′′f(w′)

↓(
f : W ′ → W ′′

)
×∏

w′
♮
(
H′
w′ → H′′

f(w′)

)


[ H•

↓
W

]
⊗

[ H′•
↓
W ′

]

=

[ H• ⊗H′•
↓

W×W ′

]
external tensor product

[ H′•
↓
W ′

]
⊸

[ H′′•
↓

W ′′

]
=

 ∏
w′

(
Hw′ ⊸ H′′

f(w′)

)
↓(

f : W ′ → W ′′
)


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The categorial structure of parameterized quantum data. Having motivated parameterized quantum data (Type)
as a natural unification of purely classical data (ClType) & purely quantum data (QuType), we recognize the latter as full
(co)reflective subcategories:

W ←[

H•↠

W



p
u
re

ly
c
la
ss
ic
a
l

d
a
ta

ty
p
e
s

ClType Type

W 7→
 0•↠

W


⊥ ⊤ ♮

c
la
ssic

a
lly

(m
o
d
a
lity

)

⊕
w
Hw ←[

H•↠

W



p
u
re

ly
q
u
a
n
tu

m
d
a
ta

ty
p
e
s

QuType Type

H 7→
H↠

∗


⊥ △

q
u
a
n
tu

m
ly

(m
o
d
a
lity

)

Quantum/Classical Data Types Quantum/Classical Maps

General
bundles of
linear types

TypeH•↠

W


△♮ H• H′•H•↠

W

 H′f(•)↠

W

 H′•↠

W ′

ϕ•

f

Purely
classical types
(bundles of zeros)

ClType ≡ Type♮ 0•↠

W


W W ′ 0•↠

W

  0•↠

W ′

0•

f

Purely
quantum types

(bundles over point)

QuType ≡ Type△H↠
∗


H H′H↠

∗

 H′↠

∗

ϕ

Quantization modality. By composing these
adjunctions with those of the doubly-closed
monoidal structure we obtain more adjunctions,
and something interesting happens:

First, composing the Cartesian hom-adjunction
for the tensor unit 1 with the classicality-
coreflection gives another adjunction between lin-
ear bundle types and purely classical types.

W

1•↠

W

 unit
bundle

ClType Type Type

(w : W )× ♮
(
1→ Hw

)
set of all vectors
in all the fibers

H•↠

W



7−→

♮

⊥

1→(-)

1×(-)

⊥

←−[

Then, further composing with the reflec-
tion of purely quantum types reveals an
adjunction between classical and quan-
tum data...
...which recovers the quantization / clas-
sicization adjunction and
hence the exponential modality!
(In this form the adjunction has an ev-
ident generalization to higher quantum
structures, where quantization becomes
the suspension spectrum functor Σ∞+ .)

W ⊕
W
1

ClType Type QuType

♮(1→ H) H

7−→

1×(-)

♮(1→(-))

⊥

quantized

Q ≡
motive

Σ∞+

△

⊥

C
classicized

≡ Ω∞+

!

e
x
p
o
n
e
n
tia

l
m
o
d
a
lity

←−[

Note that while this demonstrates
backwards-compatibility with linear logic,
we no longer need the exponential modality to combine classical
with quantum logic – we can now speak about the bold middle
part of the above composite adjunction, right away.

Instead of importing classical logic into quantum logic by “ex-
ponentiating”, we have hereby obtained an
ambient classical control-logic around quantum data, naturally
reflecting Bohr’s dictum (“However far the phenomena tran-
scend the scope of classical physical explanation, the account of
all evidence must be expressed in classical terms”).

In fact, with the above modalities — elementary as they are —
we obtain a “platonic quantum microscope” that logically
resolves quantum properties of superficially classical-looking
logical structure:
Taken as a cartesian closed category, Type interprets classical
logic – but the modalities ♮, △ resolve inside each such superfi-
cially classical data type quantum aspects subject to quantum
logic. We will see how this is useful...
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3 Monads of Quantum Effects:
Quantum Measurement, Collapse, Paradoxes

The W -parameterized quantum types QuTypeW , for fixed set of mea-
surement outcomes/worlds W , are (readily seen to be):

- reflective in the slice over W of all parameterized quantum types,

- symmetric monoidal under W -wise tensor product (−)⊗W (−),
- closed under W -wise formation of spaces [−,−]W of linear maps,

- base-changed along maps f : W −→ Γ of base sets, by adjoint triples
f! ⊣ f∗ ⊣ f∗.

such that these operations jointly satisfy compatibility axioms known as
Grothendieck’s “motivic yoga”, a quantum version of local Cartesian
closure.

 ⊕
p′(w′)=w

H′w′

↠

(w : W )

 ←[

[
H′• →W ′

]
↓ ↓ p′[
0• →W

]
QuTypeW Type

/WH•↠
W

 7→
[
H• →W

]
↓ ↓[
0• →W

]
⊥ △

W

W
-q

u
a
n
tu

m
ly

In particular, for finiteW −→ Γ (as is the case for any realistic measurement), the left and right quantum base change coincide
(“ambidexterity”) on the direct sum ⊕W , whence we find the following quantum analog of classical quantification:

Finite classical context
(parameters, measurement
results: “possible worlds”) W Γ

Reference context
(classes of “worlds”)

Classical type system
dependent on context

(
ClType

W
,

pr
od
uc
t

×W

) (
ClType

Γ
,

pr
od
uc
t

×Γ

)
Classical (intuit.)

type system

Classical base change /
classical quantification

Linear type system
in classical context

(
QuType

W
,

te
ns
or

⊗W

) (
QuType

Γ
,

te
ns
or

⊗Γ

)
Linear

type system

Quantum base change
/ Motivic Yoga

p
W

display map

∐
W

dependent
co-product

×W∏
W

dependent product

⊥

⊥

⊕
W

dependent
direct sum

⊗1W

⊕
W

⊥

⊥

Therefore the system of (co)monads induced
from this motivic base change must be ex-
pressing the quantum analog of classical epis-
temic modal logic: quantum modal logic.

Indeed, direct analysis shows that these
modalities know about the hallmark proper-
ties of quantum physics, as previewed in the
following diagram:

Actual
quantum

data
QuTypeW QuTypeΓ

Potential
quantum

data

♢
W

possibly

⊥

□
W

necessarily

dependent direct sum

⊕W

⊗1W

⊕W

dependent direct sum

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

necessarily H•
□W
H•

actually H•
H•

possibly H•
♢

W
H•

necessarily H•
□W
H•

In world

w : W
observe...

⊢ H Hw H, where H := ⊕
w′ :W

Hw′

randomly H

9W
H

potentially H

H
indefinitely H
⃝

W
H

⊕
w :W
H H ⊕

b:B
H

entails

obt
□W
H•

entails

ret
♢
W
H•

≃

principle of quantum compulsion

is

⊕w′ |ψw′ ⟩ 7→ |ψw ⟩

measurement collapse

linear projector onto sub-Hilbert space Hw

|ψw⟩7→⊕w′δw
′

w |ψw⟩

state preparation

obt
9W
H

entails

ret
⃝

W
H

entails

⊕
W
|ψ

W
⟩ 7→

∑
W
|ψ

W
⟩

quantum superposition

|ψ⟩ 7→ ⊕w′ :W |ψ⟩

quantum parallelism

9
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Controlled quantum data.
Modal quantum logic now serves to reason
about quantum circuits, including

classical wires

quantum wires
Namely a classical wire carries data of the
type W of measurement outcomes of the
corresponding quantum wire QW . Putting
this next to a quantum circuit means to
make the quantum data parameterized by
W . Putting instead the quantum wire
means to allow W -superpositions.

Classical/quantum register Controlled quantum register

S
y
m
b
o
li
c

W

H

QW

H

E
p
is
te

m
ic actual quantum data potential quantum data

H• : QuType
W

w : W ⊢ Hw : QuType

□
W
H• : QuType

W

w : W ⊢ ⊕
w′
Hw′ : QuType

Classically controlled quantum gate Quantumly controlled quantum gate

S
y
m
b
o
li
c WW

KH G

QWQW

KH G

E
p
is
te

m
ic

H• K•

w : W ⊢ Hw Kw

G•

an actual entailment

Gw

□
W
H• □

W
K•

w : W ⊢ ⊕
W
H• ⊕

W
K•

□
W
G•

a potential entailment

⊕
W
G•

Accordingly, classically controlled quantum gates map W -
dependent quantum data, while the corresponding quantumly
controlled quantum gates are the W -superposition of these
operations, acting “inside the indefiniteness monad”.

Quantum measurement gates obtain (= monad counit)
classical data from quantum data, while collapsing the quan-
tum state accordingly.

(Noteworthy that all possible outcomes w : W are accounted
for: the actual measurement outcome w is available only at
run-time, then handled (read-out) as a computational effect.)

This formulation of quantum circuits by our modal logic of
quantum gates is natural and seamless. A first result now is
a general statement and proof of:

Quantum measurement gate

S
y
m
b
o
li
c

QW W

H H

0 1

E
p
is
te

m
ic □

W
H• H•

w : W ⊢ ⊕
w′
Hw′ Hw

⊕
w′
|ψw′⟩ |ψw⟩

obt
□
W

H•

the necessary becomes actual

prw

quantum state collapse

The deferred measurement principle states that every
quantum circuit with mid-circuit measurement followed by quan-
tum gates controlled by the measurement outcomes is equiva-
lent to a coherent quantum circuit consisting all of quantumly-
controlled gates with measurement happening only at the end.

The infamous paradox stories of quantum physics are all
but narrations of – and are resolved by – the deferred
measurement principle: Schrödinger’s cat (1935), Ev-
erett’s observer A (1957), Wigner’s fiend (1961) are all
enactors of the intermediate measurement gate.

This traditionally un-proven principle now follows rigorously – it is just the Kleisli equivalence for the □-comonad :

(QuType
W
)
□W

(
H•, H′′•

)
□
W
-Kleisli morphisms

QuType□W

W

(
□
W
H•, □

W
H′′•
)

homomorphisms of
free □

W
-coalgebras

(QuType
W
)
□W

(
H•, H′′•

)
□
W
-Kleisli morphisms

(
□
W
H•

F−→ □
W
H′•

obt□W

H•−−−→ H′•
G•−−→ H′′•

)
measurement-controlled quantum gate

7→
(
□
W
H•

F−→ □
W
H′•

□W
G•

−−−−−→ □
W
H′′•
)

quantum-controlled quantum gate...

7→
(
□
W
H•

F−→ □
W
H′•

□W
G•

−−−−−→ □
W
H′′•

obt□W

H•−−−→ H′′•
)

...followed by measurement

0 1

F

G

WQW

H H′′H′

deferred measurement principle←−−−−−−−−−−−−−−−−−−−−−→

WQW

H H′′

0 1

F

G

∼

□
W

(-) ◦ dplc
□W
(-)

id
Kleisli equivalence

∼

obt
□W
(-) ◦ (−)
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4 Homotopy Quantum Data Dependency:
Symmetries, Adiabatic Transport, Holonomy

Our categorical formulation of quantum data
admits higher homotopical generalization,
first by promoting base sets to homotopy 1-types.

homotopy theory jargon: homotopy 1-types

category theory jargon: 1-groupoids

physics-style meaning: “sets with gauge symmetries”

To appreciate this, note the
differing community jargons:

“topological” in physics typically means “homotopical” in math
as in
- “topological quantum field theory“
- “topological phases of matter“
- “topological quantum computing“

where topological spaces (yes, but:)
are regarded only up to homotopy equivalence
hence as representing their homotopy types
reflected in their homotopy groups.

A 1-groupoid G (or just: groupoid) is

- a set S where all pairs s1, s2 ∈ S of elements
(now: “objects”) are equipped with a set G(s1, s2)
of gauge transformations s1

γ−→ s2 (“morphisms”),
invertible with respect to a given associative and
unital composition law;
hence:
- a small category whose morphisms are all invert-
ible.
A map of groupoids re-
spects this structure (a func-
tor):

G G′

s1 f(s1)

7−→
s2 f(s2)

f

γ f(γ)

Examples:

Π1(X)

fundamental groupoid of a space X
objects: the points of X
morphisms: homotopy-clases of paths inX
composition: concatenation of paths

S �G

quotient groupoid of a group action G ↷S
objects: the elements of S
morphisms: group translations s

g−→g(s)
composition: group operation

BG

=

∗ �G

delooping groupoid of a group G
objects: a single one •
morphisms: group elements •g

composition: group operation

A homotopy of maps
of groupoids intertwines
such functors
(natural transformation)

G G′

s1 7→ f0(s1) f1(s1)

s2 7→ f0(s2) f1(s2)

f0

f1

η

γ f0(γ)
η(s1)

f1(γ)

η(s2)

Homotopy groups:
π0(G) := gauge-equivalence classes:
π1(G, s) := auto-gauge group of object s

compatible with
homotopy groups
of spaces

π0(X) = π0

(
Π1(X)

)
π1(X,x) = π1

(
Π1(X), x

)
A homotopy equivalence of
groupoids, G ≃ H, is maps

G H
f

f

being inverses
up to homotopy

G H G Hf

⇒idG

f ⇒

idG

f

Skeleton Theorem (assuming axiom of choice):
Any groupoid G is homotopy equivalent to the dis-
joint union of delooping groupoids of the funda-
mental groups of its connected components:
any groupoid G ≃

∐
[s]∈π0(G)

Bπ1(G, s) its “skeleton”

Linear representation of groupoid G
is functor ρ : G −→ ModC

Intertwiner of grpd reps
is natural transformation

G ModC

ρ

ρ′

⇒ category ModGC of G-representations

⇒ homotopy-equivalent groupoids have
equivalent categories of representations,
⇒ and hence with Skeleton Theorem:

ModGC ≃
∏

[s]∈π0(G)
Mod

Bπ1(G,s)
C

≃
∏

[s]∈π0(G)
π1(G, s)RepC

Example (reps of fundamental groupoids):

Mod
Π1(X)
C ≃ flat vector bundles

aka: local systems

[H•
↓
X

]
so dependent quantum data

as before, but now
including operator actions

Base change of groupoid reps.

Given G f−→ H, the precomposition functor

ModGC ModHC(
G f−→ H ρ−→ Core(ModC)

)
←[
(
H ρ−→ Core(ModC)

)f∗

has left & right adjoints
(Kan extension)

ModGC ModHC

f!

f∗
⊥

⊥
f∗

for subgroups G
i
↪−→ H,

f := Bi : BG −→ BH, this
reduces to (co)induced reps:
f!(V ) ≃ C[H]⊗G V
f∗(V ) ≃ HomC(G)

(
C[H], V

)
Fact [9]: Our model of classically-controlled
quantum data generalizes to hotype-

parameterization: Type :=
∫

G∈Grpd

ModGC

here (by the above Skeleton Theorem) quantum data:
- depends on possible worlds, as before, but now:
- in each world is acted on by a group of operators
- ⇒ quantum symmetries & quantum evolution

11
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Symmetries vs. Evolutions.

Given normal subgroup H
i−→ G , set again f := Bi.

Consider a G-representation H ∈ GRepC ≃ ModBG
C

and its restriction to an H-rep
BH BG ModC

f ≡Bi

f∗H•

H•

Observation 1:
Each g ∈ G gives a
controlled quantum gate:

f∗H• f∗H•

BH BH

Hg

BAdg

namely

BH BH

ModC

f∗H•

BAdg

f∗H•

Hg :

∗ 7→ H∗ H∗

∗ 7→ H∗ H∗

h Hh

Hg

H
ghg−1

Hg

To appreciate this, to note the
Automorphism 2-group of a group H.
The automorphisms of delooping groupoids form the groupoid

Aut
(
BH) ≡

 BH BH

Bα

Bα′

η

 ≃ Aut(H) �Ad Inn(H),

(on objects this is functoriality on morphisms it is naturality).
This groupoid itself has group structure (it’s a 2-group)
by horizontal composition

because

∗ 7→ ∗ ∗

∗ 7→ ∗ ∗

h α(h)

η∗

α′(h)

η∗

⇔

group
automorphisms

α′ =
Adη∗ ◦ α

In particular, inner H-automorphisms deloop
to homotopy-trivial BH-automorphisms:

BH BH

BAdh

Id

h−1

∗ 7→ ∗ ∗

∗ 7→ ∗ ∗

h′

h−1

Adh(h′) h′

h−1

Whence

Observation 2:
The above controlled quantum gate is
homotopy-trivial/pure gauge
whenever g ≡ h ∈ H ⊂ G
⇒ the evolutionary transfors constitute G/H

BH BH

ModC

f∗H•

id

BAdh

h−1

f∗H•
Hh =

BH

ModC

f∗H• f∗H•id

Lesson: For quantum state spaces f∗H•, the
G-transfors decompose into
symmetries in H &
evolutions in G/H 1

sym
metr

ies

H
all

tra
nsf

ors

G
evo

luti
ons

G/H 1

But this fits squarely into the abstract quantum language:

Quantum measurement in presence of symmetries.
Our quantum language says that of this form f∗H
are quantum state spaces carrying a measurement basis:
given space of H-symmetric basis states V• ∈ HRepC ≃ ModBH

C
then measurable quantum states are by □f

-comonad

□f
V = f∗ f∗V︸︷︷︸

HomH (C[G],V)

=: f∗H•

on which quantum measurement is the counit

□f
V• V•

obt□V

just as discussed in §3:
the abstract monadic language of quantum effects
applies verbatim to the present higher homotopy types.

With all this in hand we are now prepared to
formalize quantum gates and quantum measurement
for topological quantum systems.
A concrete example/application is the topic of the last §5.
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5 Application: Quantum states in FQH-systems

We consider now, following [15], the example of quantum states
of topological materials called fractional quantum Hall-systems,
where magnetic flux penetrates a semi-conducting surface Σ2.

The “gauge group” of the electromagnetic field is G ≡ U(1)
and ordinarily such flux is classified by maps to BU(1) ≃ CP∞.

Precisely, when quantum-effects are being resolved, then:

Theorem [11] (Yang-Mills flux quantum observables):
For ordinary gauge fields on a spacetime ≃ R1,1 × Σ2

the quantum observables of field flux through Σ2

form the group-convolution C∗-algebra C
[
C∞

(
Σ2, G⋉ (g/Λ)

)]
quantum flux observablesfor Λ ⊂ g an Ad-invariant lattice.

m
a
g
n
e
tic

fl
u
x

surfaceΣ 2

G Lie group (“gauge group”)
g its Lie algebra

Commercial-value quantum computing will require
robust quantum observables, insensitive to local fluctuations,
only depending on topological sectors of field configurations.

C
[
C∞

(
Σ2, G⋉ (g/Λ)

)]
all quantum flux observables

C
[
π0 C

∞(Σ2, G⋉ (g/Λ)
)]

robust topological observables

[−]∗

C∞(-, -) manifold of smooth functions

(-)⋉ (-) semidirect product via adjoint

C[−] group convolution C∗-algebra

π0(−) path-connected components

Proposition [11] (topological sector observables):
The topological flux quantum observables form the homology
Pontrjagin algebra of maps from space to classifying space.
(shown now assuming Λ = 0, for simplicity):

topological flux quantum observables

C
[
π0 C

∞(Σ2, G
)]
≃ C

[
π0 Maps

(
Σ2, G

)]
≃ C

[
π1 Maps

(
Σ2, BG

)]
group algebra of fundamental group

of maps to classifying space

≃ H0

(
Maps∗(

(
R1 × Σ2

)
∪{∞}, BG); C

)
homology Pontrjagin algebra of

soliton moduli space

soliton

on X
=

topological field configuration

that vanishes at the ends of X

⇒
classified by pointed map

X∪{∞} −→ BG

from one-point compactification

Example: C
[
π0 Maps

(
Σ2
g, U(1)

)]
≃ C

[
H1(Σ2

g; Z)
]
≃ C

[
Z2g
]

Σ2
g orientable surface of genus=g

Effective flux of “fractional quantum Hall systems”(FQH).
But, at very low temperature, experiment suggests

instead of Z2g its 2nd integer Heisenberg extension Ẑ2g

being the observables of an “effective Chern-Simons field”,

where the center Z ↪→ Ẑ2g observes an anyon braiding phase.

Question: Is there classifying space A for this effective CS field?

Answer: Yes! The 2-sphere S2 ≃ CP 1 ↪→ CP∞ ≃ BU(1)
Theorem [4][7]: The cofiber presentation of the surface

S1 ∨
g(S

1
a ∨ S1

b ) Σ2
g S2

∏
i[ai,bi]

induces short exact sequence exhibiting the Heisenberg extension:

1 π1Maps
(
S2, S2)︸ ︷︷ ︸

Z

π1Maps
(
Σ2
g, S

2)︸ ︷︷ ︸
Ẑ2g

π1Maps∗
(∨

2gS
1, S2

)︸ ︷︷ ︸
Z2g

1

sphere

Σ2
0 ≃ S2

torus

a

bΣ2
1 ≃ T2

2-
ho
le
d

to
ru
s

a1

b1

a2

b2

Σ2
2

Ẑ2g :=


(
a⃗, b⃗, n

)
∈ Zg × Zg × Z

(
a⃗, b⃗, n

)
·
(
a⃗′, b⃗′, n′

)
=(

a⃗+ a⃗′, b⃗+ b⃗′, n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗
)


twice the unit
central extension

Question: Can we identify the center Z as arising from braiding?
Answer: Yes!
Theorem [12]: Maps∗(S2, S2) is configurations of charged strings
such that ΩMaps∗(S2, S2) is framed links subject to cobordism,
π1Maps∗(S2, S2) generated from framed unknot with 1 braiding

ΩMaps∗
(
S2, S2

)
π3(S

2) ≃ Z
L #L

framed link
linking + framing

number

[−]

is CS observable

(“Wilson loop”) #

( )
= +1 , #

( )
= −1 ,

Ergo: Remarkably, topological quantum observables of effective flux in
quantum Hall systems is algebro-topologically described by

{
replacing the classifying space BU(1) ≃ CP∞

with its 2-skeleton S2 ≃ CP 1

Question: Is there a deeper rationale for such replacement? Answer: Yes [13][14]: Hypothesis H.
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CS-Level and groupoid reps.
In fact, the moduli space has more
connected components:

π0Maps
(
Σ2
g, S

2
)
≃ Z Hopf degree

and the fundamental group of the
degree=k component is

π1

(
Maps

(
Σ2
g, S

2
)
, k
)

:=
(
a⃗, b⃗, n

)
∈ Zg × Zg × Z2|k|(

a⃗, b⃗, [n]
)
·
(
a⃗′, b⃗′, [n′]

)
=(

a⃗+ a⃗′, b⃗+ b⃗′, [n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗]
)


Hence the observable algebra Obs0 for g = 1, Σ2
1 = T 2,

has generators
Wa := (1, 0, [0])

Wb := (0, 1, [0])

ζ := (0, 0, [1])

 subject to
the relations


Wa ·Wb = ζ2Wb ·Wa

ζ2k = 1

[ζ,−] = 0

 .

This is just the observable algebra expected [17, (5.28)]
for anyonic topological order on the torus
described by abelian Chern-Simons theory at level k .

The irreps have dim = k

HkT2 := Span
(∣∣[n]〉, [n] ∈ Z|k|

)
p ∈ {1, 2, · · · , k}

Wa

∣∣[n]〉 := e2πinν
∣∣[n]〉

Wb

∣∣[n]〉 :=
∣∣[n+ 1]

〉
ζ
∣∣[n]〉 := eπiν

∣∣[n]〉 .
This means that the quantum states of all
levels k are unified in a single groupoid rep-
resentation of the moduli space

H•T2 : Π1

(
Maps

(
Σ2

1, S
2))︸ ︷︷ ︸

≃
∐

k∈Z
Bπ1

(
Maps

(
Σ2

g, S
2
)
, k

) ModC

General covariance. In fact, the moduli space is acted
on by the (orientation-preserving) diffeomorphism group,
as be‘s a generally covariant system, whence the generally
covariant quantum states form a groupoid representation

H•T2 : Π1

(
Maps

(
Σ2
g, S

2
)

� Diff+(Σ2
g)
)

ModC

which makes them carry also the semidirect product ac-
tion of the mapping class group (MCG) of the surface

π1

(
Maps

(
Σ2
g, S

2
)

� Diff+(Σ2
1), k

)
≃ π1

(
Maps

(
Σ2
g, S

2
)
, k
)
⋊ π0Diff+(Σ2

g)︸ ︷︷ ︸
MCG(Σ2

g)

group(oid) of
gauge transfors

of the gauge field
(tplgcl sector)

group(oid)
of

diffeos
(gravity)

(tplgcl sector)

Question: Does this new model make novel predictions? Answer: Yes – defect anyons in FQH-systems:

With the classifying space identified for known situations,
we find its implications for previously inaccessible cases:

Namely generalize now to n-punctured surfaces Σ2
g,n ,

reflecting n defect points in the semiconductor
where the magentic field is expelled
(type-I superconducting spots).

field solitons:
Pontrjagin submanifolds

flux-expelling defects:
punctures

Proposition.
The observables are,
in this generality:

Obs0 ≃ C
[
π1Maps∗(

(
Σ2
g,n

)
∪{∞}, S

2)
]

≃ C
[
π1Maps∗(Σ2

g ∨
∨
n−1

S1, S2)
]

≃ C
[
π1Maps∗

(
Σ2
g, S

2
)
× Zn−1

]
≃
g=0

C
[
Zn
]

puncture

pu
nc
tu
re

Σ2
0

(Σ2
0,2)∪{∞} =

Σ2
0 ∨ S1 =

∼

∼
∞

T
o
p
o
lo
g
y
ch
a
n
g
e
d
u
e
to

d
efects!

(cf.
[5
,
p
1
1
])

D
iff
eren

t
to

b
u
t

n
o
t
u
n
lik

e
th
e
gen

o
n
-p
ro
p
o
sa
l
[1
].

subject to the
diffeomorph.
action by:

1 −→ Brn(Σ
2
g) π0Homeos∗or

(
(Σ2

g,n)∪{∞}
)

MCG(Σ2
g) −→ 1

surface braid group
mapping class group
of punctured surface

mapping class group
of plain surface

Therefore the equivariant quantum states (jargon: “generally covariant”)

on Σ2
0,n are representations of the wreath product of solitonic and defect phases:

Z ≀ Brn(Σ2
0) =

solit
onic

anyo
ns

Zn ⋊
defe

ct anyo
ns

Brn(Σ
2
0) ↠ Zn ⋊ Symn
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Such braid representations for defects have
not previously been derived for FQH sys-
tems –
but are just what is needed for the grand
goal of topological quantum gates:
programmable unitary transformations of
quantum systems,
insensitive to continuous deformations
(hence to noise!)

anyonic
defect

parameter
braiding

kI

kI

some quantum state for
fixed defect positions
k1, k2, · · · at time t1

∣∣ψ(t1)〉
∣∣ψ(t2)〉

another quantum state for
fixed defect positions
k1, k2, · · · at time t2

unitar
y adiab

atic transp
ort

That’s the idea, but.

Question: Since the braid group arises
here as a gauge symmetry (general covari-
ance), will one actually be able to use it as
physical evolution?

a special case
of the general

Question: Groupoid reps encode operator
actions which can be both symmetries as
well as evolution; how to disentangle these?

Asymptotic symmetries. (cf. [16, §2.10][2])
On spacetimes with
(asymptotic) boundaries,
a normal subgroup of
diffeos trivial on asmpttc bdry
are gauge transformations,
while their cosets are evolutions

1
sym

metr
ies

BlkDiff
all

diff
eos

Diff
evo

luti
ons

Diff/BlkDiff 1

Fact [6][3, Rem 1.2] The n-punctured annulus
Σ0,n,2 has

1

bul
k sym

metr
ies

Braffn

diffe
omorph

isms of

n-pu
nctu

red
annu

lus

MCG(Σ2
0,n,2)

asy
mpto

tic

sym
metr

ies

Z⟨ρ, τ⟩ 1

where ρ is cyclic permutation of defects
along the annulus boundary.

This means that plain braid group
plays the role of bulk symmetries
with ρ an asymptotic symmetry.

ρ

g
ra
p
h
ics

fro
m

[3
,
F
ig
.
2
]

Overall conclusion.

Whith this it follows that the cosets
of ρ may serve to implement topo-
logical quantum gates

HΣ2
0,n,2

HΣ2
0,n,2

BBraffn BBraffn

Hρ

Adρ

and that
quantum measurement bases
for these topological states are
given by the base change adjunction
along
B
(
Braffn ↪→ MCG(Σ2

0,n,2)
)
.

This is the kind of answer promised on p. 2.

It combined homotopy-theoretic considerations of quantum language,
with algebro-topological insights into topological quantum systems.

We claim that this is of practical/experimental relevance,
to be discussed in more detail elsewhere.
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