
The Quantum Monadology

Hisham Sati∗† Urs Schreiber∗

February 24, 2025

Abstract

The modern theory of functional programming languages uses monads for encoding computational side-effects and side-
contexts, beyond bare-bone program logic. Even though quantum computing is intrinsically side-effectful (as in quantum
measurement) and context-dependent (as on mixed ancillary states), little of this monadic paradigm has previously been
brought to bear on quantum programming languages.

Here we systematically analyze the (co)monads on categories of parameterized module spectra which are induced by
Grothendieck’s “motivic yoga of operations” – for the present purpose specialized to HC-modules and further to set-indexed
complex vector spaces, as discussed in a companion article [SS23-EoS]. Interpreting an indexed vector space as a collection of
alternative possible quantum state spaces parameterized by quantum measurement results, as familiar from Proto-Quipper-
semantics, we find that these (co)monads provide a comprehensive natural language for functional quantum programming
with classical control and with “dynamic lifting” of quantum measurement results back into classical contexts.

We close by indicating a domain-specific quantum programming language (QS) expressing these monadic quantum effects
in transparent do-notation, embeddable into the recently constructed Linear Homotopy Type Theory (LHoTT) which interprets
into parameterized module spectra. Once embedded into LHoTT, this should make for formally verifiable universal quantum
programming with linear quantum types, classical control, dynamic lifting, and notably also with topological effects (as
discussed in the companion article [TQP]).

Extended Abstract

Concretely, for finite classical and finite-dimensional quantum types (as of concern in quantum information theory), linear
base change and linear internal hom constitute two ambidextrous adjunctions inducing a system of Frobenius monads which
are linear/quantum versions of the classical Environment-, State-, and Epistemic-monads. We find that:

(i) The QuantumEpistemic modality neatly encodes the logic of controlled quantum gates.
– Its Kleisli equivalence formally proves the deferred measurement principle.

(ii) The QuantumEnvironment monad coincides with Coecke’s “classical structures” monad used in zxCalculus.
– Its effect-handling computationally encodes collapsing quantum measurement

“dynamically lifted” into the classical context akin to D. Lee’s “lifting monad”.
– Its monoidal structure encodes enhancement of parameterized quantum circuits to mixed states.

(iii) The QuantumState monad produces spaces of density matrices.
– Its monad transformations encode quantum channels acting on mixed quantum states.

Moreover, the QuantumEnvironment and QuantumState (co)monads pairwise distribute over each other as to provide a pair
of 2-sided Kleisli categories, where:

– QuantumEnvironment-contextful and QuantumState-effectful maps encode mixed state preparation,
– on which QuantumState-transformations act as quantum channels, followed by
– QuantumState-contextful and QuantumEnvironment-effectful maps, encoding measurement and observables.

Notably, the action of QuantumState-transformations on QuantumState-contextful scalars (observables) is precisely Heisenberg-
picture quantum evolution.

Finally, the QuantumEnvironment lifts from a monad on linear types to a (relative) monad on, in turn, QuantumState-
monads, whereby the quantum effect logic for parameterized quantum circuits in the generality of mixed states becomes
verbatim that for pure states, while mixed state effects such as the Born rule are brought out by the rich monadic semantics.

∗Mathematics, Division of Science; and
Center for Quantum and Topological Systems,
NYUAD Research Institute,
New York University Abu Dhabi, UAE.

†The Courant Institute for Mathematical Sciences, NYU, NY

The authors acknowledge the support by Tamkeen under the NYU Abu Dhabi Research Institute grant CG008.

Contents
0.1 Motivation . 3
0.2 Quantum Monadology 6

1 Background 12
1.1 Quantum computing 12
1.2 Quantum probability 22
1.3 Monadic effects 30
1.4 Monoidal categories 48
1.5 Parameterized spectra 50

2 Quantum Effects 53
2.1 Quantum Semantics 54
2.2 Classical Epistemic Logic 66
2.3 Quantum Epistemic Logic 71
2.4 Quantum Gates & Measurement 80
2.5 Mixed Quantum Types 87

3 Quantum Language 101
3.1 Pseudocode Design 101
3.2 Example Pseudocode 105

2

0.1 Motivation
We lay out an approach to a joint solution of the following open problems:

(I) The open problem of reliable quantum computing. While the hopes associated with quantum computing (Lit. 1.1)
are hard to overstate, experts are well-aware1 that currently existing hard- and soft-ware paradigms are unlikely to support
the desired heavy-duty quantum computations beyond toy examples. The two fundamental open problems that the field still
faces are both rooted in the single most enigmatic and proverbial phenomenon of quantum physics: the state collapse or
decoherence phenomenon (Lit. 1.2), whereby the peculiar non-classical properties of quantum systems on which rest the
hopes of quantum computing are jeopardized by any measurement-like interaction of the system’s environment. This means
that scalably robust quantum computing requires:

(i) Topological hardware (Lit. 1.3) given by topological quantum materials (Lit. 1.23) whose registry-states are protected
by an “energy gap” from having any interaction with the environment below that range.

(ii) Verified software (Lit. 1.4) with compile-time certificates of correctness — since the traditional run-time debugging
of complex programs is impossible for quantum programs (causing collapse), while all the more needed due to the
complexity and intransparency of gate-level quantum circuits.

Both of these issues have been discussed separately, but the necessary combination has remained essentially untouched
until [TQP]; one will need a quantum programing language (Lit. 1.5) which is

(iii) certifiable and topological-hardware-aware, allowing the programmer to formally verify at compile-time the correct-
ness not (just) of high-level quantum programs, but of quantum circuits consisting of the peculiar topological quantum
gates that the topological quantum hardware actually provides.

For example, to state just the most immediate problem:
Topological quantum circuit compilation problem (Lit. 1.9).
Suppose a topologically ordered quantum material is finally developed which features su2-anyon states at level ℓ,
and given any quantum circuit written in the usual QBit-basis, then the quantum compilation of this circuit onto
the given hardware is the specification of a braid (an element of a braid group) such that the holonomy of the suℓ2
Knizhnik-Zamolodchikov connection along the corresponding path in the configuration space of defect points in
the given quantum material may be conjugated onto the unitary operator to which the quantum circuit evaluates,
within a specified accuracy.

Here the relevant braids are humongous while having no recognizable resemblance to the quantum algorithm which they are
executing; for instance, a single CNOT gate (17) may compile to the following braid [HZBS07, Fig. 15]:

7!

CNOT gate

Hence future quantum programmers will need (classical) computer assistance to compile their quantum programs onto topo-
logical hardware. To make that intricate process fail-safe to reliably run on precious scarce quantum resources, we need this
computer algebra to be “aware” of the system specification and to certify its own correctness relative to this specification.
And this is just for the simplest case of no classical control. The general problem is harder still:

The problem of certifying classical control. Even the most elementary quantum information protocols involve mid-
circuit measurement and classical control, such as in the quantum teleportation protocol (cf. §3.2.2):

|0⟩

|0⟩

H

H
0 1

0 1

X Z

quantum state

preparation

quantum
measurement

classical control

plain quantum gates

input
quantum state

output
state

1[Sau17]: “small machines are unlikely to uncover truly macroscopic quantum phenomena, which have no classical analogs. This will likely require
a scalable approach to quantum computation. [...] based on [...] topological quantum computation (TQC) as envisioned by Alexei Kitaev and Michael
Freedman [...] The central idea of TQC is to encode qubits into states of topological phases of matter. Qubits encoded in such states are expected to be
topologically protected, or robust, against the ‘prying eyes’ of the environment, which are believed to be the bane of conventional quantum computation.”

[DS22]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum computer that can
solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error correction by using far-more-stable qubits,
in an approach called topological quantum computing.”

3

More importantly, beyond the currently avail-
able NISQ paradigm (Lit. 1.10), serious quan-
tum computation is expected (Lit. 1.11) to in-
volve a perpetual loop of classical control oper-
ations on the quantum computer (hybrid classi-
cal/quantum computation). These are predomi-
nantly for quantum error correction (§3.2.3) but
also for purposes such as repeat-until-success
gates – where subsequent quantum circuit execu-
tion is classically conditioned on run-time quan-
tum measurement results – also called “dynamic
lifting” (Lit. 1.11, namely of quantum measure-
ment results into the classical data register). This
is schematically indicated on the right.
Last not least, for probabilistic analysis of such
hybrid processes the machine state is to be mod-
eled as a mixed classical/quantum probabilistic
state (Lit. 1.12).

dynamic
lifting

di
ag

ra
m

ad
ap

te
d

fr
om

[N
PW

07
,F

ig
.1

]

Hence for reliable heavy-duty quantum computation we need a certification language that knows about classical data types
and about linear/quantum data types and their dependency on classical data. This had been lacking:

The problem of embedded quantum languages. Namely, for
previous lack of a universal quantum programming language,
existing quantum circuit languages are embedded into classical
host languages (Lit. 1.5) which do not have native support for
linear types (cf. Lit. 1.4) nor for classical control of quantum cir-
cuits. For instance, basic protocol schemes such as quantum tele-
portation (§3.2.2), quantum error correction (§3.2.3) or repeat-
until-success gates remain unverifiable with previous technol-
ogy.

Haskell, Coq, ...
Classical Type Theory

for universal classical computation

unverified linear type universe

QML, QIO Quipper, QWIRE, ...
Quantum Circuit Language

for quantum logic cicuits

Solution by Linear Homotopy Type Theory. We argue here, as announced in [Sch22], that the novel type theory LHoTT
(Lit. 1.8) recently developed in [Ri22a] (anticipated in [Sch14a]) in extension of the classical language scheme HoTT (Lit.
1.7) serves as the missing universal quantum programming/certification language.
Our claim is that LHoTT:
• Solves the old problem of constructing

combined classical/linear type theories (cf.
Lit. 1.4).
• Provides existing quantum programming

languages like Quipper with a certifica-
tion mechanism [Ri23].
• Natively supports quantum effects such as

dynamic lifting of run-time quantum mea-
surement (§2).
• Natively supports verification of realistic

topological quantum gates [TQP].

LHoTT

Linear Homotopy Type Theory
for universal quantum computation

HoTT

Homotopy Type Theory
for topological logic gates

QS

Quantum Systems Language
for quantum logic circuits

Topological Quantum Language

We argue that this makes LHoTT the first comprehensive paradigm for serious quantum programming beyond the NISQ area.
Here we describe a domain-specific language embeddable into LHoTT to bring this out: Quantum Systems Language (QS, §3),
based on a system of monadic effects which are definable (by admissible inference rules) in LHoTT (§2, surveyed below in
§0.2).

4

Concretely, LHoTT enhances the syntactic rules of classical HoTT by further type for-
mations which serve to exhibit every (homotopy) type E of the language as secretly
consisting of an underlying classical (intuitionistic) base type B ≡ ♮E equipped, in
a precise sense, with a microscopic (infinitesimal) halo of linear/quantum data. As
such, LHoTT may neatly be thought of as the formal logical expression of a mi-
croscope that resolves quantum aspects on structures that macroscopically appear
classical. This way LHoTT embeds quantum logic into classical logic in a way rem-
iniscent of Bohr’s famous dictum2that all quantum phenomena must be expressible
in classical language.

Quantum halos. Formally this is achieved by adjoining to classical HoTT an ambidextrous modal operator ♮ [RFL21] (an
infinitesimal cohesive modality [Sch13, Def. 3.4.12, Prop. 4.1.9]), whose modal types (Lit. 1.14) are the purely classical
(ordinary) homotopy types, embedded bi-reflectively (157) among all data types (see §2.1):

The presence of the ♮-modality exhibits general types E :
Type as microscopic/infinitesimal halos around their un-
derlying purely classical type ♮E : ClaType. It is a pro-
found fact (146) of ∞-topos theory that models for such
infinitesimal cohesion (see Lit. 1.21) are provided by pa-
rameterized module spectra, in particular by flat ∞-vector
bundles (“∞-local systems”, see [SS23-EoS]) which, in
their 0-sector (Rem. 1.22), accommodate quantum circuit
semantics (cf. §2.4) in indexed sets of vector spaces (cf.
§2.1) such as known from the Proto-Quipper quantum
language (Lit. 1.5).

bundles of linear
homotopy types Type

e.g.
=

flat∞-vector bundles
(∞-local systems)∫

X sChX
K

purely classical
homotopy types ClaType

e.g.
=

{
X ∈ sSet-Grpd

}

♮
classical modality

0 p⊣⊣p

bi
re

fle
ct

io
n

ba
se

sp
ac

e

⊣

ze
ro

-s
ec

tio
n (1)

Motivic Yoga. LHoTT witnesses these quantum halos as linear types (24) equipped with a closed tensor product ⊗ and
compatible base change operations which satisfy the rules of Grothendieck’s “motivic yoga of six operations” in Wirthmüller
style (Def. 2.18, cf. [Ri22a, §2.4][SS23-EoS, §3.3]). It is this “motivic” structure from which the structure of quantum
physics derives, as originally observed in [Sch14a] and here brought out in §2.1.

Linear/Quantum Data Types

Characteristic
Property

1. Their cartesian product
blends into the co-product:

2. A tensor product appears
& distributes over direct sum

3. A linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for W : ClaTypefin)

cart. product∏
W
Hw ≃ ⊕Hw

direct sum
≃

co-product∐
W
Hw V ⊗ (⊕

w:W
Hw) ≃ ⊕

w:W

(
V ⊗Hw

) (V ⊗H)⊸ K

≃ V ⊸
(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning parallel
quantum systems

compound
quantum systems

qRAM systems

HC-Linear quantum theory. In this scheme, conventional quantum information theory happens in the C-linear form of
linear homotopy theory (details in [SS23-EoS]) where parameterized HC-module spectra are equivalent to flat ∞-bundles of
chain complexes, also known as ∞-local systems. Here the higher structure of chain complexes serves to capture topolog-
ical quantum effects [TQP], but in the 0-sector (Rem. 1.22) these are just set-indexed complex vector spaces of the form
familiar from the categorical semantics of the quantum language Quipper, this is what we discuss in detail §2.1 . But since
all our quantum effects are constructed monadically (§2) relying just on the abstract Motivic Yoga, they apply at once to
unrestricted (stable) homotopy types, providing a homotopy-theoretic form of quantum mechanics suitable for the discussion
of “topological quantum effects” as in [TQP].

2[Bohr1949, pp. 209]: “however far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed
in classical terms”. For background and commentary see also [Sche73, p. 24].

5

0.2 Quantum Monadology
The open problem of formalizing quantum epistemic logic. With the need for a universal and verifiable quantum pro-
gramming language established, the next open problem is that of language design, which here we mean in a fundamental
paradigmatic way:

Given that dependent type theory is the fundamental paradigm for certified programming in general (Lit. 1.4),
what makes it applicable to certification of quantum effects such as quantum measurement (Lit. 1.2)?

A universal quantum programming language has to accurately reflect the logical content of quantum physics, where the
act of formulating a quantum program is also that of recounting, in formalized language, the physical process of its execution.
The execution of quantum programs includes processes of quantum measurement and therefore any formulation must handle
the curious nature of quantum epistemology. In this sense, we may claim that:

Finding a universal quantum programming language means finding a formal language for quantum epistemology.

The role of modal logic. Stated this way, we need not look much further for guidance on the matter, since the formal language
paradigm for dealing with questions of epistemology has long been understood to be modal logic (Lit. 1.13), where the usual
logical connectives are accompanied by formal expressions for qualified modes in which propositions may hold, such as
necessarily (2) or possibly (♢) namely (which is the perspective of relevance here:) for all or any measurement outcome that
may be obtained, or possible world w (as the modal logician says) that one may find oneself in, one of the many worlds (as
the quantum philosopher says):

Set of many possible worlds
(of measurement outcomes)

W : Set ,

W-dependent
proposition

P : PropW

yields that

⊢

“P holds necessarily”
(no matter the outcome/world)

2P ≡ ∀w P(w)

♢P ≡

“P holds possibly”
(for some outcome/world)

∃w P(w)

is a

:

W-independent
proposition

Prop ↪! PropW (2)

If here we think of classical propositions as certain data types (namely of data that certifies their assertion), then it is
natural to generalize this from modal logic to modal type theory (Lit. 1.14) where we consider any W-dependent data types:3

Type of many possible worlds
(of measurement outcomes)

W : Type ,

W-dependent
data type

D : TypeW

yields that

⊢

type of D-data for
every world/outcome

2D ≡
∏

w D(w)

♢D ≡

type of D-data
for any world/outcome

∐
w D(w)

is a

:

W-independent
data type

Type ↪! TypeW (3)

Epistemic modal logic as Dependent type theory. Remarkably, in this more general form (3) the system simplifies since
this epistemic modal type theory is just plain dependent type theory with the W-dependent type formation rules viewed not as
adjoints but equivalently as (co)monadic modalities (Lit. 1.17, 1.14):

We observe in §2.2 that possible-world semantics for modal logic
(in its “S5” flavor with which we are concerned here) is equiva-
lently that induced by dependent type formation along any context
extension. Conversely, this means to observe (Rem. 2.21) that one
may think of standard dependent type theory as epistemic modal
type theory with a universal system of epistemic modal operators
indexed by types of “many possible worlds” W : Type. From this
perspective, the tradition in formal logic to refer to the large type
Type of small types as the “universe” gains some vindication.

possibility modality randomness modality

TypeW Type

necessity modality indefiniteness modality

♢W

⊥

2
W

dependent “sum”∐
W

×W

∏
W

dependent product

⊥

⊥

9W

⊥

⃝
W

(4)

While for classical intuitionistic type theory, this perspective may be of interest to the analytic philosopher (see [Cor20,
Ch. 4]), we next claim that applied to linear dependent type theory the same perspective solves the practical problem of
formalized quantum epistemology relevant for universal quantum programming/certification:

3We write “
∐

w” for the (non-linear) type formation traditionally referred to as “dependent sum” and traditionally denoted “
∑

w”, since the latter symbol
is borrowed from linear algebra, an (unnecessary) abuse of notation that becomes untenable after our passage from classical intuitionistic to actual linear
dependent type theory.

6

Quantum epistemic logic as Linear dependent type theory. The point is that in linear dependent type theory like LHoTT
the situation (4) has an immediate analog ([Ri22a, §2.4]) as W-dependent classical intuitionistic types are replaced by W-
dependent linear types (quantum data types, interpreted for instance a indexed sets of vector spaces, see §2.1): In this case
and assuming W is finite (as it is for any realistic quantum measurement) their linear/quantum nature makes the dependent
(co)product adjoints coincide (“ambidexterity”, Lit. 1.18) on the direct sum of linear types, this reflecting the superposition
principle of quantum physics:

W : ClaTypefin ⊢

Frobenius monad of
quantum epistemic logic
(§2.3) proves principles
as deferred measurement

(Prop. 2.40)

linear possibility linear randomness

QuTypeW QuType

linear necessity linear indefiniteness

♢W

≃

2
W

direct sum
⊕W

⊕W

direct sum

⊥

⊥

9W

≃

⃝
W

Classical context (Prop. 2.35)
Frobenius monad
as in zxCalculus

gives effect-logic for
quantum gates §2.4

(5)

This means equivalently that in the linear case the (co)monadic modal operators coincide, ♢W ≃ 2W , 9W ≃ ⃝W , to form
a pair of Frobenius monads (cf. Prop. 2.35), reflecting the monadic nature of quantum measurement as known from the
zxCalculus (Lit. 1.18). It may be satisfactory to observe that the modal-logical expression of this situation reflects Gell-
Mann’s principle of quantum compulsion (cf: [Bu76, p. 31]: “In quantum physics anything that is not forbidden [i.e., possible]
is compulsory [i.e., necessary].”):

Finite classical type
of many possible worlds
(measurement outcomes)

W : ClaTypefin ,

W-dependent
quantum data type

D : QuTypeW

yields that

⊢

linear sum

⊕
w

Dw

♢D 2D

∼

∼

The possible is necessary
Principle of quantum compulsion

∼
is a

:

W-independent
quantum data type

QuType ↪! QuTypeW (6)

We suggest thinking of this as a Yoneda-Lemma-type statement: The derivation of (5) is so elementary that it borders
on being tautological, and yet as an organizing principle for quantum effects we will find it to be ubiquitous, for instance
in implying the deferred measurement principle (Prop. 2.40) or the commuting diagram (7) below, which arguably makes
precise many words [Te98] written in the informal literature on the matter. This leads one to wonder (cf. [AC07]): Had
history proceeded differently, could systematic development of combined modal and linear logic have led pure logicians to
discover the rules of quantum information theory independently of experimental input?
Formal logic of quantum measurement effects. Remarkably, unwinding the logical rules of this epistemic quantum logic
(6) reveals that it knows all about the state collapse after quantum measurement including formal proof of its equivalence to
branching into “many worlds” (Lit. 1.2):

The hexagon of quantum epis-
temic entailments.
A commuting diagram (189) of
implications in the quantum modal
logic (4) for the case of a QBit-
measurement-controlled quantum
gate G• on a quantum register of
the formH ≡ 2BitH• = H0⊕H1
(e.g. H =H ⊗ QBit ifHi = H).

Classical
register

quantum
register H K

b : Bit ⊢ H ⊕ ⊕ K

H K

2Bit♢BitH• 2Bit♢BitK•

2BitH• ♢BitK•

H• K•

b : Bit ⊢ H Hb Kb K∑
b′∈Bit
|ψb′ ⟩ |ψb⟩ 7! Gb|ψb⟩

QBit-measurement
branching (pp. 84)

QBit-controlled
quantum gate

dynamic
lifting

G
δb

0P0

P1
⊕

G
δb

1

2Bit♢BitG•

quantum effects Everett-style
obt 2Bit♢BitK

•2Bit

(
ret♢Bit

H•

)

obt2BitH
•

classically controlled
quantum computing cycle

G•

quantum effects Copenhagen-style
ret♢

Bit

K•

Gb

7!

QBit-measurement
collapse (pp. 81)

quantum gate conditioned
on classical control logic

dynamic
QBit-state

preparation

(7)

7

Monads as computational effects. In a curious generalization of modal logic to functional programming (Lit. 1.16), monads
on a category of data types serve to encode computational effects (Lit. 1.17). For instance, a classical program whose
output data type is nominally D but de facto the value ⃝W D of the classical W-indefiniteness monad (4) — often known
as the Reader- or Environment-monad (79) — actually produces its D-valued output only conditioned on the observation
(“reading”) of an indefinite variable (“environment” state) w : W, hence on a classical W-measurement, so to speak. In this
sense, a program of the type D! ⃝W D′ has a classical measurement effect – quite literally: in its generalized incarnation as
the IO-monad (83) in Haskell, running such a procedure causes the computer to perform a read-out of its RAM-state (86):

plain
input data

indefiniteness-effectful
output data (67)

f• : D ⃝
W

D′

d 7!
(
w 7! fw(d)

)
effectful
program g• : D2 ⃝

W
D3

d 7!
(
w 7! gw(d)

)
effectful
program

effect-bound
(Kleisli) composition (69)

g• >=> f• : D ⃝
W

D′

d 7!
(
w 7! gw◦ fw(d)

)
(8)

Quantum measurement as computational effect. Now, in
contrast to classical computing, in the quantum case the right
adjoint ⊕W in (5) is a monadic functor (Prop. 2.32), mean-
ing that the W-dependent quantum types are equivalently the
modal types (93) — also called modules, but we will say
modales for brevity and for emphasis of the modal perspec-
tive – over the quantum indefiniteness monad ⃝W appearing
on the other side of this ambidextrous adjunction (5).
Under this equivalence, the 2W -obtain operation which gives
quantum state collapse in (7) is now reflected in the ⃝W -
join operation constituting a computationally effective typing
of the previously epistemic typing of quantum measurement
(see §2.4, p. 85 and §3.1, p. 104).
The (co)monadic formalization of quantum measurement in
the zxCalculus (Lit. 1.18) derives from this formulation
(cf. Prop. 2.35, Rem. 2.42).
But by understanding this monad as a computational effect,
we may apply a general method for articulating monadic
effects in programming language (do-notation, Lit. 1.19)
to obtain a natural Quantum Systems-language (QS, §3, a
domain-specific language embeddable into LHoTT) naturally
coding parameterized quantum circuits with measurement
effects.

Typing of Quantum Measurement

sy
m

bo
lic

0 1H QW WG

ep
is

te
m

ic

QV⊗1
W

2
W
1
W

1
W

eff
ec

tiv
e ⃝

W
QV ⃝

W
QW ⃝

W
1

co
m

pu
ta

tio
na

l

QV QW

G⊗1
W

7!⊕
W

obt2W
1W

7!⊕
W

7!⊕
W

⃝
W

G join⃝W
1

measure

ret⃝W
QV

dy
na

m
ic

lif
tin

g

G
coherent quantum gate

for |v⟩

do G|v⟩

ret⃝W
QW

d
e
f
i
n
i
t
e
l
y

collapse

for |w⟩

do

 if measured w′

then δw′
w

Mixed quantum measurement as monoidal-monadic effect. The quantum indefiniteness-monad ⃝W is in fact a strong
monad (Prop. 2.37). Besides guaranteeing (77) that it really does exist as a programming language construct, this means that
it carries a symmetric monoidal monad structure (78) pair⃝W (210). We observe (221) that this monoidal monad structure
serves to enhance the above computational typing of measurement effects from pure to mixed quantum states (35), where it
embodies the Born rule (32) of quantum measurement in its form originally identified by Lüders (44):

mixed
states

density
matrices

probability
distributions

QW ⊕WC ⃝WC
⊗ ⊗ ⊗ ⃝W

C
⊗
C∗

⃝WC
(QW)∗ ⊕WC

∗ ⃝WC
∗

tensor product of
free ⃝W -modales

|ψ⟩⟨ψ|

(∑
w |w⟩⟨w|ψ⟩

)
⊗(∑

w′⟨ψ|w′⟩⟨w′|
) 7!

(
(w,w′) 7! |w⟩⟨w|ψ⟩⟨ψ|w′⟩︸ ︷︷ ︸

coherences

⟨w′|
) (

w 7!
∣∣∣⟨w|ψ⟩∣∣∣2)

a pure state
among mixed Born rule

measure separately
states and co-states

decohere: discard
off-diagonal entries

≃

collapseW ≡ join⃝W
C
◦ ret⃝W

⊕WC

⊗

collapseW ≡ join⃝W
C∗
◦ ret⃝W

⊕WC
∗

pair⃝W
C,C∗

⃝W ev

collapseW

separately handle
pure ⃝W - effects

monoidal monad
structure on ⃝W

7! 7!

(9)

Moreover, postcomposition with the monoidal monad structure pair⃝W makes the enhancement of parameterized quantum

8

circuits from pure to mixed states a functor of ⃝W -effectful maps (214),

H1 ⃝
W
H2 7−!

H1
⊗

H∗1

⃝
W
H2

⊗
⃝
W
H∗2

⃝
W

H2
⊗

H∗2

QuType⃝W

enhancement to mixed states QuType⃝W

G•

(G ⊗G†∗)•

G•
⊗

G†∗•

pair⃝W
H1,H

∗
1

(10)

in that it respects (Lem. 2.39) their effect-bound (Kleisli) composition (8):(
pair⃝W

H2, H
∗
2
◦ (G• ⊗G†•

∗
)
)
>=>

(
pair⃝W

H3, H
∗
3
◦ (H• ⊗ H†•

∗
)
)
= pair⃝W

H3, H
∗
3
◦
((

G• >=> H•
)
⊗

(
G†•
∗
>=> H†•

∗))
. (11)

This means that the above computational effective typing of parameterized quantum circuits with quantum measurement
enhances verbatim from pure to mixed states!
The modal quantum logic QuantumState. We go one step further and observe (§2.5) a modal-logical origin even of the
notion of mixed quantum states (35) and the quantum channel operations between them. Namely, observing

9
W
K ≡ ⊕

W
K ≃ ⊕

W

(
K ⊗ 1

)
≃ K ⊗

(
⊕
W
1
)
≡ K ⊗ QW

density matrices are identified among the “indefinitely random scalars”:

QW-(density-)matrices QW ⊗ QW∗ ≃ ⃝
W
9
W
1

W-indefinitely W-random
scalars

This equivalence ranges deeper – it is actually an equivalence of the corresponding monads, and as such eventually is the
modal-logical reason for unitarity of quantum gates – as follows:

Generally, for dualizable (133) – namely finite-dimensional – quantum types H : QuTypefdm their tensoring-functors
again are in ambidextrous adjunction (135), yielding another Frobenius monad (cf. Rem. 2.44) — the linear/quantum version
of the classical State-monad (83):

QuantumState QuantumStore

QuType QuType⊥

QWState

QW∗Store

9W

⃝W

9W

⊥

⊥

QW∗Store

QWState

⊥
generally:

QuantumState QuantumStore

QuType QuType

HState

⊥

H∗Store

(-)⊗H

(-)⊗H∗

(-)⊗H

⊥

⊥

HStore

⊥

H∗State

(12)

This identifies the QWState-monad with the monad that is induced, in turn, by the epistemic indefiniteness/randomness
adjunction ⃝W ⊣9W (5):

QuantumState QWState ≡ QW ⊸
(
(−) ⊗ QW

)
≃ (−) ⊗ QW ⊗ QW∗ ≃ ⃝

W
9
W

Quantum
indefinite

randomness

By itself, the QuantumState monad encodes qRAM-effects (217), in quantization of the RAM-effect (86) of classical State-
monads. But with its monad transformations (103) taken into account it models quantum channels (39):

Distributing Frobenius monads at the heart of quantum information the-
ory. The QuantumState (co)monads pairwise distribute over the QuantumEn-
vironment (co)monads (Prop. 2.56), which implies

(i) 2-sided Kleisli categories (126) of (Prop. 2.58):
(a) QuantumEnvironment-contextful & QuantumState-effectful

maps modelling mixed state preparation, eg. 9W1! H ⊗H∗

(b) QuantumState-effectful & QuantumEnvironment-contextful
maps modelling mixed state observables, eg. H ⊗H∗ ! ⃝W1

acted on by QuantumState- and QuantumStore-transformations,
respectively.

(ii) the composite monads ⃝W ◦ HState ⊣ HStore ◦9W exist (114).

Quantum
indefiniteness

Quantum
environment

quantum
randomness

⃝
W

(−) ⊗ QW 9
W

⃝
W
9
W

(−) ⊗ QW ⊗ QW∗ 9
W
⃝
W

Quantum
indefinite

randomness

quantum
state

Quantum
random

indefiniteness

Monads FrobMonads CoMonads

≃≃

≃ ≃

9

Unitary quantum channels are QuantumState-transformations. In fact, the composition of QuantumState monads with
the indefiniteness-modality is itself a relative monad on the category of QuantumState monads (Prop. 2.69):

Indefiniteness
of pure states ⃝

W
: QuType QuType Monad on

quantum types

H 7−! ⃝
W
H

Indefiniteness
of mixed states ⃝

W
◦ : StateMnd(QuType) Mnd(QuType) Relative monad on

QuantumState monads

HState 7−! ⃝
W
◦ HState

(13)

This is such that the enhancement (10) of indefiniteness-effectful maps from pure to mixed states is a QuantumState transfor-
mation iff the maps are unitary, W-wise (Prop. 2.70):

Where pure quantum states are terms of linear (quan-
tum) typeH (24), the (ambient, linear) type of mixed
states in the form of (density) matrices may be iden-
tified with the QuantumState-monadHState (12) act-
ing on these linear types: Where a quantum circuit
of pure states is a map of linear (quantum) types, a
quantum circuit of mixed states is a transformation of
monads (103) of QantumState monads – a Quantum-
State transformation.

It is with this natural typing of quantum circuits lit-
erally as QuantumState transformations that the uni-
tarity axiom of quantum physics is reflected in modal
quantum logic.

Moreover, the indefiniteness-modality ⃝W on quan-
tum types enhances to a (relative) monad on Quan-
tumState monads (Prop. 2.69), such that the ⃝-modal
typing of parameterized quantum circuits (§2.4) is
formally the same for pure and mixed states, under
the enhancement H 7! HState of underlying cate-
gories of types from QuType to StateMnd(QuType).

Parameterized
quantum circuit

W W

H1 H2G•

Typing for
pure states ⃝

W
H1 ⃝

W
H2

Typing for
mixed states ⃝

W
◦ H1State ⃝

W
◦ H2State

⊕
W
H1⊗H

∗
1 ⊕

W
H2⊗H

∗
2(

w, ρ
)

7!
(
w, Gw ·ρ·G

†
w
)

G•
indefinite linear map

enhanced via (10)
iff all Gw are unitary

(G ⊗G†∗)•

indefinite QuantumState
monad transformation

is in components parameterized

unitary quantum channel

(14)

These unitary quantum channels are also QuantumStore-comonad transformations, and as such their action (111) on the
quantum observables typed as QuantumStore-contextful scalars (Ex. 2.46) gives Heisenberg evolution (Prop. 2.50):

H1 ⊗H
∗
1 1 7! H1 ⊗H

∗
1 H2 ⊗H

∗
2 1

ρ 7−! Tr(ρ · A) ρ 7−! U · ρ · U† 7−! Tr(ρ · U† · A · U)

Observable = QuantumState-contextful scalar acted on by unitary
QuantumStore transformation

OA U⊗U†∗
OU†·A·U

OA
(15)

General quantum channels. The other canonical example of a QuantumState-monad transformation is the (quantum channel
given by) coupling (tensoring) to a uniform bath state (56), whose formal dual is the QuantumStore-comonad transformation
given by partial trace

coupleH : HState −! (H ⊗ B)State averageB : (H ⊗ B)Store −! HStore .

This way, every unistochastic quantum channel (53) appears as a composite of a QuantumState transformation followed by a
QuantumStore-transformation, and as such acts (106) on the 2-sided Kleisli categories (Lem. 2.60) of quantum observables
and quantum state preparations.

As a simple but relevant example, the DQC1-model of quantum computation (54) on a single (“clean”) qbit coupled to a

10

uniformly distributed bath is naturally typed in this monadic language as follows:4

9Bit1

QBitState(1) (QBit ⊗ B)State(1) (QBit ⊗ B)State(1) QBitState(1)

⃝Bit1

|0⟩⟨0| |0⟩⟨0| ⊗ IB Utot
(
|0⟩⟨0| ⊗ IB

)
Utot

b 7! TrQBit
(
|b⟩⟨b|TrB

(
Utot

(
|0⟩⟨0| ⊗ IB

)
Utot

))

b 7! Tr
((
|b⟩⟨b| ⊗ IB

)
Utot(|0⟩⟨0| ⊗ IB)Utot

)

(Ex. 2.59)
weigh

δ0•
>=> prep

QuantumState effect
preparation

coupleB

QuantumState transformation

chanUtot

evolution

QuantumStore transformation

averageB

QuantumStore context

measurement OP•

7−! 7−!

7−!

(16)

Monadic typing of DQC1 quantum channel (54). The quantum channel
as such is the horizontal composite, consisting of an environmental coupling,
followed by joint unitary evolution, followed by bath-averaging (and then by
quantum measurement in the form (9)). Here the first two steps constitute a
QuantumState transformation acting compatibly (105) on the QuantumState-
effectful maps which prepare the state (on the left). Dually, the last two
steps constitute a QuantumStore-transformation which acts compatibly on the
QuantumStore-contextful observables (by Heisenberg evolution, cf. Prop.
2.50) to produce the measurement result, as in (15).

Effective quantum language from Quantum modal logic. With this thoroughly modal/monadic formulation of quantum
systems in hand, standard language constructs in functional programming for handling effect monads (Lit. 1.19) become
available for quantum programming. We indicate the resulting Quantum Systems Language (QS) in §3.

Outlook. While one motivation for all these monadic constructions is the remarkable fact that they can be embedded just by
suitable sugaring (Lit. 1.6) into any dependent linear type theory which verifies the Motivic Yoga (such as LHoTT does, Lit.
1.8), here we speak purely in categorical semantics and relegate all discussion of type theoretic syntax to elsewhere (but for a
preview of the translation see [Ri23]). At the same time, LHoTT exists for the moment only on paper, as it is not supported yet
by the HoTT proof assistants such as Agda or Coq. There should be no fundamental obstacle to implementing a linear version
of, say, Agda, but this will require dedicated work. Therefore we understand our contribution here also as demonstrating that
the new type system LHoTT (which might superficially seem to be of only specialized interest) fundamentally deserves the
attention of the computer-proof-assistant community.

Similarly, here we do not dwell on the higher homotopy theoretic aspect of LHoTT/QS; but the companion article [TQP]
discusses in detail how anyonic topological quantum gates are naturally realized in classical LHoTT, namely as twisted higher
cohomology groups realized as dependent function types into higher delooping types (Eilenberg-MacLane-spaces) of the
type of complex numbers. Since LHoTT is conservative over HoTT, this same construction from [TQP] may immediately be
understood as taking place in LHoTT, where the type of complex numbers and hence that of anyonic quantum ground states
may now be promoted to genuine linear types (Eilenberg-MacLane spectra equivalent to chain complexes, via the categorical
semantics in [SS23-EoS]), exhibiting the actual Hilbert space type of anyons to which quantum circuit logic may then be
applied in the way we are discussing here.

Efforts are underway at CQTS5 to implement this classical HoTT-realization of topological quantum gates in cubical-Agda
in order to demonstrate the feasibility of a formally verified topological hardware-aware quantum programming/simulation
environment via dependent type theory. Our aim here is to demonstrate that the linearly-typed enhancement of such a quantum
language system is theoretically viable, and naturally so, hoping to thereby spur its eventual implementation.

Acknowledgements. We thank Thorsten Altenkirch, Nathanael Arkor, David Corfield, David Jaz Myers, Mitchell Riley, and
Sachin Valera for useful discussion concerning various aspects of this paper.

4Notice that the environmental mixed state produced by this construction is un-normalized. This is no restriction of generality, it just means that for
extracting actual probabilities one needs to normalize by the trace of the density matrix.

5landing page: nyuad.nyu.edu/en/research/faculty-labs-and-projects/cqts.html

11

https://nyuad.nyu.edu/en/research/faculty-labs-and-projects/cqts.html

1 Background
This section provides background information and pointers to the literature on the various subjects referred to in the main
text. All items here are separately well-known to their respective experts but not always easy to comprehensively glean from
the literature. We pause at times to point out any remaining gaps that we address in the main text.

§1.1: Quantum Computing
§1.2: Quantum Probability
§1.3: Monadic Effects
§1.4: Monoidal Categories
§1.5: Parameterized spectra

1.1 Quantum computing
Literature 1.1 (Quantum computation and Quantum information processing).
The basic idea of quantum computation and quantum information processing is to exploit, for the purpose of machine com-
putation and information processing, the peculiar laws of quantum physics (Lit. 1.2) – which are obeyed by undisturbed (Lit.
1.3) microscopic systems.

The general idea of quantum computation was originally articulated by Yuri Manin [Ma80][Ma00], Paul Benioff [Be80],
and Richard Feynman [Fey82][Fey86], brought into shape by David Deutsch [De89], shown to be potentially of dramatic
practical relevance by Peter Shor and others [Sh94][Si97]... if sufficient quantum coherence can be technologically retained
(cf. Lit. 1.3), which has so far been achieved only marginally (Lit. 1.10).

Textbook accounts of the general principles of quantum computation and quantum information theory include: [NC00]
[RP11][BCR18][BEZ20], lecture notes include [Pre04]. Impressions of the state of the field may be found in [Pr22]. An
exposition leading up to our discussion here may be found in [Sch22].

As usual, we are primarily concerned here with “digital” (or “discrete variable”) quantum information/computa-tion,
where all quantum state spaces are finite-dimensional, cf. (133). While there are notions of quantum computation on (sep-
arably) infinite-dimensional Hilbert spaces (“continuous variable” systems, e.g. [Cho22]) these represent “analog quantum
computation” [KNM10] which, just as its classical analog, is typically more specialized, less reliable and less amenable to
theory than “digital” computation on finite (dimensional) state spaces.

The idea of quantum gates. It is a standard con-
cept in computer science to speak of logic gates
(e.g. [GMSW21, §1]) for operations on classical mem-
ory/registers (typically but not necessarily on a set of
“bits”, hence of Boolean “truth values”, whence the
name) – where the terminology suggests but need not
imply that this is an elementary operation performed by
some computing machine under consideration. The evi-
dent analog in quantum computation (Lit. 1.1) is that of
quantum logic gates ([Fey86][De89][BBCDMSSSW95],
often called just “quantum gates”, for short) which are
linear maps acting on some quantum memory/registers –
typically imagined to be constituted by “qbits” (166) – cf.
(64).
In classically controlled quantum computation (Lit. 1.11)
one is dealing with classically controlled quantum gates
(e.g. [NC00, §4.3]) that read/write a combination of clas-
sical and quantum data.

GATE
...

...nin

Input
registers nout

Output
registers

Bit×
nin Bit×

nout

Logic gate {0, 1} × · · · × {0, 1}︸ ︷︷ ︸
set of

tuples of
nin bits

{0, 1} × · · · × {0, 1}︸ ︷︷ ︸
set of

tuples of
nout bits

QBit⊗
nin QBit⊗

nout

Quantum
logic gate C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸

Hilbert space of
tensor products of

nin qbits

C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
Hilbert space of

tensor products of
nout qbits

Boolean function

(unitary)
linear map

An example of a (controlled, quantum) logic gate is the controlled NOT gate [De89, Fig. 2] (CNOT for short, cf. [NC00,
§1.3.2]) which operates on a pair of (q)bits by inverting the second conditioned on the first; see (17) and (254).

Quantum measurement gates. One also wants to regard the operation of quantum
measurement itself (Lit. 1.2) as a quantum gate (e.g. [NC00, p. xxv]), whose input
is quantum data but whose output is the classical measurement result.

QW W
0 1

Notice that the proper data-typing (Lit. 1.4) of a quantum measurement gate is more subtle than that of an ordinary logic
gate, since the actual measurement outcome is not determined by the gate’s input data (and hence not knowable at “compile

12

time” of a quantum program) but is a fundamentally indefinite result, more akin to operations otherwise considered in the
field of (classical but) nondeterministic computation (e.g. [Sip12, §1.2]).

Beware that this is not a side issue but part of the crux of quantum computation: On the one hand, the stochastic na-
ture of quantum measurement is a fundamental principle of physics (certainly of presently accessible physics, see Lit. 1.2)
and not just a reflection of incomplete knowledge about a quantum system (in contrast to, for instance, the case of classical
thermodynamics). Moreover, state collapse under quantum measurement is not just a subjective update of expected proba-
bilities, in that it objectively serves as an operational logic gate in quantum computations (such as in quantum teleportation
§3.2.2 and quantum error correction §3.2.3), to the extent that any quantum computation may be realized by exclusively us-
ing (quantum state preparation and) quantum measurement gates (known as “measurement-based quantum computation”; cf.
[Nie03][BBDRV09][Wei21]).

We discover a natural way for dealing with formal typing of quantum measurement below in §2.4.

C
N
O
T

lo
gi

c
ga

te
s

Controlled NOT gate
(reversible XOR gate) Bit2 Bit2

{0, 1} × {0, 1} {0, 1} × {0, 1}

Quantumly controlled
quantum NOT gate QBit⊗

2
QBit⊗

2

C2 ⊗ C2 C2 ⊗ C2

Classically controlled
quantum NOT gate Bit × QBit Bit × QBit

{0, 1} × C2 {0, 1} × C2

(b1, b2) 7−!

b1,
if b1 then ¬ b2

else b2

=

(
b1, b1 xor b2

)
(0,0) 7! (0,0)
(0,1) 7! (0,1)
(1,0) 7! (1,1)
(1,1) 7! (1,0)

∑
b1 ,b2

qb1 ,b2
|b1⟩⊗|b2⟩ 7−!

∑
b1 ,b2

qb1 ,b2
|b1⟩⊗|b1 xor b2⟩

|0⟩⊗|0⟩ 7! |0⟩⊗|0⟩
|0⟩⊗|1⟩ 7! |0⟩⊗|1⟩
|1⟩⊗|0⟩ 7! |1⟩⊗|1⟩
|1⟩⊗|1⟩ 7! |1⟩⊗|0⟩

(
b1,

∑
b2

qb2
|b2⟩

)
7−!

(
b1,

∑
b2

qb2
|b1xorb2⟩

)

(0,|0⟩) 7! (0,|0⟩)
(0,|1⟩) 7! (0,|1⟩)
(1,|0⟩) 7! (1,|1⟩)
(1,|1⟩) 7! (1,|0⟩)

(17)

Deferred measurement principle. Since quantum measurement turns quantum data into classical data, it intertwines quan-
tum control with classical control. Concretely, a statement known as the deferred measurement principle asserts that any
quantum circuit containing intermediate (mid-circuit) quantum measurement gates followed by gates conditioned on the
measurement outcome is equivalent to a circuit where all measurements are “deferred” to the last step of the computation

B0 1

F

G

deferred
measurement

principle
 −−−−−−−−−!

B0 1

F

G
(18)

(In the practice of quantum computation this principle can be used to optimize quantum circuit design. More philosophically,
it is interesting to notice that the issue of epistemological puzzlement in quantum interpretations, Lit. 1.2, can always be
thought of as postponed indefinitely.)

The theoretical status of the deferred measurement principle had remained somewhat inconclusive. Available textbooks
(e.g. [NC00, §4.4]) and numerous authors following them are content with inspecting a couple of examples while leaving it

13

open what precisely the principle should state in generality, a situation recently criticized in [GB22a, §1]. A more precise
form of the deferred measurement principle is briefly indicated in [Sta15, p. 6] and proposed there as an “axiom” of quantum
computation. We prove below (Prop. 2.40) that the deferred measurement principle (18) is verified in the data-typing of
quantum processes provided in LHoTT (Lit. 1.8).

Notice that the content of this equivalence between intermediate and deferred measurement collapse (18) is not trivial
without a good formalization; in fact it has historically been perceived as a paradox, namely this is essentially the paradox
of “Schrödinger’s cat” and of “Wigner’s friend” (where the cat/friend plays the role of the intermediate controlled quantum
gate). Moreover, the same paradox, in different words, was influentially offered in [Ev57a, p. 4] as the main argument against
the “Copenhagen interpretation” and for the “many-worlds interpretation” of quantum physics (cf. Lit. 1.2). Note that our
same formalism which proves (18) also proves the equivalence (7) of these two “interpretations”.

qRAM Models. Classical computing in its familiar universal form is based, in one way or another, on the model of a Random
Access Memory (“RAM”, also known as a Mealy machine, see (86) below):

read-in RAM
& input data RAM × D RAM × D′ write RAM

& output data

program interacting with
Random Access Memory

(19)

Starting with [GLM08a][GLM08b], authors envisioned that quantum computing should similarly support a “qRAM model”
(see [Liu+23, p. 18] for implementations) the basic idea being that data in qRAM may form quantum superpositions and may
coherently be read/written in this form. As with the deferred measurement principle above, existing literature discusses this
concept not in general abstraction but by way of concrete examples (see for instance [Ar+15, Fig. 9][PPR19, Fig. 1][PCG23,
Fig. 4]6). From these one gathers that a quantum circuit of nominal type H ! K but with access to a qRAM Hilbert space
QRAM is de facto a quantum circuit of this form (a “circuit-based qRAM” [PPR19]):

read-in qRAM
entangled with

input quantum data
QRAM ⊗H QRAM ⊗H ′

write qRAM
entangled with

output quantum data

quantum program
interacting with qRAM

(20)

In §2.4 we obtain (217) a formalized account/typing of qRAM and its equivalence to controlled quantum circuits.

Literature 1.2 (Epistemology of quantum physics and its formalization). The curious epistemology7 of quantum physics
([Di30][vN32], see e.g. [SN94][Ish95][La17]) occupied already the founding fathers of quantum theory [EPR35][Bohr1949]
and the philosophical attitudes towards them were eventually canonized as interpretations of quantum physics [Me73][Sche73].
Later experimental advances in quantum physics only verified the nature of the theory and thus reinforced the epistemological
puzzlement [GRZ99].

Quantum measurement. Concretely, the core issue is that what otherwise appears to be the epistemologically complete state
of a quantum system – traditionally denoted “|ψ⟩”, being an element of some Hilbert spaceH – determines in general only the
probability (see Lit. 1.12) of which measurement outcome w : W (which “world”) will be observed upon measuring a given
property of the system, while only right after the observation of a given w the quantum state appears to have “collapsed” along
its linear projection onto a subspace of states with definite property w ([vN32, §III.3, §VI][Lü51], cf. [Sche73, §IV][Om94,
p. 82][Re22, (A.2)]):

Hw1
space of quantum states
with definite property w1Hilbert space of all

quantum states
of the given system

H ≃ 2WH• ≡

direct sum decomposition
in measurement basis W

⊕
w′:W
Hw′

Hwn
space of quantum states
with definite property wn

...

linear projection

linear projection

(21)

To some extent, this “state collapse” is formally just as expected (cf. [Ku05, §1.2][Yu12]) in a classical but probabilistic
theory, where measurement of a random variable leads one to adjust the subjectively expected probability distribution accord-
ing to Bayes’ Law for updating conditional probabilities — except that Kochen-Specker-Bell theorems (e.g. [CS78][Ku05,
§1.6.2][Mo19, §5.1.2]) show that (under very mild assumptions) generally no actual classical probability distribution can un-
derlie a pure quantum state, hence that quantum states are not just a stochastic approximation to a more fundamental classical
reality (cf. [Sche73, p. 140]).

Moreover, it seems untenable to regard the “state collapse” as just a subjective adjustment of expectation, since it is an
operational component of experimentally realizable quantum communication protocols (cf. Lit. 1.1 and §2.4, such as in

6A transparent example is discussed at https://quantumcomputinguk.org/tutorials/implementing-qram-in-qiskit-with-code
7Here “epistemology” – the theory of knowledge – refers to what can in principle (cf. [Fi07, p. 121]) be known about the (quantum) universe or any

model or part of it, say about a given (quantum) computing machine, which in practice concerns the question of what can in principle be computed with a
given quantum protocol, all imperfections of experiments and of experimenters disregarded.

14

https://quantumcomputinguk.org/tutorials/implementing-qram-in-qiskit-with-code

the quantum teleportation protocol recalled in §3.2.2); so much so that there is a paradigm of measurement-only quantum
computation (cf. [Nie03][BBDRV09][Wei21]) where the computational process consists entirely of a sequence of such
measurement-induced state collapses — in this practical sense the state collapse (21) is an objective reality.

Quantum epistemologies. The debates on what to make of the situation continue to this day (from the vast literature, see
for instance [Om94][Borg08]), whence practicing physicists tend to just disregard the epistemological issue, an attitude that
became proverbial under the catch-phrase “shut up and calculate” [Mer89].
Among the main attitudes of quantum philosophers towards the issues are:
• Copenhagen epistemology: Quantum/classical divide. The original “Copenhagen interpretation” (e.g. [Pr83, p.

99][Om94, p. 85]) pronounces a conceptual frontier or divide between quantum objects and their classical observers
according to which recognizable result of any quantum measurement are, and must be reasoned about as, classical states.
• Everett’s epistemology: Branching into Many worlds. An increasingly popular “many-worlds interpretation” (follow-

ing H. Everett [Ev57a][Ev57b][dWG73]) rejects a separate classical component of quantum theory and instead asserts
(informally and hence ambiguously, cf. [Te98]) both that the quantum state does never “really” collapse and at the same
time that the universe successively “branches” into “many-worlds” inside which it nonetheless “appears” to observers to
have collapsed in all possible ways.

The reader uneasy with making sense of any of this we invite to §2, where we present a modal quantum logic (cf. Lit. 1.13)
which arguably makes precise these two epistemological attitudes and as such allows to prove their equivalence, cf. (7). In
particular, the perceived paradox which Everett offers [Ev57a, p. 4] to dismiss the Copenhagen interpretation and to motivate
the “many-worlds” interpretation is arguably resolved by the deferred measurement principle (18), which becomes provable
in quantum modal logic (Prop. 2.40).
Many possible worlds. Previously, several authors (e.g. [Bu76][Sk76, §III][Ta00, p. 101][No02, p. 22][Gi03, §8][Ter19]
[Wi20][AA22]) have wondered about or suggested a relation between these “many worlds” of quantum epistemology and
the “possible worlds” in the sense classical modal logic (Lit. 1.13) but no formalized such discussion has previously been
proposed. In particular, no previous author has considered this question with respect to a linear modal logic (cf. Lit. 1.4).
(Beware that philosophers also speak of a modal interpretation of quantum mechanics8 which shares some similarity in
vocabulary but does not refer either to modal logic nor to many-worlds.)
The need for formalization. Indeed, in the time-honored spirit of Galileo, Kant, Hilbert, Wigner (“The book of nature
is written in the language of mathematics.”) one may have suspected that the fault causing epistemological troubles is not
with quantum theory itself, but with speaking about it in ordinary informal language (Bohr 1920: “When it comes to atoms,
language can only be used as in poetry.”), whence their resolution lies instead in adopting a mathematical language of non-
classical formal logic more appropriate for expressing microscopic quantum reality. In fact, a universal quantum program-
ming language should essentially be just such a formal language, and in formulating it we do need to find a way to formally
reflect the phenomenon of quantum measurement:

The verified programming of a quantum algorithm
is the act of accurately recounting in formalized language

the physical quantum process that executes it, and conversely.
It is towards this practical goal that here we care about quantum epistemology; and this may explain why we have more

to say here about the foundations of quantum physics generally, beyond the field of quantum computation.
Bohr toposes. Another proposal in the direction of formalized quantum epistemology may be recognized in [AC95] (in
parallel and independently to the development of quantum/linear logic, Lit. 1.4). A variant of this proposal that gained some
popularity is to use the internal logic of canonically ringed (co)presheaf toposes over the site of commutative subalgebras of
a given C∗-algebra of quantum observables (“Bohr toposes”, following ideas of [BHI98], for review see [Nui12][La17, §12]).
The achievement of this approach is to show that the step from classical/commutative to quantum/noncommutative probability
theory (of which a good account is in [Gl09][Gl11]) may be understood as the logical internalization of the classical axioms
into a Bohr topos [HLS02]. While conceptually quite satisfactory, the practical relevance of this perspective has arguably
remained elusive. In particular, it does not readily translate to a formal quantum (programming) language.

The approach that we take below is also ultimately (higher) topos-theoretic but otherwise rather complementary to Bohr
toposes. In fact, one may understand Bohr toposes as formalizing the Heisenberg picture of quantum physics – where
conceptual primacy is given to the algebras of quantum observables – while here we are concerned with the equivalent but
“dual” Schrödinger picture where the primary concept is the spaces of quantum states: These being exactly the linear types
that give Linear Homotopy Type Theory its name. We relate this to algebras of observables in §2.5 (see Ex. 2.46).

Literature 1.3 (Topological quantum computation).
8Cf. plato.stanford.edu/entries/qm-modal

15

 https://plato.stanford.edu/entries/qm-modal

(For extensive motivation, explanation and referencing of topological quantum computation see the companion article [TQP].)
The practical promise of quantum computation (Lit. 1.1) hinges on the achievability of fairly undisturbed quantum processors
which are sufficiently robust against the inevitable interaction with their environment. There are essentially two approaches
toward robust quantum computation:

(i) Quantum error correction: Operate on error-prone quantum hardware, but with software that implements enough
redundancy to allow reading intended signals out of noisy background (cf. §3.2.3).

(ii) Topological error protection: Operate on intrinsically stable quantum hardware (Lit. 1.23) which prevents errors from
occurring in the first place.

In all likelihood, the eventual practice will be a combination of both approaches, since topological hardware error-protection
achievable in the laboratory will itself have imperfections. Conversely, some quantum-error correction algorithms essentially
consist of simulating topological quantum hardware on non-topological hardware, e.g. [Iq+23]. However, the peculiarities of
topological quantum gates had previously no genuine representation in quantum programming languages and were principally
un-verifiable (cf. Lit. 1.4) until we argued, in the companion article [TQP], that realistic topological quantum gates are
naturally modeled by homotopy typed languages (Lit. 1.7), such as classical HoTT and, more accurately, by LHoTT (Lit. 1.8).

Literature 1.4 (Formal (quantum) software verification and dependent (linear) data typing).
(For extensive exposition and referencing of the classical case see the companion article [TQP].)
The benefit or even necessity of formal software verification methods [CC09][Me11] (often abbreviated to just “formal meth-
ods”, cf. [WLBF09]) — hence of computer-checked proof at compile-time of correct behavior of critical software — is
evident [HN19] and as such increasingly of interest for instance to the crypto-reliant industry (e.g. [Hed18][VYC22][Qu23])
and the military (e.g. MURI:FA95501510053). Nevertheless, in less critical applications of classical computation the over-
head associated with formal verification is still widely traded for the possibility of incrementally de-bugging faulty software
during application.
Need for verification of quantum programs. However, such run-time debugging is no longer a sustainable option when it
comes to serious quantum computation, due ([VRSAS15, p. 6][FHTZ15][Ra18]9[YF18][MZD20][YF21]) to its:
• drastically higher complexity,
• drastically higher run-time cost,
• impossibility of run-time inspection.

The last point is the fundamental one, enforced by the quantum laws of nature (state collapse under measurement, Lit. 1.2),
but the other two points will in practice be no less forbidding.

Accepting the need for (quantum) software verification, its implementation of choice is by data typing (which for quantum
data means “dependent linear typing”:

Formal verification by data typing. A profound confluence of computer science and pure mathematics occurs with the
observation [ML82] that formal software verification is not only amenable to constructive mathematical proof but funda-
mentally equivalent to it – every constructive mathematical proof may be understood as pseudocode for a program whose
output is data of the type of certificates of the truth of the given statement, a profound tautology known as the BHK
(Brouwer–Heyting–Kolmogorov) correspondence, or similar (find references around [TQP, (92)]).

Accordingly, formal verification/proof languages are (dependently) typed in that every piece of data they handle has
assigned a precise data type which provides the strict specification that data has to meet in order to qualify as input or
output of that type ([ML82][Th91][St93][Luo94][Gu95][Con11][Ha16]). The abstract theory of such data typing is known as
(dependent-)type theory and the modern flavor relevant here is often called Martin-Löf type theory in honor of [ML71][ML75]
[ML84]; for more elaboration and introduction see also [Ho97][UFP13].

Once this typing principle is adhered to, the distinction vanishes between writing a program and verifying its correctness.
Moreover, such a properly typed functional program may equivalently be understood as a mathematical object, namely as
a mathematical function (22) from the “space” of data of its input type to that of its output type — called its denotational
semantics (a seminal idea due to [Sc70][ScSt71]; for exposition see [SK95, §9]):

Syntax Semantics

flags

γ:Γ,
input

i:I ⊢
output

pγ(i) : O domain

Γ × I
codomain

O⊢pprogram function

(22)

9[Ra18, p. iv]: “We argue that quantum programs demand machine-checkable proofs of correctness. We justify this on the basis of the complexity of
programs manipulating quantum states, the expense of running quantum programs, and the inapplicability of traditional debugging techniques to programs
whose states cannot be examined. [...] Quantum programs are tremendously difficult to understand and implement, almost guaranteeing that they will have
bugs. And traditional approaches to debugging will not help us: We cannot set breakpoints and look at our qubits without collapsing the quantum state. Even
techniques like unit tests and random testing will be impossible to run on classical machines and too expensive to run on quantum computers – and failed
tests are unlikely to be informative. [...] Thesis Statement: Quantum programming is not only amenable to formal verification: it demands it.”

16

https://app.dimensions.ai/details/grant/grant.7081074

For classical10 data types the inference rules by which such program/function declaration may proceed equip the type
universe with the structure of a Cartesian closed category [LS86, §I], whence one also speaks of categorical semantics (see
[Ja98][Ja93]). Here the inference rules for the classical logical conjunction “×”, hence for the Cartesian product, subsume
the basic “structural inference rules” called the contraction rule and the weakening rule ([Ge35, §1.2.1], see [Ja94][Ja98, p.
122][UFP13, §A.2.2][Rij18, §1.4]), which semantically express the possibility of duplicating and of discarding classical data:

st
ru

ct
ur

al
in

fe
re

nc
e

ru
le

s
fo

r
cl

as
si

ca
ld

at
a

ty
pe

s
Syntax Semantics

C
Γ, p1:P, p2:P ⊢ tp1,p2 : T

Γ, p:P ⊢ tp,p : T
Γ × P × P T

Γ × P Γ × P × P T

⊢t

idΓ×diagP
⊢t

Contraction rule Diagonal (cloning)

W
Γ ⊢ P : Type Γ ⊢ t : T

Γ, P ⊢ t : T

Γ T
Γ × P Γ T

⊢t

prΓ ⊢t

Weakening rule Projection (deletion)

(23)

The quest for quantum data typing was historically convoluted (starting with the much debated quantum logic of [BvN36]
and continuing with the influential ideosyncracies of [Gir87]) but is, in hindsight, fairly straightforward: Since the hallmark
of coherent quantum evolution is (see [Aby09] for a structural account) the pair of:
• the no-cloning theorem ([WZ82], saying that quantum data cannot be systematically duplicated),
• the no-deletion theorem ([PB00], saying that quantum data cannot be systematically discarded),

it follows that a program handling purely quantum data types must not use the structural rules (23) for the logical conjunction
of quantum data, which is then called the (non-Cartesian) tensor product ⊗ (Lit. 1.20). It is this removal of structural inference
rules (“sub-structural logic”) which frees the tensor product of quantum data types from only consisting of pairs of data and
hence allows for the hallmark phenomenon of quantum entanglement (see e.g. [BZ06]).

Such sub-structural languages were essentially introduced in (the “multiplicative sector” of) the linear logic (see [Se89]
[Tr92][MN13]) originated by [Gir87] (who was apparently vaguely aware of potential application to quantum logic, cf.
[Gir87, p. 7]). These languages were then suggested as expressing quantum processes in [Ye90][Pr92] and were more fully
understood as quantum (programming) languages (Lit. 1.5) with linear types in [Val04][SV05] [AD06][Du06][SV09]. Notice
that the adjective “linear” here refers to the preservation of the number of type factors in the absence of the structural rules
(23), which implies that functions f : X ! Y between linear types must indeed use their argument x : X linearly, in the
algebraic sense.
Vector- and Hilbert-spaces as linear types. Notably the usual categories ModK of vector spaces over any ground field K,
with K-linear maps between them, constitute categorical semantics for (the multiplicative sector) of linear logic, arguably the
natural such semantics [1]:

Linear logic is best seen as the realization of the Curry-Howard isomorphism for linear algebra.

The fact that this was made explicit no earlier than in [Mur14][VZ14] must be understood as solely reflecting the convoluted
history of the subject: Constituting the heart (Lit. 1.22) of stable ∞-categories of module spectra (HK-modules, in this case,
Lit. 1.21) these categories ModK appear as rather canonical models for linear types and as such we use them in §2.1.
Quantum data typing. In summary, the match between quantum phenomena, linear type theories and their semantics in
categories of linear spaces is tight (which should not be surprising in hindsight but was less than obvious for much of the
history of linear logic):

Quantum Phenomena Linear Type Inference Linear maps in Linear algebra...

No-cloning theorem Absence of contraction rule ...use their argument at most once.

No-deleting theorem Absence of weakening rule ...use their argument at least once.

(24)

The resulting principle that
10Here by classical types we mean the types of intuitionistic Martin-Löf type theory in contrast to linear (quantum) types (24), but not in the sense of

“classical logic”: Classical types in our sense are “not quantum” in that they are subject to the structural inference rules (23) but they are still constructive
in that they are not (necessarily) subjected to the law of excluded middle and/or the axiom of choice (which distinguish “classical logic” from “intuitionistic
logic”).

17

Quantum data has linear type.

has meanwhile come to be more commonly appreciated (e.g. [DLF12, p. 1]) in particular in quantum language design (Lit.
1.5, cf. in particular [FKS20]), where for instance the insightful [Sta15] states up front that:

A quantum programming language captures the ideas of quantum computation in a linear type theory.

Bunched classical/quantum type theory and EPR phenomena. And yet, a comprehensive programming language imple-
menting such linear type theories of combined classical and quantum data had remained elusive all along: The type-theoretic
subtlety here is that with the classical conjunction (×) being accompanied by a linear multiplicative conjunction (⊗), then
contexts on which terms and their types should depend are no longer just linear lists of (dependent) classical products

Γ1 × Γ2 × · · · × Γn
a classical type-context
(tuples of classical data)

but may be nested (“bunched”) such products, alternating with linear multiplicative conjunctions to form tree-structured
expressions like this example:

Γ1 ×
(
Γ2 ⊗ (Γ3 × Γ4)

)
× (Γ5 ⊗ Γ6) × (Γ7 ⊗ Γ8 ⊗ Γ9) a mixed classical/quantum type-context

(tuples of classical data mixed with entangled quantum data).

While the idea of formulating such “bunched” type theories is not new [OP99][Py02][O’H03], its implementation has turned
out to be tricky and the results unsatisfactory; see [Py08, §13.6][Ri22a, p. 19]. The claim of the type theory introduced in
[Ri22a] is to have finally resolved this long-standing issue of formulating “bunched linear dependent type theory”. Here we
understand this as saying that a verifiable universal quantum programming language now exists – LHoTT11 (Lit. 1.8).

To put this into perspective it may be noteworthy that the root of this subtlety resolved by LHoTT corresponds to the
hallmark phenomenon of quantum physics which famously puzzled the subject’s founding fathers (Lit. 1.2), namely the
conditioning of physics on entangled quantum states (known as the EPR phenomenon, e.g. [Sel88]):
Under the correspondence between dependent linear type theory
and quantum information theory, the existence of bunched typ-
ing contexts involving linearly multiplicative conjunctions ⊗ cor-
responds to the conditioning of protocols on entangled quantum
states and hence to what in quantum physics are known as EPR
phenomena.

Bunched logic EPR phenomena
Typing contexts built via

multiplicative conjunction (⊗)
Physics conditioned on

entangled quantum states

Exponential modality. In the previous lack of a classically-dependent linear type theory, the strategy for recovering classical
logic among a linear (quantum) type system was to postulate a modal operator (Lit. 1.13) on the linear type system –
traditionally denoted “!” [Gir87] and (sometimes) called the exponential modality – where a linear type of the form !H may
be thought of (cf. Rem. 2.10 below) as behaving like the linear span of the underlying set of a linear space H , thus giving
the linear type system a kind of access to this underlying classical type. Eventually it came to be appreciated (cf. [Mel09, p.
36]) that the exponential modality should (this is due to [Se89, §2] and [dP89][BBdP92, §8][BBdPH92]) be axiomatized as
a comonad (cf. Lit. 1.17) and specifically as a comonad induced by a suitably monoidal adjunction (74) between linear and
classical (intuitionistic) types (due to [Bi94, p. 157][Be95]):

ClaType QuType

purely
classical

(intuitionistic)
types

purely
quantum
(linear)
types

Q
quantization

C
classicization

⊥ !exponential modality

(25)

Traditionally, inference rules for such an exponential modality need to be adjoined to plain (non-dependent) linear type
theories, which is laborious and not without subtleties ([Gir93][Wa93][Be95][Ba96]). In contrast, in Prop. 2.9 we obtain (cf.
[Ri22a, Prop. 2.1.31]) an exponential modality from the basic type inference provided by a dependent linear type theory like
LHoTT (Lit. 1.8), a possibility first highlighted in [PS12, Ex. 4.2][Sch14a, §4.2].
Full verification: Towards identity types. Either way, (linear) data-typing in general serves to impose and verify consistency
constraints on (quantum) data. But for a fine-grained certification of program behavior by equational constraints — e.g. for

11In fact, in LHoTT the substructural nature of the linear types is more refined than shown in (24): It is possible in LHoTT to duplicate the reference to
terms of linear type, for instance such as to assert their self-identification

H : QuType, ψ : H ⊢ ψ = ψ ,

but an accompanying “color palette” ensures that no such duplicate references may be used on the two sides of the tensor product.

18

certifying the correctness of quantum teleportation protocols or of quantum error corrections (cf. Rem. 3.2) – one specifically
needs certificates of identification types (colloquially: “identity types”), certifying the (operational) equality of pairs of data
of a given type (cf. Lit. 1.7).

However, the correct formal treatment of data types of identifications turns out to be surprisingly subtle, which may be
one reason why none of the previously existing quantum programming languages provide such identity types — and this
includes (Proto-)Quipper, cf. Lit. 1.5. Namely, once identifications of any data pairs d, d′ : D are promoted to data of
identification type p : IdD(d, d′) (“propositional equality”), the same principle applies to pairs p, p′ : IdD(d d′) of these
certificates themselves, whose verifiable identification now requires data of iterated identification type IdIdD (d,d′) (d, d′) – and
so on. The proper handling of this phenomenon requires and leads homotopy types of data provided by classical HoTT and its
linear form LHoTT; see the discussion in Lit. 1.7.

Literature 1.5 (Quantum programming languages). The idea of quantum programming languages formally expressing
quantum computational processes (Lit. 1.1) was first systematically expressed in [Kn96], early proposals for formalization
are due to [Se04][Val04][SV05][SV09] (“quantum λ-calculus”), [AG05] (QML), and [AG10][Gr10] (via “quantum IO”, a kind
of monadic quantum effects, Lit. 1.17). Exposition of the need and relevance of quantum programming languages (which
was not originally obvious to the community, cf. the historical lead-in to [Se16]) specifically for quantum/classical hybrid
computation, may be found in [VRSAS15].

Based on these early developments (and besides a multitude of quantum circuit languages that now exist for programming
available NISQ machines, Lit. 1.10), currently there exists essentially one quantum programming language with universal
ambition: Quipper12 [GLRSV13][GLRSV13] (for exposition see [Se16]). In its formalized sector called “Proto-Quipper”
[Ro15, §8][RS18, §4.3] this language may be understood as involving a kind of dependent (Lit. 1.8) linear types, Lit. 1.4)
with semantics in categories of indexed sets of linear objects ([RS18][FKS20][Lee22][Ri21]), notably in indexed sets of
(complex) vector spaces, of the same kind as that in §2.1 we discuss as semantics for the 0-sector (Rem. 1.22) of LHoTT (Lit.
1.8).

(Notice that Quipper (and qIO) are embedded (Lit. 1.6) inside the classical language Haskell which means that they
lack support for verification of linear (quantum) data types, cf. Lit. 1.4.)

Another quantum programming language scheme with the ambition of certifying (Lit. 1.4) quantum (circuit) programs is
QWIRE, see [PRZ17][RPZ18][PZ19][RS20][HRHWH21][HRHLH21][ZBSLY23].

Literature 1.6 (Domain-specific embedded programming languages). Besides universal programming languages, more
specific tasks – such as quantum circuit programming (cf. Lit. 1.5) – often profit from non-universal languages tailor-made
towards the problem at hand – one speaks of domain-specific languages (DLS) [Hud98b][Hud98b]. Typically these are
embedded into ambient universal languages ([Hud96]), by specification of “syntactic sugar” (e.g. [Ra94, §1.6, §1.7, §9]) for
blocks of similar code in the ambient language that serve as the building blocks of the domain-specific embedded language.

An example is do-notation (Lit. 1.19) for monadic language constructs (Lit. 1.17), and [BHM02, §5.3] suggest that
formulating domain-specific embedded languages is close to synonymous with identifying do-notation for suitable monads,
citing the example of domain-specific parser languages identified as monadic do-notation by [Wa90, §7.1]. These authors
conclude:

“Every time a functional programmer designs a combinator library, then, we might as well say that he or
she designs a domain specific programming language [...]. This is a useful perspective, since it encourages
programmers to produce a modular design, with a clean separation between the semantics of the DSL
and the program that uses it, rather than mixing combinators and ‘raw’ semantics willy-nilly. And since
monads appear so often in programming language semantics, it is hardly surprising that they appear often
in combinator libraries also!

Existing functional (Lit. 1.16) quantum programming languages such as qIO and Quipper (Lit. 1.5) are domain-specific
languages embedded in Haskell, and among these Altenkrich & Green’s qIO (the quantumIO-monad) stands out in its
ambition of sticking to the monadic paradigm. However, since the ambient Haskell does not verify linear (quantum) data
typing (Lit. 1.4, and no other available embedding language did), neither do these embedded languages.

In §3 we aim to show that a nice monadically-embedded quantum programming language with linear tying does exist
inside LHoTT (Lit. 1.8).

Literature 1.7 (Homotopically typed languages). (For extensive review cf. the companion article [TQP].) An operation
on data so fundamental and commonplace that it is easily taken for granted is the identification of a pair of data with each
other. But taking the idea of program verification by data typing (Lit. 1.4) seriously leads to consideration also of certificates
of identification of pairs of data of any given type which thus must themselves be data of “identification type” [ML75,

12Landing page: www.mathstat.dal.ca/∼selinger/quipper

19

https://www.mathstat.dal.ca/~selinger/quipper

§1.7]. Trivial as this may superficially seem, something profound emerges with such “thoroughly typed” programming
languages (the technical term is: intensional type theories (see [St93, p. 4, 13][Ho95, p. 16]) in that now given a pair of such
identification certificates the same logic applies to these and leads to the consideration of identifications-of-identifications
(first amplified in [HS98]), and so on to higher identifications, ad infinitum.

Remarkably, the “denotational semantics” (Lit. 1.4) of data types equipped with such towers of identification types,
hence the corresponding pure mathematics, is ([AW09][Aw12], exposition in [Sh12][Ri22]) just that of abstract homotopy
theory (Lit. 1.21) where identification types are interpreted as path spaces and higher-order identifications correspond to
higher-order homotopies. One also expresses this state of affairs, somewhat vaguely, by saying that HoTT has semantics in
homotopy theory, and conversely that HoTT is a syntax for homotopy theory – we have reviewed this dictionary in [TQP,
§5.1].

Ever since this has been understood, the traditional (“intuitionistic Martin-Löf”-)type theory of [ML75][NPS90] has
essentially come to be known as homotopy type theory (HoTT) – specifically so if accompanied by one further “univalence”
axiom13 (for more on this see the companion article around [TQP, (105)]) which enforces that identification of data types
themselves coincides with their operational equivalence (exposition in [Ac11]).

The standard textbook account for “informal” (human-readable) HoTT is [UFP13], exposition may be found in [BLL13],
gentle introduction in [Rij18][Rij23] (the former more extensive); and see the companion article [TQP, §5]. Available soft-
ware that runs homotopically typed programs includes Agda14 and Coq15.

Literature 1.8 (Linear homotopically typed languge). Based on the developments of HoTT (Lit. 1.7) and in view of the
idea of linear data typing for quantum languages (Lit. 1.4) we had previously argued [Sch14a][Sch14b] that there should
exist a linear enhancement of HoTT providing, in addition, a natural formal language for motivic (stable) homotopy (tan-
gent ∞-toposes, Lit. 1.21) and quantum systems. After some partial proposals for such dependent linear type systems
([KPB15][Va15, §3][McB16][Va17][Lu18][Atk18][FKS20][MEO21], see also earlier discussion in [SSt04])16, a satisfactory
Linear Homotopy Type Theory (LHoTT) has recently been presented by M. Riley [Ri22a], see also [Ri22b][Ri23].

For embedding (Lit. 1.6) the monadic quantum effects of §2 into LHoTT all we need is that LHoTT verifies the Motivic
Yoga (Def. 2.18), which is the case by the discussion in [Ri22a, §2.4].

Literature 1.9 (Topological quantum compilation.). Once serious quantum computation hardware (Lit. 1.3) becomes
available, a central effort in quantum computation (Lit. 1.1) concerns quantum compilation [MMRP21], namely the translation
of high-level quantum algorithms into sequences (circuits) of those logic gates that the hardware actually implements. The
seminal Solovay-Kitaev theorem ([NC00, App. 3][DN06]) guarantees, under rather mild assumptions on the available gate
set, that such a compilation is always possible, but optimization for scarce runtime resources requires considerable effort.

The problem of quantum computation is particularly demanding for topological quantum computation (Lit. 1.3), hence
in the case of topological quantum compilation (e.g. [HZBS07][Bru14][KBS14]), since here the available gate logic is far
remote from then QBit-based operations (17) in which high-level quantum algorithms are conceived. No attempt seems to
previously have been made toward formally verifying a topological quantum compilation, and indeed the problem is not
captured by classical verification strategies. Notice that:

(i) formal verification of quantum compilation, in general, is not a discrete but an analytical problem, whose computer
verification requires exact real (complex) computer arithmetic (cf. [TQP, Lit, 2.29]),

(ii) the generic topological quantum gate is given by a complicated analytical expression (cf. [TQP, Lit. 2.24]).
While here we will not further dwell on the issue explicitly, the claim of [TQP] is that these two problems are addressed by
homotopically-typed certification languages (HoTT, Lit. 1.7) of which the language LHoTT of concern here (Lit. 1.8) is an
extension.

Literature 1.10 (NISQ computers). Currently existing quantum computers (such as those based on “superconducting qbits”,
see e.g. [CW08][HWFZ20]) serve as proof-of-principle of the idea of quantum computation (Lit. 1.1) but offer puny com-
putational resources, as they are (very) noisy and (at best) of intermediate scale: “NISQ machines” [Pr18][LB20]. What
is currently missing are noise-protection mechanisms that would allow to scale up the size and coherence time of quantum
memory. The foremost such protection mechanism arguably is topological protection (Lit. 1.3).

Literature 1.11 (Classically controlled quantum computation and dynamic lifting). The idea of classically controlled
quantum computation goes back to [Kn96] and was amplified in [NPW07, §4] (from which we adapted the schematics

13 The univalence axiom is widely attributed to [Vo10], but the idea (under a different name) is actually due to [HS98, §5.4], there however formulated
with respect to a subtly incorrect type of equivalences (as later shown in [UFP13, Thm. 4.1.3]). The new contribution of [Vo10, p. 8, 10] was a good
definition of the types of (“weak”) equivalences between types.

14 Agda landing page: wiki.portal.chalmers.se/agda/pmwiki.php
15 Coq landing page: coq.inria.fr
16See [Ri22a, §1.7][Ri22b, p. 22] for critical discussion of these and other previous approaches to dependent linear types.

20

https://wiki.portal.chalmers.se/agda/pmwiki.php
https://coq.inria.fr

graphics on p. 4), see also [De14]. The term “dynamic lifting” for the converse control flow (where mid-circuit quantum
measurement results are fed back into the classical control logic) is due to [GLRSV13, p. 5], early discussion is in [Ra18, p.
40]; proposals for its categorical semantics are discussed in [RS20][LPVX21][FKRS22a][FKRS22b][CDL22][Lee22].

Of these, the definition in [Lee22, §4.4] of a monad (Lit. 1.17) meant to express dynamic lifting is vaguely in the spirit
of the quantum indefiniteness monad ⃝W from §2.3 which in §2.4 we find to express just that: Lee’s “lifting monad” applied

to a bundle type

H•↠W
 (in the language of §2.1) produces the bundle type over the set of multisets [wi]i∈I of elements of W

whose fibers are the direct sums ⊕
i∈I
Hwi ; the idea being to interpret these as the branched Hilbert spaces inside which to locate

quantum states obtained after (repeated?) measurement results wi.
Compare this to the indefiniteness monad, which for a (finite) set of outcomes W sends a pure quantum type H to

⃝WH ≡ ⊕WH – see the typing of dynamically lifted quantum measurement results on p. 85, and see (220) for the successive
lifting of quantum measurements, accumulating the measurements results in the classical context.

21

1.2 Quantum probability
Literature 1.12 (Quantum probability and Quantum channels). Remarkably, in its relation to physical reality, quantum
physics (Lit. 1.2) is a probabilistic theory ([vN32, §III][MR01]), and yet more remarkably its probabilistic aspect is tied in
some deep way to the complex numbers equipped with their involution by complex conjugation:

Hilbert spaces of quantum states. The definition of Hilbert spaces
(
H , ⟨−|−⟩

)
in quantum physics ([vN30, §1][vN32,

§II.1]) concerns extra structure and properties on the underlying complex vector space of quantum states: (1.) A Hermitian
inner product ⟨−|−⟩ and (2.) a topological completeness condition. The latter condition is (just) to make sense of infinite-
dimensional state spaces and is of no concern for the finite-dimensional Hilbert spaces of interest in quantum information
theory (which are automatically complete). The key structure that remains is the Hermitian inner product structure ⟨−|−⟩
on a finite-dimensional space H of quantum states (e.g. [La17, §A.1]), which is (not a complex bilinear on H ⊗ H , but) a
sesquilinear map, complex-anti linear in the first argument:

Hermtian
inner product ⟨−|−⟩ : H

complex conjugate

space

⊗Hcomplex vector space

underlying Hilbert space

C (26)

namely such that

ψ, ψ′ : H , c : C ⊢

Hermitian sesqui-linearity

⟨ψ′|c · ψ⟩ = c ⟨ψ′|ψ⟩

⟨ψ|ψ′⟩ = ⟨ψ′|ψ⟩ ,

positivity

⟨ψ|ψ⟩ ≥ 0 ,

⟨ψ|ψ⟩ = 0 ⇒ ψ = 0 .
non-degeneracy

(27)

Bra-Ket notation. The non-degeneracy condition (27) on ⟨−|−⟩ means that every element of the linear dual space H∗ ≡
(H ⊸ C) is uniquely of the form ⟨ψ|−⟩ for some ψ ∈ H , which leads to the suggestive bra-ket notation traditional in
quantum physics (since [Di39], see e.g. [SN94, §1.2][Gri02, §3]):

“ket” in Hilbert space

|ψ⟩ ≡ ψ : H ,
“bra” in dual space

⟨ψ| ≡ ⟨ψ|−⟩ : H∗ . (28)

If nothing else, this notation (28) allows one to neatly distinguish between the element w : W in a (finite) set W and the
corresponding vector in the linear span |w⟩ ∈ QW ≡ ⊕

W
1 (and as such we understand |−⟩ as the return-operation (67) of the

“quantization modality” Q, see Def. 2.13 and p. 102). Equipped with the canonical inner product this is an orthonormal
linear basis:

linear basis w : W ⊢ |w⟩ : ⊕
w:W
C ≡ H ,

ortho-normality w,w′ : W ⊢ ⟨w′|w⟩ = δw′
w ≡

{
1 if w = w′
0 otherwise

(29)

More profoundly, the bra-ket notation (28) is a lightweight precursor to the string diagram calculus in dagger-compact
closed categories (34) (as amplified by [AC04, §7.2][AC07, p. 6][Co10, §3.3]): ForH a finite-dimensional Hilbert space with
orthonormal basis W (29), the vector space of linear maps into someH ′ is canonically identified with a space of matrices as
follows (136):

linear space
of linear maps

linear space
of matrices(

H ⊸ H ′
)

H ′ ⊗H∗(
|w⟩
in

7!
∑

w′ |w′⟩Aw′,w

out

)
7!

∑
w,w′
|w′⟩
out

Aw′,w ⟨w|
in

∼ (30)

The Born rule. The Hermitian inner product ⟨−|−⟩ on spaces of quantum states serves to refine the description (21) of the
quantum measurement process by assigning a probability distribution Probψ to the possible measurement outcomes on a
system in state |ψ⟩ ∈ H in a state spaceH ≃ ⊕W C spanned by an orthonormal measurement basis W (29).

The Born rule of quantum physics postulates ([Born26, p. 805][Jor27, p. 811][vN32, §III], review in [La09]) that the
probability Probψ(w) for a quantum measurement (21) of a system in a normalized state

|ψ⟩ : S (H) ≡
normalized states(

|ψ⟩ : H
)
×

(
⟨ψ|ψ⟩ = 1

)
(31)

to yield the result w : W from an orthonormal basis (29) is:

22

probability to measure w
on system in state |ψ⟩

equals according
to Born’s rule

square modulus of
transition amplitude

W : FinSet
|ψ⟩ : S

(
⊕
w:W
C
)

w : W

 ⊢ Probψ(w) ≡ ⟨ψ|w⟩⟨w|ψ⟩ = ⟨w|ψ⟩⟨w|ψ⟩ =
∣∣∣⟨w|ψ⟩︸︷︷︸

“transition amplitude”
from |ψ⟩ to |w⟩

∣∣∣2 (32)

That the Born rule (32) indeed gives a probability distribution on W is intimately connected to the notion (27) of Hermitian
inner products, notably via the corresponding Cauchy-Schwarz inequality:

measurement probabilities
indeed take values in [0, 1]

Probψ(w) ≡
∣∣∣⟨w|ψ⟩∣∣∣2 ≤ ⟨w|w⟩⟨ψ|ψ⟩ = 1

(32) Cauchy-Schwarz (29) (31)

measurement probs
indeed sum to unity

∑
w

Probψ(w) ≡
∑

w

∣∣∣⟨w|ψ⟩∣∣∣2 = ∑
w

⟨ψ|w⟩⟨w|ψ⟩ = ⟨ψ|
(∑

w

|w⟩⟨w|︸ ︷︷ ︸
=idH

)
|ψ⟩ = ⟨ψ|ψ⟩ = 1 .

Category theory for Hermitian inner products? The structure of a Hermitian inner product on complex vector spaces
(e.g. [KR97, §2.1]), classical as it may be, is somewhat odd (in a precise sense, as we shall see) from the perspective of
category theory: On a real vector space V : ModR a (non-degenerate) inner product ⟨-|-⟩ is a self-duality structure in the
category-theoretic sense (cf. [Se12]):

finite-dimensional
vector space

H

its dual
vector space

H∗

ψ 7−! ⟨ψ|−⟩
Hermitian

inner product

,

∼

(33)

but for complex Hermitian inner product spaces the comparison map (33) is not complex-linear — it is complex anti-linear:
c · |ψ⟩ ↔ c · ⟨ψ|. For this reason, finite-dimensional complex Hilbert spaces are not the self-dual objects of ModC, in contrast
to the situation for their real cousins.

Dagger categories. It is ultimately due to this complication (33) that the category-theoretic foundations of quantum informa-
tion theory have commonly come to be cast in terms of “dagger-categories” (referring, since [Sel07] following [AC04, Prop.
7.3], to the notation “(-)†” for linear operator adjoints; for review see [AC08][Co10][HV12, §2.3, §3.3][Kar18][HV19, §2.3],
cf. also [StSt23]), namely by direct axiomatization of the “dagger”-involution on Hom-spaces that is (or would be, in the
abstract case) induced by Hermitian inner product structure on the objects:

H1 H2
g

⊢ H1 H2
g†

s.t.
〈
g†(-)

∣∣∣−)
〉

H1
=

〈
−

∣∣∣g(-)
〉

H2
. (34)

In [SS23-QR] we discuss a way of encoding such dagger-structure in LHoTT.
Mixed states and density operators. While even a pure quantum state |ψ⟩ (completely characterizing the state of a quantum
system, cf. Lit. 1.2) provides only a probabilistic prediction of measurement results given by the Born rule (32), in practice this
objective stochasticity of nature is accompanied by subjective stochasticity due to the fact that the exact quantum state |ψ⟩ of
a system may (and typically will) not be known with certainty to the experimenter. Therefore the general state of a quantum
system — in the combined sense both of quantum physics and classical statistical physics — is a classical probabilistic
mixture of quantum states [vN32, §IV.1], or mixed state for short (see e.g. [SN94, §3.4][Ish95, §6.1] and particularly [NC00,
§2.4][Ku05, §1.4]).

The exact definition notion of what this means was postulated in [vN32, p. 158] and (successfully) used ever since, but is
not without conceptual subtlety worthy of consideration: A priori, by a classical mixture of quantum states in a Hilbert space
H one might mean any probability distribution on all of (the underlying set of) the unit sphere SH of normalized states, or
just the projective space PH of normalized states up to global phase – this would certainly capture some idea of an ensemble
of quantum states, but this is not what one considers.

Instead, [vN32, p. 157] takes the random measurement collapse (21) as the motivating source of classical uncertainty and
thus takes a mixed state to be a probability distribution p : W ! [0, 1] on (only) the underlying set W of an orthonormal
basis

(
|w⟩ : H

)
w:W , reflecting the pure states in which one may find the quantum system after W-measurement.

Finally, [vN32, p. 158] observes that it is technically convenient (our aim in §2.5 is to motivate this more fundamentally)
to encode this probability distribution of basis states as a matrix

23

p(-) : W [0, 1] ,
w 7! pw

probability distribution of basis states∑
w

pw = 1 ⊢

“mixed state” as “density matrix”

ρ ≡
∑

w

pw · |w⟩⟨w| : H ⊗H∗ (35)

because then the total probability (of combined quantum and classical origin) to find the system upon quantum measurement
of an(other) property W ′ in the state |w′⟩ is expressed as the trace of the operator product of ρ with the projection operator
Pw′ ≡ |w′⟩⟨w′|:

Probρ(w′)total prob.

to measure w ′

=
∑

w

pwclassical prob. that

system
is in state

|w
⟩

·
∣∣∣⟨w′|w⟩∣∣∣2

quantum
prob. to

measure w ′in state
|w
⟩

=
∑

w

pw⟨w′|w⟩⟨w|w′⟩ = ⟨w′|
(∑

w

pw|w⟩⟨w|
)
|w′⟩ = TrH

(
ρ · Pw′

)
trace of density operator

times observable operator

(36)

In modern reformulation this means that mixed states are (represented by) positive linear operatorsH ! H of unit trace,
often called density operators or density matrices if equivalently understood as elements ofH ⊗H∗ (30):

mixed quantum states MxdState(H) ≡
(
ρ : H ⊗H∗

)
undrl
×

 ∃A
(
ρ = AA†

)
TrH (ρ) = 1

 density matrices (37)

This is because the spectral theorem for Hermtian operators implies that the positive unit-trace matrices ρ (37) are precisely
those which have an eigenbasis W in which their diagonal form is that of (35), with their eigenvalues forming a probability
distribution

In particular, the pure states are subsumed among the mixed states as the rank-1 projection operators
pure state

|ψ⟩ : H ⊢

regarded among mixed states

ρ
|ψ⟩

≡
|ψ⟩⟨ψ|∣∣∣⟨ψ|ψ⟩∣∣∣2 : MxdState(H) . (38)

While further examination of this concept shows that it works beautifully and eventually provides a transparent notion of
non-commutative or quantum probability in the algebraic formulation of quantum mechanics (nice review in [Gl09][Gl11]),
the curious tensor-doubling involved in passing from the pure state spaceH to the density matrices insideH ⊗H∗ may seem
less than obvious from first principles, especially when developing quantum physics from a formal perspective of linear logic
(Lit. 1.4). But in §2.5 we observe thatH ⊗H∗ = H ⊗ (H ⊸ 1) is naturally understood as the linear version of the costate
comonad (118) applied to the tensor unit, and thus in a precise logical sense as the storage of elements of the tensor unit
(probability amplitudes) indexable by (pure) quantum states.
Quantum channels. In consequence, where a coherent quantum gate or coherent quantum circuit maps directly

pure states H1 H2 pure states
quantum gate

unitary map

between the spaces of pure quantum states (possibly but deterministically parameterized by classical data), a combined
quantum and classically probabilistic operation on a quantum system — such as incorporating stochastic noise due to a
thermal environment — should instead transform the larger space of mixed states (35) or even its ambient linear space of
unconstrained matrices:

mixed states H1 ⊗H
∗
1 H2 ⊗H

∗
2 mixed states .

quantum channel

completely positive &
trace-preserving map

(39)

but suitably preserving the subspace of density matrices, in that the linear mapping (39):
(i) preserves positivity of operators, in fact it should preserve positivity after coupling to any environment, hence after

tensoring with any identity operator (“complete positivity”),
(ii) preserves the trace of operators.

Under these conditions the linear maps (39) are known as quantum operations [BZ06, §10][NC00, §8.2] or quantum chan-
nels17 [HZ11, §4], expressing the intuition that they reflect the most general physically viable operation on a quantum system,
such as when sending its states through a physical communication channel [Wil13][KW20, §3.2].

Since the above two properties may be understood as characterizing the preservation of “quantum probability distribu-
tions”; quantum channels may be thought of as the stochastic maps in the context of quantum probability theory. If the
mapping (39) in addition

17Since under compact closure (30) the quantum channels (39) are equivalently understood as linear operations on spaces of linear operators (H ⊸ H) !
(K ⊸ K) some authors refer to them as “superoperators” (in the sense of “second order operators”), e.g. [Se04, §6.3]. But besides being ambiguous in itself
this term is used with differing conventions by differing authors and might hence better be avoided.

24

(iii) preserves the identity operator
then one speaks of a unital quantum channel, these being the doubly stochastic maps in quantum probability.
The fundamental examples of quantum channels are:
• Unitary quantum channels (e.g. [HZ11, Ex. 4.6]) corresponding to unitary quantum gates U : H1 ! H2 on pure

states and given by conjugation of density matrices with that unitary operator:

unitary quantum gate
as a quantum channel

chanU : H1 ⊗H
∗
1 H2 ⊗H

∗
2

ρ 7−! U · ρ · U† .
(40)

This is such that on pure states ρ|ψ⟩ among mixed states (38) the unitary quantum channel acts just as the corresponding
quantum gate, in that:

chanU : ρ|ψ⟩ 7! U · ρ|ψ⟩ · U† = U ·
|ψ⟩⟨ψ|∣∣∣⟨ψ|ψ⟩∣∣∣2· U† = U |ψ⟩⟨ψ|U†∣∣∣⟨ψ|U†U |ψ⟩∣∣∣2 = ρU |ψ⟩ .

• Mixed unitary quantum channels are probabilistic ensembles of unitary channels (40) in that they are given by S -
tuples (Us : H1 ! H2)i:S of unitary operators indexed over an inhabited finite index-set S , and by a probability
distribution p(-) : S ! [0, 1], as

classical mixture of
unitary quantum gates
as a quantum channel

chan(U•,p) : H1 ⊗H
∗
1 H2 ⊗H

∗
2

ρ 7−!
∑
s:S

ps Us · ρ · U
†
s .

(41)

For example, the bit-flip quantum channel is the mixed unitary channel (41) on single qbit states
QBit ≡ ⊕

{0,1}
C (166) given for p ∈ [0, 1] by (e.g. [NC00, §8.1 & 8.3.3]):

qbit-flip
quantum channel

flipp : QBit ⊗ QBit∗ QBit ⊗ QBit∗

ρ 7−! (1 − p) ρ + p X · ρ · X ,
(42)

where X ≡ |0⟩⟨1| + |1⟩⟨0| is the “Pauli X” quantum gate (or quantum NOT gate) which swaps (flips) the two canonical
qbit-basis elements.
Hence the bit-flip quantum channel (42) models a process where a qbit the flipped with probability p and retained as is
with probability (1 − p). This is a simple model for the effect of quantum noise.
• Measurement quantum channels with respect to an orthonormal linear basisH ≃ ⊕WC (29), given by

measurement statistics
as a quantum channel

chanW : H ⊗H∗ H ⊗H∗

ρ 7−!
∑

w Pw ρ Pw

(43)

(where Pw ≡ |w⟩⟨w|). This description (43) of quantum measurement is originally due to [Lü51, (8)] and has become
standard quantum physics lore (a nice discussion is in [Wh12]): Notice that the density matrix on the right of (43) ex-
presses a classical uncertainty regarding which measurement result was obtained and instead provides the probabilistic
mixture of collapsed quantum states for all possible measurement outcomes, weighted according to the Born rule (32):

|ψ⟩ : S
(
⊕
w:W
C
)

⊢ chanW : ρ|ψ⟩ 7!

quantum measurement channel
on a pure quantum state...∑

w
Pw · ρ

|ψ⟩ · Pw

=
∑
w
|w⟩⟨w|ψ⟩⟨ψ|w⟩⟨w|

=
∑
w
|w⟩Probψ(w) ⟨w| .

...produces the mixture of
all possible measurement outcomes
weighted by their Born probability

Incidentally, (43) is not the only sensible modeling of quantum measurement (21) on mixed states: If we do know and
record which specific w : W has been measured, then the typing should rather be:

measurement of mixed states
with dynamic lifting of results

H ⊗H∗
(
W ! C

)
ρ 7−!

(
w 7! Pw · ρ · Pw

) (44)

This was in fact Lüders’ first proposal: [Lü51, (7)]! In a quantum protocol, this description (44) of the measurement
process retains the probabilities of the measurement outcomes but “dynamically lifts” (1.11) the actual outcome to a

25

new classical parameter (Lit. 1.11). We naturally recover this description (44) as a monoidal-monad operation, below
in (221).
Later it was noticed [JZ85] that (43) may be understood as arising from the decoherence of the quantum state upon
its coupling to an environment (here: the measurement apparatus), by which the off-diagonal elements of the density
matrix vanish in the measurement basis ([JZ85, (3.57)], cf. [Om94, p.277][Schl07, p. 95][Schl19, (7)]):

ρ|ψ⟩ ≡

pure state

|ψ⟩⟨ψ| =
(∑

w
|w⟩⟨w|ψ⟩

)(∑
w′
⟨ψ|w′⟩⟨w′|

)
=

∑
w,w′
|w⟩

coherent phases︷ ︸︸ ︷
⟨w|ψ⟩⟨ψ|w′⟩⟨w′|

chanW

7−!
measurement

channel

∑
w
|w⟩⟨w|ψ⟩⟨ψ|w⟩⟨w|

decohered mixed state

=
∑
w

pw · |w⟩⟨w| .
(45)

• Averaging quantum channels operate on a compound quantum systems H ⊗ B— the system H of primary interest
coupled to an environment or thermal bath B— by retaining of the environment only the expectation value of its effects
on the system, which means to form the partial trace of density matrices over B:

averaging over a subsystem
as a quantum channel

chanB : (H ⊗ B) ⊗ (H ⊗ B)∗ H ⊗ B ⊗ B∗ ⊗H∗ H ⊗H∗

|ψ, β⟩⟨β′, ψ′| 7−! |ψ⟩⟨β′|β⟩⟨ψ′| .

∼

(46)

An elementary but profound insight into the structure of quantum physics — often referred to under the term decoher-
ence – is the observation that quantum measurement channels (43) may be understood as nothing but the composite of
a unitary evolution (40) of the system H coupled to its environment B by way of a deterministic measuring process,
but then followed by an averaging (46) over the exact state of the measurement device:
Concretely, if |bini⟩ : B denotes the initial state of a “device” then any notion of this device measuring the system
H (in its measurement basis W) under their joint unitary quantum evolution should be reflected in a unitary operator
under which the systemH remains invariant if it is purely in any eigenstate |w⟩ of the measurement basis, while in this
case the measuring system evolves to a corresponding “pointer state” |bw⟩ [Zu81, (1.1)][JZ85, (1.1)] (following [vN32,
§VI.3], review includes [Schl07, (2.52)]):

UW : H ⊗ B H ⊗ B

|w, bini⟩ 7−! |w, bw⟩

unitary
measurement process

(47)

for bini and bw distinct elements of an (in practice: approximately-)orthonormal basis for B. (There is always a unitary
operator with this mapping property (47), for instance the one which moreover maps |w, bw⟩ 7! |w, bini⟩ and is the
identity on all remaining basis elements.) But then the composition of the corresponding unitary quantum channel with
the averaging channel over B is indeed equal to the W-measurement channel (cf. e.g. [Schl07, (2.117)], going back to
[Zeh70, (7)]):

H ⊗H∗ H ⊗ B ⊗ B∗ ⊗H∗ H ⊗ B ⊗ B∗ ⊗H∗ H ⊗H∗∑
w,w′

ρw,w′ |w⟩⟨w′|︸ ︷︷ ︸
ρ

7−!
∑

w,w′
ρw,w′ |w, bini⟩⟨bini,w′| 7−!

∑
w,w′

ρw,w′ |w, bw⟩⟨bw′ ,w′| 7−!
∑

w,w′
ρw,w′ |w⟩⟨bw′ |bw⟩⟨w′|

=
∑

w,w′
ρw,w′ |w⟩δw′

w ⟨w
′|

=
∑

w

ρw,w|w⟩⟨w|︸ ︷︷ ︸∑
w

Pw·ρ·Pw

chanW

quantum measurement channel

chanbini

couple system to
initialized meas. device

chanUW

evolve system & device
under meas. interaction

chanB

average over states
of measuring device

(48)

• Coupling channels (rarely made explicit as such, but conceptually important to notice) which for any mixed state ρenv
of a given system B form the tensor product state:

coupling to ancillary system
as a quantum channel

chanρenv : H ⊗H∗
(
H ⊗ B

)
⊗

(
B ⊗H

)∗
ρ 7−! ρ ⊗ ρenv

(49)

Operator-sum decomposition of quantum channels. The fundamental theorem of quantum channel theory characterizes
them ([Ch75], review in [NC00, Thm. 8.1][Wil13, Thm. 4.4.1]) as exactly those linear maps of the form

26

H1 ⊗H
∗
1 H2 ⊗H

∗
2

ρ 7−!
∑
r

Er · ρ · E
†
r

(50)

for non-empty tuples of linear operators

R : FinSet, r : R ⊢ Er : H1 ! H2 s.t.

∑

r E†r · Er = id (preservation of trace)∑
r Er · E

†
r = id (for unital channels) .

This looks like a purely technical lemma, but it has profound conceptual consequences, such as the following:
Environmental representation of quantum channels. Remarkably, quantum endo-channels
chan : H ⊗H ∗ !H ⊗H ∗ may alternatively be characterized as those linear maps which arise – in generalization of the
situation for measurement channels (48) – under the 3-step procedure of:

(i) coupling the system ρ to an environment system B in some state ρenv (49),
(ii) evolving the compound system ρ ⊗ ρenv through a unitary quantum channel chanU (40)

(iii) averaging the result over the environmental states (46):

H ⊗H∗
(
H ⊗ B

)
⊗

(
B ⊗H

)∗ (
H ⊗ B

)
⊗

(
B ⊗H

)∗
H ⊗H∗

ρ 7−! ρ ⊗ ρenv 7−! Utot
(
ρ ⊗ ρenv

)
U†tot 7−! TrB

(
Utot(ρ ⊗ ρenv)U†tot

)

chan

any quantum channel

chanρenv

couple system to
initialized meas. device

chanUW

evolve system & environment
under some interaction

chanB

average over states
of environment

(51)

That all such averaged environment-interactions are quantum channels is immediate from the three component steps being
quantum channels. That every quantum channel has an environmental representation (originally remarked by [Li75, inside
Lem. 5]) follows by choosing an operator-sum decomposition (50): Then taking B ≡ ⊕rC, singling out one of its basis
vectors |rini⟩ as the pure environmental state

ρenv ≡ |rinit⟩⟨rini| , (52)

and finally observing that any unitary operator of the form

U : H ⊗ B H ⊗ B

|ψ⟩ ⊗ |rini⟩ 7−!
∑
r

Er |ψ⟩ ⊗ |r⟩

serves the purpose (e.g. [NC00, p. 365][Att, Thm. 6.7][BZ06, §10.4]).
(The ontological import of this theorem is profound: It is consistent to assume that the world at large fundamentally

evolves according to deterministic unitary evolution of pure quantum states, while all apparent classical stochasticity in the
evolution of small subsystems results entirely from ignorance about the exact microstate of their quantum environment.)

Noisy/unistochastic/DQC quantum channels. While every quantum channel is environmentally realized (51) as a bath-
average of a unitary evolution of the given system coupled to a pure state of the environment (52), some quantum channels
are realized even by coupling to mixed environmental states.

In the extreme but (practically highly) relevant case where the coupling is to an environment in its maximally mixed
(namely uniformly distributed) quantum state (55) some authors speak of noisy quantum operations [HHO03][MHP19] others
of unistochastic quantum channels [ZB04, p. 259][BZ06][MKZ13]:

H ⊗H∗
(
H ⊗ B

)
⊗

(
B ⊗H

)∗ (
H ⊗ B

)
⊗

(
B ⊗H

)∗
H ⊗H∗

ρsys 7−! ρsys ⊗ ρ
unif
B

7−! Utot
(
ρsys ⊗ ρ

unif
B

)
U†tot 7−! TrB

(
Utot

(
ρsys ⊗ ρ

unif
B

)
U†tot

)

chan

unistochastic quantum channel

chanunif

couple system to
maximally mixed bath

chanUW

evolve system & environment
under some interaction

chanB

average over states
of environment (53)

But the same idea underlies already the model of quantum computation introduced under the abbreviation DQC1 by [KL98][PLMP03][SJ08]
(also known as the “one clean qbit”-model), motivated by the (noisy) reality of quantum computation (specifically on NMR
spin-resonance qbits). In this case H ≡ QBit is a single QBit, and one initializes the system in state |0⟩ (say) and measures

27

the expectation value (61) of the observable OP0 ≡ |0⟩⟨0| (60) in the output of the above channel (53), given by the following
formula (cf. [SJ08, (1)]):

probability measured by
(repeated) DQC1 computations p0 = TrQBit

(
P0 · TrB

(
Utot

(
|0⟩⟨0| ⊗ ρunif

B

)
U†tot

))
. (54)

The relation of this DQC1 model to unistochastic quantum channels is obvious but has been made explicit only recently
[XCGX23, §III] (and not using the “unistochastic” terminology). We give a natural monadic typing in Ex. 16.

Incidentally, we may observe that among all coupling channels (49), those which couple to the maximally mixed state
of the environment this way, namely the one represented by a multiple of the identity matrix and representing the uniform
probability distribution on (any set of) orthonormal basis states

(
|b⟩

)
b:B are dual (in a precise sense) to the averaging channels

(46):
uniformly distributed
mixture of bath states ρunif

B
≡

1
dim(B)

idB =
∑

b

|b⟩⟨b|
dim(B)

: B ⊗ B∗ (55)

coupling to uniform bath
as a quantum channel

chanρ
unif
H : H ⊗H∗

(
H ⊗ B

)
⊗

(
B ⊗H

)∗
ρsys 7−! ρsys ⊗ ρ

unif
B

(56)

In §2.5 we understand this dual pair of quantum channels as the initial (terminal) cases among the (co)monadic QuantumState
(co)monad transformations.

For example, every uniformly mixed unitary quantum channel (41) (i.e., one in which every unitary operator Us appears
with the same probability 1/Card(S)) is unistochastic (53), with coupled-unitary given as shown below:

uniformly mixed
unitary quantum gates
as a quantum channel

chan(U•) : H1 ⊗H
∗
1 H2 ⊗H

∗
2

ρ 7−!
∑
s:S

1
Card(S) Us · ρ · U

†
s ,

(57)

Utot : H ⊗ ⊕
S
C H ⊗ ⊕

S
C

|ψ⟩ ⊗ |s⟩ 7−! Us|ψ⟩ ⊗ |s⟩ .

(58)

In fact, on single qbits, every mixed unitary actually has such a uniformly mixed unitary presentation [MHP19, Thm. 1.2]
and hence is unistochastic (53).

For example, with the general argument given in [MHP19, Lem. 1.1] one finds that a unistochastic presentation of
the bit-flip channel (42) is given by the following total unitary (58) on the single qbit-system coupled to an environment
consisting of one other qbit:

unistochastic
environmental realization

of bit-flip quantum channel

U
flipp
tot : QBit ⊗ QBit QBit ⊗ QBit

|0⟩ ⊗ |b⟩ 7−!
cos(ϕ/2) |0⟩ ⊗ |b⟩

+(−1)b i sin(ϕ/2) |1⟩ ⊗ |b⟩

|1⟩ ⊗ |b⟩ 7−!
(−1)b i sin(ϕ/2) |0⟩ ⊗ |b⟩

+ cos(ϕ/2) |1⟩ ⊗ |b⟩ ,

where
ϕ = arccos(1 − 2p).

(59)

Closely related to quantum channels:
Quantum observables are much like quantum channels to the trivial system, but without the requirement that the trace be
preserved:

H ⊗H∗ 1

|ψ⟩⟨ϕ| 7−! ⟨ϕ|A|ψ⟩

quantum observable
OA ↔

H H

|ψ⟩ 7−! a†a︸︷︷︸
A

|ψ⟩

positive operator (60)

In particular, given a mixed state represented by a density matrix ρ : H ⊗ H∗ from (35), then the expectation value of an
observable OA (60) in this state is the value of the quantum operation OA on ρ, which equals the trace (36) of the operator
product of the associated operator A with the density matrix:

expectation value of
observabled OA
in mixed state ρ

⟨OA⟩ρ ≡ OA(ρ) =

trace of product of
associated operator A
with density matrix ρ

Tr
(
A · ρ

)
. (61)

28

This means that after passing through a unitary quantum channel chanU (40) an observable OA is transformed according
to the Heisenberg evolution formula (e.g. [BGL95, p. 36][Pre04, (3.44)])

OA 7−! chanU(OA) ≡ OU·A·U† (62)

in that 〈
chanU(OA)

〉
chanU (ρ) ≡ Tr

(
(U · A · U†) · (U · ρ · U†)

)
= Tr

(
A · ρ

)
=

〈
A
〉
ρ .

29

1.3 Monadic effects
Literature 1.13 (Modal logic and Possible worlds semantics). The origin of modal logic of necessity (2) and possibility
(♢) is with Aristotle, as nicely reviewed in [LeS77]. The modern formalization of modal logics originates with [Be30][LL32,
pp 153 & App II][vW51][Hi62]. A good historical overview is in [Go03], a comprehensive modern account in [BvBW07];
see also [BdRV01]. Starting with [LL32, App II], modal logicians consider a plethora of variant axiom systems, which go by
a long list of alphanumerical monikers. We are here entirely concerned with the system known as “S5” modal logic [LL32, p.
501][Kr63, p. 1]. Classical S5 modal logic is widely applied as epistemic modal logic, notably in classical computer science
[HM92, §2.3][FHMV95, p. 35][Fi07, §9][HP07, §4] [DHK08, §2][Sa10].
Possible worlds semantics. The “possible worlds”-semantics of modal logic is due to [Kr63] (though the basic idea is
expressed already in [Hi62]); good exposition is in [BvB07], modern review is in [BvBW07, Part 5 §1]. Here one speaks of
Kripke frames being (inhabited) W : Set of “possible worlds” equipped with a binary relation R : W × W ! Prop, where
R(w,w′) is interpreted as “Given outcome/world w, the outcome/world w′ appears (just as) possible.” With such a possible-
worlds scenario, the modal operators 2W , ♢W : PropW ! PropW acting on W-dependent propositions P : PropW ≡ W !
Prop are interpreted by the following formulas (e.g. [BvB07, p. 10]):

A proposition P•
about/dependent on

the possible worlds w

P• : W Prop

w 7−! Pw

yields

⊢

The proposition 2W P
that P• holds necessarily, namely
in/for all worlds w′ that appear
as possible as the given one w

2W P : W Prop,

w 7−! ∀
(w′ :W)×
R(w,w′)

Pw′

and

The proposition ♢W P
that P holds possibly, namely

in/for some world w′ that appears
as possible as the given one w

♢W P : W Prop

w 7−! ∃
(w′ :W)×
R(w,w′)

Pw′

(63)

Modalities as monads. The (co)monadic nature of the necessity/possibility operators 2/♢ in S4 (hence in S5) modal logic
was explicitly observed in [BdP96][BdP00][Kob97] and the resulting relation of modalities to (computational effect-)monads
in computer science (Lit. 1.17) was further discussed in [BBdP98]. The natural origin of these S5 (co)monads 2W ⊣ ♢W from
base change along the “possible worlds” was noticed in [Aw06, p. 279] – however the implication (which we expand on
in §2) that, therefore, any dependent type theory may equivalently be regarded as (epistemic) modal type theory (Lit. 1.14)
seems not to have received attention until the note [nLab14] (cf. [Cor20, Ch. 4]). We expand on this novel point of view in
the main text around Thm. 2.23.

Literature 1.14 (Modal type theory). In view of the famous relation between formal logic and type theory, it is quite evident
that there is an interesting generalization of modal logic (Lit. 1.13) to modal type theory. After leading a niche existence
for some time, the amplification [Sch13, §3.1][ScSh14] of cohesive modalities (see [ss20-Orb]) in (homotopy) type theory,
the subject of modal type theory has received much attention (e.g. [RSS20][CR21][Mye22]). While such modal type theory
is going to be relevant for various enhancements of the computational context presented here (to be discussed elsewhere),
we emphasize that the modalities we consider here are all provided already by plain (linear) dependent type theory (are
definable by admissible rules inferred from just the inference rules of the dependent linear types). This fact is what drives our
observation that LHoTT (Lit. 1.8) already knows about quantum measurement effects – the feature just has to be brought out
by meticulous syntactic sugaring (Lit. 1.6).

30

Literature 1.15 (Category theory). The point of category theory ([ML71/97][Ke82][Bor94b]) has been said to be the notion
of natural transformations between mathematical stuctures, where the concept of categories themselves just serves to allow
for speaking about functors which in turn are the subjects of these natural transformations. This is implicit in the title and
introduction of Eilenberg & MacLane’s original [EM45], and made more explicit Freyd in [Fr64, p. 1]. But this is really only
half of the story.

Namely natural transformations, in turn, support the concept of adjunctions between categories, and this is where cat-
egory theory becomes a theory: Adjunctions and their many equivalent incarnations such as (Kan extensions, (co)limits,
(co)terminality and notably) monads (for which see Lit. 1.17) are the fundamental mathematical phenomena where category
theory provides its non-trivial theorems. (Curiously, adjunctions are arguably the formalization of dualities, hence it is not
misleading to say that category theory is really the theory of duality. In fact, [EM45] motivate their introduction of category
theory with the example of dualizable objects, see (133)).

adjunctions monads

natural transformations

functors

categories

Literature 1.16 (Functional programming languages). In programming, it is a familiar idea (expanded on in Lit. 1.4) that
every datum d be of some specified data type D, denoted “d : D”. This being so, then a program which, when run on input
data of type Din (is guaranteed to halt and then) produces data of type Dout is thus a function of the collection of Din-data with
values in the collection of Dout-data — and we may postpone detailing what particular kind of function we might mean (for
instance: linear functions for quantum programs) by speaking of just an arrow (morphism) in the relevant category of data
types:

Programming syntax Categorical semantics

d : Din f (d) : Dout

input data
type program output data

type

⊢ Din Dout

domain
object morphism codomain

object

f
(64)

In the simplest examples (cf. p. 12), the semantics of the simplest functional
• classical languages may be in the category of sets,

where elementary programs are interpreted as logic gates

Bit×
nin −! Bit×

nout

• quantum languages may be in the category of C-vector spaces,
where elementary programs are interpreted as quantum gates

QBit⊗
nin −! QBit⊗

nout

The point of functional programming (e.g. [Th96][Th91]) is that programs are such functions and nothing but such
functions of data (compiled under function composition), in that they have:
• no side-effects – besides producing their declared output,
• no context-dependence — besides on their declared input,

on the global state of the computing environment.
Therefore one also speaks of pure functions or pure programs, for emphasis. This is in contrast to more traditionally

popular “imperative” programming languages — whose programs may, while running, read unpredictable data from input
devices and write to output devices in a way that is not reflected in the declaration of their input/output data types. In contrast,
the purity of functional programs is what makes them completely deterministic, hence predictable by mathematical analysis
and hence formally verifiable (Lit. 1.4).

31

This relation between (i) computation (ii) data typing and (iii) categorical algebra turns out to be so tight as to effectively
exhibit three equivalent perspectives on the same underlying structure, a remarkable phenomenon that has been called the
computational trilogy (for pointers see [SS22, p. 4]):

1
Computation

2
Type Theory

3
Alg. Topology

(65)

Of course, in practice one needs programs which do cause side-effects, or which do have context-dependence. Noticing
the above qualifications, these may absolutely be described by functional programs, but

side-effects are to be declared as part of the output data type,
context-dependence is to be declared as part of the input data type.

In line with the computational trilogy (65), there should be fundamental concepts in type theory and in categorical algebra
which correspond to such effect/context-declaration in typed programming languages. Indeed, these correspondent ares the
very concepts of modalities (Lit. 1.14) and of monads, see Lit. 1.17.

1
Effects

2
Modalities

3
Monads

(66)

Literature 1.17 (Computational Effects and Monadic modalities). We give a lightning explanation of computational ef-
fects (and computational contexts) understood as (co)monads on the type system, and of the Eilenberg-Moore-Kleisli theory
of the corresponding effect handlers (context providers) understood as (co)modules, in fact as (co)modal types (cf. Lit. 1.14).

Computational effects... The idea ([Mog89a][Mog89][Wa90][Mog91][PP02], cf. [HP07, §6]) is that a computation which
nominally produces data of some type D while however causing some computational side-effect must de facto produce data
of some adjusted type E(D) which is such that the effect-part of the adjusted data can be carried alongside followup pro-
grams (whence a “notion of computation” with “computational side effects”, for exposition and review see [BHM02][Mi19,
§20][Uu21][Wi22, §10]) via bind- and return-operations, as follows:

D1 E(D2) D2 E(D3)
pure data

d : D

E(D2) E(D3) returnED(d) : E(D)
E-effectful data

D1 E(D2) E(D3)

prog12

first program

with output data
of nominal type D2 but

causing effects of type E(−)

prog23

second program

with input data
of type D2 bind previous effects

into second program return pure data
with trivial effect

bind
E

prog23

carry any previous
E(−)-effects along

compose

E-composite program

causing cumulative E(−)-effects

prog12 bind
E

prog23

(67)

32

such that

E(D) E(D)
bind

E
returnED

binding effect to trivial effect

idE

is to carry it along identically

D1 E(D1) E(D2)
returnED

trivial effect...

prog12

...has no effect on program

bind
E

prog12

...bound into program

bound effects bindE
(
D1 E(D2) E(D3)

)

get carried along E(D1) E(D2) E(D3)

prog12 bind
E

prog23

bind
E

prog12 bind
E

prog23

(68)

One also speaks of Kleisli composition (in honor of [Kl65, p. 545]) and writes (“fish notation”, e.g. [Mi19, p. 321]):

prog12 >=> prog23 ≡
(
bindEprog23

)
◦ prog12 (69)

...as monads on the type system. Such E-effect structure on the type system is equivalently [Ma76, p. 32][Mog91, Prop.
1.6] a functorial operation on the category of types (given by forming “effectless programs”)

E : Type Type(
D1

f
−! D2

)
7−!

regard f as effectless program
bindE

(
D1

f
−! D2

returnED−−−−! E(D2)
)

functor underlying monad

(70)

which carries the structure of a monad18 (cf. [ML71/97, §VI][Bor94b, §4], older terminology: “triple”), namely natural
transformations

D : Type ⊢ D E(D) ,

monad unit/return

retED ≡return
E

D
E
(
E(D)

)
E(D)

monad product/join

joinED ≡ bind
E

idE(D)
(71)

satisfying the axioms of a unital monoid object (139), in that they make the following natural diagrams commute

E(D) E
(
E(D)

)
E
(
E(D)

)
E(D) ,

retE
E(D)

E(retED) unitality joinE
E(D)

joinE
E(D)

E(E(E(D)
)) E

(
E(D)

)
E
(
E(D)

)
E(D) .

E
(
joinE

E(D)

)
joinE

E(D)

associativity joinED

joinED

(72)

Namely conversely, given such a monad the bind-operation on some prog : D1 ! E(D2) is recovered as:

already
effectful

data

doubly
effectful

data

plain
effectful

data

E(D1) E
(
E(D2)

)
E(D2) ,

program
produces
further
effects

effects
joined

together

E(prog)

bindEprog

joinED2

bind previous effects into program

(73)

which shows that the join-operation is that which joins consecutive effects into a single effect, whence then terminology.

Monads induced by adjunctions. Monads arise from (cf. [ML71/97, §VI.1][Bor94b] – and also give rise to, see (98) below)
– adjoint functors (“adjunctions” between categories, cf. [ML71/97, §IV]), namely pairs of back-and-forth functors (here:
between categories of types)

18The terminology “monad” for (70) is due to [Bé67, §5.4], together with the observation that these are equivalently lax 2-functors from the terminal
(point) category ∗ to the ambient 2-category (of type universes, in our case), in which 2-category theoretic sense they are quite the “indecomposable units”
which the ancient called monads (as in Euclid: Elements, Book VII, Defs. 1, 2, 7, 11). For the present purpose, it is useful to envision that programs running
in (the Kleisli category of) an effect-monad cannot sensibly interact with other programs until they are “taken out” of (the Kleisli category of) the monad by
an effect handler (89).

33

Type′ Type

left adjoint
L

R
right adjoint

⊥ R◦L≡:E induced monad (74)

equipped with a natural hom-isomorphism (forming “adjuncts”)

HomType
(
−, R(−)

) (̃−)
 −−−! HomType′

(
L(−), −

)
(75)

and (equivalently) with natural transformations

adjunction unit /
return operation

retRL
D ≡ ĩdL(D) : D −! R ◦ L(D)

adjunction co-unit /
obtain operation

obtLR
D′ ≡

˜idR(D′) : L ◦ R(D′) −! D′

adjunction unit(
D

retRL
D−−−! R ◦ L(D)

) identity(
L(D)

idL(D)
−−−! L(D)

)
(
R(D′)

idR(D′)
−−−−! R(D′)

)
identity

(
L ◦ R(D′)

obtLR
D′−−−−! D′

)
adjunction counit

satisfying the zig-zag identities

obtLR
L(D) ◦ L

(
retRL

D
)
= idD , R

(
obtLR

D′
)
◦ retRL

R(D′) = idD′ ,

from which the monad structure (71) on E := R ◦ L is obtained as follows:

D E(D)

≡ ≡

D R ◦ L(D)

retED

monad unit/return is...

retRL
D

...the adjunction unit
/ return

E
(
E(D)

)
E(D)

≡ ≡

R ◦ L ◦ R︸︷︷︸ ◦L(D) R ◦ L .

joinED

monad product/join is...

R
(
obtLR

L(D)

)
...value under R of

adjunction counit/obtain
on value under L

(76)

Typing of effects via Strong monads. As a technical aside, beware that in describing effect monad structure this way means
to view only its external action on the category of data types. In contrast, when actually coding monadic side effects in
programming language constructs (as in §3 below), the return- and bind-operations (67) will be typed not externally as

returnED : Hom
(
D, E(D)

)
and bindED1,D2

: Hom
(
D1, E(D2)

)
−! HomType

(
E(D1), E(D2)

)
but internally as terms of iterated function type (cf. [McDU22, Def. 5.6] with [BHM02, §4.1][Mi19, §20.2]):

returnED : D! E(D) , bindED1,D2
:

(
D1 ! E(D2)

)
!

(
E(D1)! E(D2)

)
= E(D1) ×

(
D1 ! E(D2)

)
! E(D2)

= E(D1)!
((

D1 ! E(D2)
)
! E(D2)

)
,

(77)

where
(-)! (-) ≡ [-, -] : Typeop × Type −! Type

denotes the formation of function types interpreted as the internal hom-objects in the monoidal closed category of types (e.g.
[LS86, §I][Bor94b, §6.1]). (Here we stick to notation for cartesian monoidal structure just for the purpose of exposition, see
(162) for the analogous non-classical/linear case.)

With the above monad structure phrased internally this way, it is actually richer/stronger, whence one speaks of enriched
or equivalently strong monads ([Mog91, §3.2], review in [Ra12, §3.2][McDU22, Prop. 5.8]), here with respect to the self-
enrichment of the monoidal closed category of types.

For monads on genuinely classical types (like sets) the strength/enrichment actually exists uniquely (see [McDU22, Ex.
3.7]), but for cases such as linear types (24) it needs to be established (which we do in Prop. 2.7). A convenient way to
obtain/verify this enriched/strong monad structure is via symmetric monoidal monad structure:

34

When the category of types is symmetric monoidal closed ([EK66, §III.6]) — which is the case we are concerned with
throughout, cf. Prop. 2.3 — with braiding transformations

braid⊗D,D′ : D ⊗ D′ −! D′ ⊗ D

then symmetric monoidal structure on a monad E ([Ko70, p. 8], cf. e.g. [Se13, §1.2])19

st
ru

ct
ur

e E(D) ⊗ E(D′)

E(D ⊗ D′)

pairED,D′

m
on

ad

D ⊗ D′ E(D) ⊗ E(D′)

D ⊗ D′ E(D ⊗ D′)

retED ⊗ retED′

pairED,D′
retED⊗D′

(
E ◦ E(D)

)
⊗

(
E ◦ E(D′)

) (
E(D)

)
⊗

(
E(D′)

)
E ◦ E(D ⊗ D′) E(D ⊗ D′)

joinED⊗joinED′

E(pairED,D′)◦pairE
E(D),E(D′) pairED,D′

joinED⊗D′

m
on

oi
da

l E(1) ⊗ E(D)

1 ⊗ E(D) E(D)

pair E
1
,D

re
tE 1
⊗

id

E(1) ⊗ E(D)

E(D) ⊗ 1 E(D)

pair ED
,1

id
⊗

re
tE 1

E(D) ⊗ E(D′) ⊗ E(D′′) E(D) ⊗ E(D′ ⊗ D′′)

E(D ⊗ D′) ⊗ E(D) E(D ⊗ D′ ⊗ D′′)

id⊗pairED′,D′′

pairED,D′ pairED,D′⊗D′′

pairED⊗D′,D′′

sy
m

m
et

ri
c E(D) ⊗ E(D′) E(D′) ⊗ E(D)

E
(
D ⊗ D′

)
E
(
D′ ⊗ D

)
braid⊗

E(D),E(D′)

pairED,D′ pairED′,D

E(braid⊗D,D′)

(78)

bijectively induces “commutative” strong monad structure ([Ko72, Thm. 2.3], detailed review in [GLLN08, §7.3, §A.4]
[Ra12, Prop. 3.3.9]) hence in particular the required enriched monad structure (77).

Examples of effect monads. Fundamental examples of effect monads in classical computer science (and in their linear
version of profound importance to us in §2) include (cf. [Mog91, Ex. 1.1]):
• The reader- or environment-monad (e.g. [Mi19, §21.2.3][Uu21, p. 22], we use “W” for the worlds being read out, cf.

Lit. 1.13):
WRead : Type Type

D 7−! [W, D]
(79)

induced from the canonical comonoid structure on any cartesian type W (given by its terminal and diagonal map):

comonoid W
(ambient data) W ×W W ∗

W-reader monad
[
W, [W, D]

]
≃ [W×W, D] [W, D] [∗, D] ≃ D

diag
W ∃!

join WRead
D

≡ [diagW ,D]

ret WRead
D

≡ const

(80)

Hence a W-Reader-effectful program is one whose nominal output is indefinite (195) until a global parameter w : W is read
in, and the handling of W-Reader-effects is the handing-along of this global parameter.

bindWRead
D,D′ :

(
D! (W ! D′)

) binding of
WReader effects

−−−−−−−−!
(
(W ! D)! (W ! D′)

)
bindWRead

D,D′ ≡
(
d 7!

(
w 7! d′w(d)

))
program producing output

depending on
a global W-parameter

7!
((

w 7! dw
)
7!

(
w

global paramete
r
7!

gets
passe

d to
d′w(dw)

all subseq
uent

programs

))

19We assume without restriction [Schau01] that the monoidal structure ⊗, 1 is “strict”, i.e. that its unitors and associators are identity morphisms, whence
we do not show then in these diagrams.

35

• The writer monad (e.g. [Mi19, §4.1 & §21.2.4][Uu21, 1, p. 23]):

AWrite : Type Type
D 7−! A × D .

(81)

induced from any monoid (aka unital semi-group) structure on a type A,

monoid W
(data output stream) A × A A ∗

A-writer monad A × A × D A × D ∗ × D = D

prod
A unitA

joinAWrit
D ≡

prod
A
× idD

retAWrite
D ≡

unitA× idD

(82)

(Here the unitality and associativity properties of the monoid structure on A are evidently equivalent to the corresponding
properties (72) of the associated writer monad.) In typical applications A is a free monoid on an alphabet, hence is the type
of strings of such characters with join product given by concatenation of strings.
Therefore a Writer-effectful program is one which in addition to its nominal output produces a string (a log message), and
the binding of cumulative such effects is by concatenating these strings (appending these messages to the log)

bindAWrite
D,D′ :

(
D! A × D′

)
−−−!

(
A × D! A × D′

)
bindAWrite

D,D′ ≡
(
d 7! (ad, d′d)

)
7!

(
(a, d) 7! (a · ad

concaten
ated

logs
, d′d)

)

• The state monad (e.g. [BHM02, Ex. 42][PP02, §3][Mi19, §21.2.5][Uu21, 1, p. 24])

WState : Type Type

D 7−!
[
W, W × D

] (83)

given by [
W, W × [W, W × D]

]
[W, W × D] D

f 7−! ev
(
f (-)

)(
w 7! (w, d)

)
 − [d

join WState
D ret WState

D

(84)

hence with bind-operation as follows:

bindWState
D1,D2

:
(
D1 !

(
W ! W × D2

))
!

((
W ! W × D1

)
!

(
W ! W × D2

))
bindWState

D1,D2
≡ prog 7!

((
w 7! (w′w, dw)

)
7!

(
w 7! prog(dw)(w′w)

))
.

(85)

Such WState-effectful programs are adjoint (75) to programs of the form (20)(
D [W, W × D′]

prog)
 !

(
W × D W × D′

p̃rog)
(also known as Mealy machines following [Me55], see e.g. [Pa03, §1.1.3] for the modern formulation and [OM16, p.
262][PK23, p. 3] for our state-effectful perspective) which may be understood as producing their nominal output only after
reading in data from “memory” type W (as such like the WReader monad above, but) while also re-setting (re-writing) the
W-data that gets handed along to a new state.
This way the state monad is the basic computational model20 for a random access memory (“RAM”, see [Ya19, p. 26 &
Fig. 1.10]):

D
[
W, W×D′

] type of
WState-effectful D′-data

d
nominal

input data

7−! (w
RAM

readout

7!
(
w′(w,d)

RAM
rewrite

, d′(w,d)
nominal

output data

))
W-RAM effectful program

(86)

20For practical purposes, the state monad is only a crude model for RAM, since it only encodes access to the entire memory at once (first read all of
memory then re-write all of memory). In practice, one will want to read/write RAM only partially at a given address. This is also encoded by a (co-)monadic
construction: “lenses” (see Rem. 2.27 below), which are the modales over the dual of the state monad: The co-state co-monad [O’C11].

36

One more example (which is not central to our discussion here but is) illustrative of the general notion of computational side
effects is the throwing of exceptions (e.g. [Mi19, §21.2.6][Uu21, 1, p. 11]): Assuming that the category Type has coproducts
and with Msg : Type some type of error messages, the exception monad is

ExcMsg : Type Type
D 7−! D ⊔Msg

(87)

whose return-operation is the coprojection into coproduct and whose join operation is given by the co-diagonal on Msg: An
ExcMsg-effectful program with nominal output type D2 is a morphism D1 −! D2 ⊔Msg which may return output of type D2
but might instead produce an (error-message) term of type Msg, in which case all subsequently ExcMsg-bound programs will
not execute but just hand this error message along. (Hence for Msg ≡ ∗ the singleton type, which is also known as the maybe
monad.)

In this example, it is clear that one will wish for programs that can handle the exception, and hence in general for programs
that can handle a given type of side-effect.

Effect handling and modal types. Given a type of computational side effect E as above, a program of nominal input type D1
which can handle the effect will have actual input type E(D1), and handle the effect-part of E(D) in a way compatible with
the incremental binding of effects ([PP13]):

D1 D2

E(D1) D2

D1 E(D1) D2

consistency conditions

E(D0) E(D1) D2

prog12

in-effectful program incorporate handling
of E(−)-effects

handle
E

D2
prog12

in-effectful program
handling effects of type E(−)

prog12
no effect

returnED1

produce
trivial effect

handle
E

D2
prog12

handle effects
running program

handleED2
(D0

prog01−−−! E(D1)
handle

E
D2 prog12

−−−−−−−−−−! D2)
handle effects... consecutively

bind
E

prog01

carry effects
along

handle
E

D2
prog12

handle
cumulative effects

(88)

Such E-effect handling structure on a type D is equivalent to E-modale-structure on D (also known as an E-module or E-
algebra structure), namely a morphism

E(D) D

monad action on modale

ρ≡handle
E

DidD (89)

satisfying the axioms of a monoid module (143), in that it makes the following squares commute:

D

E(D) D

unitality

id

ηD utlE(ρ)

ρ

E
(
E(D)

)
E(D)

E(D) D .

action property
E(ρ)

µD actE(ρ) ρ

ρ

(90)

Categories of effect-handling types. A homomorphism (D1, ρ1) ! (D2, ρ2) of E-effect handlers, hence of E-modales, is a
map of the underlying data types f : D1 −! D2 which respects the E-action in that the following diagram commutes

E(D1) E(D2)

D1 D2 ,

E(f)

ρ1 ρ2

f

(91)

which we will indicate by the following notation (which is non-standard but nicely suggestive):

E-modale
stucture D1 D2

E-modale
stucture

E

f

modale homomorphism

E

(92)

37

This makes a category of E-modales (traditionally known as the Eilenberg-Moore category of E and) traditionally denoted
by super-scripting: TypeE.

For example, for any B : Type, the type E(B) carries E-modale structure, with ρ ≡ µB. These are called the free E-modales
and the full sub-category they form is traditionally denoted by sub-scripting, TypeE:

Type

free E-modales in Type
(“Kleisli category”)

TypeE

E-modales in Type
(“Eilenberg-Moore category”)

TypeE{
B : Type

} {
E(B), ρB ≡ µB : E

(
E(B)

)
! E(B)

} {
D : Type, ρ : E(D)! D

∣∣∣ untlE(ρ), actE(ρ)
}

free construction

FE

FE

total comparison functor

KUEFE (93)

Incidentally, notice that thereby every E-effect handler ρ (90) is itself a modale-homomorphism (91) from a free modale (93):

free modale
structure E(D) D given modale

structure

E
given effect handler
ρ≡handle

E

D

modale homomorphism

E

(94)

(and regarding it this way is crucial for the monadic typing of quantum measurement, see p. 81 below).
Concretely, the Kleisli equivalence re-identifies the homomorphism between free E-modales with the E-effectful programs

that we started with (67), as follows (e.g. [Bor94b, Prop. 1.4.6]):

TypeE TypeE

D 7−!
(
E(D), µD

)
TypeE(D,D

′) TypeE
((
E(D), µD

)
,
(
E(D′), µD′

))
(
D

f
−−−−−−−−! E(D′)

)
7−!

(
E(D)

E(f)
−−! E

(
E(D′)

) µD′−−! E(D′)
)

(
D

retED−−! E(D)
ϕ
−! E(D′)

)
 − [

(
E(D)

ϕ
−−−−−−−−−−−−−−! E(D′)

)
.

∼

Kleisli equivalence
(95)

This free construction is readily checked to be left adjoint to evident forgetful functors

TypeE TypeE Type(
D, ρ : E(D)! D

)
7−! D

KUEFE

UE

UE

forgetful functor (96)

and both adjunctions FE ⊣ UE and FE ⊣ UE re-induce (74) the original monad, with the modale structure recovered from the
adjunction counit obt (e.g. [ML71/97, §VI.2, Thm. 1, §IV.5, Thm. 1]):

(D, ρ) : TypeE ⊢

UEFEUE(D, ρ) E(D)

UE(D, ρ) D .

UE(obt(D,ρ)) ρ (97)

In fact, every adjunction which induces E is “in between” these two adjunctions, in that it fits into a commuting diagram of
the following form (e.g. [ML71/97, §VI.3]):

TypeE
free E-modales in Type

(“Kleisli category”)

induced monad Type Type′ any adjunction for E

TypeE E-modales in Type
(“EM-category”)

KUF

initial
com

parison
functor

FE
B 7! (E(B), ρ≡µB)

UE
⊥

E

KUF

term
inal

com
parison

functor

F

U
⊥

F E

U Emonadic adjunction

⊥

(98)

The monadicity theorem (cf. [Bor94b, Thm. 4.4.4]) characterizes the monadic adjunctions on the bottom of diagram (98):
For a functor U to be monadic in that it is of the form UE in (98), it is sufficient21 that

21The necessity clause involves the preservation of those coequalizers that are “split”, which we disregard here for brevity since we will not need it.

38

(i) U is conservative (reflects isomorphisms),
(ii) U has a left adjoint F,

(iii) dom(U) has coequalizers and U preserves them;
and hence for a functor U between cocomplete categories monadic it is, in particular, sufficient that:

(i) U is conservative,
(ii) U has besides the left adjoint F also a right adjoint,

in which case:

⇒

D

Type

UF ⊣ is monadic ⇒

D TypeE

Type

U

F

⊣

∼

UE
FE

⊣

E

(99)

Relative monads. While monads are equivalent to computational effects as in (67), the latter notion has a suggestive gener-
alization to what are called relative monads [ACU15](see also [AMcD23]), where the effect-attaching functor E (70) is not
an endofunctor but maps between two different categories of types

E : Type! Type′ .

An common situation is where Type ↪! Type′ is a subcategory inclusion, where it just means that E-effects are attachable
only to types in this subcategory. Generally one can consider any comparison functor

J : Type! Type′ (100)

and define a J-relative monad structure to be given by J-relative return- and bind-operations:

D : Type ⊢ returnED : J(D)! E(D)

D1,D2 : Type ⊢ bindED1,D2
:

(
J(D1)! E(D2)

)
−!

(
E(D1)! E(D2)

) (101)

otherwise satisfying the same form of consistency conditions as in the non-relative case (68).
As a simple but relevant example, for every actual monad E′ on Type′, its precomposition with any functor J : Type !

Type′ (100) yields a J-relative monad ([ACU15, Prop. 2.3]) via:

E ≡ E ◦ J , returnED ≡ return
E′

J(D) , bindED1,D2
≡ bindE

′

J(D1),D2
. (102)

Monad transformations. With monads encoding effectful programs, one is bound to consider several monadic effects E, E′,
... at once, and procedures that transform these into each other:

D : Type ⊢ transE! E
′

D : E(D) E′(D) . (103)

For consistency these transformations (103) ought to respect the return- and bind-operations (67), in that the following dia-
grams commute:

D : Type ⊢ D E(D) E′(D)
returnED

returnE
′

D

transE!E
′

D

prog12 : D1 ! E(D2)
prog23 : D2 ! E(D3)

⊢

D1 E(D2) E(D3) E′(D3)

D1 E(D2) E′(D2) E′(D3) ,

prog12 bind
E

prog23 transE!E
′

D3

prog12 transE!E
′

D2

bind
E′
(
D2

prog23−−−!E(D3)
transE!E

′

D3−−−−−!E′(D3)
)

(104)

39

hence such that the Kleisli composition (69) is respected:(
transE! E

′

D2
◦ prog12

)
>=>

(
transE! E

′

D3
◦ prog23

)
= transE! E

′

D2
◦
(
prog12 >=> prog23

)
, (105)

exhibiting a covariant functor on free modales (93)

Type

TypeE TypeE′

E(D1)
ϕ
−! E(D2) 7−! bindE

′

(
D1
returnED1−−−−−−−! E(D1)

ϕ
−! E(D2)

transE! E
′

D2−−−−−−−−! E′(D2)
)

FE FE′

(106)

which preserves (as indicated on top) the free maps (93), ϕ = E(f) 7! E′(f), due to the commutativity of the following
pasting diagram (the left square being the unitality condition in (104), the right square the implied naturality property (107)):

D1 E(D1) E(D2)

D1 E′(D1) E′(D2) .

returnED1 E(f)

transE!E
′

D1
transE!E

′

D2

returnED1 E′(f)

This notion of monad transformers originates with [Esp95, §2.6], the explicit definition (104) is due to [LHJ95, p. 339]
now commonly used in Haskell22. But we may observe that the equivalent definition not in terms of the bind- but the
join-operation (considered within Haskell in [SPWJ19, §2.2]) is much older:

Namely in category theory, a morphism of monads is known to be a natural transformation of their underlying functors
(70)

transE! E
′

: E −! E′ (107)

which is compatible with the return- and join-operations (71) as follows:

D : Type ⊢

D D

E(D) E′(D) ,

retED retE
′

D

transE!E
′

D

E ◦ E(D) E ◦ E′(D) E′ ◦ E′(D)

E(D) E′(D) .

E
(
transE!E

′

D

)
joinED

transE!E
′

E′(D)

joinE
′

D

transE!E
′

D

(108)

Notice here that the order of the composites at the top right of (108) is arbitrary, since the naturality of transE! E
′

implies
that the following diagram commutes:

E
(
E(D)

)
E
(
E′(D)

)
E′

(
E(D)

)
E′

(
E′(D)

)
E
(
transE!E

′

D

)
transE!E

′

E(D) transE!E
′

E′(D)

E′
(
transE!E

′

D

)

This definition (108) of monad morphism is implicit in [Bé67, pp. 39] (whose identification of monads as lax 2-functors
out of the terminal category implies that their morphisms should be the corresponding lax natural transformations), first made
explicit in [Mar66] and then in [Fr69][Pu70, p. 330][Str72, pp. 150]23, often in slight further generality. A transparent
textbook account is in [BW85, §6.1], discussion in the context of monadic computations effects is in [Mog89a, Def. 4.0.11].

One readily checks24 that the conditions (104) and (108) are equivalent under the translation (71); in particular the natu-
rality of the transformation (107) is already implied by (104).

If we denote by Mnd(Type) the category whose objects are the monads on the type system and whose morphisms are
monad transformations in the form (107), then their equivalence with (106) means that we have a faithful functor from monad
transformations to functors between free modales:

Mnd(Type) Type/Cat
E 7−! TypeE.

22hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html#g:1
23Beware that [Str72] says “transformation” for the 2-morphisms in the 2-category of monads, while we use it for the 1-morphisms, matching the

completely standard terminology for the 1-morphisms of their underlying endofunctors and staying close to the established use of “monad transformers”
(110).

24We are not aware of an explicit reference providing this equivalence; for the record we have spelled it out at:
ncatlab.org/nlab/show/monad+transformer#EquivalenceOfDefinitions.

40

https://hackage.haskell.org/package/transformers-0.5.6.2/docs/Control-Monad-Trans-Class.html#g:1
https://ncatlab.org/nlab/show/monad+transformer#EquivalenceOfDefinitions

(This is known to experts but scarcely represented in the literature: The functor is alluded to in [Li69, Lem. 10.2] and only
recently was discussed [AMcD23, Cor. 6.49] in detail but much more abstractly.)

For example, there is a unique transformation from the identity monad (the trivial effect) to any other monad E, making
the identity monad the initial object in the category of monads:

∃! transId! E : Id! E, since
D D

D E(D) ,

retED
transId!E

D

:=retED

D E(D) E ◦ E(D)

D E(D) .

retED retE
E(D)

joinED
retED

(109)

But in fact, [LHJ95, p. 339] and the functional programming/Haskell-community following them impose a further
condition on monad transformers transE! E

′

D , namely that they themselves arrange into the component maps of a pointed
endofunctor

Id trans
−−! (-)′ : Mnd! Mnd (110)

on the category of monads (made explicit in this form in [Wi22, p. 474]). This is tailored towards the application of combining
monadic effects and hence regarding E′ as behaving like the composition of E with another effect.

In addition to the covariant functor on free modales (106), a transformation between monads (107) contravariantly induces
([Fr69, Thm. 2], cf. [BW85, Thm. 6.3]) a functor between their general modales (91) by what we may recognize as the usual
“extension of scalars”-formula from algebra:

E′ E

TypeE
′

TypeE

transE!E
′

(111)

E′(D1) E′(D2)

D1 D2

ρ′1

E′(ϕ)

ρ′2

ϕ

7−!

E(D1) E(D2)

E′(D1) E′(D2)

D1 D2

E(ϕ)

transE!E
′

D1

ρ1

transE!E
′

D2

ρ2

ρ′1

E′(ϕ)

ρ′2

ϕ

Composite effect monads. With computational side-effects encoded by monads E, E′, ..., one is bound to consider combined
effects encoded by composite monads

E′ ◦ E : Type! Type . (112)

In order for the combined join-operation on the composite underlying functors to exist in an evident way, one needs a natural
transformation between the two possible orders of composition

distrE, E
′

: E ◦ E′ −! E′ ◦ E , (113)

because then the candidate composite join-operation is this:

E′ ◦ E ◦ E

E′ ◦ E ◦ E′ ◦ E E′ ◦ E′ ◦ E′ ◦ E E′ ◦ E ,

E′ ◦ E′ ◦ E

E ′ (
join E

(−)
)

E′
(
distr

E,E′

E(−)

)
join
E
′

E◦
E(−

)

E ′
◦E ′ (

join E
(−)

)

joinE′ ◦ E(−)

join
E
′

E(−
)

E′

id E′ ◦ E .

E

E ′ (
ret E

(−)
)

retE
′◦E

(−)

ret E
(−)

ret
E
′

E(−
)

ret
E
′

(−)

(114)

For this construction to satisfy the monad axioms (72), the distributivity transformation (113) needs to make the following
diagrams commute ([Be69, §1], review in [BW85, §9 2.1]):

41

E E

E ◦ E′ E′ ◦ E

E
(
retE

′

(−)

)
retE

′

E(−)

distr
E,E′

(−)

E′ E′

E ◦ E′ E′ ◦ E

retE
E′(−) E′

(
retE(−)

)
distr

E,E′

(−)

E ◦ E′ ◦ E′ E′ ◦ E ◦ E′ E′ ◦ E′ ◦ E

E ◦ E′ E′ ◦ E

distr
E,E′

E′(−)

E
(
joinE

′

(−)

)
E′

(
distr

E,E′

(−)

)
joinE

′

E(−)

distr
E,E′

(−)

E ◦ E ◦ E′ E ◦ E′ ◦ E E′ ◦ E ◦ E

E ◦ E′ E′ ◦ E

E
(
distr

E,E′

(−)

)
joinE,E

′

E′(−)

distr
E,E′

E(−)

E′
(
joinE,E

′

(−)

)
distr

E,E′

(−)

(115)

Computational contexts and co-monads on the type system. All of the above discussion of effect-monads has a formally
dual incarnation (by reversal of all arrows in the above diagrams), now given by co-monads on the type system, which some
authors refer to as “computational co-effect” but which may naturally be understood as expressing computational contexts
[UV08][POM13]. The idea now is, dually, that a program which nominally reads in data of some type D while however
executing in dependence on some further context must de facto read in data of some adjusted type C(D) which is such that
the context-part of the adjusted data is being transferred (extended) to followup programs:

C(D1) D2 C(D2) D3 C(D) D

C(D1) C(D2) C(D2) D3 E(D) E(D)

C(D1) D3

prog12

first program

output data
of type D2

obtained in context of type C(−)

prog23

second program

input data
of nominal type D2

having context of type C(−) extend previous context
over second program

obtain
C

D

obtain plain data from C(−)-context

extend
E

prog12

extend any previous
C(−)-context going forward

prog23

compose

extend
C
obtain

C

D

= idE(D)

prog23 ◦ extend
C

prog12

C-composite program

in shared C(−)-context

(116)

Further, by formal duality, all the above discussion for monadic effects and their modal types gives rise to analogous
phenomena of comonadic contexts and their (co)modal types. In particular, comonads are induced on the other sides of an
adjunction (74):

Type′ Type
R

right adjoint

right adjoint
L

⊥ L◦R=:C induced co-monad (117)

Examples of context comonads. Dualizing the example of the state monad (83) yields the costate comonad (or store
comonad, cf. [Mi19][Uu21, 3, p. 14]):

WStore : Type Type

D 7−! W × [W, D]
(118)

with operations

obtainWStore
D : W × [W,D]! D

obtainWStore
D ≡ (w, f) 7! f (w)

extendWStoreD :
(
W × [W,D]! D

)
7!

(
W × [W,D]

)
extendWStoreD ≡

(
(w, f) 7! O(w, f)

)
7!

(
(w, f) 7!

(
w, O(-, f)

)) (119)

42

which means that WStore(D) is the type of W-indexed supply (“storage”) f : W ! D of D-data equipped with an address
w : W of one such D-datum, which is the one that is obtained from such a computational context.

Similarly, dualizing the previous examples (82)(81) of read/write-effect monads this way, one obtains the following list of
examples of reader/writer (co)monads:

(Co)monad name Underlying endofunctor (Co)monad structure induced by

Reader monad [W, -] on cartesian types unique comonoid structure on W

CoReader comonad W×(-) on cartesian types unique comonoid structure on W

Writer monad A⊗(-) on monoidal types chosen monoid structure on A

CoWriter comonad
[A, -] on monoidal types chosen monoid structure on A

A⊗(-) on monoidal types chosen comonoid structure on A

Writer/CoWriter
Frobenius monad A⊗(-) on monoidal types chosen Frob. monoid structure on A

(120)

Adjoint (co)monads. In the case of an adjoint triple of adjoint functors the induced (co)monads are themselves pairwise
adjoint — as in (4), a situation central to our discussion in §2. In this case their categories of (co)modales (93) are isomorphic
(e.g. [MLM92, §V.8, Thm. 2]):

adjoint (co)monads

E ⊣ C

have

⊢ TypeE TypeC

Type

∼

equivalent categories of modales

UE UC

(121)

Frobenius monads. Something special happens here when the underlying endo-functors in (121) are not just adjoints but
also identified, E ≃ C. In this case, their (co)monad structures fuse to a single Frobenius monad-structure [Law69b, pp.
151][Str04][Lau06] — induced via (98) and (117) from an “ambidextrous” adjunction, where the left and the right adjoint of
a middle functor agree

Frobenius monad Type Type ,

ambidextrous adjunction

E

≃

C

L≡R

C

R≡ L

⊥

⊥

(122)

so-called because these monads are Frobenius algebras (Frobenius monoids, see e.g. [HV19, §5]) internal to the category of
endofunctors: Combined (co)algebras whose (co)products are compatible in the sense that all ways that map n input elements
to m output elements by (n − 1) products and (m − 1)-coproducts coincide. For example – shown in the last line of (117): if
type A carries Frobenius algebra structure, then the induced (Co)Reader (co)monad A ⊗ (-) carries induced Frobenius monad
structure.

43

Combined contextful and effectful programs. We have seen effectful programs typed as maps into monad types E(−) (67)
and contextful programs typed as maps out of comonad types C(−) (116). Of course, in general a program may be both
effectful as well as context-dependent, in which case it should clearly be a map of the form

prog12 : C(D1) E(D2) . (123)

In order for such procedures to have a consistent composition, the context-comonad C needs to be compatible with the effect-
monad E in the following way, known as a distributivity law for comonads over monads ([BVS93, Def. 3]25). Namely, the
order of application of the (co)monads must be interchangeable via a natural transformation

D : Type ⊢ distrC,ED : C
(
E(D)

)
E
(
C(D)

)
(124)

that make the following diagrams commute, not unlike the conditions on monad transformations (103):

C(D) C(D)

C
(
E(D)

)
E
(
C(D)

)C(retED) retE
C(D)

distrC,ED

C
(
E(D)

)
E
(
C(D)

)
E(D) E(D)

distrC,ED

obtC
E(D) E(obtCD)

C
(
E
(
E(D)

))
E

(
C
(
E(D)

))
E

(
E
(
C(D)

))
C
(
E(D)

)
E
(
C(D)

)
distrC,E

E(D)

C(joinED)

E(distrC,ED)

joinE
C(D)

distrC,ED

C
(
E(D)

)
E
(
C(D)

)
C

(
C
(
E(D)

))
C

(
E
(
C(D)

))
E

(
C
(
C(D)

))
distrC,ED

duplC
E(D) E(duplCD)

C(distrC,ED) distrC,E
C(D)

(125)

With such distributivity structure, the C-context-dependent E-effectful programs (123) have a consistent composition
([BVS93, Thm. 3][PW02, Prop. 7.4]) by combining the C-context extension (116) of the first with the E-effect binding (67)
of the second, concatenated via the distributivity transformation (124):

C(D1) E(D2) C(D2) E(D3)

C(D1) C
(
C(D1)

)
C
(
E(D2)

)
E
(
C(D2)

)
E
(
E(D3)

)
E(D3)

prog12 prog23

duplCD

extendCprog12

prog12 >=> prog23

C(prog12) distrC,ED2 E(prog23)

bindEprog23

joinED3

(126)

Notice that for C = Id or E = Id the trivial (co)monad also the distributivity may be taken to be the identity and then this
composition reduces to the Kleisli composition (69) of purely contextful- or purely effectful programs, whence we may use
the same notation >=> also for this general case.

Literature 1.18 (Classical structures via Frobenius monads). The QuantumEnvironment (co)monad expressing quantum
measurement effects which we derive in Prop. 2.35 (cf. Rem. 2.44 and p. 9) was originally considered for this purpose in
[CPav08][CPaq08][CPP0909][CPV12], partial review in [HV19]. Its graphical formalization as part of the zxCalculus26

(review in: [vWe][Co23]) originates in [CD08, §3][CD11, Def. 6.4][Ki08, §§2][Ki09, §4].

Literature 1.19 (Programming language for monadic effects). With a good categorical semantics in hand for effectful
functional programs via monads (Lit. 1.17) one is left with finding a good syntax for neatly expressing such constructions

25Beware that [BVS93, Def. 3] refer to (124) as the monad distributing over the comonad instead of the other way around (therein following convention for
the original discussion of monads distributing over monads in [Be69, §1]); but comparison with the eponymous case in arithmetic — a×

∑
i bi 7!

∑
i a× bi

— as well as with our main Ex. 2.56 makes our converse terminology more natural, which also coincides with the terminology used in [PW02, p. 138]. In
any case, the formulas will always make unambiguously clear what is meant.

26zxCalculus landing page: zxcalculus.com

44

https://zxcalculus.com

inside a given programming language (a “domain-specific embedded language”, Lit. 1.6). We review the traditional such
syntax known as “do-notation” but highlight that — for conceptual clarity and for generalization to linear data types (Lit. 1.4)
— this is better cast in for...do-form, which is what we use for our quantum pseudo-code in §3.

Traditional do-notation. The main example of an existing programming language with support for monadic effects is
Haskell. 27 Here the (Kleisli-)composition of E-effectful programs via effect-binding (67) is encoded by “do-notation” (due
to [Lau93, §3.3], see [HHPW07, p. 25], and adopted in Haskell since v1.3, 28 for review see [BHM02, p. 70][Mi19, §20.3]).
First of all, do-notation is suggestive syntax for the operation of effect-binding (67)

bindEprog : ED! ED′

bindEprog ≡ E 7!

 dod Eprog(d)

(127)

but thereby it furthermore provides a convenient means of expressing successive Kleisli-composition simply by successive
“calling” of separate procedures, much in the style of “imperative” programming (which is thereby emulated into functional
programming, Lit. 1.16):

Composite
Kleisli morphism

Corresponding
do-notation

d1 -> do

D1 d2 <- this d1

E(D2) d3 <- that d2

E(D3) E(D3) return d3

id
(
D1
this
−−−! E(D2)

)
bindE

(
D2
that
−−−! E(D3)

)
bind

E(
returnED3

)

(128)

(For the moment we closely stick to Haskell typewriter-style typesetting on the right, just for ease of comparison, but in §3
we use more fonts to better guide the eye.)

This notation is particularly suggestive due to the further convention that the variable names may be suppressed for
functions with trivial in- or out-put (i.e. of unit type ∗, such for programs whose only purpose is write to a log as in (81))
besides their E-effect:

Composite
Kleisli morphism

Corresponding
do-notation

do

∗ this

E(∗) that

E(∗) E(∗) return

id
(
∗
this
−−−! E(∗)

)
bindE

(
∗
that
−−−! E(∗)

)
bind

E(
returnE∗

)
Here it is manifest how the outer do...return-block syntax expresses the consecutive Kleisli-composition of any number
effectful procedures.

On top of that, the “<-”-syntax is meant to be suggestive of reading out a value from an effectful datum. This imagery is
accurate in case of the State-monad (83) (particularly in its incarnation as the IO-monad [PW93] modelling actual machine
reading from an input device such as a keyboard and machine writing to an output device such as a file). To make this explicit,
consider the following stateful programs for reading/writing the state of a global variable of type W:

readW : WState(W)

readW ≡ w 7! (w,w)

writeW : W ! WState(∗)

writeW ≡ w 7!
(
w′ 7! w

) (129)

27Haskell landing page: www.haskell.org
28www.haskell.org/definition/from12to13.html#do

45

https://www.haskell.org
https://www.haskell.org/definition/from12to13.html#do

From these, all other stateful operations may be composed via do-notation. For instance, the operation which increments a
global integer variable

inc : ZState(∗)

inc ≡ n 7! n + 1

may be coded as follows, cf. (85), and the example in [BHM02, p. 68 & 71]:

Composite
Kleisli morphism

Corresponding
do-notation

do

∗ n <- read

ZState(Z)

ZState(Z) write n + 1

ZState(∗) ZState(∗) return

id
(
∗
read
−−−! ZState(Z)

)
ZState

(
Z
+1
−! Z

)
bind

(
Z
write
−−−! ZState(∗)

)
bind

(
returnZState

∗

)

In this case it is nicely suggestive that the line “n <- read” instructs to read out the given state and to bind its value to the
variable n. However, already for similar effect monads such as the list monad ([Wa90, 2.1][Mi19, pp 304])

List : Type Type

D 7−!
∐
n:N

D×n
D List(D)

d 7! (d)

retList
D

List
(
List(D)

)
List(D)

(d11, · · · , d1n1),
...

(dk1, · · · , d1nk)

 7!
(
d11, · · · , d1n1 , · · · , dk1, · · · , dknk

)
joinList

D

(130)

the idea of Kleisli composition as being about “reading out” intermediate variables is a little inaccurate. For example, the
operation of incrementing all entries in a list of integers is coded in do-notation as follows:

Composite
Kleisli morphism

Corresponding
do-notation

do

∗ n <- MyList

List(Z) return n + 1

List(Z) List(Z)

id
(
∗
MyList
−−−−−! List(Z)

)
List

(
Z
+1
−! Z

)
bind

List(
returnList

Z

)

(131)

Here the code on the right nicely evokes the idea that we are “reading out” an element from the list and returning its
increment — but it leaves linguistically implicit the crucial fact that this process is to be applied for all elements of the list,
and that the results be re-compiled into an output list: Instead of just “do this”, the natural-language rendering of the above
list algorithm would be more like “do this for any element”.

For-Do-Notation. Indeed, we may observe in generality that it is misleading to think of effect-composition as being about
“reading out” data elements: Rather, Kleisli morphisms, in their nature as (UE ⊣ FE)-adjuncts (98)(75) of modale homomor-
phisms out of free modales

E(D1)
free modale

E(D2)

E E-modale
homomorphism

p̃rog

E

 ! D1
generating

data

E(D2)
Kleisli map

prog

46

are about acting on freely generated data types E(D) by declaring how to operate on generators d : D, hence about what to
do for a given generator.

Therefore, we may argue that the program-linguistically more evocative rendering of what is going on in monadic effect-
binding operation is a slight enrichment of the traditional do-notation to a ”for...do”-block, as follows:

Monadic
effect binding

Corresponding
for-do-notation

E(D) E(D′)
bind

E
(prog)

E 7!

 for d in Edo prog d

(132)

(Notice that in imperative languages the for...do-syntax is traditionally used to code loops, but in the functional languages
that we are concerned with such loops are instead coded by recursion, so that the for...do-syntax does remain free to be used
for the purpose of effect binding.)

In this notation, the generic example (128) is rendered into code as follows:

Composite
Kleisli morphism

Corresponding
for-do-notation

D1

E(D2)

E(D3) E(D3)

id
(
D1
this
−−−! E(D2)

)
bindE

(
D2
that
−−−! E(D3)

)
bind

E(
returnED3

)

prog : D1 ! E(D3)

prog ≡

for d2 in this d1

do

 for d3 in that d2do return d3

This may be notationally less concise than (128) but in its close relation to natural language rendering of the computational
process it lends itself to the formulation of transparent pseudocode such as we consider in §3, especially when it comes to
operations on linear types, cf. (251).

For instance, in this for...do-notation the previous example (131) of entry-wise increments in a list now reads as follows,
neatly indicative of how the incremenet is applied for every element n found in the given list L:

Composite Kleisli morphism Corresponding
for-do-notation

List(Z)
bind

(
Z
+1−!Z return−−−−!List(Z)

)
−−−−−−−−−−−−−−−−−−! List(Z)

inc : List(Z)! List(Z)

inc ≡ L ->

 for n in Ldo return n + 1

47

1.4 Monoidal categories
Literature 1.20 (Monoidal categories of quantum types). One of the key distinctions between classical and quantum types
(Lit. 1.4) is the nature of their logical conjunction, reflected in a monoidal structure ([EK66, §II.1][ML71/97, §VII] [Bor94b,
§6.1]) on the categories that they form.

Purely classical types should form a (locally) cartesian closed category, while purely quantum types should form a sym-
metric monoidal closed category which is non-cartesian (24) to admit a good supply of dualizable (finite-dimensional) types:
Dualizable/Finite-dimensional linear types. Somewhat in contrast to quantum theory in general, the focus of quantum
computation/information-theory is on quantum systems with finite-dimensional (Hilbert-)spaces H of quantum states (Lit.
1.1), whose characteristic property is that they are the dual spaces

(
H∗

)∗ of their own dual spaces.
Abstractly, the characterization of finite-dimensionality of an object H in a symmetric monoidal category is its strong

dualizability [DP84, §1] (indeed originally called “finite objects” in [Par76, p. 113]), given equivalently [DP84, Thm. 1.3] by
the existence of an objectH∗ (to be called its dual object) and of morphisms

1 H ⊗H∗ ,
cevH

H∗ ⊗H 1
evH (133)

such that the following diagrams commute:

H 1 ⊗H H ⊗H∗ ⊗H H ⊗ 1 H

H∗ H∗ ⊗ 1 H∗ ⊗H ⊗H∗ 1 ⊗H∗ H∗

lH
∼

id

cevH ⊗ idH idA ⊗ evH r−1
H

∼

rH∗
∼

id

idH ⊗ cevH evH ⊗ idA l−1
H∗

∼

(134)

This implies29 that the tensor product functors with these objects are adjoint to each other (74) as

(-) ⊗H ⊣ (-) ⊗H∗ (135)

with adjunction counit given by the evaluation map. By uniqueness of adjoints this means that when the ambient category is
closed monoidal (as it is in all our applications) with internal hom (-)⊸ (-) then

(-) ⊗H∗ ≃ H ⊸ (-) (136)

and hence in particular that
H∗ ≃ 1 ⊗H ≃ H ⊸ 1 . (137)

But by symmetry, the conditions (134) imply that H ≃ (H∗)∗ is the dual of its dual object, to that this adjunction is
actually ambidextrous, in that

(-) ⊗H ⊣ (-) ⊗H∗ ⊣ (-) ⊗H . (138)

Categories of internal modules. Sometimes it is useful to produce new categories of linear types from given ones by internal
algebra (eg. [Boa95]): If (C,⊗,1) is a bicomplete symmetric monoidal closed category [EK66, §III], then for

A ∈ Mon(C,⊗,1) (139)

an internal monoid object [ML71/97, VII.3], i.e. an object A ∈ C equipped with morphisms

1 A ,
1A

unit element
A ⊗ A A

(-)·(-)

product operation
(140)

in C, making the following diagrams commute:

A ⊗ A

1 ⊗ A A ,

(-)·(-)left unitality

∼

1A⊗
(-)

A ⊗ A

A ⊗ 1 A ,

(-)·(-)
right unitality

∼

(-)⊗
1A

A ⊗ A ⊗ A A ⊗ A

A ⊗ A A

(-)·(-)⊗(-)

(-)⊗(-)·(-) associativity (-)·(-)

(-)·(-)

(141)

29Beware that forH to be strong dualizable it is not sufficient that (-)⊗H be a left adjoint. But an evaluation-type map onH does exhibit a strong duality
iff it induces the counit of such an adjunction, this is [DP84, Thm. 1.3 (b) & (c)].

48

then its internal modules [ML71/97, VII.4], being objects N ∈ C equipped with an action morphism in C

A ⊗ N N
ρ

left action
such that

A ⊗ N

1 ⊗ N N

ρ
unitality

1A⊗(-)

∼

and

A ⊗ (A ⊗ N) A ⊗ N

(A ⊗ A) ⊗ N

A ⊗ N N .

(-)⊗ρ

action property ρ

∼

(-)·(-)⊗(-)

ρ

(142)

form a category, to be denoted, (
ModA, ⊗A, A

)
≡ ModA

(
C,⊗,1

)
(143)

is itself
(i) bicomplete, where the forgetful functor U : ModA ! C creates both limits and colimits [Mar09, Lem. 1.2.14], in

particular:
U ◦ lim

−!
(-) ≃ lim

−!
(U ◦ -) , U ◦ lim

 −
(-) ≃ lim

 −
(U ◦ -) , (144)

(ii) symmetric monoidal closed [HSS00, Lem. 2.2.2 & 2.2.8][Mar09, Lem. 1.2.15-17][Bra14, Prop. 4.1.10], with tensor
unit A and tensor product the evident coequalizer:

N,N′ : ModA ⊢ N ⊗ A ⊗ N′ N ⊗ N′ N ⊗A N′ .
coeq

(145)

For example:
(1.) In the most fundamental case, the ambient monoidal category C ≡ ModZ ≡ Ab is that of abelian groups, whose internal
monoid objects (139) are equivalently rings, whose module objects are the ordinary modules:

Rng ≃ Mon
(
Ab

)
.

(2.) In slight variation, if one instead considers C to be the category set-indexed abelian groups equipped with the “external”
tensor product and with the base ring regarded now as parameterized over the singleton, then its internal modules are the
set-indexed modules which serve as quantum semantics in §2.1, see Rem. 2.5 there.
(3.) In further generalization along these lines, if the ambient monoidal category is that of flat real vector bundles over
Z2-action groupoids and the internal monoid is the “Real complex numbers” , then its internal monoids are (discussed in
[SS23-QR]) Atiyah’s Real vector bundles (with capital “R”) over, in this case, discrete base Real spaces. These turn out to
play a profound role in the typing of Hermitian inner product structure and hence of (finite-dimensional) Hilbert spaces (26),
as discussed in [SS23-QR].

49

1.5 Parameterized spectra
Literature 1.21 (Parameterized stable homotopy theory, Tangent ∞-toposes & Twisted cohomology). The language of
LHoTT (Lit. 1.8) syntactically captures the following striking confluence of fundamental structures in algebraic topology and
homotopy theory:
The dichotomy between spaces and motives. One may observe that the following two fundamental types of 1-categories
(cf. 1.4):

(i) toposes – which are the home of geometry and classical intuitionistic logic,
(ii) abelian categories – which are the home of linear algebra and forms of linear logic,

while antithetical (for instance in that only the terminal category is an example of both), secretly share a sizeable list of
exactness properties [Fr99]. The analogous situation for∞-categories may appear similar, since here the two notions of

(i) ∞-toposes – which are the home of higher geometric and of classical (intuitionistic) homotopy type theory,
(ii) stable∞-categories – which are the home of higher algebra,

do remain as antithetical, (even though both satisfy analogous Giraud-type axioms in that both arise, when locally presentable,
as accessible left-exact localizations of ∞-categories of presheaves: the former with values in ∞-groupoids, the latter with
values in spectra).

But a miracle happens after the passage to ∞-category theory, in that here a non-trivial unification of the two notions
does exist for a large class of stable∞-categories (“Joyal loci”) including those of module spectra. Namely, the collection of
parameterized spectra [MaSi06][Mal23] over varying base types X ∈ Grpd∞ — i.e., the ∞-Grothendieck construction on
the∞-functor categories to RMod(Spctr) — is itself an∞-topos:

R ∈ E∞Ring
(
Spctr

)
⊢ T RGrpd∞ :≡

∫
W∈Grpd∞

ModW
R ∈ Topos∞ . (146)

This observation is originally due to [Bie07], was noted down in [Jo08, §35] and received a dedicated discussion in [Ho19].
The special case for plain spectra (i.e. with R = S the sphere spectrum), is touched upon in [Lu17, Rem. 6.1.1.11], where∫
X

SpectraX would be called the tangent bundle to Grpd∞ [Lu17, §7.3.1] when thought of as equipped with the canonical
projection to the base topos (147). We may thus think of (146) as something like the R-linear tangent ∞-topos to Grpd∞
[Sch13, Prop. 4.1.8] (all these considerations work for base∞-toposes other than Grpd∞; which we disregard just for sake of
exposition).

Infinitesimal cohesion and classicality. To pinpoint the nature of this logical context, notice that there is a canonical
inclusion of Grpd∞ into its tangent ∞-topos (146) by assigning the 0-spectrum everywhere. Since the 0-spectrum is a zero-
object, it readily follows that this inclusion is bireflective in that it is both left and right adjoint to the “tangent projection”

R-linear
tangent∞-topos T RGrpd∞

∫
X

RModX flat∞-bundles of
R-module spectra

classical
base∞-topos Grpd∞

♮
classical modality

0 p⊣⊣p (147)

In [Sch13, Prop. 4.1.9] this situation is interpreted as exhibiting infinitesimal cohesive structure on T RGrpd∞ relative to
Grpd∞, meaning that, in some precise abstract sense, the objects of TRGrpd∞ may be regarded as equipped with an infinites-
imal thickening of sorts: In the notation there, the adjoint pair of (co)monads induced by the adjoint triple (147) is denoted
S ⊣ ♭, expressing the shape and the underlying points of an object, respectively; and the ambidexterity of the adjunction
implies that the canonical points-to-pieces transform is an equivalence ♭ S∼ hence reflecting the idea that the extra
geometric substance which the objects of TRGrpd∞ carry on their classical underlying skeleta in Grpd∞ is “infinitesimal”
(think: “microscopic”) so that it cannot be noticed from looking just at the macroscopic shape of these objects.

As a result, these two cohesive modalities ♭ and S unify into a single ambidextrous modality as shown in (147), now to be
denoted“♮” (following [RFL21]), which we may think of as retaining the underlying classical aspect of types while discarding
their infinitesimal/microscopic (quantum) aspects, see Prop. 2.7 for more.
Flat vector bundles and Indexed vector spaces. Specifically when R = HK is the Eilenberg-MacLane spectrum over a ring
or even a field K, then there is an equivalence ([Rob87][ScSh03, Thm. 5.1.6]) between the homotopy theory of HK-module

50

spectra and that of K-chain complexes, hence between that of W-parameterized HK-module spectral and that of flat∞-vector
bundles over W, also known as∞-local systems over W (see [SS23-EoS, §3.1] for more):

parameterized
HK-module spectra

ModW
HK ≃

∞-local systems of
chain complexes

ChW
K

and the hearts (Lit. 1.22) of these stable ∞-categories are the 1-categories of ordinary flat vector bundles hence of ordinary
local systems of vector spaces:

Vector spaces the heart HK-module spectra

ModK ♡
(
ModHK

)
ModHK

are of

≃

Flat
vector bundles the heart parameterized

HK-module spectra

ModW
K ♡

(
ModW

HK
)

ModW
HK

are of

≃

Over W : Set ⊂ Grpd these are plain vector bundles over the discrete spaces W, hence W-indexed vector spaces, whence
their Grothendieck construction is the free coproduct completion FamK of vector spaces providing the categorical semantics
of (Proto-)Quipper (Lit. 1.5) and the 0-sector of LHoTT, which we discuss in detail in §2.1:

Categorical semantics of
(Proto-)Quipper &
0-sector of LHoTT

Categorical semantics of
heart-sector of LHoTT

including Hermitian spaces

Categorical semantics
of LHoTT including
topological effects

FamK LocK T HKGrpd∞∫
W : Set

ModW
K

∫
W : Grpd

ModW
K

∫
W : Grpd∞

ModW
HK

(148)

In the middle, we are showing an intermediate ground which turns out to be useful for typing Hermitian structure on quantum
types and hence captures the probabilistic aspect of quantum theory (Lit. 1.12):
Equivariance by homotopy type-dependency. For G a group, a spectrum parameterized over its delooping (its 1st Eilenberg-
Maclane space) BG is equivalently a G-action on the underlying spectrum (also known as a “naı̈vely G-equivariant spectrum”).
Generally, the slice over BG, hence the types dependent on variables in context BG are types equipped with a G-action (see
[SS21-EqB, Prop. 0.2.1][ss20-Orb, §2.2]):

Equivariance by dependency on delooping
Syntax Semantics

⊢ pt : BG
⊢ IdBG(pt, pt) ≃ G

group G ∗

∗ BG delooping

(pb) ⊢pt

⊢pt

pt : BG ⊢ Ept : Type G-action Ept

homotopy quotient/
Borel construction

Ept � G

∗ BG

G

(pb)

⊢ pt

(149)

Twisted cohomology. Interestingly, the hom-spaces in the R-tangent ∞-topos (146) are sections of R-module bundles τX,
which means [ABGHR14][FSS23, Prop. 3.5][ss20-Orb, p. 6] that their connected components form the τX-twisted R-
cohomology Rτ(X) of X [MaSi06, §22.11]:

X ∈ Grpd∞
R ∈ E∞Rng(Spctr)

}
⊢ Maps

(
0X, R�GL1(R)

)
=

R�GL1(R)

X BGL1(R)τ
X

twist

cocycle in R
τ (X)

. (150)

This already suggests [Sch14b] that tangent∞-toposes are a natural logical context for describing strongly-coupled quantum
systems, since twisted R-cohomology theories play a key role in their holographic (stringy) formulations (Lit. 1.23).

51

Remark 1.22 (0-sector and Heart-sector of LHoTT).
(i) By the 0-sector of LHoTT (Lit. 1.8) we mean more than just its 0-truncated types (which are just the classical hSets of
LHoTT). Namely, in the stable homotopy theory which is incorporated in LHoTT, the classical notion of n-truncation becomes
almost meaningless (due to the existence of spectra with homotopy groups in arbitrary negative degree, cf. [Lu17, Warning
1.2.1.9]), its proper replacement instead being the notion of t-structure (eg. [Lu17, §1.2.1]).
(ii) The heart of the t-structure (formed by the spectra whose homotopy groups are concentrated in degree 0) reflects the
intended 0-sector of the given stable homotopy theory. Hence by the 0-sector of LHoTT we mean those types which are in the
heart and whose underlying purely classical type is 0-truncated.

Literature 1.23 (Topological quantum materials and Topological K-theory). For extensive background and referencing
see [SS23b].

52

2 Quantum Effects
We show that a system of basic (co)monads which is canonically defineable (via admissibke inference rule) in any dependent
linear homotopy type theory which satisfies the Motivic Yoga (Def. 2.18) equips the underlying (independent) linear type
theory with the computational effects which otherwise have to be postulated in (typed) quantum programming languages:
besides a quantization modality (Q) (turning bits into q-bits, etc.), these effects notably include quantum measurement (⃝)
and conditional quantum state preparation (9), which turn out to correspond to Coecke et al.’s “classical structures” Frobenius
monad.

§2.1 – Semantics of Dependent linear types
§2.2 – Classical epistemic logic via Dependent classical types;
§2.3 – Quantum epistemic logic via Dependent linear types;
§2.4 – Controlled quantum gates via Quantum effect logic;
§2.5 – Controlled quantum channels via QuantumState effects.

53

2.1 Quantum Semantics
We lay out a concrete example (Def. 2.1 below) of a category that interprets the 0-sector (Rem. 1.22) of LHoTT relevant for
expressing quantum circuits (in §2.4). Category-theoretically this example is elementary and standard (going back to [Bé85,
§3.3][HT95, pp. 281]), but it is important in applications, e.g. as the established model for Proto-Quipper (Lit. 1.5, where it
appears as [RS18, Def. 3.3] for the case that their fiber category M is the category ModK of K-vector bundles, essentially the
“quantum sets” of [Ko20][KLM21, §2]). Here we highlight previously underappreciated aspects of this model (all shared by
its homotopy-theoretic generalizations in [SS23-EoS]):
◦ its doubly closed monoidal structure (Prop. 2.3),
◦ its doubly strong monadic reflections (Prop. 2.7),
◦ its quantization/exponential modality (Prop. 2.9),
◦ its support of 6-operations motivic yoga (Prop. 2.19),

which make the model interpret an expressive modal/monadic/effectful quantum language, QS, in §3.

Definition 2.1 (Category of linear bundle types).
For the purpose of this section, we write “Type” for the category equivalently described as follows
(cf. [SS23-EoS], where this category is denoted “FamK”):
◦ Type is the free coproduct completion of ModK,
◦ Type is the category of indexed sets of K-vector spaces,
◦ Type is the category of vector bundles over varying discrete base spaces,
◦ Type is the 0-sector of the∞-category of∞-local systems over varying general base spaces,
◦ Type is the Grothendieck construction of the Set-indexed category whose fiber over W : Set is the category ModW

K ≡

Func(W, ModK) of W-indexed vector spaces (vector bundles over W):

Syntax Semantics

Types Category Morphisms

ClaType
classical types

Set
sets

W W ′
f

maps

QuType
linear types

ModK
vector spaces

H H ′
ϕ

linear maps

QuType
W

W-dependent linear types
ModW

K

W-indexed vector space

H•#
W

 H ′•#
W

ϕ•

W-indexed linear maps

Type
linear bundle types

∫
W:Set

ModW
K

Grothendieck construction

H•#
W

 H ′•#
W ′

ϕ•

f

map covered by indexed linear map

(151)

When describing their linear fiber types concretely, we also denote linear bundle types and their hom-sets as follows (the
bottom lines exhibiting the type-theoretic syntax, see Rem. 2.4):H•↠W

 ≡
 Hw↠

(w : W)

≡ (w : W) × (Hw : QuType)

Hom

H•#

W

 ,
H

′
•

#
W ′

 ≃

(
f : Hom(W, W ′)

)
×

∏
w

Hom
(
Hw, H

′
f (w)

)
≡

(
f : W ! W ′

)
×

∏
w
♮
(
ϕw : Hw ! H ′f (w)

)
.

(152)

54

Closed monoidal structures on bundle types.
First recall:
◦ ClaType is cartesian closed monoidal, with:

– monoidal product the Cartesian product ×
– internal hom the function sets W ! W ′

– unit object ∗ the singleton set
◦ QuType is non-Cartesian closed monoidal with:

– monoidal product the usual tensor product,
– internal hom the linear hom-spacesH ⊸ H ′

– unit object the ground field 1 ≡ K : ModK.

Remark 2.2 (External monoidal structures). Given
any monoidal category (C,⊗,1), its free coproduct com-
pletion FamC (of indexed sets of C-objects) inherits a
corresponding “external” monoidal struture given by
joint fiberwise product in C over the Cartesian product
of index sets (for pointers see [SS23-EoS, p. 4]).

Proposition 2.3 (Doubly closed monoidal structure
of linear bundle types). The category Type (151) of
linear bundle types is “doubly” [OP99, §3] symmetric
monoidal closed [EK66, §III][Bor94b, §6.1], as shown
on the right, in that:
(i) it is cartesian closed with respect to the external di-

rect sum,

with unit object ∗ ≡

0↠

∗

 : Type

(ii) it is non-cartesian closed symmetric monoidal with
respect to the external tensor product
(cf. [RS18, Prop. 3.5])

with unit object 1 ≡

1↠
∗

 : Type.

Hom(
Pair types

X · X′, X′′) ≃ Hom
(
X,

Function types
[X′, X′′]

)
W ×W′

cartesian product

W′ ! W′′

set of maps

⊕
S
H ′

direct sum

♮(H ′ ! H ′′)
set of linear maps

H ⊗H ′

tensor product

H ′ ⊸ H ′′

vector space of linear maps

⊕
S
H ′•

direct sum

∏
w
♮
(
H ′w ! H ′′w

)
set of indexed linear maps

H ⊗H ′•
index-wise tensor product

∏
w

(
H ′w ⊸ H

′′
w
)

vector space of indexed linear maps

[H•
#
W

]
×

[H ′•
#

W′

]

=

H• ⊕H ′•#
W×W′

external direct sum

[H ′•
#

W′

]
!

[H ′′•
#

W′′

]
=

∏
w′ H

′′
f (w′)

#(
f : W′ ! W′′

)
×∏

w′
♮
(
H ′w′ ! H

′′
f (w′)

)

[H•
#
W

]
⊗

[H ′•
#

W′

]

=

H• ⊗H ′•#
W×W′

external tensor product

[H ′•
#

W′

]
⊸

[H ′′•
#

W′′

]
=

∏

w′
(
Hw′ ⊸ H

′′
f (w′)

)
#(

f : W′ ! W′′
)

Remark 2.4 (Notation for internal homs).
(i) The arrow-notation for the hom-sets in QuType and QuTypeW is that inherited from Type under the embeddings ClaType,QuType ↪!
Type (155), in that:

♮

H↠

∗

!
H

′

↠

∗

 = ♮(H ! H ′)

H↠

∗

⊸
H

′

↠

∗

 = (H ⊸ H ′)

where on the right the embeddings (155) are understood.
(ii) This way, e.g. the natural hom-isomorphism expressing the closed monoidal structure on QuType reads

♮
(
H ⊗H ′ ! H ′′

)
≃ ♮

(
H ! (H ′ ⊸ H ′′)

)
(153)

(iii) But we now also have mixed classical/quantum expressions, notably this one, which is going to be important:

(
W ! H

)
≡

 0↠

W

!
H↠

∗

 =

∏

W H↠

∗

 =

1•↠W
⊸

H↠

∗

 =
(
1×W ⊸ H

)
(154)

55

Proof of Prop. 2.3. By standard arguments [Schau01] we may assume the unitors and associators to be identities. The sym-
metric braiding is given by the evident exchange of variables:

braid⊗
HW ,H

′
W′

:

H•↠W
 ⊗

H
′
•↠

W ′

!
H

′
•↠

W ′

 ⊗
H•↠W

braid⊗

HW ,H
′
W′
≡ |ψw⟩ ⊗ |ψ

′
w′⟩ 7! |ψ′w′⟩ ⊗ |ψw⟩

To see the internal-hom adjunction it is clearly sufficient (since our classical base category is ClaType ≡ Set) to check the
defining hom-isomorphism for the case that W = ∗ (the singleton generator of Set). In this case, we have the following
sequences of natural isomorphisms:

Hom

H ⊕H

′
•↠

W ′

 ,
H

′′
•↠

W ′′

 ≃ (f : W ′ ! W ′′) ×

∏
w′
♮
(
H ⊕H ′w′ ! H

′′
f (w′)

)
by (152)

≃ (f : W ′ ! W ′′) ×
∏
w′

(
♮
(
H ′w′ ! H

′′
f (w′)

)
× ♮

(
H ! H ′′f (w′)

))
by coproduct property of ⊕

≃ (f : W ′ ! W ′′) ×
∏
w′
♮
(
H ′w′ ! H

′′
f (w′)

)
×

∏
w′
♮
(
H ! H ′′f (w′)

)
since

∏
W (−) is right adjoint

≃ (f : W ′ ! W ′′) ×
∏
w′
♮
(
H ′w′ ! H

′′
f (w′)

)
× ♮

(
H !

∏
w′
H ′′f (w′)

)
sinceH ! (-) is right adjoint

≃ Hom

H↠
∗

 ,

∏
w′ H

′′
f (w′)↠

(f : W ′ ! W ′′) ×
∏
w′

(
H ′w′ ! H

′′
f (w′)

)

 by (152)

and

Hom

H ⊗H

′
•↠

W ′

 ,
H

′′
•↠

W ′′

 ≃

(
f : W ′ ! W ′′

)
×

∏
w′
♮
(
H ⊗H ′w′ ! H

′′
f (w′)

)
by (152)

≃
(
f : W ′ ! W ′′

)
×

∏
w′
♮
(
H !

(
H ′w′ ⊸ H

′′
f (w′)

))
by (153)

≃
(
f : W ′ ! W ′′

)
× ♮

(
H !

∏
w′

(
H ′w′ ⊸ H

′′
f (w′)

))
sinceH ! (-) is right adjoint

≃ Hom

H↠

∗

 ,

∏

w′
(
H ′w′ ⊸ H

′′
f (w′)

)

↠(
f : W ′ ! W ′′

)

 by (152)

which proves the claim. □

Remark 2.5 (Linear bundle types as modules in bundles of abelian groups). Analogous formulas as in Prop. 2.3 of
course hold over any commutative base ring. In particular they hold over the integers, in which case these bundle types are
set-indexed families of abelian groups. From here all other cases are obtained by passage to categories of internal modules
(143): Regarding the ground field K as a monoid internal (139) to set-indexed abelian groups

K↠pt

 ∈ Mon
(∫

W:Set
ModW

Z

)
,

the K-linear bundle types (151) are equivalently the corresponding internal modules (143):∫
W:Set

ModW
C ≃ ModC↠pt

(∫

W:Set
ModW

Z

)
,

56

because for a bundle over some W : Set, its external tensor product with the complex numbers, constituting the domain of
the action map (142), equals the usual tensor product of bundles over W with the trivial line bundleC↠pt

 ⊗
A•↠W

 ≃
C ⊗Z A•↠

W

A•↠W

 ,ρ

whence the action map ρ makes the indexed set of abelian groupsA• fiberwise into a complex vector space.
While somewhat tautologous in the present case, this perspective on linear bundle types as internal modules with respect

to an external tensor product becomes rather useful when we generalize in [SS23-QR], see Prop. ??, to “Real complex module
bundles” (Atiyah’s Real bundles) in order to encode not just the linear structure of quantum types but also their Hermitian
inner product.

Remark 2.6 (Dependent linear types). For W : ClaType we have a full embedding of the W-parameterized quantum types
into the slice of all bundle types over the classical type W:

QuTypeW Type/WH•↠W

H•↠W
 0↠

W

7−!

exhibiting the full subcategory of the slice on those objects whose fibers are purely quantum:Hw↠

{w}

H•↠W

 0↠

{w}

 0↠

W

 .
Classical and Quantum Modality.

Proposition 2.7 (Reflective subcategories of purely classical/quantum modal types). The category of Def. 2.1 has monadic
(98) reflective subcategory inclusions as follows:

W [

H•↠W

ClaType Type

W 7!

0•↠

W

⊥ ♮

classically

⊕
w
Hw [

H•↠W

QuType Type

H 7!

H↠

∗

⊥ △

quantum
ly

(155)

Moreover, the induced classical/quantum-modalities are strong monads (77) with respect to the monoidal structures of Prop.
2.3, whence we have return- and bind-operations (67) as follows, using (162):

57

C
la

ss
ic

al
ly

♮
return

♮
W :

H•↠W
!

0•↠

W

return

♮
W ≡ |ψw⟩ 7! 0w

bind♮ :

H•↠W

!
 0•↠

W ′

!

0•↠

W

!
 0•↠

W ′

bind♮ ≡
(
|ψw⟩ 7! 0 f (w), 0

)
7!

(
0w 7! 0 f (w), 0

)
Q

ua
nt

um
ly

△
return△ ◦

◦

H•↠W
⊸

⊕wHw↠

∗

return△ ≡ |ψw⟩ 7! ⊕

w′
δw′

w |ψw⟩

bind△ ◦
◦

H•↠W

⊸
H

′

↠

∗

⊸

⊕wHw↠
∗

⊸
H

′

↠

∗

bind△ ≡
(
|ψw⟩ 7! Fw|ψw⟩

)
7!

(
⊕
w
|ψw⟩ 7!

∑
w

Fw|ψw⟩
)

(156)

Proof. It is evident that the inclusions are fully faithful and reflective. Formally we may check the required hom-isomorphisms
(75) using (152):

Hom

H•↠W

 ,
 0•↠

W ′

 ≃ Hom(W,W ′) ×

∏
w

Hom
(
Hw, 0

)
≃ Hom

(
W, W ′

)
≃ Hom

0•↠

W

 ,
 0•↠

W ′

Hom

H•↠W

 ,
H

′

↠

∗

 ≃ Hom

(
H , ∗

)
×

∏
w

Hom
(
Hw, H

′) ≃ Hom
(∐

w

Hw, H
′) ≃ Hom

⊕wHw↠

∗

 ,
H

′

↠

∗

Monadicity follows because every reflective inclusion is monadic (e.g. [Bor94b, Cor. 4.2.4]). Alternatively, we may invoke
the monadicity theorem in the form (99): Since both inclusions are right adjoints and evidently conservative, it is sufficient to
observe that they both preserve all coequalizers. For this we can appeal to [SS23-EoS, Prop. A.9].

Finally, to check that the induced monads are strong, we may equivalently check that they are monoidal (78): The
(strong) monoidal structure on the underlying functors is indicated vertically in the following diagrams. Since the monads
are idempotent, it is sufficient to check furthermore that their unit transformations are monoidal, hence that these squares
commute, which is immediate in components (156):

H•↠W
 ×

H•↠W
 ♮

H•↠W

 ×
H•↠W

≃

by Prop. 2.3

♮

H•⊕H
′
•↠

W ×W ′

≃

by (155)

W ×W ′

≃

by (155)H•↠W
 ×

H•↠W
 ♮

H•↠W
 × ♮

H•↠W

ret♮

ret♮×ret♮

H•↠W
 ⊗

H
′
•↠

W ′

 △

H•↠W

 ⊗
H

′
•↠

W ′

≡

from Prop. 2.3

△

H• ⊗H
′
•↠

W ×W ′

≃

by (155)

⊕
(w,w′)

(
Hw ⊗H

′
w′
)

≃

⊕
w
⊕
w′

(
Hw ⊗H

′
w′
)

≃

distributivity(
⊕
w
Hw

)
⊗

(
⊕
w′
H ′w′

)

≃

by (155)H•↠W
 ⊗

H
′
•↠

W ′

 △

H•↠W
 ⊗ △

H
′
•↠

W ′

ret△

ret△⊗ret△

□

58

Quantum/Classical Data Types Quantum/Classical Maps

General
bundles of

linear types

TypeH•↠

W

△♮ H• H ′•H•↠

W

H ′f (•)↠

W

H

′
•↠

W ′

ϕ•

f

Purely
classical types

(bundles of zeros)

ClaType ≡ Type♮0•↠

W

W W ′0•↠

W

 0•↠
W ′

0•

f

Purely
linear types

(bundles over point)

QuType ≡ Type△H↠

∗

H H ′H↠
∗

H

′

↠

∗

ϕ

In fact, the purely classical types are also coreflective, whence the classical-modality ♮ is in fact a bireflective Frobenius
modality [FHPTST99, Def. 8]:

Proposition 2.8 (Coreflection of classical types among linear bundle types). We have an ambidextrous reflection:

ClaType Type .
♮

♮

(157)

Quantization and Exponential modality. Composing the Cartesian hom-adjunction for 1 (from Prop. 2.3) with the
classicality-coreflection (157) gives another adjunction between linear bundle types and purely classical types:

W

1•↠W

ClaType Type Type

(w : W) × ♮
(
1! Hw

) H•↠W

7−!

♮

⊥

1!(-)

1×(-)

⊥

 − [

(158)

(cf. Rem. 2.11). Further composing (158) with the reflection of purely quantum types (155) gives (cf. Rem. 2.10):

Proposition 2.9 (Quantization and Classicization).
(i) We have a pair of adjoint functors between purely classical and purely quantum types (155) of this form

W ⊕
W
1

ClaType Type QuType

♮(1! H) H

7−!

1×(-)

♮(1!(-))

⊥

quantized
Q ≡

motive
Σ∞+

△

⊥

C
classicized

≡ Ω∞+

!

exponential
m

odality

 − [

(159)

where the composite ! ≡ QC is the “exponential modality” (Rem. 2.10).
(ii) These are monoidal with respect to the classical/quantum monoidal structures (Prop. 2.3) via natural transformations of
the following form:

W,W ′ : ClaType ⊢ (QW) ⊗ (QW ′) ≃ Q(W ×W ′)
H ,H ′ : QuType ⊢ (CH) × (CH ′) ≃ C(H × H ′)
H ,H ′ : QuType ⊢ (CH) × (CH ′) ! C(H ⊗ H ′)

(160)

Q ∗ ≃ 1 , C 0 ≃ 1 , C1 ! 1 . (161)

59

(iii) In particular, the induced modality (159) sends (direct) sums to (tensor) products

!
(
H ⊕H ′

)
≡ QC

(
H ⊕H ′

)
≃ Q

(
(CH) × (CH ′)

)
≃ (QCH) ⊗ (QCH ′) ≡ (!H) ⊗ (!H ′)

and zero (objects) to unit (objects)
! 0 ≡ QC 0 ≃ Q ∗ ≃ 1 ,

as befits an exponential map.

Proof. The adjunction itself is the composite of (158) with (155), as shown.
That Q is strong monoidal follows for instance from the fact that H ⊗ (-) is a left adjoint and hence distributes over the

coproduct ⊕W :
(QW) ⊗ (QW ′) ≡ (⊕W1) ⊗ (⊕W′1) ≡ ⊕

W×W′
(1 ⊗ 1) = ⊕

W×W′
1 ≡ Q(W ×W ′) .

Similarly, C is strong monoidal with respect to the Cartesian product on both sides, since ♮(1! (-)) is a right adjoint, whence
it becomes lax monoidal with respect to the tensor product by composition with the universal bilinear map:

(CH) × (CH) ≡ ♮
(
1! H

)
× ♮

(
1! H ′

)
≃ ♮

((
1! H

)
×

(
1! H ′

))
since ♮ is right adjoint

≃ ♮
((
1! (H ×H ′)

))
since 1! (-) is right adjoint

≡ C(H ×H ′)

! C(H ⊗H ′) univ. bilin. □

Remark 2.10 (Exponential modality, traditionally). Prop 2.9 recovers – via dependent linear type formations – the ex-
ponential modality (25) usually postulated in linear logic/type theory (Lit. 1.4). In the model QuType ≡ ModK (151), the
operation H 7! ♮(1 ! H) (158) produces the underlying set of vectors in the vector space H , whence the exponential
modality (159) sends a vector space to the linear span of its underlying set of vectors

H : ModK ⊢ !H = ⊕
H
1 .

As an aside it is interesting that in the homotopy-theoretic semantics of HoTT in parameterized spectra, the exponential
modality (159) on, in that case, QuType ≡ Spectra is known to behave like an exponential function in the sense of “Goodwillie
calculus”, see [ACh19, Ex. 2.6].

Remark 2.11 (Exponential modality, in Quipper). In contrast to Rem. 2.10, beware that the literature on Quipper (Lit.
1.5) instead chooses to write “!” for the comonad induced in (158), see [RS18, §3.5, §3.7 & Def. 3.7][FKS20, p. 9].

Remark 2.12 (Role of the exponential modality). Below in §3 we will not have much use for the exponential modality: Its
purpose in traditional linear logic/type theory is to get access to a stand-in for classical types in a theory that natively only
knows about linear types. But this becomes a moot point in a classically-dependent linear type theory like LHoTT, as formally
reflected by the above construction showing that the exponential modality is derivable from dependent linear type formation.
For our purpose here this construction serves to show that LHoTT is backwards-compatible with previous discussion of linear
type theory via an exponential modality, cf. [Ri23, p. 9].

Quantum type declaration. For transparent distinction between the classical and quantum monoidal structures from Prop.
2.3 it is convenient to use, besides the standard notation for
• the classical type declaration in the empty context

⊢ w : W ,

which is equivalently type declaration in the context of the cartesian monoidal unit ∗ : ClaType

∗ ⊢ w : W ,

also notation for
• a linear (quantum) type declaration

⊢ |ψ⟩ ◦◦ H ,

to be understood as syntactic sugar for (ordinary) type declaration in the context of the tensor monoidal unit:

1 ⊢ |ψ⟩ : H ,.

60

This little notational device will be particularly useful when declaring data of type W ! H (154).

Data Declaration Semantics

Classical
⊢ W : ClaType
⊢ w : W

0
#
∗

 0•
#
W

0w

w

Quantum
⊢ H : QuType
⊢ |ψ⟩ ◦

◦ H

≡

⊢ |ψ⟩ : 1! H

1#
∗

 H#
∗

|ψ⟩

∗

Quantized

⊢ W : ClaType
⊢ H : QuType
⊢

∑
w
|w⟩ ◦

◦ W ! H

≡

⊢
∑
w
|w⟩ : 1! (W ! H)

1↠

∗

∏
W
H

↠
∗

∑

w |w⟩

∗

(162)

We will have much use in §3 for the following:

Definition 2.13 (Quantization modality). We will regard quantization (159) as the relative monad (101) obtained by re-
stricting (102) the quantum-modality △ (2.7) along precomposition with (158):

Q : ClaType Type Type

W 7!

1•↠W
 7! ⊕

W
1

1×(-) △

(163)

This (just) means that we take the return- and bind-operations (67) of Q to be special instances of those of △, as follows,
where we use the linear type declaration from (162):

return
Q
W

◦
◦

(
1×W ⊸ QW

)
return

Q
W ≡ return△

1×W

bind
Q
W,QW ′

◦
◦

(
1×W ⊸ QW ′

)
⊸

(
QW ⊸ QW ′

)
bind

Q
W,QW ′ ≡ bind△

1 ×W,QW ′

(164)

But in these special cases of △-operations we may, by (154), equivalently write this pleasantly suggestively as follows:

Q
ua

nt
iz

ed

Q
return

Q
W

◦
◦

(
W ! QW

)
return

Q
W ≡ w 7! |w⟩

bindQ ◦
◦

(
W ! QW ′

)
⊸

(
QW −−−−−−⊸ QW ′

)
bindQ ≡

(
w 7! |ψw⟩

)
7!

(∑
w

qw |w⟩ 7!
∑
w

qw|ψw⟩
) (165)

Hence the quantization monad, when handed a classical state w, returns the corresponding quantum state |w⟩. In quantum
information theory, this is commonly used in the following:

Example 2.14 (Type of qbits). The notation for the quantization-monad (Def. 2.13) is such as to reproduce the standard
notation “QBit” for the type of q-bits (e.g. [NC00, §1.2], often also “qubit”, e.g. [Ri21]) as the quantum analog of the type
Bit ≡ {0, 1} of classical bits (cf. [TQP, (110)]):

QBit ≡ Q(Bit) ≡ △(1Bit) ≡ ⊕
Bit
1
Bit
≡ ⊕
{0,1}

1
{0,1}
≡ 10 ⊕ 11 =

{
q0 |0⟩ + q1 |1⟩

}
. (166)

Similarly we have the restriction of the quantum-modality to tensor products, hence to entangled states:

Definition 2.15 (Entanglement modality). Recalling the cartesian product of classical types and the tensor product (Prop.
2.3) of quantized linear types (Def. 2.13)

(-) × (-) : ClaType × ClaType −! Type

Q(-) ⊗ Q(-) : ClaType × ClaType −! Type

the restriction of the △-monad along Q(−)⊗Q(−) yields a relative monad of this form (recalling that △ is the identity on linear
types)

en
ta

ng
le

d

return⊗(B1, B2)
◦
◦ B1 × B2 ! QB1 ⊗ QB2

return⊗(B1, B2) ≡ (b1, b2) 7! |b1⟩ ⊗ |b2⟩

bind⊗(B1, B2),H
◦
◦

(
B1 × B2 ! H

)
⊸

(
QB1 ⊗ QB2 −−−−−−−−⊸ H

)
bind⊗(B1, B2),H ≡

(
(b1, b2) 7! |ψb1 ,b2

⟩
)
7!

((∑
b1,b2

qb1 ,b2
· |b1⟩ ⊗ |b2⟩

)
7!

∑
b1,b2

qb1 ,b2
· |ψb1 ,b2

⟩
)

(167)

61

In summary so far, we have the following fundamental quantum modalities:

The Quantum/Classical Divide

Modality Idempotent monad Pure effect

Classical
♮ : Type ↠ ClaType ↪! Type

♮ ≡

H•#
W

 7! W 7!

 0•
#
W

ret♮
H•

: H• ♮H•H•#
W

 0•
#
W

0

id

(strong wrt ×)

Quantum
△ : Type ↠ QuType ↪! Type

△ ≡

H•#
W

 7! ⊕
W
H• 7!

⊕WH•#
∗

ret△
H•

◦
◦ H• △H•

H•#
W

⊕
W
H•

#
∗

ret
♢W
H•

pW

(strong wrt ⊗)

Quantized
Q : ClaType! QuType ↪! Type
Q ≡ W 7! △

(
1W

)
retQ
H•

◦
◦ W QW

1•#
W

⊕
W
1

↠

∗

ret♢W

1•

pW

(relative monad)

Entangled Q(-) ⊗ Q(-) : ClaType × ClaType! QuType

ret⊗ ◦
◦ (W1,W2) QW1 ⊗ QW2 1•

#
W1 ×W2

QW1 ⊗ QW2↠

∗

ret
♢W1×W2
E

pW1×W2

(relative monad)

Base change and dependent classical/linear type formation. In parameterized generalization of the reflection of quantum
types inside all bundle types (Prop. 2.7), also the W-parameterized linear types (151) are reflective in the slice category

Type/W of bundle types over the given classical type W =
0•↠

W

:

⊕

p′(w′)=w
H ′w′

↠

(w : W)

 [

[
H ′• ! W ′

]
p′[
0• ! W

]
QuTypeW Type

/WH•↠W
 7!

[
H• ! W

]
#[
0• ! W

]
⊥ △W

W
-quantum

ly

(168)

Moreover, the category of linear bundle types is locally cartesian closed; in particular:

Proposition 2.16 (Classical base change for linear bundle types). For W, Γ : ClaType and p : W ! Γ, the pullback base
change operation W ×Γ (-) between the respective slices of the category of linear bundle types (Def. 2.1)

W Γ

Type/W Type/Γ[
H ′w′ ! (w′ : W ′p(w))

]
#[
0w ! (w : W)

] [

[
H ′• ! W ′

]
#[
0• ! Γ

]

p

W×Γ(-)
context extension

62

has both a left adjoint (“dependent coproduct” 30) and a right adjoint (“dependent product”), given as follows:

[
H ′• ! W ′

]
#p′[
0• ! W

] 7!

[
H ′w′w

!
(
(w,w′w) :

∐
p(w)=γ

W ′w
)]

#[
0• −−−−−−−−! (γ : Γ)

]

Type/W Type/Γ

[
H ′• ! W ′

]
#[
0• ! W

] 7!

[∏
p(w)=γ
H ′w′w

!
(
w′• :

∏
p(w)=γ

W ′w
)]

#[
0• −−−−−−! (γ : Γ)

]

∐
W

dependent coproduct

W×Γ(-)

∏
W

dependent product

⊥

⊥

(169)

Proof. We may formally check the hom-isomorphisms, using (152). It is sufficient to consider the case that Γ = ∗:

Hom

H ′w′w↠(
(w,w′w) :

∐
w W ′w

)
 ,

H
′′
•↠

W ′′

≃
(
f• :

∐
w

W ′w ! W ′′
)
×

∏
(w,w′w)

♮
(
Hw′w ! H

′′
fw(w′w)

)
≃

∏
w

((
fw : W ′w ! W ′′

)
×

∏
w′w
♮
(
Hw′w ! H

′′
fw(w′w)

))
≃ Hom/W

H

′
•↠

W ′

 , W ×

H
′′
•↠

W ′′

 ,

Hom

H

′′
•↠

W ′′

 ,

∏
wH

′
w′w↠

w′• :
∏

w W ′w

≃
(

f ′• : W ′′ !
∏
w

W ′w
)
×

∏
w′′
♮
(
H ′′w′′ !

∏
w
H ′f ′w(w′′)

)
≃

∏
w

((
f ′w : W ′′ ! W ′w

)
×

∏
w′′
♮
(
H ′′w′′ ! H

′
f ′w(w′′)

))

≃ Hom/W

W ×
H

′′

↠

W ′′

 ,
H

′
•↠

W ′

 .

□

The (co)restriction of the base change adjoint triple (169) along the reflective inclusion of W-quantum types (168) yields
base change of dependent linear types:

Type/W Type/Γ

QuTypeW QuTypeΓ

(
w : W ⊢ Hw

)
7!

(
γ : Γ ⊢

∏
p(w)=γ
Hw

)

W×Γ(-)

∐
W

∏
W

⊥

⊥
△
Γ

⊥

⊕W

1
W
⊗(-)∏

W

⊥

⊥

(170)

Now something special happens: Since ModK is an additive category, it has biproducts, meaning that finite coproducts are
finite products. This is a key aspect of what it means for its objects to be linear types.

Proposition 2.17 (Ambidexterity). If W is finite (over Γ) then the direct sum and the direct product of linear spaces coincide,
⊕W ≃

∏
W , and so the base change adjunction (170) on linear types becomes ambidextrous:

Γ : ClaType, W : ClaTypefin ⊢

(
w : W ⊢ Hw

)
7−!

(
γ : Γ ⊢ ⊕

p(w)=γ
Hw

)

QuTypeW QuTypeΓ

⊕W

1
W
⊗(-)

⊕W

⊥

⊥

(171)

30Of course, in type theory this dependent coproduct
∐

W is traditionally called the “dependent sum” and denoted “ΣW ”. But this (quite unnecessary
but deeply engrained) abuse of terminology/notation from linear algebra becomes problematic in the context of dependent linear type theory with its actual
(direct) sums ⊕W of linear types.

63

All these structures and properties are elementary to see in the concrete model of indexed sets of vector spaces, but
they hold quite generally for (higher) categories of parameterized linear (homotopy) types. In fact, much of this structure is
traditionally encoded by Grothendieck’s yoga of six operations used in motivic (homotopy) theory.

Motivic yoga. For the purposes of the present discussion, we make the following definition (cf. [SS23-EoS, p. 41]):

Definition 2.18 (Motivic yoga). Let Type be a locally cartesian closed category with coproducts. We say that a Grothendieck-
Wirthmüller motivic yoga of operations on Type – or just motivic yoga, for short – is:

(i) an ambidextrously reflected subcategory ClaType (“of classical base types”), hence a functor ♮ onto a full subcategory
such that it is both left and right adjoint to the inclusion functor:

ClaType Type
♮

♮

⊥

⊥
♮ (172)

This implies in particular that ClaType has all (fiber-)products and coproducts, and we write

ClaTypefin ↪−! ClaType (173)

for the further full subcategory on the finite coproducts of the terminal object with itself.
(ii) For each W : ClaType a symmetric closed monoidal structure (QuTypeB,⊗B,1B) on the iso-comma categories (“of linear

bundles over W”):

QuTypeW ≡ ♮/W =

H•↠W

H

′
•↠

W

ϕ•

 , (174)

(iii) For each morphism in ClaType an adjoint triple of (“base change”) functors:

for B
f
−! B′ we have QuTypeW QuTypeW′

f!

f ∗

f∗

⊥

⊥
(175)

such that the following conditions hold:
(a) Linearity: the left and right base change along finite types W

pW−! ∗ (see (173)) are naturally equivalent:

W : ClaTypefin ⊢ (pw)! ≃ (pw)∗

(b) Functoriality: for composable morphisms f , g of base objects we have

(f ∗ ◦ g∗) ≃ g∗ ◦ f ∗ and id∗ = id (176)

(c) Monoidalness: the pullback functors are strong monoidal in that there are natural equivalences:

f ∗
(
H ⊗

W′
H ′

)
• ≃

(
f ∗

(
H

)
⊗
W′

f ∗
(
H ′

))
•

(177)

(d) Beck-Chevalley condition: for a pullback square in ClaType the “pull-push operations” across one tip are naturally
equivalent to those across the other:

For

B ×B0 B′

B B′

B0

prB prB′

(pb)

pB pB′

we have

QuTypeB×B0 B′

QuTypeB QuTypeB′

QuTypeB0

(prB)! (prB′)
∗

(pB′)!(pB)∗

and

QuTypeB×B0 B′

QuTypeB QuTypeB′

QuTypeB0

(prB)∗ (prB′)
∗

(pB′)∗(pB)∗

(178)

(e) Frobenius reciprocity / projection formula: the left pushforward of a tensor with a pullback is naturally equivalent to
the tensor with the left pushforward (equivalent to f ∗ being also strong closed):

f!
(
H ⊗

W
f ∗(H ′)

)
• ≃ f!(H) ⊗

W′
H ′ (179)

64

(f) Stability: Over finite classical types f! and f∗ agree to make an ambidextrous adjunction:

W : ClaTypefin ⊢ f! ≃ f∗ : QuTypeW ! QuType . (180)

Proposition 2.19 (Linear bundle types satisfy Motivic Yoga). The indexed category W 7! QuType
W

of Def. 2.1 satisfies
the motivic yoga (Def. 2.18) with respect to the fiberwise tensor product:

QuTypeW × QuTypeW QuTypeW
H•↠W

 ,
H

′
•↠

W

 7−!

Hw ⊗H
′
w↠

(w : W)

⊗
W

Proof. This is straightforward to check. Details for this case and its higher generalization are spelled out in [SS23-EoS,
§3.3]. □

Remark 2.20 (Modalities via mortivic yoga). We may alternatively see the monoidality of △ and Q just using the motivic
yoga (Def. 2.18). For this purpose we shall denote the projection maps involved in a cartesian product as follows:

W ×W ′

W W ′

∗

prW prW′

pW×W′

pW pW′

(181)

△
(
E ⊗ E′

)
= (pB×B′)!

(
(prB)∗E ⊗ (prB′)

∗E′
)

def

≃ (pB)!(prB)!
(
(prB)∗E ⊗ (prB′)

∗E′
)

(181)

≃ (pB)!

(
E ⊗

(
(prB′)!(prB′)

∗E
))

(179)

≃ (pB)!

(
E ⊗

(
(pB)∗(pB′)!E

))
(178)

≃
(
(pB)!E

)
⊗

(
(pB′)!E

′
)

(179)

Q(B × B) = (pB×B)!(pB×B)∗1 def

≃ (pB′)!(prB′)!(prB)∗(pB)∗1 (181)

≃ (pB′)!(pB′)∗(pB)!(pB)∗1 (178)

≃ (pB′)!
(
1B′ ⊗ (pB′)∗(pB)!(pB)∗1

)
unit law

≃
(
(pB′)!1B′

)
⊗

(
(pB)!(pB)∗1

)
(179)

≃
(
(pB′)!(pB′)∗1

)
⊗

(
(pB)!(pB)∗1

)
(177)

= (QB) ⊗ (QB′) def .

65

2.2 Classical Epistemic Logic
We lay out our perspective (following [nLab14][Cor20, Ch. 4]) on (S5 Kripke semantics for) modal logic/type theory (Lit.
1.13). This is naturally realized (see Rem. 2.24 below) by dependent type theory (Lit. 1.4), with “possible worlds” given by
terms of base types and with modal operators given by the (co)monads induced by dependent (co)product31 type formation
followed by context re-extension. The discussion prepares the ground for our formal quantum epistemic logic in §2.3.

For expository convenience, we speak in the 1-categorical semantics where the type universe “ClaType” refers to a topos
of types (e.g.: Set) and for B : Type the universe ClaTypeB of B-dependent types refers to the slice topos over B. All of
the discussion is readily adapted to homotopy type theory proper and its ∞-topos semantics without any relevant changes,
whence we do not dwell on it here (the homotopy theoretic aspect does become relevant further below). The crux is that all
the constructions considered now are readily available inside a dependently typed language such as HoTT or LHoTT.

Dependent type formation by base change. The starting point is the basic fact that any W : TypeΓ, hence any display map
pW : W ! Γ, induces a base change adjoint triple between W-dependent types and bare types in the default context Γ:

W Γ

W-dependent
types ClaTypeW ClaTypeΓ

types in
default context

pw

dependent co-product∐
W

context ×W extension

∏
W

dependent product

⊥

⊥

(182)

via

D : TypeW ⊢

∐
W

D : Γ ClaType

γ 7−! ∐
w : fibγ(pW)

Dw

D : TypeΓ ⊢
D ×W : W ClaType

w 7−! Dp
W

(w)

D : TypeW ⊢

∏
W

D : Γ ClaType

γ 7−! ∏
w : fibγ(pW)

Dw

(183)

whose (co)restriction along

types ClaTypeΓ PropΓ propositions
[-]0

propositional truncation

⊥ (184)

gives the quantifiers of first-order logic:

W-dependent
propositions PropW PropΓ

propositions in
default context

existential quantification
∃W =

[∐
W (-)

]
0

context ×W extension

∀W =
∏

W
universal quantification

⊥

⊥

(185)

It is immediate (and generally well-known but has previously received little attention in modal type theory) that by

31We say dependent co-product “
∐

B” for what is traditionally called the dependent sum “
∑

B” in intuitionistic type theory. Apart from being the more
descriptive term, this avoids a clash of terminology after passage to linear type theory where actual linear sums of types (“direct sums”) do play a(nother)
role.

66

composing the adjoint type constructors (182) to endo-functors yields a pair of adjoint pairs of (co)monads:

W Γ

actual data ClaTypeW ClaTypeΓ potential data

pW

♢W

possibly

⊥

2
W

necessarily

dependent co-product∐
W

(-)×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

(186)

whose (co)restriction along propositional truncation (184) we shall denote by the same symbols:

W Γ

actual propositions PropW PropΓ potential propositions

pW

♢W

possibly

⊥

2
W

necessarily

0-truncated
dependent co-product[∐

W (-)
]
0

(-)×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

(187)

Actuality logic. The terminology on the left of diagram(186) is justified by the following Remark 2.21 and the observation
of Theorem 2.23 below, which we articulate as a theorem not because its proof would be much more than an unwinding of
definitions (nor surprising, in view of [Law69a]), but to highlight its Yoneda-Lemma-like conceptual importance:

Remark 2.21 (Epistemic interpretation of dependent types). Concretely, we may read these modal operators (186) as
follows, where we use the traditional language of “possible worlds” (Lit. 1.13) but suggest to think of these “worlds” quite
concretely as classical states of an observed universe to the extent partially revealed by a particular measurement, hence like
the “many worlds” of quantum epistemology (Lit. 1.2).
(i) Given a proposition P• which depends on which world w is or has been measured:

2W P• means: Pw means: ♢W P• means:
“P does or is known to

hold necessarily”
namely, no matter which
world w is measured.

“P does or is known to
hold actually”

namely for the given
world w measured.

“P does or is known to
hold possibly”

namely for some possibly
measured world w.

(ii) Moreover, the (co)units ret♢ (obt2) of the above (co)monads reflect the logical entailment of these modal propositions:

necessarily D•
2W D•

actually D•
D•

possibly D•
♢W D•

w : W ⊢
∏

w′:W
Dw′ Dw

∐
w′:W

Dw′

entails
obt2W

D•

entails
ret
♢W
D•

(dw′ :W) 7! dw dw 7! (w, dw)
(188)

Remark 2.22 (Hexagon of epistemic entailments). The naturality of the transformations (188) is reflected in commuting
squares as shown in the following diagram (189), whose hexagonal composition gives the diagram (7) announced in the
Introduction (there evaluated for linear/quantum types, which we come to in §2.3, but the existence of the commuting hexagon

67

as such depends only on the naturality of the epistemic entailments):

D•, D′• : Type
W

G• : D• ! D′•
⊢

2♢D• 2♢D′•

2D• 2D′• ♢D′•

D• D′•

2♢G•

2
(
ret♢G•

) obt 2
♢D ′
•

obt2
(ret♢D′•)

2
(ret
♢

D •

)

2G•

obt 2
D
•

obt2G•

2
(ret
♢

D
′
•

)

obt 2
D ′
•

G•

ret
♢

D
′
•

=

2♢D• 2♢D′•

2D• ♢D• ♢D′•

D• D′•

2♢G•

obt 2
♢D
•

obt2
(ret♢D•)

obt2♢G•
obt 2
♢D ′
•2

(ret
♢

D •

)

obt 2
D
•

♢G•

ret♢G•

G•

ret
♢

D • ret
♢

D
′
•

(189)

For emphasis, the following theorem highlights that this epistemic logic of dependent types recovers what is traditionally
understood in modal logic:

Theorem 2.23 (S5 Kripke semantics as co-monadic descent). The possible-worlds Kripke semantics (63) for S5 modal logic
are precisely given by dependent type formation (186) (for ClaType ≡ Set) where a Kripke frame

(
W : Set, R : W×W ! Prop

)
corresponds to that display map (182) which is its quotient projection pW : W ↠ Γ ≡ W/R.

Proof. A classical theorem ([Kr63][FHMV95, Thm. 3.1.5], cf. [Sa10]) identifies the Kripke semantics for S5 modal logic
with precisely those Kripke frames

(
W,R

)
where R is an equivalence relation. The equivalence classes Γ of R hence form a

partition of W as
W =

∐
γ:Γ

fibγ(pW) ,

which gives the incarnation of W as a Γ-dependent type. By (183), the induced comonad (186) acts as

P : PropW ⊢
2W P : W Prop

w 7! ∀
w′ : fibpW(w)(pW)

P(w′)
(190)

But with pW identified as the quotient coprojection of R, we have

fibpW(w)(pW) = (w′ : W) × R(w,w′)

whence (190) equals the traditional formula (63) for the Kripke semantics of the modal operator. □

Remark 2.24 (Dependent type theory as universal Epistemic modal type theory).
(i) Thm. 2.23 suggests that one may regard dependent type theory equivalently as a universal form of epistemic type theory
(Lit. 1.14) in generalization of how modal logic may be viewed as an equivalent perspective on (fragments) of first-order
logic (cf. [BvBW07, pp. xiii]). In both cases, one switches perspective from type formation by base change adjoint triples
(182)(185) to the associated adjoint pairs of (co)monads (186)(187). (An analogous change in perspective happens in (alge-
braic) geometry when expressing descent theory in terms of monadic descent.)
(ii) Noticing that the development of general modal type theory is still in its infancy with its general linear form hardly
known at all, this change of perspective allows us to use (in §2.3) well-developed (linear) dependent type theory to realize the
epistemic form of modal type theory that we need for certifying quantum protocols.

68

Potentiality logic. The (co)monads on the right side of (186) are known in effectful classical computer science (Lit. 1.17) as
the W-(co)reader (co)monad, (120) often denoted as on the right here:

⃝
W D ≡ [W, D] W-reader monad

9W D ≡ W×D W-coreader comonad
(191)

What has not previously found attention is the corresponding modal/epistemic perspective on these operators. It will be useful
to dwell on this point a little. Our suggestion in (186) of potentiality as the antonym to actuality (the latter well-established
in modal logic) follows Aristotle and Heisenberg (as recounted in [Ja17]). In further support of this nomenclature, we offer
the following fact, which gives a precise sense that:

ClaTypeΓ ClaType♢W

W

D : TypeΓ
potential data

(
D• : Type

W

data whose

, ρ : ♢W D• −−−! D•
possibility entails its actuality,

, utl♢W
(ρ), act♢W

(ρ)
consistently

)
Potential data is equivalently data whose possibility entails its actuality, consistently

∼

∼

is equivalently

(192)

(This compares favorably with the traditional informal intention of the “potentiality” modality, cf. [FG16, §44].) Namely, we
have:

Proposition 2.25 (Potential data as possibility modal data). For pW : W ↠ Γ an epimorphism (as in Thm. 2.23), the
context extension (-) × W : ClaTypeΓ ! ClaType

W
is monadic (98) whence the potential types (186) are identified with the

(free) possibility-modal types (93) and hence (121) also with the necessity-modal types:

ClaType♢W

W
possibility modal data

actual data ClaType
W

ClaTypeΓ potential data

ClaType2W

W
necessity modal data

≃

♢W

possibly

⊥

2
W

necessarily

∐
W

∏
W

×W

⊥

⊥

≃

(193)

Proof. By the Monadicity Theorem (98) and since the functor (-) ×W has both a left and a right adjoint, it is sufficient to see
that it reflects isomorphisms; but this follows immediately from the assumption that pW is surjective. Compare to [Jo02, Lem.
1.3.2], namely if (f ×W)w ≡ fpW (w) is an isomorphism for w : W then surjectivty of pW implies that fγ is an isomorphism for
γ : Γ. □

Remark 2.26 (Relation to monadic descent). The statement and proof of Prop. 2.25 correspond to what in (algebraic)
geometry is known as monadic descent (e.g. [JT94, §2.1]): In this context, the display map pW would be called an effective
descent morphism, and ♢W -modale structure would be called descent data along pW .

Remark 2.27 (Relation to lenses). In the case Type = Set, the statement of Prop. 2.25 is known in the theory of lenses in
computer science. Here one regards ♢W -modale structure as a data base-type S equipped with functionality to read out (get)
and to over-write (put) W-data subject to consistency conditions (“lawful lenses”):

slice object ♢W -modale structure ♢W -unit law ♢W -action property
S

W

get

 ∈ Type
W

S ×W S

W

pr
W

put

get

W × S

S S

putget×id

W ×W × S W × S

W × S S

pr1×pr3

idW ×put put

put

database type S with
W-read functionality

W-write functionality
verified by W-reading

overwriting identi-
cally has no effect

subsequent writing
overwrites previous

:
(
Type

W

)♢W (194)

and the upshot of the monadicity statement (Prop. 2.25, [JRW10, Thm. 12]32) is that this describes “addressed” access to a
data sub-base type, in that such S are necessarily of product form S ≃ W × D with get = pr

W
, etc.

32[Spi19] concludes from this situation that the theory of “lenses” is best regarded as an aspect of the much broader and classical theory of indexed
categories (Grothendieck fibrations). Syntactically this means to regard them as an aspect of the theory of dependent types which – when also taking into
account the related system of (co)monads – is the thesis that we are developing here.

69

Random and (in)definite data. The (co)monads ⃝ (9) on the right of (186) are well-known in terms of (co)effects in
computer science (Lit. 1.17) as the “(co)reader (co)monad” (120), referring to the idea of a program reading (providing) a
global variable w : W. However, for staying true to the spirit of modal logic, here we refer to these as the modalities of
indefiniteness (randomness), in the following sense:

9W D is the type of D is the type of ⃝
W P• is the type of:

D-data d in a definite
but random world w
(as in “random access”)

plain D-data d
only potentially in
some possible world

indefinite D-data w 7! dw

contingent on a pending
choice of possible world w.

randomly P

9W P
potentially P

P
indefinitely P

⃝
W P∐

w′:W
P P

∏
w′:W

P

ret9W
P

entails

obt⃝W
P

entails

(w, p) 7! p p 7! (w′ 7!p)
(195)

In particular, the monadic effect model (cf. Lit. 1.17) for operating on the parameter space W as on a random access
memory (RAM) is the state monad (83), which we may realize as the composite

⃝
W
9
W

D ≃
∏

W

∐
W

D ≃
[
W, W × D

]
≡ WState(D), Type Type

9W

⃝
W

⊥WState . (196)

It is in this common sense of random access as about “choice” (instead of “chance”) that one should think about9W as the
modality of “being random”.

In summary so far, we have found that any classical (intuitionistic) dependently typed language may be regarded as a rich
epistemic modal type theory with, for every inhabited type W (in any ambient context Γ), the following identifications:

actual data ClaType
W

ClaType potential data

♢W

possibly

⊥

2
W

necessarily

dependent co-product∐
W

×W

∏
W

dependent product

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

necessarily P•
2W P•

actually P•
P•

possibly P•
♢W P•

w : W ⊢
∏

w′:W
Pw′ Pw

∐
w′:W

Pw′

randomly P

9W P
potentially P

P
indefinitely P

⃝
W P∐

w′:W
P P

∏
w′:W

P

entails

ϵ
2W
P•

entails

η
♢W
P•

(w′ 7!pw′) 7! pw pw 7! (w, pw)

ret9W
P

entails

obt⃝W
P

entails

(w, p) 7! p p 7! (w′ 7!p)

(197)

Next we proceed to find the quantum analog (202) of this logic.

70

2.3 Quantum Epistemic Logic
On the backdrop (§2.2) of classical (intuitionistic) epistemic type theory understood as an equivalent re-interpretation of
classical (intuitionistic) dependent type theory, and in view (§2.1) of the existence of dependent linear type theory LHoTT,
we are led to expect that quantum epistemic type theory ought to analogously be obtained by re-regarding the base change
adjunction (171) of dependent linear type formation

Finite classical context
(parameters, measurement
results: “possible worlds”) W Γ

Reference context
(classes of “worlds”)

Classical type system
dependent on context

(
ClaType

W
,

product

×W

) (
ClaType

Γ
,

product

×
Γ

) Classical (intuit.)
type system

Classical base change /
classical quantification

Linear type system
in classical context

(
QuType

W
,

ten
sor

⊗W

) (
QuType

Γ
,

ten
sor

⊗
Γ

) Linear
type system

Quantum base change
/Motivic Yoga

pW

display map

∐
W

dependent
co-product

×W∏
W

dependent product

⊥

⊥

⊕W

dependent
direct sum

⊗1W

⊕W

⊥

⊥

by passing to the induced (co)monads (74), which we denote by the same symbols as their classical counterparts (186):

W Γ

Actual quantum data QuTypeW QuTypeΓ Potential quantum data

pW

♢W

possibly

⊥

2
W

necessarily

dependent direct sum
⊕W

⊗1W

⊕W
dependent direct sum

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

(198)

A key point here is the ambitexterity (171) of the base change for dependent linear types along a finite classical type W:

W : ClaTypefin ⊢
(
⊕
W
⊣ ⊗1W ⊣ ⊕

W

)
(199)

It is now as elementary to work out (this is the next Prop. 2.29) the (co)units of these (co)monads as it is interesting, in
view of quantum epistemology (Lit. 1.1).

Example 2.28 (Quantum state collapse from quantum modality). The quantum 2-counit is analyzed as follows:
Consider, for simplicity, a
quantum type independent
of worlds b : Bit.

H ∈ QuType∗
⊗1Bit−−! QuTypeBit

Observe that 2BitH ≡ ⊕BH ≃ H ⊗ QBit ∈ QuType∗
⊗1Bit−−! QuTypeBit ,

arising as the limiting cone over the Bit-indexed diagram constant onH .
Hence the 2-counit map is
over b : Bit the projection
onto the bth component.

b : B ⊢
(2BitH)b Hb

H ⊗ QBit H .

(obt2Bit
H

)b

∑
b′ |ψb′ ⟩⊗|b′⟩ 7−! |ψb⟩

But this reflects the quantum measurement process:
Observing classical outcome b, the quantum state is collapsed onto the subspace spanned by |b⟩.

Proceeding in this fashion, one finds:

71

Proposition 2.29 (Component expressions of the quantum (co)monad (co)units). The (co)units and (co)joins of the
(co)monads in (198) are given, in components, as follows:

Epistemic entailments in Quantum modal logic

2
W
H• H• H• ♢

W
H•

w : W ⊢ ⊕
w′
Hw Hw w : W ⊢ Hw ⊕

w′
Hw′

9
W
H H H ⃝

W
H

⊕
w
H H H ⊕

W
H

obt2W
H•

necessity counit

ret♢W

H•

possibility unit

⊕w′ |ψw′ ⟩ 7! |ψw⟩

quantum state collapse
|ψw⟩ 7! ⊕w′ δ

w′
w |ψw⟩

quantum state preparation

“ what is actual is possible ”“ what is necessary is actualized ”

“ what is random exists potentially ” “ what exists potentially is indeterminate ”

obt9W

H

randomness counit

ret⃝B
H

indefiniteness unit

⊕w |ψw⟩ 7!
∑

w |ψw⟩

quantum superposition
|ψ⟩ 7! ⊕w |ψ⟩

quantum parallelism

⃝
W
⃝
W
H ⃝

W
H 9

W
H 9

W
9
W
H

⊕
w

(
2
W
H H

)
⊕
w

(
H ♢

W
H

)
⊕w′ |ψw,w′⟩ 7! |ψw,w⟩ |ψw⟩ 7! ⊕w′δ

w′
w |ψw⟩

♢
W
♢
W
H• ♢

W
H• 2

W
H• 2

W
2
W
H•

w : W ⊢ 9
W
⊕
W
H• ⊕

W
H• w : A ⊢ ⊕

W
H• ⃝

W
⊕
W
H•

⊕
w′′
|ψw,w′,w′′⟩ 7!

∑
w′′
|ψw,w′,w′′⟩ |ψw,w′⟩ 7! ⊕

w′′
|ψw,w′⟩

join
⃝

W
H

indefiniteness join

dplc9W
H

randomness cojoin

obt2W
H

quantum state collapse

obt
♢W
H

quantum state prepar.

join
♢W
H•

possibility join

dplc2W
H•

necessity cojoin

obt9W
⊕WH•

quantum superposition

ret
⃝

W
⊕WH•

quantum parallelism

(200)

Here the (co)joins in the lower half follow from the (co)units in the top half, via (76).

Monadicity of quantum data. We observe that quantum data as in (198) is characterized by two monadicity theorems:
– Prop. 2.30: Potential quantum data is possibility-modal actual data.
– Prop. 2.32: Actual quantum data is indefiniteness-modal potential data.

First, we have the following quantum analog of the classical situation from Prop. 2.25:

Proposition 2.30 (Potential quantum data as possibility-modal actual data). For pW : W ↠ Γ an epimorphism (as in
Thm. 2.23) the context extension (-) ⊗ 1W : QuTypeΓ ! QuType

W
is monadic (98) whence the potential quantum types (198)

are identified with the (free) possibility/necessity modal types (93) (just as classically (193)):

QuType♢W

W
Possibility modal data

Actual quantum data QuType
W

QuTypeΓ Potential quantum data

QuType2W

W
Necessity modal data

≃♢W

possibly

⊥

2
W

necessarily

⊕W

⊕W

⊗1W

⊥

⊥

≃

(201)

Proof. This statement has verbatim the same abstract proof – via the monadicity theorem (99) and the comparison statement
(121) – as its classical counterpart in Prop. 2.25, relying on the fact that ⊗1W is conservative (by the same argument as before)
and both a left and a right adjoint. □

72

Remark 2.31 (Homomorphisms of free ♢/2-modales). More explicitly,
(i) for some G• : ♢WH• ! ♢WK• to be a homomorphism of (free) ♢-modales, it needs to make the following square commute:

♢
W
♢
W
H• ♢

W
H•

⊕
w′′
|ψw,w′,w′′⟩

∑
w′′
⊕
w′
|ψw,w′,w′′⟩

Gw
∑
w′′
⊕
w′
|ψw,w′,w′′⟩

⊕
w′′

Gw′′ ⊕
w′
|ψw,w′,w′′⟩

∑
w′′

Gw′′ ⊕
w′
|ψw,w′,w′′⟩

♢
W
♢
W
K• ♢

W
H•

join
♢W
H•

♢
W

G• G•

join
♢W
K•

This is clearly possible only if Gw is actually independent of w, i.e., if G• = G := G ⊗ 1W .
(ii) Analogously for homomorphisms of free 2-modales:

2
W
H• 2

W
2
W
H•

⊕
w′
|ψw,w′⟩ ⊕

w′′
⊕
w′
|ψw,w′⟩

⊕
w′′

Gw′′ ⊕
w′
|ψw,w′⟩

Gw⊕
w′
|ψw,w′⟩ ⊕

w′′
Gw⊕

w′
|ψw,w′⟩

2
W
K• 2

W
2
W
K•

dplc2W
H•

G• 2
W

G•

dplc2W
K•

In summary so far, we have found a quantum epistemic logic with the following interpretations, analogous to (197):

necessarilyH•
2W H•

actuallyH•
H•

possiblyH•
♢W H•

necessarilyH•
2W H•

In world

w : W
observe...
⊢ H Hw H , whereH := ⊕

w′:W
Hw′

randomlyH

9WH

potentiallyH

H

indefinitelyH
⃝

WH

⊕
w:W
H H ⊕

b:B
H

entails
obt2W
H•

entails
ret
♢W
H•

≃

principle of quantum compulsion:

is

⊕w′ |ψw′ ⟩ 7! |ψw ⟩

measurement collapse

linear projector onto sub-Hilbert spaceHw

|ψw⟩ 7!⊕w′ δ
w′
w |ψw⟩

state preparation

obt9W
H

entails

ret
⃝

W
H

entails

⊕W |ψW ⟩ 7!
∑

W |ψW ⟩

quantum superposition

|ψ⟩ 7! ⊕w′ :W |ψ⟩

quantum parallelism

(202)

However, for linear types, we have yet another monadicity statement:

Proposition 2.32 (Actual quantum data as indefiniteness-modal potential data). For W : ClaTypefin
Γ and pW : W ! Γ an

epimorphism, the dependent sum⊕W : QuType
W
! QuTypeΓ is also monadic, whence the actual quantum types are identified

73

with the (free) randomness/infiniteness modal types:

Randomness modal data QuType9W

Γ

Actual quantum data QuTypeW QuTypeΓ Potential quantum data

Indefiniteness modal data QuType
⃝

W

Γ

≃

⊕W

⊗1W

⊕W

⊥

⊥

9W

randomly

⊥

⃝
W

indefinitely

≃

(203)

Proof. Due to ambidexterity (199) for finite W, in the quantum case also ⊕W is both a left and right adjoint, as shown.
Therefore the monadicity theorem (99) implies the claim for ⃝W by observing that ⊕W is conservative. This is indeed the
case, as it sends a morphism to its world-wise application, which is an isomorphism of dependent types if and only if it is so
world-wise, hence if and only the original morphisms was so. The dual claim for the adjoint comonad 9 now follows by
(121). □

Remark 2.33 (Effective perspective on quantum epistemology). Prop. 2.32 says that (over a finite inhabited type of classical
worlds W) dependent linear types are ⃝-monadic! But since we have seen that dependent linear types may be thought of
as quantum states in “many worlds”, this gives a monadic perspective on quantum epistemology which allows for speaking
about it in terms of computational effects (Lit. 1.17). Hence we shall refer to these equivalent perspectives as the epistemic
and the effective perspective, respectively:

Epistemic
perspective QuType

W
H• K• H

in-dependent type
H H

!

!

!

Effective
perspective QuTypeΓ ⊕

W
H• ⊕

W
K•

free ⃝W -modale

⃝
W
H bind

(
H ⃝

W
K

)m
on

ad
ic

ity

of
⊕

W

⊕
W

⊗1W ⊣

G•
map of W-dependent types

G•

W-dependent map of
in-dependent types

⃝
W

⃝
W

⊕
W

G•

homomorphism of ⃝W -modales

⃝
W

⊕
W

G• ◦ ret
⃝

W
H

⃝
W -Kleisli map

(204)

The effective perspective on the epistemic entailments (202) yields an effect-language for quantum measurement and
controlled quantum gates – this we discuss next in §2.4.

Remark 2.34 (Relation to zxCalculus). Something close to the identification
(
QuType

Γ

)9W ≃ QuType
W

(in Prop. 2.32)
has previously been observed in [CPav08, Thm. 1.5] (cf. Lit. 1.18), subject to some translation which we discuss now.

Frobenius-algebraic formulation. Remarkably, the above modal quantum logic gives rise to the “classical-structures” Frobe-
nius monads used in the zxCalculus (Lit. 1.18). In particular, this shows that/how LHoTT/QS can be used for certifying
(type-checking) zxCalculus-protocols:

Proposition 2.35 (Quantum (co)effects via Frobenius algebra).
(i) For W : ClaType, the W-(co)reader (co)monad on linear types (§2.3) is equivalent to the linear version QW ⊗ (-) of the

(co)writer (co)monad (82) induced by the canonical (co)algebra structure on QW ≡ ⊕W1;
(ii) If W : ClaTypefin is finite then the underlying functors of all these (co)monads agree and make a single Frobenius

monad induced from the canonical Frobenius-algebra structure on QW = ⊕
W
1 (cf. Lit. 1.18):

Frobenius structure on QW = ⊕W1

Algebra structure Coalgebra structure

1 QW
1 7! ⊕w|w⟩

QW ⊗ QW QW

|w1⟩ ⊗ |w2⟩ 7! δ
w2
w1 |w2⟩

unitQW

prod
QW

QW 1

|w⟩ 7! 1

QW QW ⊗ QW
|w⟩ 7! |w⟩ ⊗ |w⟩

counitQW

coprod
QW

Quantum
indefiniteness

Quantum
randomness

quantum
reader

quantum
(co)writer

quantum
co-reader

⃝
W

(QW)Write 9
W

Monads FrobMonads CoMonads

≃ ≃

74

Proof. With Prop. 2.29, this is a straightforward matter of unwinding the definitions:
M

ea
su

re
m

en
t

epistemic 2
W

(1
W
⊗H) 1

W
⊗H

effective ⃝
W
⃝
W
H ⃝

W
H H

∼
 !

∼
 !

∼
 !

algebraic QW ⊗ QW ⊗H QW ⊗H 1 ⊗H

obt2W
H⊗1W

⊕
W

⊕
W

join
⃝

W
H

ret
⃝

W
H

prod
QW
⊗ id

H

|w1,w2⟩⊗|ψ⟩ 7! δ
w2
w1 |w2⟩⊗|ψ⟩

unitQW ⊗ id
H∑

w |w⟩⊗|ψ⟩ [1⊗|ψ⟩

St
at

e
pr

ep
ar

at
io

n epistemic 1
W
⊗H ♢

W
1
W
⊗H

effective H 9
W
HT 9

W
9
W
H

∼
 !

∼
 !

∼
 !

algebraic H QW ⊗H QW ⊗ QW ⊗H

ret
♢W
H⊗1W

⊕
W

⊕
W

obt9W
H

dplc9W
H

counitQW

|ψ⟩ [|w⟩ ⊗ |ψ⟩

coprod
QW
⊗idH

|w⟩⊗|ψ⟩ 7! |w⟩⊗|w⟩⊗|ψ⟩

(205)

□

In fact, this Frobenius structure is “special” in that

9
W

9
W
9
W

⃝
W
⃝
W

⃝
W

dplc9W

∼

≃
join⃝W

(206)

Remark 2.36 (Frobenius property and Spider theorem). The Frobenius property of ⃝ ≃ 9 (Prop. 2.35) says explicitly that
this diagram commutes:

9
W
9
W
⃝
W

9
W
⃝
W
⃝
W

9
W
⃝
W

9
W
⃝
W

⃝
W
9
W

⃝
W
9
W

⃝
W
9
W
9
W

⃝
W
⃝
W
9
W

≃ 9
W join ⃝W

(-)

≃

dplc
9W

⃝W
(-)

≃

⃝
W dplc9W(-)

≃ join
⃝W

9W
(-)

But this already implies (by the theory of normal forms [Ab96, Prop. 12, Fig. 3][Ko04], together with specialty (206)) the
equality of all those transformations of the form

⃝n 9
n′

(207)

which arise as composites of ⃝-joins and of9-duplicates and which are connected in that there is no non-trivial horizontal
decomposition — such as in this simple example:

⃝
W
⃝
W
⃝
W
H ⃝

W
⃝
W
H ⃝

W
H ≃ 9

W
H 9

W
9
W
H

QW ⊗ QW ⊗ QW ⊗H QW ⊗ QW ⊗H QW⊗H QW ⊗ QW ⊗H

join
⃝

W
⃝

WH
join

⃝
W
H

dplc9W
H

prodQW ⊗ idQW prod
QW
⊗ idH coprod

QW
⊗ idH

This classical fact of Frobenius algebra theory has been called the spider theorem in [CD08, Thm. 1], since it means that in
string diagram notation, all the operations (207) may uniquely by depicted by a diagram of this form:

75

n

...

...

n′ (208)

These are the spider diagrams used in zxCalculus (Lit. 1.18).

Indefiniteness as a computational effect. We may now cast these structures into natural programming language constructs
for computational effects used in §2.4 to encode (quantum gates controlled by) quantum measurement.

Proposition 2.37 (Indefiniteness modality is strong).
For W : ClaType the indefiniteness-modality ⃝W : QuType ! QuType carries symmetric monoidal structure (78) as shown
in (210) exhibiting it as a computational effect (77):

return
⃝W

H

◦
◦ H ⊸ ⃝

W
H

return
⃝W

H
≡ |ψ⟩ 7!

(
w 7! |ψ⟩

)
bind

⃝W

H ,H ′
◦
◦

(
H ⊸ ⃝

W
H ′

)
⊸

(
⃝
W
H ⊸ ⃝

W
H ′

)
bind

⃝W

H ,H ′
≡

(
|ψ⟩ 7!

(
w 7! Gw|ψ⟩

))
7!

((
w 7! |ψw⟩

)
7!

(
w 7! Gw|ψw⟩

))
(209)

As such, this monadic effect is the part of the QS language in §3 responsible for quantum measurement and classical
control.

Dually:

Proposition 2.38 (Randomness modality is costrong). For W : ClaType the randomness-modality 9W : QuType !
QuType carries symmetric comonoidal comonad structure as shown in (211).

76

Symmetric monoidal structure on the ⃝W -monad (cf. Prop. 2.37):
st

ru
ct

ur
e (

⃝
W
H

)
⊗

(
⃝
W
H ′

)
⃝
W

(
H ⊗H ′

)
(
w 7! |ψw⟩

)
⊗

(
w′ 7! |ψ′w′⟩

)
7!

(
w 7! |ψw⟩⊗|ψ

′
w⟩

)
pair⃝W

H⊗H ′

m
on

ad

H ⊗H ′
(
⃝
W
H

)
⊗

(
⃝
W
H ′

)
|ψ⟩ ⊗ |ψ′⟩ 7!

(
w 7! |ψw⟩

)
⊗

(
w 7! |ψ′w⟩

)

7! 7!

|ψ⟩ ⊗ |ψ′⟩ 7!
(
w 7! |ψw⟩ ⊗ |ψ

′
w⟩

)
H ⊗H ′ ⃝

W

(
H ⊗H ′

)

(
ret⃝W
H

)
⊗
(
ret⃝W
H ′

)

pair⃝W
H⊗H ′

ret⃝W
H⊗H ′(

⃝
W
⃝
W
H

)
⊗

(
⃝
W
⃝
W
H ′

) (
⃝
W
H

)
⊗

(
⃝
W
H ′

)
(
(w,w′) 7! |ψw,w′⟩

)
⊗

(
(w,w′) 7! |ψ′w,w′⟩

)
7!

(
w 7! |ψw,w⟩

)
⊗

(
w 7! |ψ′w,w⟩

)
⃝
W

((
⃝
W
H

)
⊗

(
⃝
W
H ′

)) 7! 7!

(
(w,w′) 7! |ψw,w′⟩ ⊗ |ψ

′
w,w′⟩

)
7!

(
w 7! |ψw,w⟩ ⊗ |ψ

′
w,w⟩

)
⃝
W
⃝
W

(
H ⊗H ′

)
⃝
W

(
H ⊗H ′

)

(
join⃝W

H

)
⊗
(
join⃝W

H ′

)

pair⃝W
⃝WH ,⃝WH

′

pair⃝W
H ,H ′

⃝
W

(
pair⃝W

H ,H ′

)
join⃝W

H⊗H ′

m
on

oi
da

l

(
⃝
W
1

)
⊗

(
⃝
W
H

)
(
w 7! 1

)
⊗

(
w 7! |ψw⟩

)

7−
!

1 ⊗
(
w 7! |ψw⟩

)
7−!

(
w 7! |ψw⟩

)
1 ⊗ ⃝

W
H ⃝

W
H

pair⃝W

1,H

ret⃝
W

1

⊗id

(
⃝
W
H

)
⊗

(
⃝
W
H ′

)
⊗

(
⃝
W
H ′′

) (
⃝
W
H ⊗H ′

)
⊗

(
⃝
W
H ′′

)
(
w 7! |ψw⟩

)
⊗

(
w 7! |ψ′w⟩

)
⊗

(
w 7! |ψ′′w⟩

)
7!

(
w 7! |ψw⟩ ⊗ |ψ

′
w⟩

)
⊗

(
w 7! |ψ′′w⟩

)

7! 7!

(
w 7! |ψw⟩

)
⊗

(
w 7! |ψ′w⟩ ⊗ |ψ

′′
w⟩

)
7!

(
w 7! |ψw⟩ ⊗ |ψ

′
w⟩ ⊗ |ψ

′′
w⟩

)(
⃝
W
H

)
⊗

(
⃝
W
H ′ ⊗H ′′

)
⃝
W

(
H ⊗H ′ ⊗H ′′

)

(
pair⃝W

H⊗H ′

)
⊗id

id⊗
(
pair⃝W

H ,H ′

)
pair⃝W

H⊗H ′,H ′′

pair⃝W
H ,H ′⊗H ′′

sy
m

m
et

ri
c

(
⃝
W
H

)
⊗

(
⃝
W
H ′

) (
⃝
W
H ′

)
⊗

(
⃝
W
H

)
(
w 7! |ψw⟩

)
⊗

(
w 7! |ψ′w⟩

)
7!

(
w 7! |ψ′w⟩

)
⊗

(
w 7! |ψw⟩

)

7! 7!

(
w 7! |ψw⟩ ⊗ |ψ

′
w⟩

)
7!

(
w 7! |ψ′w⟩ ⊗ |ψw⟩

)
⃝
W

(
H ⊗H ′

)
⃝
W

(
H ′ ⊗H

)

braid⊗
⃝WH ,⃝WH

′

pair⃝
H ,H ′

pair⃝
H ′,H

⃝W

(
braid⊗

H ,H ′

)

(210)

77

Symmetric comonoidal structure on the9W -comonad (cf. Prop. 2.38):

st
ru

ct
ur

e (
9
W
H

)
⊗

(
9
W
H ′

)
9
W

(
H ⊗H ′

)
(
w, |ψ⟩

)
⊗

(
w, |ψ′⟩

)
 [

(
w, |ψ⟩⊗|ψ′⟩

)
copair9W

H⊗H ′

co
m

on
ad

H ⊗H ′
(
9
W
H

)
⊗

(
9
W
H ′

)
|ψ⟩ ⊗ |ψ′⟩ [

(
w, |ψ⟩

)
⊗

(
w|ψ′⟩

)

[

[

|ψ⟩ ⊗ |ψ′⟩ [
(
w, |ψ⟩ ⊗ |ψ′⟩

)
H ⊗H ′ 9

W

(
H ⊗H ′

)

(
obt9W
H

)
⊗
(
obt9W
H ′

)

copair9W
H⊗H ′

obt9W
H⊗H ′

(
9
W
9
W
H

)
⊗

(
9
W
9
W
H ′

) (
9
W
H

)
⊗

(
9
W
H ′

)
(
(w,w), |ψ⟩

)
⊗

(
(w,w), |ψ′⟩

)
 [

(
w, |ψ⟩

)
⊗

(
w, |ψ′⟩

)
9
W

((
9
W
H

)
⊗

(
9
W
H ′

))
[

[

(
(w,w), |ψ⟩ ⊗ |ψ′⟩

)
 [

(
w, |ψ⟩ ⊗ |ψ′⟩

)
9
W
9
W

(
H ⊗H ′

)
9
W

(
H ⊗H ′

)

(
dupl9W

H

)
⊗
(
dupl9W

H ′

)

copair9W

9WH ,9WH
′

copair9W
H ,H ′

9
W

(
copair9W

H ,H ′

)

dupl9W
H⊗H ′

co
m

on
oi

da
l

(
9
W
1

)
⊗

(
9
W
H

)
(
w, 1

)
⊗

(
w, |ψ⟩

)

−

[

1 ⊗
(
w, |ψ⟩

)
 − [

(
w, |ψ⟩

)
1 ⊗9

W
H 9

W
H

copair9W

1,H

obt9
W

1

⊗ id

(
9
W
H

)
⊗

(
9
W
H ′

)
⊗

(
9
W
H ′′

) (
9
W
H ⊗H ′

)
⊗

(
9
W
H ′′

)
(
w, |ψ⟩

)
⊗

(
w, |ψ′w⟩

)
⊗

(
w, |ψ′′⟩

)
 [

(
w, |ψ⟩ ⊗ |ψ′⟩

)
⊗

(
w, |ψ′′⟩

)

[

[(

w, |ψ⟩
)
⊗

(
w, |ψ′⟩ ⊗ |ψ′′⟩

)
 [

(
w, |ψ⟩ ⊗ |ψ′⟩ ⊗ |ψ′′⟩

)(
9
W
H

)
⊗

(
9
W
H ′ ⊗H ′′

)
9
W

(
H ⊗H ′ ⊗H ′′

)

(
copair9W

H⊗H ′

)
⊗ id

id⊗
(
copair9W

H ,H ′

)
copair9W

H⊗H ′,H ′′

copair⃝W
H ,H ′⊗H ′′

sy
m

m
et

ri
c

(
9
W
H

)
⊗

(
9
W
H ′

) (
9
W
H ′

)
⊗

(
9
W
H

)
(
w, |ψ⟩

)
⊗

(
w, |ψ′⟩

)
 [

(
w, |ψ′⟩

)
⊗

(
w, |ψ⟩

)

[

[(

w, |ψ⟩ ⊗ |ψ′⟩
)

 [
(
w, |ψ′⟩ ⊗ |ψ⟩

)
9
W

(
H ⊗H ′

)
9
W

(
H ′ ⊗H

)

braid⊗
9WH ,9WH

′

copair9
H ,H ′

copair9
H ′,H

9W

(
braid⊗

H ,H ′

)

(211)

78

In outlook to the discussion of mixed quantum states in §2.5 we close this section on quantum epistemology by observing
that indefiniteness- and randomness-effects lift from pure to mixed quantum states via the above (co)monoidal (co)monad
structure, via the monoidal monad structure pair⃝W (210) on the indefinite modality and the comonoidal comonad structure
copair9W (211) on the random modality.
Indefinite mixed states. A quantum system with pure state spaceH : QuTypefdm a dualizable (133) quantum type generally
has mixed states (35) in H ⊗ H∗ : QuType, such that a quantum gate on pure states induces a quantum channel on mixed
states, of the form

A : H1 ! H2 ⊢ chanA :
H1
⊗

H∗1

H2
⊗

H∗2 ,

f

⊗

f †∗
(212)

(for the moment the dagger-(−)† operation may be treated as a black box, we discuss this in [SS23-QR]).

Lemma 2.39 (Enhancing indefiniteness-effects to Mixed states). The assignment which sends an ⃝W -effectful map to its
tensor product with its adjoint dual (212) followed by the ⃝W -pairing (210)

H1 ⃝
W
H2

H1
⊗

H∗1

⃝
W
H2

⊗
⃝
W
H∗2

⃝
W

H2
⊗

H∗2

G•

7−
!

G•
⊗

G†•
∗

pair⃝W

(213)

preserves ⃝W -Kleisli-composition (69), in that:(
pair⃝W

H2, H
∗
2
◦ (G• ⊗G†•

∗
)
)
>=>

(
pair⃝W

H3, H
∗
3
◦ (H• ⊗ H†•

∗
)
)
= pair⃝W

H3, H
∗
3
◦
((

G• >=> H•
)
⊗

(
G†•
∗
>=> H†•

∗))
(214)

and hence defines a faithful endofunctor on the free ⃝W -modales (93)

pair⃝W ◦ (−)• ⊗ (−)†•
∗

: QuType⃝W
QuType⃝W

(215)

Proof. This is an argument analogous to that for monad transformations (105). Consider the following diagram:

H1 ⊗H
∗
1

(
⃝
W
H2

)
⊗

(
⃝
W
H∗2

) (
⃝
W
⃝
W
H3

)
⊗

(
⃝
W
⃝
W
H∗3

) (
⃝
W
H

)
⊗

(
⃝
W
H∗

)

H2 ⊗H
∗
2 ⃝

W

((
⃝
W
H3

)
⊗

(
⃝
W
H∗3

))

⃝
W
⃝
W

(
H3 ⊗H

∗
3
)

⃝
W

(
H3 ⊗H

∗
3
)

G•⊗G†•
∗

(
⃝W H•

)
⊗
(
⃝W H†•

∗)

pair⃝W
H ,H∗

join⃝W
H
⊗join⃝W

H∗

pair⃝W
⃝WH3,⃝WH

∗
3

pair⃝W
H3,H

∗
3

⃝W

(
H•⊗H†•

∗)

⃝
W

(
pair⃝W

H3,H
∗
3

)
join⃝W

H3,H
∗
3

(216)

Here the middle square commutes by the naturality of the pairing map, while the right square commutes as part of the
monoidal monad structure (210) exhibited by the pairing. Therefore the full diagram commutes. Since its total top and right
composite is the right hand side of (214) while its total left and bottom (diagonal) composite is the left hand side of (214),
this proves the claim. □

79

2.4 Quantum Gates & Measurement
We explain how controlled quantum gates and quantum measurement gates (Lit. 1.1) are naturally represented in the quantum
modal logic of §2.3 and give (Prop. 2.40) a formal proof of the deferred measurement principle (18).

Data-typing of controlled quantum gates via quantum modal types.
We may observe that, with §2.3, we
now have available the natural data-
typing of classical/quantum data that
is indicated on the right.

Notice how the distinction between
classical and quantum data is re-
flected by the application or not of the
(co)monad ⃝ (2).

Throughout we use monadicity of ⊕W

(Prop. 2.32) to translate (204)
• epistemic typing

via W-dependent linear types
into
• effective typing

via ⃝W -modal linear types.

Besides the practical utility which
we demonstrate in the following, the
modal logic of this typing neatly re-
flects intuition, as shown.

Classical/quantum register Controlled quantum register

Sy
m

bo
lic W

H

QW

H

E
pi

st
em

ic actual quantum data potential quantum data

H• : QuType
W

w : W ⊢ Hw : QuType

2
W
H• : QuType

W

w : W ⊢ ⊕
w′
Hw′ : QuType

E
ff

ec
tiv

e

indefiniteness-handling quantum data free indefiniteness-handling quantum data

⊕
W
H• : QuType⃝W

⃝
W ⊕

W
2
W
H• : QuType⃝W

⃝
W
⊕
W
H• : QuType⃝

W

⃝
W

Classically controlled quantum gate Quantumly controlled quantum gate

Sy
m

bo
lic WW

KH G

QWQW

KH G

E
pi

st
em

ic

H• K•

w : W ⊢ Hw Kw

G•
an actual entailment

Gw

2
W
H• 2

W
K•

w : W ⊢ ⊕
W
H• ⊕

W
K•

2
W

G•

a potential entailment

⊕
W

G•

E
ff

ec
tiv

e ⊕
W
H• ⊕

W
K•

⃝
W
H ⃝

W
K

⃝
W

⊕
W

G•

if H•=H

⃝
W

if K• =K
⃝
W

G•

bind
(
H

G•−!⃝WK
)

a ⃝-effectful operation

⊕
W
2
W
H• ⊕

W
2
W
K•

⃝
W
⊕
W
H• ⃝

W
⊕
W
K•

⃝
W

⊕
W
2
W

G•

⃝
W

⃝
W
⊕
W

G•

bind
(
return ◦⊕

W
G•

)
a ⃝-effectless operation

Here the “epistemic”-typing of controlled quantum gates shown in the middle row is manifest: For classical control the
quantum gate is a W-dependent linear map, while for quantum control it is a genuine linear map on the W-indexed direct sum.
The equivalent (204) “effective” typing in the top line of the bottom row follows by monadicity of ⊕W (see Prop. 2.32). The
very last line shows the corresponding Kleisli-triple formulation of “programs with side effects” (67). On the left this requires
assuming that the dependent linear type is constant, H• = H (which typically is the case in practice, see the example on p.
81) since that makes it correspond to a free ⃝-modale. On the right we see the effectless operation (70).

80

Quantum measurement – Copenhagen-style. Last but
not least, we obtain this way a natural typing of the oth-
erwise subtle case of quantum measurement gates: These
are now given simply by the 2-counit and, equivalently, by
the ⃝-join (cf. Prop. 2.29), as shown on the right.

Via the language of effectful computation (Lit. 1.17) and
with the “reader-monad” ⃝ modally pronounced as “indef-
initeness” (195), this translates to the pleasant statement
that:

“For effectively-typed quantum data, quantum measure-
ment is nothing but the handling of indefiniteness-effects”
(regarded as modale homorphisms via (94)).

In more detail:
“Before measurement, quantum data is indefinite(-
effectful), while quantum measurement actualizes the data
by handling of its indefiniteness(-effect)”

This way the puzzlement of the “state collapse” (21) is re-
solved into an appropriate quantum effect language equiva-
lent (204) to quantum modal logic.

Quantum measurement gate

Sy
m

bo
lic QW W

H H

0 1

E
pi

st
em

ic 2
W
H• H•

w : W ⊢ ⊕
w′
Hw′ Hw

⊕
w′
|ψw′⟩ |ψw⟩

obt
2
W

H•

the necessary becomes actual

prw

quantum state collapse

E
ff

ec
tiv

e ⊕
W
2
W
H• ⊕

W
H•

(97)

⃝
W
⊕
W
H• ⊕

W
H•

⃝
W

⊕
W

obt
2
W

H•

⃝
W

handle
⃝

W
⊕WH•

⃝
W -effect handling

Before looking at examples (p. 81), we record a basic structural result immediately implied by this typing, which may
evidently be understood as formalizing the deferred measurement principle (18), thus making this principle verifiable in
LHoTT as [Sta15] envisioned should be the case for any respectable quantum programming language:

Proposition 2.40 (Deferred measurement principle). With respect to the above typing of quantum gates, the 2-Kleisli
equivalence (95) is the following transformation of quantum circuits:

(QuType
W

)
2W

(
H•, H

′′
•

)
2
W

-Kleisli morphisms

QuType2W

W

(
2
W
H•, 2

W
H ′′•

)
homomorphisms of
free 2

W
-coalgebras

(QuType
W

)
2W

(
H•, H

′′
•

)
2
W

-Kleisli morphisms

(
2
W
H•

F
−! 2

W
H ′•

obt2W

H•−−−! H ′•
G•−! H ′′•

)
measurement-controlled quantum gate

7!
(
2
W
H•

F
−! 2

W
H ′•

2W G•
−−−−! 2

W
H ′′•

)
quantum-controlled quantum gate...

7!
(
2
W
H•

F
−! 2

W
H ′•

2W G•
−−−−! 2

W
H ′′•

obt2W

H•−−−! H ′′•
)

...followed by measurement

0 1

F

G

WQW

H H ′′H ′

deferred measurement principle
 −−−−−−−−−−−−−−−−−−!

WQW

H H ′′

0 1

F

G

∼

2
W

(-) ◦ dplc2W
(-)

id
Kleisli equivalence

∼

obt2W
(-) ◦ (−)

Proof. It just remains to see that the Kleisli equivalence 2
W

(-)◦dplc2W

(-) acts in the first step as claimed, hence that the following

diagram commutes:

2
W
H• 2

W
H ′•

2
W
2
W
H• 2

W
2
W
H ′• 2

W
H ′• 2

W
H ′′•

dplc2W
H•

F

dplc2W
H ′•

2W F 2
W

(
obt2W
H ′•

)
2W G•

But the square commutes since the gate F is independent of the measurement result w : W and hence is a homomorphism of
free 2-coalgebras (by Rem. 2.31), while the triangle commutes by the comonad axioms (72). □

81

Example: Modal typing of basic QBit-gates.
The key aspects of the above modal typing rules for quan-
tum gates are already well-illustrated by simple examples
of standard QBit-gates such as the CNOT-gate (17). Here
the quantum state space is that of a pair of coupled qbits,
QBit ⊗ QBit, and the “many possible worlds” W ≡ Bit
are labeled by the bits which are the classical outcomes
of measurements on the first qbit in the pair:

Bit ≡ {0, 1} ∈ ClaType ,

QBit ≡ C
[
{0, 1}

]
≃ C2 ∈ QuType .

In seeing how the modal typing shown on the right and
below matches the standard formulas (17) we repeatedly
make use of the following canonical identifications:

QBit ⊗ QBit
≃ C[Bit] ⊗ QBit
≃

(
C0 ⊕ C1

)
⊗ QBit

≃ QBit0 ⊕ QBit1
≃ ⊕Bit QBit•
≃ ⃝

Bit QBit ,

where the subscript indicates which direct summand cor-
responds to which “branch” of “worlds” of possible mea-
surement outcomes.

QBit-Measurement

sy
m

bo
lic

0 1
QBit

QBit

Bit

QBit

ep
is

te
m

ic 2
Bit

QBit• QBit•

b : Bit ⊢ QBit ⊗ QBit QBit

|b1⟩ ⊗ |b2⟩ 7! δb1
b |b2⟩

obt2Bit
QBit•

E
ff

ec
tiv

e

⃝
Bit
⃝
Bit

QBit ⃝
Bit

QBit

QBit⊗QBit
⊕

QBit⊗QBit
QBit⊗QBit

bind
(
QBit ⊗ QBit

QBit
⊕

QBit

)

handle
⃝

Bit
⃝

Bit QBit

P0⊗id

P1⊗id

|b1⟩⊗|b2⟩ 7! δ
b1
0 |

b2⟩

|b1⟩⊗|b2⟩ 7! δ
b1
1 |b2⟩

CNOT gate

Sy
m

bo
lic Bit

QBit

Bit

QBit

QBit

QBit

QBit

QBit

E
pi

st
em

ic QBit• QBit•

b : Bit ⊢ QBit QBit

|b2⟩ 7! |b xor b2⟩

CNOT•
2
Bit

QBit• 2
Bit

QBit•

b : Bit ⊢ QBit ⊗ QBit QBit ⊗ QBit

|b1⟩ ⊗ |b2⟩ 7! |b1⟩ ⊗ |b1 xor b2⟩

2
Bit

CNOT•

E
ff

ec
tiv

e

⃝
Bit

QBit ⃝
Bit

QBit

QBit
⊕

QBit

QBit
⊕

QBit

bind
(
QBit

QBit
⊕

QBit

)

⊕
Bit

CNOT•

|b2⟩ 7! |0 xor b2⟩

⊕

|b2⟩ 7! |1 xor b2⟩

|b2⟩ 7! |0 xor b2⟩

|b2⟩ 7! |1 xor b2⟩

⃝
Bit
⊕
Bit

QBit ⃝
Bit
⊕
Bit

QBit

QBit⊗QBit
⊕

QBit⊗QBit

QBit⊗QBit
⊕

QBit⊗QBit

bind
(
QBit ⊗ QBit QBit ⊗ QBit

QBit ⊗ QBit
⊕

QBit ⊗ QBit

)

⃝
Bit
⊕
Bit

CNOT•

|b1, b2⟩ 7! |b1, b1 xor b2⟩

⊕

|b1, b2⟩ 7! |b1, b1 xor b2⟩

|b1, b2⟩ 7! |b1, b1 xor b2⟩

82

For the record, we also spell out the two possible combinations of the above CNOT- and QBit-measurement gates:

CNOT with QBit-Measurement

sy
m

bo
lic

0 1
QBit

QBit

Bit

QBit

0 1
QBit

QBit

Bit

QBit

ep
is

te
m

ic 2
Bit

QBit• QBit• QBit•

b : Bit ⊢ QBit ⊗ QBit QBitb QBitb

|b1⟩ ⊗ |b2⟩ 7! |b2⟩ 7! |b xor b2⟩

measurement
obt2W

QBit•

cls. contr. qnt. NOT

CNOT•
2
Bit

QBit• 2
Bit

QBit• QBit•

b : Bit ⊢ QBit ⊗ QBit QBit ⊗ QBit QBitb

|b1⟩ ⊗ |b2⟩ 7! |b1⟩ ⊗ |b2 xor b1⟩ 7! |b2 xor b⟩

quantum CNOT
2
Bit

CNOT•
measurement

obt2Bit
QBit•

E
ff

ec
tiv

e

⃝
Bit
⊕
Bit

QBit ⊕
Bit

QBit ⊕
Bit

QBit

QBit ⊗ QBit
⊕ QBit ⊗ QBit QBit ⊗ QBit

QBit ⊗ QBit

bind
(
QBit⊗QBit

QBit
⊕

QBit

QBit
⊕

QBit

)

handle
⃝

Bit
QBit

⊕
Bit

CNOT•

P0⊗id |b1⟩⊗|b2⟩ 7! |b1⟩⊗|b1 xor b2⟩

P1⊗id

|b1,b2⟩ 7! δ
b1
0
|b2⟩

|b1 ,b2⟩ 7! δ
b1
1 |b2⟩

|b2⟩ 7! |0 xor b2⟩

|b2⟩ 7! |1 xor b2⟩

⃝
Bit
⊕
Bit

QBit ⃝
Bit
⊕
Bit

QBit ⊕
Bit

QBit

QBit⊗QBit QBit⊗QBit
⊕ ⊕ QBit⊗QBit

QBit⊗QBit QBit⊗QBit

bind
(
QBit⊗QBit QBit⊗QBit

QBit
⊕

QBit

)

⃝
Bit
⊕
Bit

QBit handle
⃝

⊕Bit QBit

|b1⟩⊗|b2⟩ 7! |b1⟩⊗|b1 xor b2⟩

P0⊗id

⊕

|b1⟩⊗|b2⟩ 7! |b1⟩⊗|b1 xor b2⟩

P1⊗id

|b1⟩⊗|b2⟩ 7! |b1⟩⊗|b1 xor b2⟩
|b1,b2⟩ 7! δ

b1
0
|b2⟩

|b1 ,b2⟩ 7! δ
b1
0 |b2⟩

Notice here how the component expressions on the left and right agree, in accord with the deferred measurement principle
(Prop. 2.40). In components this is an elementary triviality, but the point is that by making this triviality follow from typing
rules it becomes machine-verifiable also in more complex cases.

qRAM. As a byproduct of the modal typing of controlled quantum gates, we may notice a formal reflection of the idea of
circuit models for qRAM (20). Namely if, with (86), we recall that RAM-effects are typed by the state monad ⃝

W
9
W

(196) —

which immediately makes sense linearly just as it does classically—, then quantumly controlled quantum circuits in the above
sense (p. 80) are formally identified with QRAM-effective quantum programs as follows, where the first transformation is for
effectless programs (70) while the second is9W ⊣ ⃝W -adjointness (75):

The passage to circuit models for qRAM (20) may
formally be understood as the modal adjointness be-
tween

(i) QRAM-effective quantum programs H 7−!
⃝
W
9
W
K

(ii) quantumly controlled quantum circuits
⊕
W
H 7−! ⊕

W
K

⃝
W
⊕
W
H ⃝

W
⊕
W
K QW-controlled

quantum gate (p. 80)

⊕
W
H ⊕

W
K

9
W
H 9

W
K

H ⃝
W
9
W
K quantum circuit interacting

with a QRAM space QW

⃝
W

⃝
W
⊕
W

G•

⃝
W

⊕
W

G•

⊕
W

G•

⊕̃
W

G•

(217)

At the same time, this QuantumState-monad
QWState ≃ ⃝

W
9
W

reflects mixed QW-states, discussed in §2.5.

83

Quantum contexts. The formal dual of the previous discussion of quantum measurement realized as a monadic computational
effect yields quantum state preparation realized as a comonadic computational context (116): Shown on the left below
is the modal typing of quantum state preparation in the generality of classical control, namely quantum state preparation
conditioned on a classical parameter w : W. In the practice of quantum circuits, this typically applies to quantum types of
the form 1

W
in which case the traditional notion of state preparation is manifest: In world w the result of the preparation is the

quantum state |w⟩. This is shown for the example of QBit-preparation on the right:

quantum state preparation

Sy
m

bo
lic W QW

H H

| • ⟩

E
pi

st
em

ic

H• ♢
W
H•

w : W ⊢ Hw ⊕
W
H•

|ψw⟩ 7! ⊕
w′
δw′

w |ψw⟩

ret
♢W
H•

co
-e
ff

ec
tiv

e

⊕
W
H• ⊕

W
♢
W
H•

(97)

⊕
W
H• 9

W
⊕
W
H•∑

w
|ψw⟩ 7! ⊕

w′
|ψw′⟩

9
W

⊕
W

ret
♢W
H•

9
W

provide9W
⊕WH•

QBit preparation

Sy
m

bo
lic Bit QBit

1 1

| • ⟩

E
pi

st
em

ic

1
Bit

♢
Bit
1
Bit

b : Bit ⊢ 1 QBit

1 7! | b⟩

ret
♢Bit
1Bit

Quantum measurement – Everett style. But we may observe that quantum state preparation in the above classically-
controlled generality can itself be used to model quantum measurement, namely as the preparation of the collapsed state
conditioned on the classical measurement outcome!

This is seen from the last line of the co-effective typing above, which we recognize as the branching perspective on quan-
tum measurement – if only we disregard the9W -modale homomorphism property of this map – which formally corresponds
to pulling this map back up by applying (-) ⊗ 1W . This yields the following purple map and hence the Everett-style typing of
quantum measurement mentioned in the introduction (7) — which is related to the above Copenhagen-style typing (from p.
81) by the hexagon of epistemic entailments (2.3):

2
W
H• 2

W
H• 2

W
♢
W
H• 2

W
♢
W
H•

w : W ⊢ ⊕
W
H• ⊕

W
H• 9

W
⊕
W
H• 9

W
⊕
W
H•

H H

H

⊕
...
⊕

H

H

⊕
...
⊕

H∑
w′
|ψw′⟩ 7! ⊕

w′′
|ψw′′⟩ 7! ⊕

w′′
Gw′′ |ψw′′⟩

2
W

G• 2
W

ret
♢W
H•

quantum measurement
typed Everett-style

2
W
♢
W

G•

l

⊕
W

G•

coherent quantum
gate

≡

provide9W
⊕WH•

collapsed-state-preparation
by providing9-context

≡

≡

9W

9
W
⊕
W

G•

coherent quantum gate
under9 ≡

9W

G

P1
... branching

P|W |

G
⊕

...
⊕
G

(218)

84

Remark 2.41 (No classical control appears in Everett-typing).
(i) Comparing the epistemic hexagon (7), we find that where the Copenhagen-style typing sees a classically-controlled quan-
tum gate (cf. p. 80) the Everett-style typing (218) sees (no classical control) but the corresponding quantumly-controlled
quantum gate — but applied in each of several “branches”.
(ii) This primacy of the non-classical quantum perspective and the disregard for the need for any classical contexts is what
Everett amplified when speaking of the “universality” of the quantum state (this being the very title of his thesis [Ev57a]).
The modal typing of quantum processes in (218) provides a formalization of this intuition in a precise and machine-verifiable
form.

Remark 2.42 (Everett-style measurement typing in the literature).
(i) Essentially the typing-by-branching of quantum measurement in the bottom of (218) may be recognized in the early
proposal for quantum programming language syntax in [Se04, p. 568].
(ii) The observation (apparently independently of [Se04]) that this may usefully be understood as the provide-operation of
modales (coalgebras) over the comonad9W ≃ QW ⊗ (-) (Prop. 2.35) is due to [CPav08, Thm. 1.5] (cf. [CPP0909, pp. 28])
— this being the origin of the Frobenius-monadic formalization of “classical structures” in the zxCalculus (Rem. 2.36).
(iii) While — in formulating the quantum language QS below in §3 — we focus on language constructs for the Copenhagen-
style typing (since this brings out the desired dynamic lifting of quantum-to-classical control, Lit. 1.11), the situation (218)
shows that and how the ambient LHoTT language may in principle also be used to verify protocols in Everett-style formalisms
such as the zxCalculus.

Computational quantum measurement as entering the Indefiniteness-monad. In summary, we have seen that coherent
quantum gates are naturally typed as free indefinite-effectful linear maps, with quantum measurement given by the handling of
the free indefiniteness-effect. Computationally this means equivalently that coherent quantum gates are equivalently the plain
linear maps that one expects them to be, with quantum measurement being the step of “entering the indefiniteness”-monad,
in the sense of the commutativity of the following diagram:

Computationally, the ⃝-effective typing of quantum gates
with quantum measurement amounts to regarding the map

collapseW : QW ⊗H ⃝
W
H

|w⟩ ⊗ |ψ⟩ 7!
(
w, |ψ⟩

) (219)

(whose underlying function is the identity, up to re-typing)
as passing into (the category of free modales over) the ⃝W -
monad, as shown by the commuting diagram on the right.
It is this final computational typing of quantum measure-
ment which neatly lends itself to programming language-
articulation in §3, see p. 104.
Notice that while the epistemic, effective and computational
perspectives are all equivalent, they superficially express a
different ontology of the measurement collapse:
In the epistemic and effective perspective the eventual mea-
surement in the W-basis is declared (possibly long) before
that measurement takes places: In this perspective all pos-
sible future measurement outcomes are pre-emptively allo-
cated in classical data.

Quantum Gate followed by Measurement

sy
m

bo
lic

0 1H QW WG

ep
is

te
m

ic

QV⊗1
W

2
W
1
W

1
W

eff
ec

tiv
e

⃝
W

QV ⃝
W

QW ⃝
W
1

co
m

pu
ta

tio
na

l

QV QW

G⊗1
W

7!⊕
W

obt2W
1W

7!⊕
W

7!⊕
W

⃝
W

G join⃝W
1

measure

ret⃝W
QV

dy
na

m
ic

lif
tin

g

G
coherent quantum gate

ret⃝W
QW

d
e
f
i
n
i
t
e
l
y

collapse

In contrast, in the computational typing the “dynamically lifted” classical measurement outcomes are syntactically ref-
erenced only the moment that the measurement actually takes place (computationally). In particular, as successive quantum
measurements are made, the computational typing of the quantum circuit accumulates the corresponding indefiniteness-
modalities, reflecting the fact that more and more measurement outcomes wi : Wi become “dynamically lifted” into the
classical register (Lit. 1.11):

85

QW1 ⊗ QW2 ⊗ QW3
data in quantum registers

⃝
W1

QW2 ⊗ QW3 ⃝
W1

⃝
W2

QW3 ⃝
W1

⃝
W2

⃝
W3

data in classical registers

1
G1;collapseW1

Computational typing of successive dynamically lifted quantum measurementss

G2;collapseW2
G3;collapseW3

QW1 W1

QW2 W2

QW2 W2

G1

G2

G3

0 1

0 1

0 1

(220)

Enhancing dynamically lifted quantum measurement from pure to mixed states. Remarkably, the above effective and
computational typing of quantum measurement and controlled quantum gates is enhanced verbatim to quantum channels on
mixed states (35), due to the faithful functor (215)

pair⃝W ◦ (−) ⊗ (−)†∗ : QuType⃝W
QuType⃝W

H1 H1 ⊗H
∗
1

(
⃝
W
H2

)
⊗

(
⃝
W
H∗2

)

⃝
W
H2 ⃝

W

(
H2 ⊗H

∗
2
)
.

A•

A•⊗A†•
∗

pair⃝W
H2,H

∗
2

In the same manner, the computational typing (219) of quantum measurements enhances to mixed states, by first applying
collapseW (219) to states and co-states in parallel, and then ⃝−pairing (210) the result, whence we may and will denote
this operation by the same symbol “collapseW”:

mixed
states

density
matrices

probability
distributions

QW ⊕WC ⃝WC
⊗ ⊗ ⊗ ⃝W

C
⊗
C∗

⃝WC
(QW)∗ ⊕WC

∗ ⃝WC
∗

tensor product of
free ⃝W -modales

|ψ⟩⊗⟨ψ|

(∑
w |w⟩⟨w|ψ⟩

)
⊗(∑

w′⟨ψ|w′⟩⟨w′|
) 7!

(
(w,w′) 7! |w⟩⟨w|ψ⟩⟨ψ|w′⟩︸ ︷︷ ︸

coherences

⟨w′|
) (

w 7!
∣∣∣⟨w|ψ⟩∣∣∣2)

a pure state
among mixed Born rule

measure separately
states and co-states

decohere: discard
off-diagonal entries

≃

collapseW ≡ join⃝W
C
◦ ret⃝W

⊕WC

⊗

collapseW ≡ join⃝W
C∗
◦ ret⃝W

⊕WC
∗

pair⃝W
C,C∗

⃝W ev

collapseW

separately handle

pure ⃝W - effects
monoidal monad
structure on ⃝W

7! 7!

(221)

Noteworthy are two remarkable aspects of this ⃝W -effectful map:
(i) in this form, the coherent quantum phases drop out, as expected for a realistic quantum measurement

(the failure of which to happen for the analogous process on pure states was highlighted in [CPaq08, §1.6], where a
different solution was discussed),

(ii) in fact, (221) reproduces exactly the typing of the quantum measurement process in Lüders’ first form (44), neatly
embodying the Born rule (32).

In conclusion: Due to the symmetric monoidal monad structure on the indefiniteness-modality ⃝, the monadic typing of
classically controlled quantum circuits with dynamically lifted quantum measurement gates has syntactically the same form
whether applied to pure or to mixed states.

The difference with interpreting quantum circuits in the generality of mixed states is that here further stochastic quantum
operations become available, the quantum channels. We discuss this in §2.5.

86

2.5 Mixed Quantum Types
We discuss a natural monadic formalization of mixed quantum states (35) and their quantum channels (39). The key observa-
tion is once again that the main structure happens to come for free as (co)monadic (co)effects that need not be postulated but
are definable (admissible) in a suitably expressive linear type theory:

(i) quantum channel dynamics (39) on mixed quantum states (35) and their quantum observables (60) is all encoded by
transformations (103) of the QuantumState (co)monadsHState

(ii) the collapsing measurement process on such mixed states is given by the monoidal monadic structure on the⃝-modality
(221).

What requires a little extra work to formalize is, finally:
(iii) the dagger-structure (−)† (34) on quantum types. This has a rather beautiful (homotopy-)type-theoretic solution, which

however is beyond the scope of this article and instead relegated to [SS23-QR].
For the present discussion, we assume the existence of operator adjoints as a black box; in fact, we exclusively need
dual operator adjoints.

H1, H2 : QuTypefdm , f : H1 ! H2 ⊢ f †
∗

: H∗1 ! H
∗
2 . (222)

We find that the structure of quantum probability theory
(Lit. 1.12) — where quantum gates operating on pure quan-
tum states are generalized to quantum channels operating
on mixed quantum states (density matrixes) — is closely
reflected in the monadic computational theory (Lit. 1.17)
of the linear analog of the classical State/Store (co)monads,
namely the QuantumState Frobenius monads HState ≡

(-) ⊗H ⊗H∗

Quantum Probability Theory QuantumState monadic computation

Quantum channels QuantumState transformations

Mixed quantum states QuantumState effectful scalars

Quantum observables QuantumState contextful scalars

Evolution of quantum observables QuantumState transformation on modales

QuantumState modality. We consider the evident linear version of the classical state monad (83) and the classical store
comonad (118), which over a finite-dimensional quantum state space fuse to a Frobenius monad (122) that, we will see, quite
deserves to be called the QuantumState modality.

Definition 2.43 (QuantumState). For H : QuTypefdm a strongly dualizable linear type (133) (hence a finite-dimensional
vector space in the model of Def. 2.1) with dual H∗ ≃ H ⊸ 1 (137), we say that the corresponding QuantumState
(co)monads are the Frobenius monads (122) induced (74) by the corresponding ambidextrous adjunction of tensoring functors
(138):

QuantumState
Frobenius

monad
QuType QuType

HState

⊥

H∗Store

(-)⊗H

(-)⊗H∗

(-)⊗H

⊥

⊥

HStore

⊥

H∗State

(223)

Since the ambidexterity means thatHState andH∗Store fuse to a single Frobenius monad (122), we will often refer to both or
either as QuantumState modalities and speak of the QuantumStore modality when referring specifically only to the comonad
structure.

For the record, in bra-ket notation (28) the return/obtain-operations of QuantumState are as follows (where W, QW ≃ H

denotes any orthonormal basis forH with respect to any chose Hermitian inner product ⟨·|·⟩):

|κ⟩ |ψ⟩ |κ⟩ |ψ⟩

K ⊗ H K ⊗H

K K ⊗H ⊗H∗

|κ⟩ 7!
∑
w
|κ⟩ ⊗ |w⟩⟨w|

7!

retHState
K

|κ⟩ ⟨ϕ| |κ⟩ ⟨ϕ|

K ⊗ H∗ K ⊗H∗

K ⊗H∗ ⊗H K

|κ⟩ ⟨ϕ| ⊗ |ψ⟩ |κ⟩⟨ϕ|ψ⟩

7!
id

obtHStore
K

7!

|κ⟩ |ψ⟩ |κ⟩ |ψ⟩

K ⊗ H K ⊗H

K ⊗H ⊗H∗ K

|κ⟩ |ψ⟩⟨ϕ| |κ⟩⟨ϕ|ψ⟩

7!
id

obtH
∗Store
K

7!

|κ⟩ ⟨ϕ| |κ⟩ ⟨ϕ|

K ⊗ H∗ K ⊗H∗

K K ⊗H∗ ⊗H

|κ⟩ 7!
∑
w
|κ⟩⟨w| ⊗ |w⟩

7!
id

retH
∗State
K

(224)

87

so that the join/duplicate-operations are as follows:

K ⊗H∗ ⊗H K ⊗H∗ ⊗H ⊗H∗ ⊗H

|κ⟩ ⟨ϕ| ⊗ |ψ⟩
∑
w
|κ⟩ ⟨ϕ| ⊗ |w⟩⟨w| ⊗ |ψ⟩

duplHStore
K

retHState
K⊗H∗

⊗H

7!

K ⊗H ⊗H∗ ⊗H ⊗H∗ K ⊗H ⊗H∗

|κ⟩ ⊗ |−⟩⟨ϕ| ⊗ |ψ⟩⟨−| |κ⟩⟨ϕ|ψ⟩ ⊗ |−⟩⟨−|

joinHState
K

obtHStore
K⊗H

⊗H∗

7!

K ⊗H∗ ⊗H ⊗H∗ ⊗H K ⊗H∗ ⊗H

|κ⟩ ⟨−| ⊗ |ψ⟩⟨ϕ| ⊗ |−⟩ 7! ⟨ϕ|ψ⟩⟨−| ⊗ |−⟩

joinH
∗State
K

obtH
∗Store
K⊗H∗

K ⊗H ⊗H∗ K ⊗H ⊗H∗ ⊗H ⊗H∗

|κ⟩ ⊗ |ψ⟩⟨ϕ| 7!
∑
w
|κ⟩|ψ⟩⟨w| ⊗ |w⟩⟨ϕ|

duplH
∗Store
K

retH
∗State
K⊗H

⊗H∗

(225)

Notice that these operations all express in one way or another the basic bra-ket manipulations known from quantum me-
chanics textbooks (evaluation and “insertion of an identity”). In particular, the zig-zag identities which witness the adjunctions
in (223) are nothing but the following familiar basic identities:

obtainHStore
K ⊗H

◦
(
returnHState

K
⊗ H

)(
|κ⟩ ⊗ |ψ⟩

)
≡ |κ⟩ ⊗

∑
w
|w⟩⟨w|ψ⟩ = |κ⟩ ⊗ |ψ⟩

(
obtainHStore

K
⊗ H

)
◦ returnHState

K ⊗H∗

(
|κ⟩ ⊗ ⟨ϕ|

)
≡ |κ⟩ ⊗

∑
w
⟨ϕ|w⟩⟨w| = |κ⟩ ⊗ ⟨ϕ| .

Remark 2.44 (QuantumState as QuantumWriter). The QuantumState Frobenius monad of Def. 2.43 is equivalently the
linear (co)Writer monad (81) overH ⊗H∗, the latter understood with its canonical Frobenius monoid structure of endomor-
phism objects in compact closed categories (see e.g. [Vic11, Lem. 3.17]):

quantum
state

quantum
(co)writer

quantum
store

HState (-) ⊗
(
H ⊗H∗

)
H∗Store

Monads FrobMonads CoMonads
In particular, if H ≃ QW then QuantumState is the (co)Writer monad for QW ⊗ QW∗, in which form it is interesting to
compare to the quantum indefiniteness/randomness modality, which is the (co)writer for a single copy QW, according to
Prop. 2.35.

Frobenius algebra Quantum modalities Quantum effects

QW indefiniteness/randomness collapsing
quantum measurement

QW ⊗ QW∗ quantum state/store quantum probability

Proposition 2.45 (QuantumState effect-/contextful maps are Linear operators).
(i) TheH∗State modality of Def. 2.43 has (co)Kleisli morphisms of the form

K ⊗H ⊗H∗ L

|κ⟩ ⊗ |ψ⟩⟨ϕ| 7! ⟨ϕ,−| A |κ, ψ⟩

OA

↔ A : K ⊗H ! L ⊗H ↔ K L ⊗H ⊗H∗

|κ⟩ 7! ⟨−,−| A |κ,−⟩

SA

(226)

(ii) on which the bind/extend- operations are given by

extendH
∗Store
K ,L

◦
◦

(
K ⊗H ⊗H∗ ⊸ L

)
⊸

(
K ⊗H ⊗H∗ ⊸ L ⊗H ⊗H∗

)
extendH

∗Store
K ,L

≡
(
|κ⟩ |ψ⟩⟨ϕ| 7! ⟨ϕ,−|A|κ, ψ⟩

)
7!

(
|κ⟩ |ψ⟩⟨ϕ| 7! A|κ, ψ⟩⟨ϕ|

) (227)

bindHState
K ,L

◦
◦

(
K ⊸ L ⊗H ⊗H∗

)
⊸

(
K ⊗H ⊗H∗ ⊸ L ⊗H ⊗H∗

)
bindHState

K ,L
≡

(
|κ⟩ 7! ⟨−,−| A |κ,−⟩

)
7!

(
|κ⟩|ψ⟩⟨ϕ| 7! A |κ, ψ⟩⟨ϕ|

) (228)

(iii) Hence we have bijections
HState-contextful maps

OA : HState(K)! L ↔

linear operators

A : K ⊗H ! L ⊗H ↔

HState-effectful maps

SA : K ! HState(L)
under which Kleisli composition corresponds to ordinary composition of linear operators:

composition ofHState-contextful maps

OA ◦
(
extendH

∗Store(OB
))
= OA·B ↔ SA·B

composition of linear operators

=

composition ofHState-effectful maps

SA ◦
(
bindHState(SB

))
.

88

Proof. By direct unwinding of the formulas (73) and (225):

K ⊗H ⊗H∗ K ⊗H ⊗H∗ ⊗H ⊗H∗ L ⊗H ⊗H∗

extendH
∗Store
K ,L

OA : |κ⟩ ⊗ |ψ⟩⟨ϕ| 7!
∑
w
|κ⟩ |ψ⟩⟨w| ⊗ |w⟩⟨ϕ| 7!

∑
w
|w⟩⟨w,−| A |κ, ψ⟩⟨ϕ|

= A |κ, ψ⟩⟨ϕ|

K ⊗ H ⊗H∗ L ⊗H ⊗H∗ ⊗H ⊗H∗ L ⊗H ⊗H∗

bindHState
K ,L

SA : |κ⟩ ⊗ |ψ⟩⟨ϕ| 7! ⟨−,−| A |κ,−⟩ ⊗ |ψ⟩⟨ϕ| 7! A |κ, ψ⟩⟨ϕ|

duplH
∗Store
K∗ OA ⊗H⊗H

∗

SA⊗H⊗H
∗ joinHState

L

□

Quantum observables. We show that the core structure of quantum observables is reflected in the QuantumState-contextful
scalars (Ex. 2.46) including:
• their expectation values (229),
• their algebra structure (230),
• their Heisenberg-evolution (Prop. 2.50).

Example 2.46 (Quantum observables are the QuantumState contextful scalars). Notice that in any monoidal category
like (QuType,⊗,1) it makes sense to refer to the endomorphisms c : 1 ! 1 of the tensor unit as the scalars of the theory
([AC04, §6][HV12, 2.1]). Therefore, with the understanding of comonadic computational contexts (Lit. 1.17) and given a
comonad C on QuType, the Kleisli-endomorphisms of the tensor unit C(1)! 1 may be thought of (116) as the C-contextful
scalars. Now Prop. 2.45 says that the HState-contextful scalars are equivalently the linear operators on H , here seen to be
representing quantum observables (60) incarnated via their system of expectation values (61):

OA : H ⊗H∗ 1

|ψ⟩⟨ϕ| 7! ⟨ϕ| A |ψ⟩

ρ 7! Tr
(
ρ · A

) ↔ A : H ! H . (229)

Moreover, the (Kleisli-)composition of such QuantumState-contextful scalars reproduces the ordinary operator product of the
corresponding linear operators:

OA ◦ extend
HStore
1

OB = OA·B , so that

QuantumState
Kleisli-endomorphism
algebra of tensor unit

QuTypeHStore(1,1) ≃

algebra of
linear operators

End(H) (as algebras) . (230)

Remark 2.47 (The operational/logical meaning of operator products of quantum observables).
(i) It is commonplace in modern quantum physics that the algebra of quantum observables is indeed that: an associative
algebra under operator products of the corresponding linear operators. However, while mathematically suggestive, it is subtle
to decide which aspect of quantum reality is really modeled by forming the plain operator product of a pair of non-commuting
observables OA, OA′ ; because in this case a prescription for measuring them separately (namely via their respective eigenbases
W, W ′) does not readily yield a prescription for measuring their operator product OAB.
(ii) This issue was felt to be severe enough of a conceptual problem by the founding fathers of quantum physics that another
non-associative notion of algebras of quantum observables was proposed [Jor32][JvNW34], now known as Jordan algebras
(see [Ba20] for more on the quantum foundational motivation of Jordan algebras). However, while the concept of Jordan
algebras turned out to be useful in various areas of mathematics, its relevance for conceptualizing quantum observables has
remained inconclusive.
(iii) Indeed, the highly successful modern algebraic formulation of quantum physics (for a good exposition see [Gl09][Gl11])
is entirely based on the associative algebra structure on observables (further promoted to a C∗-algebra structure for infinite-
dimensional algebras) and has no use of Jordan algebras.
(iv) This begs the question that may originally have motivated Jordan et al.: To give a logical justification from first principles
for considering quantum observables as an associative algebra under operator products. But if we grant (with Lit. 1.4, 1.13
and 1.17) a foundational logical content to natural (co)monadic structures on linear types, then Ex. 2.46 provides a satisfactory
answer.

For the following Proposition 2.48, recall (Lit. 1.12) that for a pair of quantum systems (represented by) H1,H2 :
QuType, a quantum channel (39) between them is a (linear) map of the form

H1 ⊗H
∗
1 H2 ⊗H

∗
2

chan

satisfying some properties; and that in general such a channel may act among further “ancillary” systems K (such as K =
B ⊗ B∗, for B a “bath” environment), being more generally a tensor map of the form

K ⊗H1 ⊗H
∗
1 K ⊗H2 ⊗H

∗
2 .

idK⊗ chan

Proposition 2.48 (Unitary quantum channels are quantum state transformations). The unitary quantum channel U ⊗
U†

∗

(40) corresponding to a unitary operator33 U : H1 ! H2 induces a (co)monad transformation (107) between the
33For the statement of the proposition at this point it just matters that U is an invertible linear map with inverse denoted U†.

89

corresponding Quantum State (co)monads, in that

H1State H2State

(-) ⊗H1 ⊗H
∗
1 (-) ⊗ H2 ⊗H

∗
2

|κ⟩ ⊗ ρ 7−! |κ⟩ ⊗
(
U · ρ · U†

)

QuantumState transformation

chanU

(-)⊗U⊗U†∗

unitary quantum channel

Proof. We need to check the compatibility conditions (108). But since the (co)unit of HState is given (224) by inserting an
identity and by inner product, respectively, their preservation is essentially the definition of two-sided inverse operators. As a
warmup for the following computations, we spell this out.

(-) (-)
|-⟩ |-⟩

|-⟩ ⊗
∑
w2

|w2⟩⟨w2|

|-⟩ ⊗
∑
w1

|w1⟩⟨w1| |-⟩ ⊗
∑
w1

U |w1⟩⟨w1|U†

(-) ⊗H1 ⊗H
∗
1 (-) ⊗H2 ⊗H

∗
2

retH1State
(-) retH2State

(-)

7−
!

7−! 7−
!

7−!
(231)

(-)⊗U ⊗U†∗

(-) ⊗H1 ⊗H
∗
1 ⊗H1 ⊗H

∗
1 (-) ⊗H2 ⊗H

∗
2 ⊗H2 ⊗H

∗
2

|-⟩ ⊗ |-⟩⟨ϕ| ⊗ |ψ⟩⟨-| |-⟩ ⊗ U |-⟩⟨ψ|U† ⊗ U |ψ⟩⟨-|U

|-⟩ ⊗ U |-⟩⟨ϕ|U†U |ψ⟩⟨-|U†

|-⟩ ⊗ |-⟩⟨ϕ|ψ⟩⟨-| |-⟩ ⊗ U |-⟩⟨ϕ|ψ⟩⟨-|U†

(-) ⊗H1 ⊗H
∗
1 (-) ⊗H2 ⊗H

∗
2

(-)⊗U⊗U†∗⊗U⊗U†∗

joinH1State
(-) joinH2State

(-)

7−!

7−
!

7−
!

7−!

(-)⊗U⊗U†∗

(-) ⊗H1 ⊗H
∗
1 (-) ⊗H2 ⊗H

∗
2

|-⟩ ⊗ |ψ⟩⟨ϕ| |-⟩ ⊗ U |ψ⟩⟨ϕ|U†

|-⟩ ⊗ ⟨ϕ|U†U |ψ⟩

|-⟩ ⟨ϕ|ψ⟩ |-⟩ ⟨ϕ|ψ⟩
(-) (-)

(-)⊗U⊗U†
∗

obtH
∗
1 Store

(-) obtH
∗
2 Store

(-)

7−
!

7−!

7−
!

7−!

(-) ⊗H1 ⊗H
∗
1 (-) ⊗H2 ⊗H

∗
2

|-⟩ ⊗ |ψ⟩⟨ϕ| |-⟩ ⊗ U |ψ⟩⟨ϕ|U†

|-⟩ ⊗
∑
w

U |ψ⟩⟨w| ⊗ |w⟩⟨ϕ|U†

|-⟩ ⊗
∑
w
|ψ⟩⟨w| ⊗ |w⟩⟨ϕ| |-⟩ ⊗

∑
w

U |ψ⟩⟨w|U† ⊗ U |w⟩⟨ϕ|U†

(-) (-)

(-)⊗U⊗U†
∗

duplH
∗
1 Store

(-) duplH
∗
2 Store

(-)

7−
!

7−!

7−
!

7−!

(2
32

)

□

Here and in the following we make repeated use of the following elementary but important relations for linear maps
E : H1 ! H2:

H2 ⊗H
∗
2

(
H2 ⊸ H2

)
∑
w

E|w⟩⟨w|E† = E
(∑

w
|w⟩⟨w|

)
E† 7−! E · idH1 · E

† = E · E†

∼

(231)

90

H∗2 ⊗H2
(
H∗2 ⊸ H

∗
2
)

∑
w
⟨w|E† ⊗ E|w⟩ =

∑
w
⟨w|E† ⊗ E|w⟩ 7−!

(
E · E†

)∗
∼

(232)

The following Prop. 2.50 invokes the covariant action (106) of monad transformations (107) on free modales, but restricted
to the special case where the monad transformation is an isomorphism. In order to amplify the canonicity of this construction,
the following Lemma 2.49 highlights that in this case the transformation is equal to the inverse of the contravariant action
(111) of monad morphisms of general modales (which is more commonly discussed in the monad-literature), restricted to
free modales.

Lemma 2.49 (Evolution of free modales along isomorphic transformations of monads).
(i) On isomorphic monad transformation, trans : E ∼

−! E′ (107), the induced contravariant functor trans∗ (111) on general
modales is naturally isomorphic to the inverse ◦trans−1 of the induced covariant functor (106) on free modales (93), via the
natural isomorphism whose components are just the components trans(-) of the natural transformation trans:

E′ E

TypeE′ TypeE

TypeE
′

TypeE

trans
∼

frtrans∗
∼

trans(-)

trans∗
∼

(233)

(ii) In that on Kleisli morphisms (95) this is given by postcomposition with the inverse transformation trans−1
(-) and as such

frtrans∗bindE
′
(
D1

f ′
−! E′(D2)

)
= bindE

(
D1

f ′
−! E′(D2)

trans−1
D2−−−! E(D2)

)
. (234)

Proof. First, notice the following diagram, which commutes by the defining properties of trans (108) and the very definition
of trans∗ (111).

D : Type ⊢

EE(D) EE′(D) E′E′(D)

E(D) E′(D) E′(D)
free E-modale transformation of free E′-modale

E(transD)
∼

joinED

transE′ (D)

ρ≡ trans∗ρ′ ρ′ ≡ joinE
′

D

∼

transD
isomorphic to

(235)

But the left square now exhibits transD : E(D) ∼
−! trans∗E′(D) as a homomorphism of modales (91) from the free E-modale

on D to the transformation of the free E′-modale on D; and this homomorphism is an isomorphism by the assumption that
trans is an isomorphism, as shown. Therefore the claimed natural transformation in (233) is given in components as follows:

TypeE′ TypeE

E′(D1) 7! E(D1) E′(D1)

E′(D1)

E′(D2)

E′(D2) 7! E(D2) E′(D2)

frtrans∗

trans∗

trans(-)

ϕ

transD1

transD1
∼

ϕϕ

trans−1
D2

∼

transD2

(236)

From this, we get the following commuting diagram, where the left square commutes by the transformation property (104)
while the right square commutes by (236):

D1 E(D1) E(D2)

D1 E′(D1) E′(D2)

retED1 frtrans∗bind
E′

f ′

transD1 trans−1
D2

retE
′

D1 f ′ bind
E′

f ′

and the claim (234) is the image under bindE of this equality. □

91

As we apply (in Prop. 2.50) Lem. 2.49 to QuantumStore-contextful maps, hence to Kleisli maps for a comonad, beware
that the role of covariant and contravariant functors gets interchanged.

Proposition 2.50 (QuantumState evolution is Heisenberg evolution). For U : H1 ! H2 a unitary linear map, the
canonical evolution according to Lem. 2.49
• of quantum observables regarded a QuantumState-contextful scalars OA (via Ex. 2.46)
• along the unitary quantum channel chanU regarded as a QuantumState transformation (via Prop. 2.48)

is Heisenberg evolution (62)

H2 ⊗H
∗
2 H1 ⊗H

∗
1 1

ρ 7−! U† · ρ · U 7−! tr
(
(U† · ρ · U) · A

)
= tr

(
ρ · (U · A · U†)

)
= OU·A·U† (ρ) .

chanU−1

OU·A·U†

OA

(237)

Quantum channels as QuantumState transformations.

Proposition 2.51 (Uniform coupling channels are QuantumState transformations). The quantum coupling channels to a
uniform bath state (56) of some system B

(-) ⊗H ⊗H∗ (-) ⊗H ⊗ B ⊗ B∗ ⊗H (-) ⊗ (H ⊗ B) ⊗ (H ⊗ B)∗

|-⟩ ⊗ |ψ⟩⟨ψ′| 7−! |-⟩ ⊗ |ψ⟩
(∑

b
|b⟩⟨b|

)
⟨ψ′| = |-⟩ ⊗

∑
b
|ψ, b⟩⟨b, ψ′|

id⊗retBState
1 ∼

are monadic QuantumState transformations

coupleB : HState (H ⊗ B)Statemon

and as such the components of a pointed endofunctor (110) on Mnd(QuType).

Proof. Since the structure maps of the (H ⊗ B)State-comonad are tensor products of structure maps of HState and BState,
it is sufficient to show this for H = 1, hence for the case that HState = Id. But in this case coupleB = retBState

(-) , which we
know to be a monadic transformation (in fact the initial one) according to (109).

Alternatively, it is immediate to explicitly check the required conditions. We have:

(-) (-)

|-⟩ |-⟩

|-⟩ ⊗
∑
w,b
|w, b⟩⟨b,w|

|-⟩ ⊗
∑
w
|w⟩⟨w| |-⟩ ⊗

∑
w,b
|w⟩ ⊗ |b⟩⟨b| ⊗ ⟨w|

(-) ⊗H ⊗H∗ (-) ⊗H ⊗ B ⊗ B∗ ⊗H∗

retHState
(-) ret(H⊗B)State

(-)

7−!

7−
!

7−
!

7−!

coupleB

(-) ⊗H ⊗H∗ ⊗H ⊗H∗ (-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ ⊗H ⊗ B ⊗ B∗ ⊗H∗

|ψ⟩⟨ψ′| ⊗ |ϕ⟩⟨ϕ′|
∑
b,b′
|ψ, b⟩⟨b, ψ′| ⊗ |ϕ, b′⟩⟨b′, ϕ′|

⟨ψ′|ϕ⟩
∑
b,b′
|ψ, b⟩⟨b|b′⟩⟨b′, ϕ′|

|ψ⟨ψ′|ϕ⟩⟨ϕ′| ⟨ψ′|ϕ⟩
∑
b
|ψ, b⟩⟨b, ϕ′|

(-) ⊗H ⊗H∗ (-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ .

joinHState
(-)

coupleB(···)◦(coupleB⊗id)

join(H⊗B)State
(-)

7−!

7−
!

7−
!

7−!

coupleB

92

Alternatively, with Rem. 2.44 it is sufficient to observe that tensoring with an identity matrix A 7! A ⊗ IB is an algebra
homomorphism.

Finally, it is immediate that the naturality squares (110) for a pointed endofunctor commute, by functoriality of the tensor
product. □

Dually, we have:

Proposition 2.52 (Averaging quantum channels are QuantumStore transformations). The averaging quantum channel
(46)

(-) ⊗
(
H ⊗ B

)
⊗

(
H ⊗ B

)∗ (-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ (-) ⊗
(
H ⊗H∗

)
|-⟩ ⊗ |ψ, β⟩⟨β′, ψ′| = |-⟩ ⊗ |ψ⟩ ⊗ |β⟩⟨β′| ⊗ ⟨ψ′| 7−! |-⟩ ⊗ |ψ⟩⟨β′|β⟩⟨ψ′|

∼
id⊗ obtB

∗Store
1

⊗ id

is a comonadic QuantumState-transformation

TrB : (H ⊗ B)State HStatecomon

and as such the component of a pointed endofunctor (110) on Mnd(QuType).

Proof. Since the structure maps of the (H ⊗B)State-comonad are tensor products of structure maps ofHState and BState, it
is sufficient to show this for H = 1, hence for the case that HState = Id. But in this case TrB = obtB

∗Store
(-) , which we know

to be a comonadic transformation according to (109).
Alternatively, it is immediate to explicitly check the required conditions. We have:

(-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ (-) ⊗H ⊗H∗
|ψ, β⟩⟨β′, ψ′| |ψ⟩⟨β′|β⟩⟨ψ′|

⟨β′|β⟩
∑
w
|ψ⟩⟨w| ⊗ |w⟩⟨ψ′|

∑
w,b
|ψ, β⟩⟨b,w| ⊗ |w, b⟩⟨β′, ψ′|

∑
w,b
|ψ⟩⟨b|β⟩⟨w| ⊗ |w⟩⟨β′|b⟩⟨β′|

(-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ ⊗H ⊗ B ⊗ B∗ ⊗H∗ (-) ⊗H ⊗H∗ ⊗H ⊗H∗

TrB(-)

dupl(H⊗B)∗Store
(-) duplH

∗Store
(-)

7−
!

7−! 7−
!

7−!

TrB(···)◦(TrB(-)⊗id)

and

(-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ (-) ⊗H ⊗H∗

|ψ, β⟩⟨β′, ψ′| |ψ⟩⟨β′|β⟩⟨ψ′|

⟨β′|β⟩⟨ψ′|ψ⟩

⟨β′, ψ′|ψ, β⟩ ⟨β′, ψ′|ψ, β⟩

(-) (-)

TrB(-)

obt(H⊗B)∗Store
(-) obtH

∗Store
(-)

7−
!

7−!

7−
!

7−!

Alternatively, with Rem. 2.44 it is sufficient to observe that partial tracing is a coalgebra homomorphism.
Finally, it is again immediate that the naturality squares (110) for a pointed endofunctor commute, by functoriality of the

tensor product. □

Remark 2.53 (Partial trace). On the other hand, partial trace is not a monadic QuantumState transformation beyond the trivial
case of dim(B) = 1:

(-) (-)
|-⟩ |-⟩

|-⟩ ⊗
∑
w
|w⟩⟨w|

|-⟩ ⊗
∑
w,b
|w, b⟩⟨b,w| |-⟩ ⊗ dim(B)

∑
w
|w⟩⟨w|

(-) ⊗H ⊗ B ⊗ B∗ ⊗H∗ (-) ⊗H ⊗H∗

ret(H⊗B)State
(-) ret(H⊗B)State

(-)

7−
!

7−! 7−
!

7−!

,

(-)⊗TrB

93

Corollary 2.54 (Quantum states as transformations). Every unistochastic quantum channel (56) is a monadic Quantum-
State transformation (coupling and unitary evolution) followed by a comonadic QuantumState transformation (evolution and
averaging).

Interaction between QuantumState and QuantumEnvironment. Recall from §2.3 the monadic indefiniteness modality
(QuantumReader) ⃝W and the comonadic randomness modality (QuantumCoreader)9W .

Remark 2.55 (QuantumEnvironment monad). In its interaction with the QuantumState-monad, the epistemic modality
⃝W /9W or W-Reader (co)monad is suggestively referred to under its alternative name W-environment (co)-monad, and as
such we will denote it “WEnvm” and understand it as a Frobenius monad. Hence all the following names refer to the same
monadic structure on linear types (cf. Prop. 2.35):

QWWriter

⃝
W

WEnvm 9
W

Monads FrobMonad Comonad

≃

≃≃

Proposition 2.56 (QuantumState and QuantumEnvironment distribute).
ForH : QuTypefdm and W : ClaTypefin

(i) the natural isomorphism

HState
(
⃝
W
K

) (
⊕
W
K

)
⊗H ⊗H∗ ⊕

W

(
K ⊗H ⊗H∗

)
⃝
W

(
HState(K)

)
(
w, |κ⟩

)
⊗ |ψ⟩⟨ψ′| !

(
w, |κ⟩ ⊗ |ψ⟩⟨ψ′|

)
H∗Store

(
9
W
K

) (
⊕
W
K

)
⊗H ⊗H∗ ⊕

W

(
K ⊗H ⊗H∗

)
9
W

(
H∗Store(K)

)
≡

distr
HState,⃝W

K

∼ ≡

≡

distr9W ,H
∗Store

K

∼
≡

(238)

constitutes a distributivity transformation (113) for
– theHState monad over the W-indefiniteness monad,
– the W-randomness comonad distributing over theH∗Store-comonad.

(ii) the same natural isomorphism, but understood as

H∗Store
(
⃝
W
K

) (
⊕
W
K

)
⊗H ⊗H∗ ⊕

W

(
K ⊗H ⊗H∗

)
⃝
W

(
H∗Store(K)

)
(
w, |κ⟩

)
⊗ |ψ⟩⟨ψ′| !

(
w, |κ⟩ ⊗ |ψ⟩⟨ψ′|

)
HState

(
9
W
K

) (
⊕
W
K

)
⊗H ⊗H∗ ⊕

W

(
K ⊗H ⊗H∗

)
9
W

(
HState(K)

)
≡

distr
H∗Store,⃝W

K

∼ ≡

≡

distr9W ,HState
K

∼
≡

(239)

constitutes a distributivity transformation (124) for
– the quantumH∗Store comonad over the W-indefiniteness monad,
– the W-randomness comonad distributing over theHState-monad.

Proof. The required conditions (115) and (125) all hold rather immediately due to the ordinary distributivity of the tensor
product (being a left adjoint) over the direct sum (being a coproduct, using here that W is a finite type).

□

Remark 2.57 (Distributivity is purely structural). Since the distributivity laws in Prop. 2.56 are given just by the structure
isomorphism of the underlying distributive monoidal category, we may and will leave it notationally implicit, writing ⊕

W
K ⊗

H ⊗H∗ as usual, without any parenthesis.

In generalization of Prop. 2.45, we have:

Proposition 2.58 (Category of QuantumStore-context-dependent and Indefiniteness-effectful maps). ForH : QuTypefdm

and W : ClaTypefin, the jointly H∗Store-contextful and ⃝W -effectful morphisms (123) are in bijection with W-indexed sets
of linear operators

K ⊗H ⊗H∗ ⃝
W
K ′

|κ⟩ ⊗ |ψ⟩⟨ψ′| 7−!
(
w 7! ⟨ψ′,−|Aw|κ, ψ⟩

)
=

(
w 7!

∑
k′
⟨ψ′, k′|Aw|κ, ψ⟩ |k′⟩

)
OA•

 !
(
Aw : K ⊗H ! K ′ ⊗H

)
w:W

(240)

94

and theirH∗Store/⃝W -Kleisli composition (126) under the distributivity transformation (2.56) corresponds to the W-component
wise operator products: (

bind
⃝W
K ′′
OB•

)
◦ distr

H∗Store,⃝W
K ; ◦

(
extendH

∗Store
K

OA•
)
= O(B·A)• .

Proof. By the general formula (126) and with Rem. 2.57:

K ⊗H ⊗H∗ ⊗H ⊗H∗ ⊕
W
K ′ ⊗H ⊗H∗ ⊕

W
⊕
W
K ′′

K ⊗H ⊗H∗ ⊕
W
K ′′

|κ⟩ ⊗
∑
h
|ψ⟩⟨h| ⊗ |h⟩⟨ψ′|

(
w 7!

∑
h,k′
⟨h, k′|Aw|κ, ψ⟩ |k′⟩ ⊗ |h⟩⟨ψ′|

)

|κ⟩ ⊗ |ψ⟩⟨ψ′|
(
w 7!

∑
h,k′
⟨ψ′,−|Bw|k′, h⟩⟨h, k′|Aw|κ, ψ⟩︸ ︷︷ ︸

⟨ψ′,−|Bw·Aw |κ,ψ⟩

)

OA•⊗H⊗H
∗ ⊕W OB•

bind⃝W
OB•

join ⃝W
K

duplH
∗ Store

K

extend
H
∗Store

K
OA•

7−!

7−!
7−!

□

Example 2.59 (State preparation with Probability weights). Given W : ClaTypefin we have the following basic examples
of W-environment-contextful and QW-effective maps:

(i) The map prep which at environmental parameter w : W produces (“prepares”) the corresponding pure basis state |h⟩⟨h|;
(ii) for p : W ! R≥0 a (probability) measure, the map weighp• which at environmental parameter w : W produces the

identity (density) matrix with coefficient pw.

prep : WEnvm(1) QWState(1)

9
W
C QW ⊗ QW∗

(w, 1) 7−! |h⟩⟨h|

weighp• : WEnvm(1) QWState(1)

9
W
C C QW ⊗ QW∗

(w, 1) 7−! pw 7−! pw ·
∑
h
|h⟩⟨h| .

p• retHState
1

Their two-sided Kleisli composition prepares the mixed state in which the pure state |h⟩ appears with weight pw:

9
W
C 9

W
9
W
C 9

W
H ⊗H∗ 9

W
H ⊗H∗ ⊗H ⊗H∗ 9

W
H ⊗H∗

(w, 1) 7−!
(
w, (w, 1)

)
7−!

(
w, pw IH

)
7−! pw IH ⊗ |w⟩⟨w| 7−! pw |w⟩⟨w|

dupl9W
1

weightp• >=> prep

9W weighp•
prep⊗H⊗H∗ joinHState

1

9
W
C 9

W
9
W
C 9

W
H ⊗H∗ 9

W
H ⊗H∗ ⊗H ⊗H∗ 9

W
H ⊗H∗

(w, 1) 7−!
(
w, (w, 1)

)
7−!

(
w, |w⟩⟨w|

)
7−! pw |w⟩⟨w| ⊗ IQW 7−! pw |w⟩⟨w|

dupl9W
1

prep >=> weighp•

9W prep weighp• ⊗H⊗H
∗

joinHState
1

Lemma 2.60 (Distributive monad transformations act on context/effectful-maps). For C a comonad distributing (124)
over a pair of monads E, E′

distrC,E : C ◦ E −! E ◦ C , distrC,E
′

: C ◦ E′ −! E′ ◦ C
then a monad transformation (103)

transE −! E
′

: E! E′

which is compatible with the two distributive laws in that it makes the following diagram commute

C
(
E(−)

)
C
(
E′(−)

)
E
(
C(−)

)
E′

(
C(−)

)
,

distr
C,E

(−)

C
(
transE!E

′

(−)

)

distr
C,E′

(−)

transE!E
′

C(−)

(241)

95

respects the Kleisli composition of context-effectful maps (126) just as it does respect (105) the plain Kleisli composition (69)
of purely-effectful maps:

prog12 : C(D1)! E(D2)
prog23 : C(D2)! E(D3)

 ⊢

(
transE! E

′

D2
◦ prog12

)
>=>

(
transE! E

′

D3
◦ prog23

)
= transE! E

′

D2
◦
(
prog12 >=> prog23

)
.

(242)

Proof. Consider the following diagram:

C(D1) C
(
C(D1)

)
C
(
E(D2)

)
E
(
C(D2)

)
E
(
E(D3)

)

C
(
E′(D3)

)
E′

(
C(D2)

)
E′

(
E(D3)

)
E(D3)

E′
(
E′(D3)

)

E′(D3) .

duplCD1

extend C (trans E!
E ′D2 ◦ prog

12
)

extendCprog12

C(prog12)

C
(
trans E!

E ′D
2
◦ prog

12
)

distr
C,E

D2

C
(
transE!E

′

D2

)
E(prog23)

transE!E
′

C(D2)

bindEprog23

transE!E
′

E(D3)

join E
D

3

distr
C.E′

D2 E′(prog23)

E ′ (
trans E!

E ′D
2
◦ prog

23
)

bind E ′ (
trans E!

E ′D
2
◦ prog

23
)

E′
(
transE!E

′

D3

)

transE!E
′

D3

join E ′
D

3

Here the middle square commutes by the distributivity assumption (241), the square to the right of it due to naturality of
the transformation transE! E

′

and the far right square due to its monad transformation property (108). Therefore the total
diagram commutes. But its total top and right composite morphism is the right-hand side of (242), while its total bottom left
(diagonal) composite morphism is the left-hand side of (242), thus proving their equality. □

It follows immediately that:

Lemma 2.61 (QuantumState transformations compatible with distributivity over Quantum Reader). Every transfor-
mation (103) between quantum state monads (223) is compatible (241) with the canonical distributivity (239) over the Quan-
tumReader monads.

Proof. Use Lem. 2.64. □

As a corollary of Lem. 2.60 and Lem. 2.61:

Proposition 2.62 (Preserving Quantum Kleisli composition). Given a quantum channel which acts as a QuantumState
transformation (such as unitary channels by Prop. 2.48 and uniform coupling channels by Prop. 2.51)

chan : HState! H ′State

then composition of this channel with maps that are Randomness-contextful and QuantumState-effectful preserves their Kleisli
composition (126), in that:

prog12 : 9
W
K ! K ′ ⊗H ⊗H∗

prog23 : 9
W
K ′ ! K ′′ ⊗H ⊗H∗

 ⊢

(
chanK ′ ◦ prog12

)
>=>

(
chanK ′′ ◦ prog23

)
= chanK ′′ ◦

(
prog12 >=> prog23

)
.

(243)

Indefinite QuantumStates. We may now combine the indefiniteness-effects which model quantum measurement and classi-
cal control (§2.4) with the QuantumState-effects that model mixed states:

96

Definition 2.63 (Category of Quantum State Effects). We write

QuEffect ≡ Mnd
(
QuType

)
for the category of monads – with monad transformations (103) between them – on the category of quantum types. And we
write

QuStateEffect QuEffect (244)

for its full subcategory on the QuantumState monadsHState forH : QuTypefdm.

Lemma 2.64 (Natural transformations between tensoring functors). ForV1,V2 : QuTypefdm, with

(−) ⊗Vi : QuType! QuType

the functors of tensoring with these objects, then all natural transformations between them

f(−) : (−) ⊗V1 ! (−) ⊗V1

are given by tensoring with the linear map that is their value on the tensor unit:

fK ≃ K ⊗ f1 .

Proof. This follows by the QuType-enriched Yoneda lemma after observing that the tensor functors (−)⊗Vi are representable

(−) ⊗Vi ≃ (−) ⊗
(
V∗i

)∗
≃ V∗i ⊸ (−) .

□

Lemma 2.65 (QuantumState transformations are algebra homomorphisms). QuantumState transformations are in nat-
ural bijection to monoid homomorphisms

QuantumStateEffects Mon
(
QuType

)
HState 7! H ⊗H∗

Proof. Via Rem. 2.44, it is clear that natural transformations of tensor form

H1State H2State

(−) ⊗H1 ⊗H
∗
1 (−) ⊗H2 ⊗H

∗
2

(−)⊗ϕ

id⊗ϕ

are monad transformations if and only if ϕ is an algebra homomorphism. Therefore, it only remains to observe that all natural
transformations are necessarily of this tensor form, which is the statement of Lem. 2.64. □

97

As a corollary:

Lemma 2.66 (QuantumState and linear maps). The isomorphisms of QuantumState effects are given by conjugation with
invertible linear maps. In particular, a natural transformation of the form

chanH : H1State H2State

(−) ⊗H1 ⊗H
∗
1 (−) ⊗H2 ⊗H

∗
2

(−)⊗(U⊗U†∗)

is a QuantumState-transformation if and only if U : H1 ! H2 is unitary.

Definition 2.67 (IndefiniteQuantumState-monad). For W : ClaTypefin andH : QuTypefdm, we have the composite monad
(112) of the QuantumState- with the Indefiniteness-monad:

⃝
W
◦ HState : QuType QuType

K 7−! ⊕
W
K ⊗H ⊗H∗

Proposition 2.68 (IndefiniteQuantumState-effectful transformations). The monad transformations (103) from a QuantumState-
monad (Def. 2.43) to an IndefiniteQuantumState-monad (Def. 2.67)

f : H1State ⃝W ◦ H2State

are in natural bijection to W-tuples of algebra homomorphisms.

Proof. By Lem. 2.64, the underlying natural transformation is given by tensoring

fK ≃ K ⊗ f1

with a linear map
f1 : H1 ⊗H

∗
1 ⊕

W
H1 ⊗H

∗
1

A 7! ⊕
w

f1(A)w .

In terms of this, the monad-transformation property of f(−)

K K

K ⊗H1 ⊗H
∗
1 ⃝

W
K ⊗H2 ⊗H

∗
2

retHState
K

ret⃝W◦HState
K

fK

K ⊗H1 ⊗H
∗
1 ⊗H1 ⊗H

∗
1 ⃝

W
K ⊗H1 ⊗H

∗
1 ⊗H2 ⊗H

∗
2 ⃝

W
⃝
W
K ⊗H2 ⊗H

∗
2 ⊗H2 ⊗H

∗
2

K ⊗H1 ⊗H
∗
1 ⃝

W
K ⊗H2 ⊗H

∗
2

fK⊗H1⊗H
∗
1

joinH1State
K

⃝
W

fK⊗H2⊗H
∗
2

join⃝W◦H2State
K

fK

translates to the condition for W-indexed monoid homomorphisms, as claimed:

1 1

1 1

11 ⊕
w

12

H1 ⊗H
∗
1 ⃝

W
H2 ⊗H

∗
2

7−!

7−
!

7−
!

7−!

f1

98

H1 ⊗H1 ⊗H1 ⊗H1
(
⊕
W
H2 ⊗H2

)
⊗

(
⊕
W
H2 ⊗H2

)
A ⊗ B

(
⊕
w

f1(A)w
)
⊗

(
⊕
w

f1(B)w
)

A · B ⊕
w

f1(A · B)w

H1 ⊗H
∗
1 ⃝

W
H2 ⊗H

∗
2

f1⊗ f1

(−)·(−) ⊕
w

(
(−)w·(−)w

)
7−!

7−
! 7−
!

7−!

f1 □

Proposition 2.69 (Indefiniteness-effect on QuantumState-effects). For W : ClaTypefin andH : QuTypefdm, the construc-
tion of the IndefiniteQuantumState-monad ⃝

W
◦HState (Def. 2.67) extends to a relative monad (101) on, in turn, the category

of quantum state effects (Def. 2.63):
⃝W ◦ (−) : QuStateEffect QuEffect

HState 7−! ⃝
W
◦ HState

relative to the full inclusion (244).

Proof. The return-operation is

ret⃝W◦

HState HState ⃝
W
◦ HState(

ret⃝W◦

HState

)
K K ⊗H ⊗H∗ ⊕

W
K ⊗H ⊗H∗

|κ⟩ ⊗ |ψ⟩⟨ψ′| 7−!
∑
w

(
w, |κ⟩ ⊗ |ψ⟩⟨ψ′|

)

:

:
ret⃝W
K⊗H⊗H∗ (245)

and the bind-operation takes a monad transformation f : H1State ! ⃝
W
◦ H2State to join⃝W ◦ ⃝

W
f . That this satisfies the

axioms of a relative monad follows immediately from the monad structure on ⃝W : QuType ! QuType. But for this to be
well-defined as a monad on monads, we do in addition need to check that the return- and bind-operations now are actually
morphisms in QuEffect:

That (245) is a monad transformation follows by the definition (114) of the composite monad alone, which immediately
shows that these diagrams commute:

K K

K ⊗H ⊗H∗ ⃝
W
K ⊗H ⊗H∗

retHState
K

ret⃝W◦HState
K

ret⃝W
K⊗H⊗H∗

K ⊗H ⊗H∗ ⊗H ⊗H∗ ⃝
W

(
K ⊗H ⊗H∗ ⊗H ⊗H∗

)
⃝
W

((
⃝
W
K ⊗H ⊗H∗

)
⊗H ⊗H∗

)

K ⊗H ⊗H∗ ⃝
W
K ⊗H ⊗H∗ ⊗H ⊗H∗

ret⃝W
K⊗H⊗H∗⊗H⊗H∗

joinHState
K

⃝
W

ret⃝W
K⊗H⊗H∗

⊗H⊗H∗

⃝
W joinHStateK join⃝W◦HState

K

ret⃝W
K⊗H⊗H∗

That the effect-binding of f is still a monad transformation follows from the fact that f itself is assumed to be a monad
transformation and using Prop. 2.68:

K K

|κ⟩ |κ⟩

|κ⟩ ⊗ 11 |κ⟩ ⊗ ⊕
w

12

K ⊗H1 ⊗H
∗
1 ⃝

W
K ⊗H2 ⊗H

∗
2

retH1State
K

ret⃝W◦H1State
K

7−!

7−
!

7−
!

7−!

fK

99

⃝
W
⃝
W
K ⊗H1 ⊗H

∗
1 ⊗H1 ⊗H

∗
1 ⃝

W
K ⊗H1 ⊗H

∗
1

|κ⟩ ⊗
(
w, A

)
⊗

(
w′, A′

)
|κ⟩ ⊗

(
w, δw′

w A · A′
)

⃝
W
⃝
W
⃝
W
K ⊗H1 ⊗H

∗
1 ⊗H2 ⊗H

∗
2

⃝
W
⃝
W
K ⊗H1 ⊗H

∗
1 ⊗H2 ⊗H

∗
2 |κ⟩ ⊗

(
w, A

)
⊗

(
w′, f1(A′)w′

)
⃝
W
⃝
W
K ⊗H2 ⊗H

∗
2

⃝
W
⃝
W
⃝
W
K ⊗H2 ⊗H

∗
2 ⊗H2 ⊗H

∗
2

|κ⟩ ⊗
(
w, f1(A)w

)
⊗

(
w′, f1(A′)w′

)
|κ⟩ ⊗

(
w, δw′

w f1(A · A′)w
)

⃝
W
⃝
W
K ⊗H2 ⊗H

∗
2 ⊗H2 ⊗H

∗
2 ⃝

W
K ⊗H2 ⊗H

∗
2

⃝
W

f⃝W K⊗H1⊗H
∗
1

join⃝W◦H1State
K

⃝
W

fK

7−
!

7−!

7−
!

join⃝W
⃝W K⊗H⊗H

∗⊗H⊗H∗

⃝
W
⃝
W

fK ⊗H2⊗H2

7−
!

join⃝W
K⊗H2⊗H

∗
2

⃝W join⃝W
K⊗H2⊗H

∗
2
⊗H2⊗H

∗
2 7−!

join⃝W◦H1State
K

□

Proposition 2.70 (Enhancing parameterized quantum circuits to parameterized quantum channels). The W-componentwise
unitary ⃝W -effectful maps of QuType lift via (213) to ⃝W◦-effectful maps on QuEffect

QuTypeuntr
⃝W

QuEffect⃝W◦

H1 H1State (−) ⊗H1 ⊗H
∗
1

(−) ⊗ ⊕
W
H1 ⊗ ⊕

W
H∗1

⃝
W
H2 ⃝

W
◦ H2State ⊕

W
(−) ⊗H2 ⊗H

∗
2

7−!

U• chanU•

(−)⊗U•⊗U†•
∗

(−)⊗pair⃝W
H2,H

∗
2

Proof. It remains to see that the paired Kleisli maps (213) are indeed QuantumState monad-transformations. This is ensured
by the unitarity assumption, as in Prop. 2.48. □

100

3 Quantum Language
With all quantum effects identified – in §2 – as (co)monads definable through the Motivic Yoga (Def. 2.18), we may follow
established language paradigms for monadic effects (Lit. 1.19) to obtain a natural quantum language – to be called QS 34 –
that should be be embeddable as a domain-specific language (Lit. 1.17) into any dependent linear type theory which verifies
the Motivic Yoga, notably into LHoTT (Lit. 1.8).

§3.1: Pseudocode Design
§3.2: Example Pseudocode

3.1 Pseudocode Design
In the spirit of traditional do-notation for monadic computational effects (Lit. 1.19) our ambition is to find (sugaring to) an
accurate but neatly intelligible formal language for the monadic quantum effects which is close to a natural description of the
coded processes. For that purpose, we employ syntactic sugar both for effect binding and for pure effects (67):

(i) Syntactic sugar for effect-binding.
For effect-binding we use traditional do-notation but in the more verbose form of for...do-blocks (132),

(ii) Syntactic sugar for pure effects.
We furthermore sugar the return-operation of each effect such as to notationally indicate the nature of the pure datum
that is being returned (252).

First we discuss the declaration of plain linear maps (quantum gates). Recall our convention (162) to write an “open
colon” “ ◦◦ ” for typing judgements in the context of the linear tensor unit, which we will use throughout.
Declaration of linear maps out of the tensor unit. To start with, in declaring linear maps out of the linear tensor unit it
should, by linearity, be sufficient to declare the value on the unit element

ϕ ◦
◦ 1⊸ H

ϕ ≡ 1 7! ϕ(1) .
(246)

Self-evident as this may seem, this is ultimately a consistency demand on the ambient linear type theory, which must provide
the corresponding elimination rule for the tensor unit. In LHoTT this is the case: [Ri22a, p. 55] speaks of the S-elimination-
or S-induction-rule (where the notation “S” alludes to the sphere spectrum, which is the tensor unit in the expected model of
LHoTT in parameteroized plain spectra, aka S-modules.)
Declaration of linear maps out of a linear span. Recall that the quantization modality Q (Def. 2.13) is just the quantumly-
modality △ restricted to classical types along the operation 1 × (−)

Q ≡ △
(
(−) × 1

)
.

Regarded as a restriction of △, it binds not just Q-effects but generally △-effects, cf. (164). Now, △ is idempotent (155),
meaning that for every linear type is a free △-modale: H = △H .

In conclusion this means that do-notation applies to to declare linear maps (quantum gates) of the form G ◦
◦ QW1 ⊸ H ,

whose domain is equipped with a linear basis W with corresponding basis vectors are denoted |w⟩ ◦◦ QW (165), while the
codomain may be any linear type.

In natural language, we would describe such a map by declaring what it does for a given basis vector |w⟩ – namely sending
it to |Gw⟩ := G|w⟩ – and we want this natural description to essentially already be our syntax, as follows:

G ◦
◦ QW ⊸ H

G ≡

 for |w⟩do G|w⟩ .

(247)

Indeed, this is the traditional do-notation (Lit. 1.19) in for...do-form (132), applied to the quantum modality, except for
a further sugaring of the plain “w” to its pure-effect incarnation “|w⟩”. This notation naturally reflects that QW is freely
generated

34We call this language “QS”, both as shorthand for “Quantum Systems Language” as well as alluding to the remarkable fact that (the semantics of) its
universe of quantum data types goes far beyond the usual (Hilbert-) vector spaces to include “higher homotopy” linear types (“spectra”): Over the ground
“field” F1, the quantization modality Q takes the spherical homotopy types S n to the “sphere spectrum” traditionally denoted “QS n”.

101

(i) in the sense of generating sets of vector spaces: by the vectors |w⟩
(ii) in the sense of free △-modales: by the elements (w, 1) ◦◦ W × 1,

and the operation which relates these two incarnations of the generators is returnQ
W (165), namely:

|w⟩ ≡ return
Q
W (w) ≡ return△W×1

(
(w, 1)

)
◦
◦ QW . (248)

Therefore the natural do-notation for the △-bind operation on a linear map

G|−⟩ ◦◦ W × 1⊸ H ,

– which according to (246) is specified by its value on the elements (w, 1) whose natural name in QW is |w⟩ – is the above
(247).
Declaration of linear maps out of a tensor product. In the same vein, for declaring a linear map out of a tensor product,
one would naturally want the following syntax, defining its value for each decomposable tensor:

G ◦
◦ QW1 ⊗ QW2 ⊸ H

G ≡

 for |w1⟩ ⊗ |w2⟩

do G
(
|w1⟩ ⊗ |w2⟩

) (249)

Now understanding
QW1 ⊗ QW2 = △

(
QW1 ⊗ QW2

)
again as a restriction of the quantum modality – to the entanglement relative monad (167) – we may indeed take this as the
coresponding do-notation subject only to the further convention that, as before, we refer to the argument via its pure effect
incarnation:

|w1⟩ ⊗ |w2⟩ ≡ return
Q(-) ⊗ Q(-)
(W1,W2) (w1,w2) .

For example, with (247) and (249) the operations which witness the strong ⊗-monoidal property of Q may thus be coded
as follows:

µ ◦
◦ QW1 ⊗ QW2 ⊸ Q(W1 ×W2)

µ ≡

 for |w1⟩ ⊗ |w2⟩

do |w1,w2⟩

µ−1 ◦
◦ Q(W1 ×W2)⊸ QW1 ⊗ QW2

µ−1 ≡

 for |w1,w2⟩

do |w1⟩ ⊗ |w2⟩

(250)

and the tensor product on maps out of linear spans is given by

G ◦
◦ QW ⊸ H

G′ ◦◦ QW ′ ⊸ H ′
⊢

G ⊗G′ ◦
◦ QW ⊗ QW ′ ⊸ H ⊗H ′

G ⊗G′ ≡

 for |w⟩ ⊗ |w′⟩do G|w⟩ ⊗G′|w′⟩ ,
and the “pipe”-notation “ > “ for the sequential composition of maps may be declared as follows:

Φ12
◦
◦ QW ⊸ H2

Φ23
◦
◦ H2 ⊸ H3

⊢

Φ12 > Φ23
◦
◦ QW1 ⊸ H3

Φ12 > Φ23 ≡

 for |w⟩do Φ23
(
Φ12|w⟩

)
.

In summary, to obtain neat pseudo-code we adopt and adapt traditional do-notation as follows:

Monadic declaration of a linear map G ◦
◦ QW ⊸ H

via the △-monad relativized to Q
Traditional do-notation

as in (127)
for...do-notation

as in (132)
for...do-notation

as used here for (w, 1)

do G|w⟩

 for |w⟩do G|w⟩

|ψ⟩ 7!

do

(w, 1) |ψ⟩
G|w⟩

|ψ⟩ 7!

 for (w, 1) in |ψ⟩

do G|w⟩
|ψ⟩ 7!

 for |w⟩ in |ψ⟩do G|w⟩

(251)

102

In linguistic generalization of this situation we therefore proceed to identify similarly suggestive verbalization of the
structure maps of the other monadic effects from §2.3

for...do-notation

prog : D! ED′

bindEprog : ED! ED′

bindEprog ≡

 for returnED(d)

⇝

to be sugared
as per next table

do prog(d)

Φ : ED, prog : D! ED′

ϕ > bindEprog : ED′

ϕ > bindEprog ≡

 for returnED(b) in Φ

do prog(b)

This syntax is to closely reflect the fact that
– for an input of the form returnED(d) : ED,
– which may appear as a pure effect generator in the input data
– the operation bindEprog does produce the output prog(d),
which prescription completely defines it, by linearity.

Sugared syntax for quantum measurement effects

Q
ua

nt
iz

at
io

n |−⟩ ◦
◦ B! QB

| b ⟩ ≡ returnQ
B (b) pure linearity

|−⟩ ⊗ |−⟩ ◦
◦ B1 × B2 ! QB1 ⊗ QB2

|b1⟩ ⊗ |b2⟩ ≡ return
Q(-) ⊗ Q(-)
B1 × B2

(b1, b2) pure entanglement

Q
ua

nt
um

m
ea

su
re

m
en

t

definitely ◦
◦ H ⊸ ⃝BH

definitely |ψ⟩ ≡ return
⃝B
H

(
|ψ⟩

)
pure indefiniteness

measure ◦
◦ ⃝BQB ≡ ⃝B⃝B1⊸ ⃝B1

measure ≡ join⃝B
1

pure necessity

collapse ◦
◦ QB⊸ ⃝B1

collapse ≡ measure definitely
returns collapsed state &
lifts outcome into context

if measured w then |ψw⟩
◦
◦ ⃝

W
H ≡ (W ! H)

if measured w then |ψw⟩ ≡ w 7! |ψw⟩
condition quantum gate

on measurement outcome

(252)

103

Coding quantum measurement. With (252) we ob-
tain code expressing the quantum measurement typ-
ing from §2.4 (cf. p. 85) as shown on the right. Here
(for W : ClaTypefin) collapseW (219) is the identity
on underlying linear types, but understood as enter-
ing the measurement monad ⃝W and thereby lifting
measurement results into the classical context, as wit-
nessed by identifying:

collapse ≡

for |w⟩

do

 if measured w′

then δw′
w

A quantum gate controlled (cf. p. 80) by a previous
measurement result is thus coded as follows:

W

H K

W

G

G• ◦
◦ ⃝WH ⊸ ⃝WK

G• ≡

for definitely |ψ⟩

do

 if measured w

then Gw|ψ⟩

Quantum Gate followed by Measurement

sy
m

bo
lic

0 1H QW WG

ep
is

te
m

ic

QV⊗1
W

2
W
1
W

1
W

eff
ec

tiv
e ⃝

W
QV ⃝

W
QW ⃝

W
1

co
m

pu
ta

tio
na

l
QV QW

G⊗1
W

7!⊕
W

obt2W
1W

7!⊕
W

7!⊕
W

⃝
W

G join⃝W
1

measure

ret⃝W
QV

dy
na

m
ic

lif
tin

g

G
coherent quantum gate

for |v⟩

do G|v⟩

ret⃝W
QW

d
e
f
i
n
i
t
e
l
y

collapse
for |w⟩

do

 if measured w′

then δw′
w

Remark 3.1 (Towards natural language).
(i) The above sugared for...do-notation for classically-controlled quantum gates again neatly expresses the actual physical

process in almost natural language: In general, the input state of a W-controlled quantum gate is itself a W-dependent
quantum state |ψw⟩, whence the epistemic declaration of G• is of the form

w : W ⊢ Gw ≡
(
|ψw⟩ 7! Gw|ψw⟩

)
,

but for describing the action of Gw on a generic state it does not matter whether this state carries a w-index, and this is
what the for...do-notation reflects: It is sufficient to define Gw assuming that we are definitely presented with the state
|ψ⟩ (no matter the value of w), hence sufficient to define it for states of the form definitely |ψ⟩.

(ii) With the components of the classically-controlled quantum gate themselves being coherent quantum gates, the latter
may in turn be declared on basis states as before, which gives the following further nested declaration of a classically-
controlled quantum gate, reducing to its component output states

(
Gw|b⟩ : K

)
(w,b):W×B:

Declaration of a measurement-controlled quan-
tum gate in terms of its component values on
each basis state |b⟩ for each measurement result
w.

G• ◦
◦ ⃝WQB⊸ ⃝WK

G• ≡

for definitely |ψ⟩

do

if measured w

then

 for |b⟩ in |ψ⟩do Gw|b⟩

(iii) The return-sugaring in the for...do-blocks is just that: The semantics of all notations in (251) are exactly identical.
In particular, a declaration “for |b⟩” has access to the actual variable b : B. For instance we can declare linear maps
that duplicate the given basis states (needed in §3.2.3 below, for purposes of constructing “logical qbits”) as follows

encode ◦
◦ QW ⊸ Q(W ×W ×W)

encode ≡

 for |w⟩do |w, w, w⟩

104

3.2 Example Pseudocode
3.2.1 Standard QBit-gates

For reference we show a few basic quantum gates declared in QS-pseudocode, all of which examples of the general scheme
(247), according to which a general linear map on QBit is coded by:

Φ ◦
◦ QBit⊸ QBit

Φ ≡

 for |b⟩do Φ|b⟩

The quantum NOT-gate:

X ◦
◦ QBit⊸ QBit

X ≡

 for |b⟩do |1 − b⟩

(253)

The CNOT-gate (17)

CNOT ◦
◦ Q(Bit × Bit)⊸ Q(Bit × Bit)

CNOT ≡

 for |b1, b2⟩

do |b1, b1 xor b2⟩

(254)

The Hadamard gate:35

H ◦
◦ QBit⊸ QBit

H ≡

 for |b⟩do 1
√

2

(
|0⟩ + (−1)b|1⟩

) (255)

The Bell state:

BellState ◦
◦ QBit ⊗ QBit

BellState ≡ 1
√

2

(
|0⟩ ⊗ |0⟩ + |1⟩ ⊗ |1⟩

) (256)

In typical discussion of QBit-circuits, the initial QBit-states are all assumed to be |0⟩, and the Bell state (256) is prepared
by sending |0⟩ ⊗ |0⟩ through the quantum circuit (H⊗ id) > CNOT (cf. the first step in the circuit shown on page 3). With the
identification types available in LHoTT it is possible to construct a formal certificate that this indeed yields the intended state:

verify Bell preparation : BellState = |0⟩ ⊗ |0⟩ > (H ⊗ id) > CNOT

35The irrtraditional factor 1/
√

2 in the Hadamard gate – whose implementation in a formal language like LHoTT, while certainly possible, opens a can of
worms (cf. [TQP, pp. 71]) – has the purpose of making the map be unitary with respect to the canonical Hermitian inner product structure on QBit. But
since we are not imposing the Hermitian structure in the QBit data type, for the time being, the factor could as well be omitted for ease of full formalization
of the pseudo-code, at the small cost of picking up some irrelevant factors of 2 in subsequent expressions. For example, the quantum teleportation protocol
§3.2.2 without these prefactors in H will not strictly reproduce the input state |ψ⟩, but return it multiplied by 2 – which is physically still the same state, of
course, up to normalization.

105

3.2.2 Quantum Teleportation Protocol

In combined exposition of QS-pseudocode and of the quantum teleportation protocol (as shown in the circuit diagram in page
3, originally due to [BE+], see [NC00, §1.3.7][BEZ20, §3.3]) we narrate the logic of quantum teleportation by perpetually
switching between natural and QS-language:

The punchline of quantum teleportation is to send a quantum state |ψ⟩ (typically: a qbit) into a process “Alice”

|ψ⟩ > Alice(·)

which itself only records classical measurement results (concretely: a pair of bits):

Alice(·) ◦
◦

quantum
input

QBit⊸

classical
output
⃝

Bit2
1

and yet such that the transmission of this purely classical information ⃝Bit2 to a further process “Bob“:

Alice(·) > Bob(·)

allows the latter to re-construct a quantum state

Bob(·) ◦
◦ ⃝

Bit2
1⊸ ⃝

Bit2
QBit

which is definitely equal to the initial state (ie. independently of Alice’s intermediate measurement results):

verify : |ψ⟩ > Alice(·) > Bib(·) ?
= definitely

Bit2
|ψ⟩ .

For this to really work we need to fill in one missing ingredient indicated by “(·)”, namely the two processes need to “share
an entanglement source” up front, in that they need to share the two “halfs” of a Bell state pair of maximally entangle qbits
(256), like this:

verify :

 for |bellA⟩ ⊗ |bellB⟩ in BellState

do |ψ⟩ > Alice(bellA) > Bob(bellB)
= definitely

Bit2
|ψ⟩ .

Thus, the global structure of the quantum teleportation protocol is given by the following code:

teleport ◦
◦ QBit⊸ ⃝

Bit2
QBit

teleport ≡

for |b⟩

do

 for |bell1⟩ ⊗ |bell2⟩ in BellState

do |b⟩ > Alice(|bell1⟩) > Bob(|bell2⟩)

(257)

and it remains to declare the sub-processes Alice and Bob.
The procedure of Alice’s protocol is to

(1.) entangle the input state with the Bell state
(2.) feed the result through a suitable quantum gate and then
(3.) measure in the Bit2-basis and return the measurement result

like this:

Alice ◦
◦ QBit⊸

(
QBit⊸ ⃝

Bit2
1
)

Alice ≡

for |bell1⟩

do

 for |b⟩do
(
|b⟩ ⊗ |bell1⟩

)
> CNOT > (H ⊗ id) > collapse

(258)

106

The crux is that with the classical information received from Alice, Bob can apply quantum gates to his part of the Bell-state
conditioned on this classical information, like this:

Bob ◦
◦ QBit⊸

(
⃝

Bit2
1⊸ ⃝

Bit2
QBit

)
Bob ≡

for |bell2⟩

do

 if measured (b1, b2)

then |bell2⟩ > Xb1 > Zb2

(259)

The categorical semantics of this code, when in turn expressed in string diagram notation, gives the usual circuit-diagram
for the quantum teleportation protocol as shown on page 3. But now the correct encoding of the protocol becomes formally
verifiable:

If these procedures Alice and Bob are correctly coded, then the quantum state which Bob re-constructs from his Bell-
state is definitely equal to the one that Alice originally received (independent of the random measurement results that Alice
obtained), and we will be able to certify this property at compile-time by constructing a term of the following identification-
type:

verify :
∏

|ψ⟩ ◦◦ QBit

(
teleport |ψ⟩ = definitely |ψ⟩

)
(260)

107

3.2.3 Quantum Bit Flip Code

Bit flip error correction as QS-pseudocode, is another simple but instructive example (cf. [NC00, §10.1.1]):

LgclQBit : QuType

LgclQBit ≡ QBit ⊗ QBit ⊗ QBit

Syndrome : ClaTypefin

Syndrome ≡ Bit × Bit

encode ◦
◦ QBit⊸ LgclQBit

encode ≡

 for |b⟩do |b, b, b⟩

|0⟩

|0⟩

L
gclQ

B
it

︷ ︸︸ ︷

Q
B

it ︷︸︸︷
verify circuit encoding : encode = (−) ⊗ |0, 0⟩ > CNOT ⊗ id > id ⊗ CNOT

BitFlip ◦
◦ Syndrome!

(
LgclQBit⊸ LgclQBit

)

BitFlip ≡

if (0, 0) then id ⊗ id ⊗ id

if (1, 0) then X ⊗ id ⊗ id

if (1, 1) then id ⊗ X ⊗ id

if (0, 1) then id ⊗ id ⊗ X

compute syndrome ◦
◦ QSyndrome ⊗ LgclQBit⊸ QSyndrome ⊗ LgclQBit

compute syndrome ≡

 for |s1, s2⟩ ⊗ |b1, b2, b3⟩

do |s1 + b1 + b2, s2 + b2 + b3⟩ ⊗ |b1, b2, b2⟩
L

gc
lQ

B
it

︷ ︸
︸ ︷

L
gclQ

B
it

︷ ︸︸ ︷

Q
Sy

nd
ro

m
e

︷ ︸︸
 ︷ Q

Syndrom
e

︷ ︸︸ ︷

measure syndrome ◦
◦ LgclQBit⊸ ⃝SyndromeLgclQBit

measure syndrome ≡

for |b1, b2, b3⟩

do

 |0, 0⟩ ⊗ |b1, b2, b3⟩

> compute syndrome
> collapseSyndrome

|0⟩

|0⟩

0 1

0 1

L
gc

lQ
B

it
︷ ︸

︸ ︷

L
gclQ

B
it

︷ ︸︸ ︷
Syndrom

e
︷ ︸︸ ︷

|0⟩

|0⟩

0 1

0 1

L
gc

lQ
B

it
︷ ︸

︸ ︷

classical
error correction

logic

L
gclQ

B
it

︷ ︸︸ ︷
Syndrom

e
︷ ︸︸ ︷

compute
error syndrome

measure
error syndrome

correct
inferred error

correct error ◦
◦ LgclQBit⊸ ⃝SyndromeLgclQBit

correct error ≡

for |b1, b2, b3⟩

do

for |ψ⟩ in measure syndrome

(
|b1, b2, b3⟩

)
do

 if measured (s1, s2)

then BitFlip(s1,s2)|ψ⟩

verify error correction :
(
s1, s2 : Syndrome

)
!

(
encode > BitFlips1,s2

> correct error = definitely encode
)

Remark 3.2. The last line asserts a term of identification type which formally certifies that any single bit flip on a logically
encoded qbit is always corrected by the code (i.e.: no matter the measurement outcome). The construction of such certificates
in LHoTT (not shown here, but straightforward in the present case) provides the desired formal verification of classically
controlled quantum algorithms and protocols.

108

Declarations.
Competing interests. The authors declare that they have no conflict of interest.
Data availability. There is no data associated with this work.

References
[Ab96] L. Abrams, Two-dimensional topological quantum field theories and Frobenius algebra, J. Knot. Theor. Ramifications 5 (1996),

569-587, [doi:10.1142/S0218216596000333].
[Aby09] S. Abramsky, No-Cloning in categorical quantum mechanics, in: Semantic Techniques for Quantum Computation, Cambridge

University Press (2009) 1-28, [doi:10.1017/CBO9781139193313.002], [arXiv:0910.2401].
[AC04] S. Abramsky and B. Coecke, A categorical semantics of quantum protocols, Proceedings of the 19th IEEE conference

on Logic in Computer Science (LiCS’04). IEEE Computer Science Press (2004), [doi:10.1109/LICS.2004.1319636],
[arXiv:quant-ph/0402130].

[AC07] S. Abramsky and B. Coecke, Physics from Computer Science: a Position Statement, Int. J. Unconventional Computing 3 3 (2007),
[ijuc-3-3-p-179-197].

[AC08] S. Abramsky and B. Coecke, Categorical quantum mechanics, in: Handbook of Quantum Logic and Quantum Structures, Elsevier
(2008), [doi:10.1109/LICS.2004.1319636], [arXiv:0808.1023].

[AD06] S. Abramsky and R. Duncan, A Categorical Quantum Logic, Mathematical Structures in Computer Science, 16 3 (2006), 469-489,
[doi:10.1017/S0960129506005275], [arXiv:quant-ph/0512114].

[Ac11] P. Aczel, On Voevodsky’s Univalence Axiom, talk at the Third European Set Theory Conference (2011),
[ncatlab.org/nlab/files/Aczel-Univalence.pdf]

[AC95] M. Adelman and J. Corbett, A Sheaf Model for Intuitionistic Quantum Mechanics, Appl. Cat. Struct. 3 (1995), 79-104,
[doi:10.1007/BF00872949].

[ACU15] T. Altenkirch, J. Chapman, and T. Uustalu, Monads need not be endofunctors, Logical Methods in Computer Science 11 1:3
(2015), 1-40, [doi:10.2168/LMCS-11(1:3)2015], [arXiv:1412.7148].

[AG05] T. Altenkirch and J. Grattage, A functional quantum programming language, 20th Annual IEEE Symposium Logic in Computer
Science (2005), 249-258, [doi:10.1109/LICS.2005.1], [arXiv:quant-ph/0409065].

[AG10] T. Altenkirch and A. Green, The quantum IO monad, Ch. 5 of: Semantic Techniques in Quantum Computation (2010), 173-205,
[doi:10.1017/CBO9781139193313.006].

[ABGHR14] M. Ando, A. Blumberg, D. Gepner, M. Hopkins, and C. Rezk, An∞-categorical approach to R-line bundles, R-module Thom
spectra, and twisted R-homology, J. Topology 7 (2014) 869893, [doi:10.1112/jtopol/jtt035], [arXiv:1403.4325].

[AMcD23] N. Arkor and D. McDermott, The formal theory of relative monads, [arXiv:2302.14014].
[ACh19] G. Arone and M. Ching, Goodwillie Calculus, in: Handbook of Homotopy Theory, Taylor & Francis (2019),

[doi:10.1201/9781351251624], [arXiv:1902.00803].
[AA22] R. W. Arroyo and J. R. B. Arenhart, Whence deep realism for Everettian quantum mechanics?, Found. Phys. 52 (2022) 121,

[doi:10.1007/s10701-022-00643-0], [arXiv:2210.16713].
[Ar+15] S. Arunachalam, V. Gheorghiu, T. Jochym-O’Connor, M. Mosca, and P. V. Srinivasan, On the robustness of bucket brigade

quantum RAM, New J. Phys. 17 (2015) 123010, [doi:10.1088/1367-2630/17/12/123010],
[arXiv:1502.03450].

[At66] M. Atiyah, K-theory and reality, Quarterly J. Math. 17 (1966), 367-386, [doi:10.1093/qmath/17.1.367].
[Atk18] R. Atkey, Syntax and semantics of quantitative type theory, in: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS (2018), 56–65, [doi:10.1145/3209108.3209189].
[Att] S. Attal, Lectures on Quantum Noises, book project, [math.univ-lyon1.fr/∼attal/chapters.html].
[Aw06] S. Awodey, Category theory, Oxford University Press (2010), [doi:10.1093/acprof:oso/9780198568612.001.0001].
[Aw12] S. Awodey, Type theory and homotopy, in: Epistemology versus Ontology, Springer, Berlin (2012), 183-201,

[doi:10.1007/978-94-007-4435-6 9], [arXiv:1010.1810].
[AW09] S. Awodey and M. Warren, Homotopy theoretic models of identity type, Math. Proc. Cambridge Philosophical Society 146 (2009),

45-55, [doi:10.1017/S0305004108001783], [arXiv:0709.0248].
[Ba06] J. Baez, Quantum Quandaries: a Category-Theoretic Perspective, in D. Rickles et al. (eds.), The structural foundations of quantum

gravity, Clarendon Press (2006), 240-265, [ISBN9780199269693], [arXiv:quant-ph/0404040].
[Ba20] J. Baez, Jordan algebras, §4 of: Getting to the Bottom of Noether’s Theorem, [arXiv:2006.14741].
[Ba96] A. Barber, Dual Intuitionistic Linear Logic, Technical Report ECS-LFCS-96-347, University of Edinburgh (1996),

[lfcs:96-347].

109

https://doi.org/10.1142/S0218216596000333
https://doi.org/10.1017/CBO9781139193313.002
https://arxiv.org/abs/0910.2401
https://doi.org/10.1109/LICS.2004.1319636
https://arxiv.org/abs/quant-ph/0402130
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-3-number-3-2007/ijuc-3-3-p-179-197
https://doi.org/10.1109/LICS.2004.1319636
https://arxiv.org/abs/0808.1023
https://doi.org/10.1017/S0960129506005275
https://arxiv.org/abs/quant-ph/0512114
https://ncatlab.org/nlab/files/Aczel-Univalence.pdf
https://doi.org/10.1007/BF00872949
https://doi.org/10.2168/LMCS-11(1:3)2015
https://arxiv.org/abs/1412.7148
https://doi.org/10.1109/LICS.2005.1
https://arxiv.org/abs/quant-ph/0409065
https://doi.org/10.1017/CBO9781139193313.006
https://doi.org/10.1112/jtopol/jtt035
https://arxiv.org/abs/1403.4325
https://arxiv.org/abs/2302.14014
https://doi.org/10.1201/9781351251624
https://arxiv.org/abs/1902.00803
https://doi.org/10.1007/s10701-022-00643-0
https://arxiv.org/abs/2210.16713
https://doi.org/10.1088/1367-2630/17/12/123010
https://arxiv.org/abs/1502.03450
https://doi.org/10.1093/qmath/17.1.367
https://dl.acm.org/doi/10.1145/3209108.3209189
http://math.univ-lyon1.fr/~attal/chapters.html
https://doi.org/10.1093/acprof:oso/9780198568612.001.0001
https://doi.org/10.1007/978-94-007-4435-6_9
https://arxiv.org/abs/1010.1810
https://doi.org/10.1017/S0305004108001783
https://arxiv.org/abs/0709.0248
https://global.oup.com/academic/product/the-structural-foundations-of-quantum-gravity-9780199269693
https://arxiv.org/abs/quant-ph/0404040
https://arxiv.org/abs/2006.14741
http://www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347

[BBCDMSSSW95] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H.
Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52 (1995), 3457-3467,
[doi:10.1103/PhysRevA.52.3457], [arXiv:quant-ph/9503016].

[BW85] M. Barr and C. Wells, Toposes, Triples, and Theories, Grundlehren der math. Wissenschaften 278, Springer Berlin (1985);
Reprints Theor. Appl. Categories 12 (2005), 1-287, [tac:tr12].

[Bas84] J. R. Bastida, Field Extensions and Galois Theory, Cambridge University Press (1984),
[doi:10.1017/CBO9781107340749].

[Be69] J. Beck, Distributive Laws, in: Eckmann, B. (eds) Seminar on Triples and Categorical Homology Theory, Lecture Notes in Math.
80, Springer, Berlin, Heidelberg (1969), [doi:10.1007/BFb0083084].

[Be30] O. Becker, Zur Logik der Modalitäten, Jahrbuch für Philosophie und Phänomenologische Forschung 11 (1930), 497-548,
[ophen:pub-101138]; English translation: [doi:10.1007/978-3-030-87548-0].

[Bé67] J. Bénabou, Introduction to Bicategories, Lecture Notes in Math. 47, Springer, Berlin (1967), 1-77,
[doi:10.1007/BFb0074299].

[Bé85] J. Bénabou, Fibered Categories and the Foundations of Naive Category Theory, J. Symbolic Logic 50 1 (1985), 10-37,
[doi:10.2307/2273784].

[BCR18] G. Benenti, G. Casati, and D. Rossini, Principles of Quantum Computation and Information, World Scientific, Singapore (2004,
2018), [doi:10.1142/10909].

[BZ06] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States – An Introduction to Quantum Entanglement, Cambridge University
Press (2006), [doi:10.1017/CBO9780511535048].

[Be80] P. Benioff, The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented
by Turing machines, J. Stat. Phys. 22 (1980), 563–591, [doi:10.1007/BF01011339].

[BE+] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70 (1993) 1895,
[doi:10.1103/PhysRevLett.70.1895].

[Be95] N. Benton, A mixed linear and non-linear logic: Proofs, terms and models, in: Computer Science Logic, CSL 1994, Lecture Notes
in Computer Science 933 (1995), 121-135, [doi:10.1007/BFb0022251].

[BBdP98] N. Benton, G. Bierman, and V. de Paiva, Computational Types from a Logical Perspective, J. Functional Programming 8 2
(1998), 177-193, [doi:10.1017/S0956796898002998].

[BBdP92] N. Benton, G. Bierman, and V. de Paiva, Term assignment for intuitionistic linear logic, Technical report 262, Computer Labo-
ratory University of Cambridge (August 1992), [cl.cam.ac.uk/techreports/UCAM-CL-TR-262.pdf]

[BBdPH92] N. Benton, G. Bierman, V. de Paiva, and M. Hyland, Linear λ-Calculus and Categorical Models Revisited, in: Computer
Science Logic. CSL 1992, Lecture Notes in Computer Science 702, Springer, Berlin (1993),
[doi:10.1007/3-540-56992-8 6].

[BHM02] N. Benton, J. Hughes and E. Moggi, Monads and Effects, in: Applied Semantics, Lecture Notes in Computer Science 2395,
Springer (2002), 42-122, [doi:10.1007/3-540-45699-6 2].

[Bie07] G. M. Biedermann, private conversation with A. Joyal (2007).
[Bi94] G. M. Bierman, On Intuitionistic Linear Logic, DPhil dissertation, Cambridge University (1994),

[ncatlab.org/nlab/files/Bierman-LinearLogic.pdf]
[BdP96] G. M. Bierman and V de Paiva, Intuitionistic necessity revisited, Birmingham CSR (1996),

[ncatlab.org/nlab/files/Bierman-dePaiva-NecessityRevisited.pdf]
[BdP00] G. M. Bierman and V. de Paiva, On an Intuitionistic Modal Logic, Studia Logica 65 (2000), 383–416,

[doi:10.1023/A:1005291931660].
[BvN36] G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. Math. 37 (1936), 823-843,

[doi:10.2307/1968621].
[BvB07] P. Blackburn and J. van Benthem, Modal logic: a semantic perspective, Ch 1 in [BvBW07]: The Handbook of Modal Logic,

Studies in Logic and Practical Reasoning 3 (2007), [doi:10.1016/S1570-2464(07)80004-8].
[BdRV01] P. Blackburn, M. de Rijke, and Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science 53, Cambridge

University Press (2001), [doi:10.1017/CBO9781107050884].
[BvBW07] P. Blackburn, J. van Benthem, and F. Wolter (eds.), The Handbook of Modal Logic, Studies in Logic and Practical Reasoning

3 (2007), [cgi.csc.liv.ac.uk/ frank/MLHandbook].
[Boa95] J. M. Boardman, Stable Operations in Generalized Cohomology in Handbook of Algebraic Topology, Oxford Univ. Press (1995),

[doi:10.1016/B978-0-444-81779-2.X5000-7],
[ncatlab.org/nlab/files/Boardman-StableOperations.pdf]

[Borg08] F. J. Boge, Quantum Mechanics Between Ontology and Epistemology, European Studies in Philosophy of Science (ESPS) 10,
Springer, Berlin (2008), [doi:10.1007/978-3-319-95765-4].

110

https://doi.org/10.1103/PhysRevA.52.3457
https://arxiv.org/abs/quant-ph/9503016
http://www.tac.mta.ca/tac/reprints/articles/12/tr12abs.html
https://doi.org/10.1017/CBO9781107340749
https://doi.org/10.1007/BFb0083084
https://ophen.org/pub-101138
https://doi.org/10.1007/978-3-030-87548-0
http://dx.doi.org/10.1007/BFb0074299
http://dx.doi.org/10.2307/2273784
https://doi.org/10.1142/10909
https://doi.org/10.1017/CBO9780511535048
https://doi.org/10.1007/BF01011339
https://doi.org/10.1103/PhysRevLett.70.1895
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1017/S0956796898002998
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-262.pdf
https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1007/3-540-45699-6_2
https://ncatlab.org/nlab/files/Bierman-LinearLogic.pdf
https://ncatlab.org/nlab/files/Bierman-dePaiva-NecessityRevisited.pdf
https://doi.org/10.1023/A:1005291931660
https://doi.org/10.2307/1968621
https://doi.org/10.1016/S1570-2464(07)80004-8
https://doi.org/10.1017/CBO9781107050884
https://cgi.csc.liv.ac.uk/~frank/MLHandbook
https://doi.org/10.1016/B978-0-444-81779-2.X5000-7
https://ncatlab.org/nlab/files/Boardman-StableOperations.pdf
https://doi.org/10.1007/978-3-319-95765-4

[Bohr1949] N. Bohr, Discussion with Einstein on Epistemological Problems in Atomic Physics, in: Albert Einstein, Philosopher-
Scientist, The Library of Living Philosophers VII Evanston (1949) 201-241, Niels Bohr Collected Works 7 (1996), 339-381,
[doi:10.1016/S1876-0503(08)70379-7].

[Bor94b] F. Borceux, Handbook of Categorical Algebra Vol. 2 Categories and Structures, Encyclopedia of Mathematics and its Applica-
tions 50 Cambridge University Press (1994), [doi:10.1017/CBO9780511525865].

[Born26] M. Born, Quantenmechanik der Stoßvorgänge, Zeitschrift Phys. 38 (1926), 803–827,
[doi:10.1007/BF01397184].

[BEZ20] D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information – Quantum Cryptography, Quantum Telepor-
tation, Quantum Computation, Springer, New York (2020), [doi:10.1007/978-3-662-04209-0].

[Bra14] M. Brandenburg, Tensor categorical foundations of algebraic geometry, [arXiv:1410.1716].
[BBDRV09] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nest, Measurement-based quantum computation,

Nature Phys. 5 (2009), 19-26, [doi:10.1142/S0219749904000055], [arXiv:0910.1116].
[BVS93] S. Brookes and K. Van Stone, Monads and Comonads in Intensional Semantics, technical report CMU-CS-93-10 (1993),

[cs.cmu.edu/∼brookes/papers/MonadsComonads.pdf].
[Bru14] J. W. Brunekreef, Topological Quantum Computation and Quantum Compilation, PhD thesis, Utrecht (2014),

[handle:20.500.12932/17738].
[BLL13] G. Brunerie, D. Licata, and P. Lumsdaine, Homotopy theory in type theory, lecture notes (2013),

[dlicata.wescreates.wesleyan.edu/pubs/bll13homotopy/bll13homotopy.pdf]
[BGL95] P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Physics, Lecture Notes in Physics Monographs 31, Springer,

Berlin (1995), [doi:10.1007/978-3-540-49239-9].
[Bu76] M. Bunge, Possibility and Probability, in: Foundations of Probability Theory, Statistical Interference, and Statistical Theories of

Science, Reidel (1976), 17-34, [doi:10.1007/978-94-010-1438-0 2].
[BHI98] J. Butterfield, J. Hamilton, and C. Isham, A topos perspective on the Kochen-Specker theorem, I. quantum states as generalized

valuations, Int. J. Theor. Phys. 37 11 (1998), 2669-2733,
[doi:10.1023/A:1026680806775].

[CJKP97] A. Carboni, G. Janelidze, M Kelly, and R. Paré, On localization and stabilization for factorization systems, Appl. Categ. Struc-
tures 5 (1997), 1-58, [doi:10.1023/A:1008620404444].

[CHK85] C. Cassidy, M. Hébert, and M. Kelly, Reflective subcategories, localizations, and factorization systems, J. Austral. Math Soc.
(Series A) 38 (1985), 287-329, [doi:10.1017/S1446788700023624].

[CR21] F. Cherubini and E. Rijke, Modal Descent, Math. Structures in Computer Science 31 4 (2021), 363-391,
[doi:10.1017/S0960129520000201], [arXiv:2003.09713].

[Cho22] S. Choe, Quantum computing overview: discrete vs. continuous variable models, [arXiv:2206.07246].
[Ch75] M.-D. Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 3 (1975), 285-290,

[doi:10.1016/0024-3795(75)90075-0].
[CW08] J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature 453 (2008), 1031–1042,

[doi:10.1038/nature07128].
[CS78] J. F. Clauser and A Shimony, Bell’s theorem: Experimental tests and implications, Rep. Prog. Phys. 41 (1978) 1881,

[doi:10.1088/0034-4885/41/12/002].
[Co10] B. Coecke, Quantum Picturalism, Contemporary Physics 51 1 (2010), 59-83, [arXiv:0908.1787],

[doi:10.1080/00107510903257624].
[Co23] B. Coecke, Basic ZX-calculus for students and professionals, [arXiv:2303.03163].
[CD08] B. Coecke and R. Duncan, Interacting Quantum Observables, in Automata, Languages and Programming. ICALP 2008, Lecture

Notes in Computer Science 5126, Springer (2008), [doi:10.1007/978-3-540-70583-3 25].
[CD11] B. Coecke and R. Duncan, Interacting Quantum Observables: Categorical Algebra and Diagrammatics, New J. Phys. 13 (2011)

043016, [doi:10.1088/1367-2630/13/4/043016], [arXiv:0906.4725].
[CPaq08] B. Coecke and E. O. Paquette, POVMs and Naimark’s theorem without sums, Electronic Notes Theor. Comp. Sci. 210 (2008)

15-31, [doi:10.1016/j.entcs.2008.04.015], [arXiv:quant-ph/0608072].
[CPP0909] B. Coecke, E. O. Paquette, and D. Pavlović, Classical and quantum structuralism, Semantic Techniques in Quantum Compu-

tation, Cambridge University Press (2009), 29-69, [doi:10.1017/CBO9781139193313.003],
[arXiv:0904.1997].

[CPav08] B. Coecke and D. Pavlović, Quantum measurements without sums, in: Mathematics of Quantum Computation and Quantum
Technology, Taylor & Francis (2008), 559-596, [doi:10.1201/9781584889007], [arXiv:quant-ph/0608035].

[CPV12] B. Coecke, D. Pavlović, and J. Vicary, A new description of orthogonal bases, Mathematical Structures in Computer Science 23
3 (2012), 555-567, [doi:10.1017/S0960129512000047], [arXiv:0810.0812].

[CDL22] A. Colledan and U. Dal Lago, On Dynamic Lifting and Effect Typing in Circuit Description Languages, talk at TYPES Workshop,
Nantes (2022), [arXiv:2202.07636].

111

https://doi.org/10.1016/S1876-0503(08)70379-7
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1007/BF01397184
https://doi.org/10.1007/978-3-662-04209-0
https://arxiv.org/abs/1410.1716
https://doi.org/10.1142/S0219749904000055
https://arxiv.org/abs/0910.1116
https://www.cs.cmu.edu/~brookes/papers/MonadsComonads.pdf
https://studenttheses.uu.nl/handle/20.500.12932/17738
https://dlicata.wescreates.wesleyan.edu/pubs/bll13homotopy/bll13homotopy.pdf
https://doi.org/10.1007/978-3-540-49239-9
https://doi.org/10.1007/978-94-010-1438-0_2
https://doi.org/10.1023/A:1026680806775
https://doi.org/10.1023/A:1008620404444
https://doi.org/10.1017/S1446788700023624
https://doi.org/10.1017/S0960129520000201
https://arxiv.org/abs/2003.09713
https://arxiv.org/abs/2206.07246
https://doi.org/10.1016/0024-3795(75)90075-0
https://doi.org/10.1038/nature07128
https://iopscience.iop.org/article/10.1088/0034-4885/41/12/002
https://arxiv.org/abs/0908.1787
https://doi.org/10.1080/00107510903257624
https://arxiv.org/abs/2303.03163
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0906.4725
https://doi.org/10.1016/j.entcs.2008.04.015
https://arxiv.org/abs/quant-ph/0608072
https://doi.org/10.1017/CBO9781139193313.003
https://arxiv.org/abs/0904.1997
https://doi.org/10.1201/9781584889007
https://arxiv.org/abs/quant-ph/0608035
https://doi.org/10.1017/S0960129512000047
https://arxiv.org/abs/0810.0812
https://arxiv.org/abs/2202.07636

[O’C11] R. O’Connor, Functor is to Lens as Applicative is to Biplate: Introducing Multiplate, contribution to ICFP ‘11: ACM SIGPLAN
International Conference on Functional Programming (2011), [arXiv:1103.2841].

[Con11] R. Constable, The Triumph of Types: Creating a Logic of Computational Reality, lecture at: Types, Semantics and Verification,
Oregon (2011),
[www.cs.uoregon.edu/research/summerschool/summer11/lectures/Triumph-of-Types-Extended.pdf]

[Cor20] D. Corfield, Modal homotopy type theory, Oxford University Press (2020), [ISBN:9780198853404].
[CC09] P. Cousot and R. Cousot, A gentle introduction to formal verification of computer systems by abstract interpretation, in: Logics

and Languages for Reliability and Security, IOS (2009), [doi:10.3233/978-1-60750-100-8-1].
[DLF12] U. Dal Lago and C. Faggian, On Multiplicative Linear Logic, Modality and Quantum Circuits, EPTCS 95 (2012), 55-66,

[doi:10.4204/EPTCS.95.6], [arXiv:1210.0613].
[DS22] S. Das Sarma, Quantum computing has a hype problem, MIT Technology Review (March 2022),

[technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem].
[DN06] C. M. Dawson and M. A. Nielsen, The Solovay-Kitaev algorithm, Quantum Information & Computation 6 1 (2006), 81–95,

[doi:10.5555/2011679.2011685], [arXiv:quant-ph/0505030].
[De89] D. E. Deutsch, Quantum computational networks, Proc. of the Royal Society A 425 1868 (1989), 73-90,

[doi:10.1098/rspa.1989.0099].
[dP89] V. de Paiva, The Dialectica Categories, in: Categories in Computer Science and Logic, Contemp. Math. 92 (1989),

[doi:10.1090/conm/092].
[De14] S. J. Devitt, Classical Control of Large-Scale Quantum Computers, in: Reversible Computation, Lecture Notes in Computer

Science 8507, Springer, New York (2014), [doi:10.1007/978-3-319-08494-7 3], [arXiv:1405.4943].
[dWG73] B. S. DeWitt and N. Graham (eds.), The Many-Worlds Interpretation of Quantum Mechanics, Princeton University Press (1973,

2016), [ISBN:9780691645926], [jstor:j.ctt13x0wwk].
[Di30] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press (1930, 1981),

[ISBN:9780198520115].
[Di39] P. A. M. Dirac, A new notation for quantum mechanics, Math. Proc. Cambridge Philosophical Soc. 35 (1939), 416-418,

[doi:10.1017/S0305004100021162].
[DHK08] H. Ditmarsch, W. Hoek, and B. Kooi, Dynamic Epistemic Logic, Studies In Epistemology, Logic, Methodology, And Philosophy

Of Science (SYLI) 337 Springer, New York (2008), [doi:10.1007/978-1-4020-5839-4].
[DP84] A. Dold and D. Puppe, Duality, Trace and Transfer, Proc. Steklov Inst. Math. 154 (1984), 85–103,

[maths.ed.ac.uk/ v1ranick/papers/doldpup2.pdf]
[Du06] R. Duncan, Types for quantum mechanics, PhD Dissertation. Oxford University (2006),

[personal.strath.ac.uk/ross.duncan/papers/rduncan-thesis.pdf]
[EK66] S. Eilenberg and G. M. Kelly, Closed Categories, in: Proceedings of the Conference on Categorical Algebra – La Jolla 1965,

Springer, Berlin (1966), 421-562, [doi:10.1007/978-3-642-99902-4].
[EM45] S. Eilenberg and S. MacLane, General Theory of Natural Equivalences, Transactions of the American Mathematical Society 58 2

(1945), 231-294, [doi:10.1090/S0002-9947-1945-0013131-6], [jstor:1990284].
[EPR35] A. Einstein, B. Podolsky, and N. Rosen, Can the Quantum-Mechanical Description of Physical Reality be Considered Complete?

Phys. Rev. 47 10 (1935), 777-780, [doi:10.1103/PhysRev.47.777].
[Esp95] D. A. Espinosa, Semantic Lego, PhD thesis, Columbia University (1995),

[ncatlab.org/nlab/files/Espinosa-SemanticLego.pdf]
[Ev57a] H. Everett, The Theory of the Universal Wavefunction, PhD thesis, Princeton (1957); reprinted in [dWG73].
[Ev57b] H. Everett, “Relative State” Formulation of Quantum Mechanics, Rev. Mod. Phys. 29 (1957), 454-462,

[doi:10.1103/RevModPhys.29.454].
[FHMV95] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning About Knowledge, The MIT Press (1995),

[ISBN:9780262562003].
[FHTZ15] Y. Feng, E. M. Hahn, A. Turrini, and L. Zhang, QPMC: A Model Checker for Quantum Programs and Protocols, in Formal Meth-

ods. FM 2015, Lecture Notes in Computer Science 9109, Springer, New York (2015), [doi:10.1007/978-3-319-19249-9 17].
[FG16] L. Ferroni and L. Gili, Non-existent but potentially actual. Aristotle on plenitude, Revue de philologie, de littérature et d’histoire

anciennes, Tome XC (2016), 81-114, [doi:10.3917/phil.901.0081].
[Fey82] R. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21 (1982), 467–488,

[doi:10.1007/BF02650179].
[Fey86] R. Feynman, Quantum mechanical computers, Found. Phys. 16 (1986), 507–531, [doi:10.1007/BF01886518].
[FSS23] D. Fiorenza, H. Sati, and U. Schreiber: The Character map in Nonabelian Cohomology: Twisted, Differential and Generalized,

World Scientific, Singapore (2023), [doi:10.1142/13422], [arXiv:2009.11909],
[ncatlab.org/schreiber/show/The+Character+Map].

112

https://arxiv.org/abs/1103.2841
http://www.cs.uoregon.edu/research/summerschool/summer11/
http://www.cs.uoregon.edu/research/summerschool/summer11/lectures/Triumph-of-Types-Extended.pdf
https://global.oup.com/academic/product/modal-homotopy-type-theory-9780198853404
https://dx.doi.org/10.3233/978-1-60750-100-8-1
https://doi.org/10.4204/EPTCS.95.6
https://arxiv.org/abs/1210.0613
https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem
https://dl.acm.org/doi/10.5555/2011679.2011685
https://arxiv.org/abs/quant-ph/0505030
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1090/conm/092
https://doi.org/10.1007/978-3-319-08494-7_3
https://arxiv.org/abs/1405.4943
https://press.princeton.edu/books/hardcover/9780691645926/the-many-worlds-interpretation-of-quantum-mechanics
https://press.princeton.edu/books/hardcover/9780691645926/the-many-worlds-interpretation-of-quantum-mechanics
https://global.oup.com/academic/product/the-principles-of-quantum-mechanics-9780198520115
https://doi.org/10.1017/S0305004100021162
https://doi.org/10.1007/978-1-4020-5839-4
https://www.maths.ed.ac.uk/~v1ranick/papers/doldpup2.pdf
http://personal.strath.ac.uk/ross.duncan/papers/rduncan-thesis.pdf
https://doi.org/10.1007/978-3-642-99902-4
https://doi.org/10.1090/S0002-9947-1945-0013131-6
https://www.jstor.org/stable/1990284
https://doi.org/10.1103/PhysRev.47.777
https://ncatlab.org/nlab/files/Espinosa-SemanticLego.pdf
https://doi.org/10.1103/RevModPhys.29.454
https://mitpress.mit.edu/9780262562003/reasoning-about-knowledge/
https://doi.org/10.1007/978-3-319-19249-9_17
https://www.cairn.info/revue-de-philologie-litterature-et-histoire-anciennes-2016-1-page-81.htm
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF01886518
https://doi.org/10.1142/13422
https://arxiv.org/abs/2009.11909
https://ncatlab.org/schreiber/show/The+Character+Map+in+Non-Abelian+Cohomology

[Fi07] M. Fitting, Modal proof theory, Ch. 2 in [BvBW07]: The Handbook of Modal Logic, Studies in Logic and Practical Reasoning 3
(2007), 85-183, [doi:10.1016/S1570-2464(07)80005-X].

[Fr69] A. Frei, Some remarks on triples, Math. Zeitschrift 109 (1969), 269–272, [doi:10.1007/BF01110118].
[Fr64] P. Freyd, Abelian Categories – An Introduction to the theory of functors, Harper and Row (1964), Reprints in Theory and Applica-

tions of Categories 3 (2003), 23 - 164, [tac:tr3].
[Fr99] P. Freyd, Abelian-topos (AT) categories (1999), [ncatlab.org/nlab/show/AT+category].
[FHPTST99] P. Freyd, P. O’Hearn, A. J. Power, M. Takeyama, R. Street, and R. D. Tennent, Bireflectivity, Theoretical Computer Science

228 1–2 (1999), 49-76, [doi:10.1016/S0304-3975(98)00354-5].
[FKRS22a] P. Fu, K. Kishida, N. J. Ross, and P. Selinger, A biset-enriched categorical model for Proto-Quipper with dynamic lifting, in

Quantum Physics and Logic 2022, [arXiv:2204.13039].
[FKRS22b] P. Fu, K. Kishida, N. J. Ross, and P. Selinger, Proto-Quipper with dynamic lifting, in Quantum Physics and Logic 2022,

[arXiv:2204.13041].
[FKS20] P. Fu, K. Kishida, and P. Selinger, Linear Dependent Type Theory for Quantum Programming Languages, LICS ‘20: Proceedings

of the 35th Annual ACM/IEEE Symposium on Logic in Computer Science (2020), 440–453, [arXiv:2004.13472].
[Ge35] G. Gentzen, Untersuchungen über das logische Schließen I, Math. Zeitschrift 39 1 (1935), 176–210,

[doi:10.1007/BF01201353].
[GLM08a] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum random access memory, Phys. Rev. Lett. 100 (2008)

160501,[doi:10.1103/PhysRevLett.100.160501], [arXiv:0708.1879].
[GLM08b] V. Giovannetti, S. Lloyd, and L. Maccone, Architectures for a quantum random access memory, Phys. Rev. A 78 (2008) 052310,

[doi:10.1103/PhysRevA.78.052310], [arXiv:0807.4994].
[Gir87] J.-Y. Girard, Linear logic, Theor. Computer Science 50 (1987), 1-101, [doi:10.1016/0304-3975(87)90045-4].
[Gir93] J.-Y. Girard, On the unity of logic Annals of Pure and Applied Logic 59 (1993), 201-217,

[doi:10.1016/0168-0072(93)90093-S].
[Gi03] R. Girle, Possible Worlds, McGill-Queen’s University Press (2003), [jstor:j.cttq48cx].
[Gl09] J. Gleason, The C∗-algebraic formalism of quantum mechanics (2009),

[ncatlab.org/nlab/files/GleasonAlgebraic.pdf]
[Gl11] J. Gleason, From Classical to Quantum: The F∗-Algebraic Approach, contribution to VIGRE REU 2011, Chicago (2011),

[ncatlab.org/nlab/files/GleasonFAlgebraic.pdf]
[Go03] R. Goldblatt, Mathematical modal logic: A view of its evolution, J. Applied Logic 1 5–6 (2003), 309-392,

[doi:10.1016/S1570-8683(03)00008-9].
[GLLN08] J. Goubault-Larrecq, S. Lasota, and D. Nowak, Logical Relations for Monadic Types, Mathematical Structures in Computer

Science, 18 6 (2008), 1169-1217, [doi:10.1017/S0960129508007172], [arXiv:cs/0511006].
[Gr10] A. Green, Towards a formally verified functional quantum programming language (2010), [eprints:11457].
[GLRSV13] A. Green, P. L. Lumsdaine, N. Ross, P. Selinger, and B. Valiron, Quipper: A Scalable Quantum Programming Language,

ACM SIGPLAN Notices 48 6 (2013), 333-342, [doi:10.1145/2499370.2462177], [arXiv:1304.3390].
[GLRSV13] A. Green, P. L. Lumsdaine, N. Ross, P. Selinger and B. Valiron, An Introduction to Quantum Programming in Quipper,

Lecture Notes in Computer Science 7948, Springer, New York (2013), 110-124, [arXiv:1304.5485],
[doi:10.1007/978-3-642-38986-3 10].

[GRZ99] D. Greenberger, W. L. Reiter, and A. Zeilinger, Epistemological and Experimental Perspectives on Quantum Physics, Vienna
Circle Institute Yearbook (VCIY) 7, Springer, New York (1999), [doi:10.1007/978-94-017-1454-9].

[Gri02] R. B. Griffiths, Consistent Quantum Theory, Cambridge University Press (2002), [doi:10.1017/CBO9780511606052].
[GMSW21] F. Groote, R. Morel, J. Schmaltz, and A. Watkins, Logic Gates, Circuits, Processors, Compilers and Computers, Springer,

New York (2021), [doi:10.1007/978-3-030-68553-9].
[Gu95] C. A. Gunter, The Semantics of Types in Programming Languages, in: Handbook of Logic in Computer Science, Vol 3: Semantic

structures, Oxford University Press (1995), [ISBN:9780198537625].
[GB22a] Y. Gurevich and A. Blass, Quantum circuits with classical channels and the principle of deferred measurements, Theor. Comp.

Sci. 920 (2022), 21–32, [doi:10.1016/j.tcs.2022.02.002], [arXiv:2107.08324].
[Ha16] R. Harper, Practical Foundations for Programming Languages, Cambridge University Press (2016),

[ISBN:9781107150300].
[Hed18] Hedera blog, Formal Methods: The Importance of Being Fault Tolerant in a World with Bad Actors (2018),

[medium.com/hedera:7308a4997fdd].
[HM92] J. Y. Halpern and Y. Moses, A guide to completeness and complexity for modal logics of knowledge and belief, Artificial Intelli-

gence 54 3 (1992), 319-379, [doi:10.1016/0004-3702(92)90049-4].
[HSM+20] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, M. Troyer, and K. Svore, Quantum programming

languages, Nature Reviews Phys. 2 (2020), 709–722, [doi:10.1038/s42254-020-00245-7].

113

https://doi.org/10.1016/S1570-2464(07)80005-X
https://doi.org/10.1007/BF01110118
https://www.emis.de/journals/TAC/reprints/articles/3/tr3abs.html
https://ncatlab.org/nlab/show/AT+category
https://doi.org/10.1016/S0304-3975(98)00354-5
https://arxiv.org/abs/2204.13039
https://arxiv.org/abs/2204.13041
https://arxiv.org/abs/2004.13472
http://dx.doi.org/10.1007/BF01201353
https://doi.org/10.1103/PhysRevLett.100.160501
https://arxiv.org/abs/0708.1879
https://doi.org/10.1103/PhysRevA.78.052310
https://arxiv.org/abs/0807.4994
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0168-0072(93)90093-S
https://www.jstor.org/stable/j.cttq48cx
https://ncatlab.org/nlab/files/GleasonAlgebraic.pdf
http://www.math.uchicago.edu/~may/VIGRE/VIGREREU2011.html
https://ncatlab.org/nlab/files/GleasonFAlgebraic.pdf
https://doi.org/10.1016/S1570-8683(03)00008-9
https://doi.org/10.1017/S0960129508007172
https://arxiv.org/abs/cs/0511006
http://eprints.nottingham.ac.uk/11457
https://doi.org/10.1145/2499370.2462177
https://arxiv.org/abs/1304.3390
https://arxiv.org/abs/1304.5485
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-94-017-1454-9
https://doi.org/10.1017/CBO9780511606052
https://doi.org/10.1007/978-3-030-68553-9
https://global.oup.com/academic/product/handbook-of-logic-in-computer-science-9780198537625
https://doi.org/10.1016/j.tcs.2022.02.002
https://arxiv.org/abs/2107.08324
http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/practical-foundations-programming-languages-2nd-edition?format=HB
https://medium.com/hedera/formal-methods-the-importance-of-being-abft-in-a-world-with-bad-actors-7308a4997fdd
https://doi.org/10.1016/0004-3702(92)90049-4
https://doi.org/10.1038/s42254-020-00245-7

[HZ11] T. Heinosaari and M. Ziman, The Mathematical Language of Quantum Theory, Cambridge University Press (2011),
[doi:10.1017/CBO9781139031103].

[HLS02] C. Heunen, K. Landsman, and B. Spitters, A topos for algebraic quantum theory, Comm. Math. Phys. 291 (2009), 63-110,
[doi:10.1007/s00220-009-0865-6], [arXiv:0709.4364].

[HV12] C. Heunen and J. Vicary, Lectures on categorical quantum mechanics (2012),
[cs.ox.ac.uk/files/4551/cqm-notes.pdf]

[HV19] C. Heunen and J. Vicary, Categories for Quantum Theory, Oxford University Press (2019), [ISBN:9780198739616].
[HRHWH21] K. Hietala, R. Rand, S.-H. Hung, X. Wu, and M. Hicks, A verified optimizer for Quantum circuits, Proceedings of the ACM

on Programming Languages 5 Issue POPL 37 (2021), 1–29, [doi:10.1145/3434318].
[HRHLH21] K. Hietala, R. Rand, S.-H. Hung, L. Li and M. Hicks, Proving Quantum Programs Correct, in: 12th International

Conference on Interactive Theorem Proving (ITP 2021), Leibniz International Proceedings in Informatics (LIPIcs) 193 (2021),
[arXiv:2010.01240].

[Hi62] K. J. J. Hintikka, Knowledge and belief: An introduction to the logic of the two notions, Cornell University Press (1962),
[ark:/13960/t9k437s65].

[HP07] W. Hoek and M. Pauly, Epistemic Logic, Sec 4 in: Modal logic for games and information, Ch. 20 in [BvBW07]: The Handbook
of Modal Logic, Studies in Logic and Practical Reasoning 3 (2007), 85-183,
[doi:10.1016/S1570-2464(07)80023-1].

[Ho95] M. Hofmann, Extensional concepts in intensional type theory, Ph.D. thesis, Edinburgh (1995), Distinguished Dissertations,
Springer (1997), [ECS-LFCS-95-327], [doi:10.1007/978-1-4471-0963-1].

[Ho97] M. Hofmann, Syntax and semantics of dependent types, in: Semantics and logics of computation, Publ. Newton Inst. 14, Cambridge
Univ. Press (1997), 79-130, [doi:10.1017/CBO9780511526619.004].

[HS98] M. Hofmann and T. Streicher, The groupoid interpretation of type theory, in: Twenty-five years of constructive type theory, Oxf.
Logic Guides. 36, Clarendon Press (1998) 83-111, [ISBN:9780198501275].

[HZBS07] L. Hormozi, G. Zikos, N. E. Bonesteel, and S. H. Simon, Topological Quantum Compiling, Phys. Rev. B 75 (2007) 165310,
[doi:10.1103/PhysRevB.75.165310], [arXiv:quant-ph/0610111].

[HHO03] M. Horodecki, P. Horodecki, and J. Oppenheim, Reversible transformations from pure to mixed states, and the unique measure
of information, Phys. Rev. A 67 (2003) 062104, [doi:10.1103/PhysRevA.67.062104].

[HSS00] M. Hovey, B. Shipley, and J. Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000), 149-208,
[doi:10.1090/S0894-0347-99-00320-3], [arXiv:math/9801077].

[Ho19] M. Hoyois, Topoi of parametrized objects, Theory App. Categ. 34 (2019), 243-248, [arXiv:1611.02267], [tac:34-09].
[HWFZ20] H.-L. Huang, D. Wu, D. Fan, and X. Zhu, Superconducting Quantum Computing: A Review, Science China Information

Sciences 63 8 (2020), 1-32, [doi:10.1007/s11432-020-2881-9], [arXiv:2006.10433].
[HN19] T. Huckle and T. Neckel, Bits and Bugs: A Scientific and Historical Review on Software Failures in Computational Science, SIAM

(2019), [doi:10.1137/1.9781611975567].
[HT95] H. Hu and W. Tholen, Limits in free coproduct completions, J. Pure Appl. Algebra 105 (1995), 277-291,

[doi:10.1016/0022-4049(94)00153-7].
[Hud96] P. Hudak, Building Domain-Specific Embedded Languages, ACM Computing Surveys 28 4e (1996) 196–es,

[doi:10.1145/242224.242477].
[Hud98a] P. Hudak, Domain Specific Languages, Chapter 3 in: Handbook of Programming Languages, Vol. III: Little Languages and

Tools, MacMillan (1998), 39–60, [cs448h.stanford.edu/DSEL-Little.pdf]
[Hud98b] P. Hudak, Modular Domain Specific Languages and Tools, in: Proceedings of Fifth International Conference on Software Reuse,

IEEE Computer Society Press (1998), [doi:10.5555/551789.853532].
[HHPW07] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler, A history of Haskell: being lazy with class, History of Programming

Languages (2007), 1-55, [doi:10.1145/1238844.1238856].
[HP07] M. Hyland and J. Power, The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads, Electronic

Notes Theor. Comp. Sci. 172 (2007), 437-458, [doi:10.1016/j.entcs.2007.02.019].
[Iq+23] M. Iqbal et al, Creation of Non-Abelian Topological Order and Anyons on a Trapped-Ion Processor,

[arXiv:2305.03766].
[Ish95] C. Isham, Lectures on Quantum Theory – Mathematical and Structural Foundations, World Scientific, Singapore (1995),

[doi:10.1142/p001].
[Ja93] B. Jacobs, Comprehension categories and the semantics of type dependency, Theoret. Comput. Sci. 107 2 (1993), 169-207,

[doi:10.1016/0304-3975(93)90169-T].
[Ja94] B. Jacobs, Semantics of weakening and contraction, Annals of Pure and Applied Logic 69 1 (1994), 73-106,

[doi:10.1016/0168-0072(94)90020-5].
[Ja98] B. Jacobs, Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics 141, Elsevier (1998),

[ISBN:978-0-444-50170-7].

114

https://doi.org/10.1017/CBO9781139031103
http://dx.doi.org/10.1007/s00220-009-0865-6
https://arxiv.org/abs/0709.4364
https://www.cs.ox.ac.uk/files/4551/cqm-notes.pdf
https://global.oup.com/academic/product/categories-for-quantum-theory-9780198739616
https://doi.org/10.1145/3434318
https://arxiv.org/abs/2010.01240
https://archive.org/details/knowledgebeliefi00hint_0
https://doi.org/10.1016/S1570-2464(07)80023-1
http://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-327/
https://doi.org/10.1007/978-1-4471-0963-1
https://doi.org/10.1017/CBO9780511526619.004
https://global.oup.com/academic/product/twenty-five-years-of-constructive-type-theory-9780198501275
https://link.aps.org/doi/10.1103/PhysRevB.75.165310
https://arxiv.org/abs/quant-ph/0610111
https://doi.org/10.1103/PhysRevA.67.062104
https://doi.org/10.1090/S0894-0347-99-00320-3
https://arxiv.org/abs/math/9801077
https://arxiv.org/abs/1611.02267
http://www.tac.mta.ca/tac/volumes/34/9/34-09abs.html
https://doi.org/10.1007/s11432-020-2881-9
https://arxiv.org/abs/2006.10433
https://doi.org/10.1137/1.9781611975567
https://doi.org/10.1016/0022-4049(94)00153-7
https://doi.org/10.1145/242224.242477
http://cs448h.stanford.edu/DSEL-Little.pdf
https://dl.acm.org/doi/10.5555/551789.853532
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1016/j.entcs.2007.02.019
https://arxiv.org/abs/2305.03766
https://doi.org/10.1142/p001
https://doi.org/10.1016/0304-3975(93)90169-T
https://doi.org/10.1016/0168-0072(94)90020-5
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/141

[Ja17] G. Jaeger, Quantum potentiality revisited, Phil. Trans. R. Soc. A 375 (2017) 20160390,
[doi:10.1098/rsta.2016.0390].

[JT94] G. Janelidze and W. Tholen, Facets of descent I, Applied Categorical Structures 2 3 (1994), 245-281,
[doi:10.1007/BF00878100].

[JRW10] M. Johnson, R. Rosebrugh and R. Wood, Algebras and Update Strategies, J. Universal Computer Science 16 (2010),
[doi:10.3217/jucs-016-05-0729].

[Jo02] P. Johnstone Sketches of an Elephant – A Topos Theory Compendium 1, Oxford University Press (2002),
[ISBN:9780198534259].

[JZ85] E. Joos and H. D. Zeh, The emergence of classical properties through interaction with the environment, Z. Physik B Condensed
Matter 59 (1985), 223–243, [doi:10.1007/BF01725541].

[Jor27] P. Jordan, Über eine neue Begründung der Quantenmechanik, Zeitschrift Phys. 40 (1927), 809–838,
[doi:10.1007/BF01390903].

[Jor32] P. Jordan, Über eine Klasse nichtassociativer hyperkomplexer Algebren, Nachr. Ges. Wiss. Göttingen (1932), 569-575,
[eudml:59403].

[JvNW34] P. Jordan, J. von Neumann, and E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math.
35 (1934), 29-64, [jstor:1968117], [doi:10.1007/978-3-662-02781-3 21].

[Jo08] A. Joyal, Notes on Logoi (2008), [ncatlab.org/nlab/files/JoyalOnLogoi2008.pdf]
[KR97] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras, Vol I Elementary Theory, Graduate Studies in

Mathematics 15, Amer. Math. Soc. (1997), [ams:gsm-15].
[Ka58] D. Kan, Adjoint functors, Trans. Amer. Math. Soc. 87 2 (1958), 294-329, [jstor:1993102].
[Kar18] M. Karvonen, The Way of the Dagger, PhD thesis, Edinburgh (2018), [arXiv:1904.10805].
[Ke82] M. Kelly, Basic concepts of enriched category theory, London Math. Soc. Lec. Note Series 64, Cambridge Univ. Press (1982),

[ISBN:9780521287029]; Reprints in Theory Appl. Categories 10 (2005), 1-136, [tac:tr10].
[KNM10] V. M. Kendon, K. Nemoto, and W. J. Munro, Quantum Analogue Computing, Phil. Trans. R. Soc. A 368 1924 (2010), 3621-

3632, [doi:10.1098/rsta.2010.0017], [arXiv:1001.2215].
[KW20] S. Khatri and M. M. Wilde, Principles of Quantum Communication Theory: A Modern Approach, book draft,

[arXiv:2011.04672].
[Ki08] A. Kissinger, Graph Rewrite Systems for Classical Structures in †-Symmetric Monoidal Categories, MSc thesis, Oxford (2008),

[ncatlab.org/nlab/files/Kissinger-CLassicalStructures.pdf]
[Ki09] A. Kissinger, Exploring a Quantum Theory with Graph Rewriting and Computer Algebra, in: Intelligent Computer Mathematics.

CICM 2009, Lecture Notes in Computer Science 5625 (2009), 90-105,
[doi:10.1007/978-3-642-02614-0 12].

[Kl65] H. Kleisli, Every standard construction is induced by a pair of adjoint functors, Proc. Amer. Math. Soc. 16 AMS (1965), 544-546,
[jstor:2034693].

[KBS14] V. Kliuchnikov, A. Bocharov, and K. M. Svore, Asymptotically Optimal Topological Quantum Compiling, Phys. Rev. Lett. 112
(2014) 140504, [doi:10.1103/PhysRevLett.112.140504], [arXiv:1310.4150].

[Kn96] E. Knill, Conventions for quantum pseudocode, Los Alamos Technical Report LA-UR-96-2724 (1996),
[doi:10.2172/366453].

[KL98] E. Knill and R. Laflamme, On the Power of One Bit of Quantum Information, Phys. Rev. Lett. 81 (1998), 5672-5675,
[doi:10.1103/PhysRevLett.81.5672], [arXiv:quant-ph/9802037].

[Kob97] S. Kobayashi, Monad as modality, Theoretical Computer Science 175 1 (1997), 29-74,
[doi:10.1016/S0304-3975(96)00169-7].

[KN63] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1 (1963), Vol. 2 (1969), Interscience Publishers; reprinted
by Wiley Classics Library (1996), [ISBN:978-0-470-55558-3].

[Ko70] A. Kock, Monads on symmetric monoidal closed categories, Arch. Math. 21 (1970), 1-10, [doi:10.1007/BF01220868].
[Ko72] A. Kock, Strong functors and monoidal monads, Arch. Math. 23 (1972), 113–120, [doi:10.1007/BF01304852].
[Ko04] J. Kock, Frobenius Algebras and 2d Topological Quantum Field Theories, Cambridge U. Press (2004),

[doi:10.1017/CBO9780511615443].
[Ko20] A. Kornell, Quantum Sets, J. Math. Phys. 61 102202 (2020) [doi:10.1063/1.5054128].
[KLM21] A. Kornell, B. Lindenhovius and M. Mislove, Quantum CPOs, EPTCS 340 (2021) 174-187 [arXiv:2109.02196]

[doi:10.4204/EPTCS.340.9].
[Kr63] S. A. Kripke, Semantical Analysis of Modal Logic I. Normal Modal Propositional Calculi, Mathematical Logic Quarterly 9 5-6

(1963), 67-96, [doi:10.1002/malq.19630090502].
[KPB15] N. Krishnaswami, P. Pradic, and N. Benton, Integrating Dependent and Linear Types, ACM SIGPLAN Notices 50 1 (2015),

17–30, [doi:10.1145/2775051.2676969].

115

https://doi.org/10.1098/rsta.2016.0390
https://doi.org/10.1007/BF00878100
http://dx.doi.org/10.3217/jucs-016-05-0729
https://global.oup.com/academic/product/sketches-of-an-elephant-9780198534259
https://doi.org/10.1007/BF01725541
https://doi.org/10.1007/BF01390903
https://eudml.org/doc/59403
https://www.jstor.org/stable/1968117
https://doi.org/10.1007/978-3-662-02781-3_21
https://ncatlab.org/nlab/files/JoyalOnLogoi2008.pdf
https://bookstore.ams.org/gsm-15
http://www.jstor.org/stable/1993102
https://arxiv.org/abs/1904.10805
https://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/basic-concepts-enriched-category-theory?format=PB&isbn=9780521287029
http://www.tac.mta.ca/tac/reprints/articles/10/tr10abs.html
https://doi.org/10.1098/rsta.2010.0017
https://arxiv.org/abs/1001.2215
https://arxiv.org/abs/2011.04672
https://ncatlab.org/nlab/files/Kissinger-CLassicalStructures.pdf
https://doi.org/10.1007/978-3-642-02614-0_12
https://www.jstor.org/stable/2034693
https://doi.org/10.1103/PhysRevLett.112.140504
https://arxiv.org/abs/1310.4150
https://doi.org/10.2172/366453
https://doi.org/10.1103/PhysRevLett.81.5672
https://arxiv.org/abs/quant-ph/9802037
https://doi.org/10.1016/S0304-3975(96)00169-7
https://www.wiley.com/en-us/Foundations+of+Differential+Geometry%2C+2+Volume+Set-p-9780470555583
https://doi.org/10.1007/BF01220868
https://doi.org/10.1007/BF01304852
https://www.cambridge.org/core/books/frobenius-algebras-and-2d-topological-quantum-field-theories/A6438118DFADFD27175779F1FC0FF7CB
https://doi.org/10.1063/1.5054128
https://arxiv.org/abs/2109.02196
https://doi.org/10.4204/EPTCS.340.9
https://doi.org/10.1002/malq.19630090502
https://doi.org/10.1145/2775051.2676969

[Ku05] G. Kuperberg, A concise introduction to quantum probability, quantum mechanics, and quantum computation (2005),
[ncatlab.org/nlab/files/Kuperberg-ConciseQuantum.pdf]

[LS86] J. Lambek and P. J. Scott Introduction to higher order categorical logic, Cambridge Studies in Advanced Mathematics 7 (1986),
[ISBN:0-521-24665-2].

[La09] K. Landsman, The Born rule and its interpretation, in: Compendium of Quantum Physics, Springer (2009), 64-70,
[doi:10.1007/978-3-540-70626-7 20].

[La17] K. Landsman, Foundations of quantum theory – From classical concepts to Operator algebras, Springer Open, New York (2017),
[doi:10.1007/978-3-319-51777-3].

[Lau06] A. Lauda, Frobenius algebras and ambidextrous adjunctions, Theory and Applications of Categories 16 4 (2006), 84-122,
[tac:16-04], [arXiv:math/0502550].

[Lau93] J. Launchbury, Lazy imperative programming, Proceedings of ACM Sigplan Workshop on State in Programming Languages,
Copenhagen (1993), [launchbury.files.wordpress.com/2019/01/lazy-imperative-programming.pdf]

[Law69a] W. Lawvere, Adjointness in Foundations, Dialectica 23 (1969) 281-296; reprinted in: Reprints in Theor. Appl. Categories 16
(2006), 1-16, [tac:tr16].

[Law69b] W. Lawvere, Ordinal sums and equational doctrines, in: Seminar on Triples and Categorical Homology Theory, Lecture Notes
in Math. 80, Springer, Berlin (1969), 141-155, [doi:10.1007/BFb0083085].

[Lee22] D. Lee, Formal Methods for Quantum Programming Languages, Paris Saclay (Dec 2022), [hal:tel-03895847].
[LPVX21] D. Lee, V. Perrelle, B. Valiron, and Z. Xu, Concrete Categorical Model of a Quantum Circuit Description Lan-

guage with Measurement, Leibniz International Proceedings in Informatics 213 (2021) 51:1-51:20, [arXiv:2110.02691],
[doi:10.4230/LIPIcs.FSTTCS.2021.51].

[LeS77] E. J. Lemmon with D. Scott, An Introduction to Modal Logic – The “Lemmon Notes”, Blackwell (1977),
[ark:13960/t3gz25k3h].

[LL32] C. I. Lewis, C. H. Langford, Symbolic Logic (1932), Dover (2000), [archive:symboliclogic0000lewi x3c4].
[LB20] F. Leymann and J. Barzen, The bitter truth about gate-based quantum algorithms in the NISQ era, Quantum Sci. Technol. 5 (2020)

044007, [doi:10.1088/2058-9565/abae7d].
[LHJ95] S. Liang, P. Hudak, and M. Jones, Monad transformers and modular interpreters, POPL ‘95 (1995), 333–343,

[doi:10.1145/199448.199528].
[Li75] G. Lindblad, Completely positive maps and entropy inequalities, Commun. Math. Phys. 40 (1975), 147–151,

[doi:10.1007/BF01609396].
[Li69] F. Linton, An outline of functorial semantics, in: Seminar on Triples and Categorical Homology Theory, Lecture Notes in Math. 80,

Springer, Berlin (1969), 7-52, [doi:10.1007/BFb0083080].
[Liu+23] C. Liu, et al., Quantum Memory: A Missing Piece in Quantum Computing Units, [arXiv:2309.14432].
[Lü51] G. Lüders, Über die Zustandsänderung durch den Meßprozeß, Ann. Phys. 8 (1951), 322–328,

[doi:10.1002/andp.19504430510]; Concerning the state-change due to the measurement process, Ann. Phys. 15 9 (2006), 663-
670, [ncatlab.org/nlab/files/Lueders-StateChange.pdf]

[Lu18] M. Lundfall, A diagram model of linear dependent type theory, [arXiv:1806.09593].
[Luo94] Z. Luo, Computation and Reasoning – A Type Theory for Computer Science, Clarendon Press, Oxford (1994),

[ISBN:9780198538356].
[Lu17] J. Lurie, Higher Algebra (2017), [math.ias.edu/ lurie/papers/HA.pdf]
[ML71/97] S. MacLane, Categories for the Working Mathematician, Graduate Texts in Mathematics 5 Springer, Berlin (1971, 1997),

[doi:10.1007/978-1-4757-4721-8].
[MLM92] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic – A First Introduction to Topos Theory, Springer, Berlin (1992),

[doi:10.1007/978-1-4612-0927-0].
[Mal23] C. Malkiewich, A convenient category of parametrized spectra, [arXiv:2305.15327].
[Ma76] E. G. Manes, Algebraic Theories, Springer, Berlin (1976), [10.1007/978-1-4612-9860-1].
[Ma80] Y. I. Manin, Computable and Uncomputable, Sov. Radio (1980), published in: Mathematics as Metaphor: Selected essays of Yuri

I. Manin, Collected Works 20, AMS (2007), 69-77, [ISBN:978-0-8218-4331-4].
[Ma00] Y. I. Manin, Classical computing, quantum computing, and Shor’s factoring algorithm, Séminaire Bourbaki exp. 862, Astérisque

266 (2000), 375-404, [numdam:SB 1998-1999 41 375 0], [arXiv:quant-ph/9903008].
[Mar66] J.-M. Maranda, On Fundamental Constructions and Adjoint Functors, Canadian Math. Bull. 9 5 (1966), 581-591,

[doi:10.4153/CMB-1966-072-9].
[MMRP21] M. Maronese, L. Moro, L. Rocutto, and E. Prati, Quantum Compiling, in: Quantum Computing Environments, Springer, New

York (2021), 39-74, [doi:10.1007/978-3-030-89746-8 2], [arXiv:2112.00187].
[ML71] P. Martin-Löf, A Theory of Types, unpublished note (1971),

[ncatlab.org/nlab/files/MartinLoef1971-ATheoryOfTypes.pdf]

116

https://ncatlab.org/nlab/files/Kuperberg-ConciseQuantum.pdf
https://www.cambridge.org/ae/academic/subjects/mathematics/logic-categories-and-sets/introduction-higher-order-categorical-logic?format=PB&isbn=9780521356534
https://doi.org/10.1007/978-3-540-70626-7_20
https://link.springer.com/book/10.1007/978-3-319-51777-3
http://www.tac.mta.ca/tac/volumes/16/4/16-04abs.html
https://arxiv.org/abs/math/0502550
https://launchbury.files.wordpress.com/2019/01/lazy-imperative-programming.pdf
https://www.emis.de/journals/TAC/reprints/articles/16/tr16abs.html
https://doi.org/10.1007/BFb0083085
https://hal.science/LMF/tel-03895847
https://arxiv.org/abs/2110.02691
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://archive.org/details/introductiontomo0000lemm/
https://archive.org/details/symboliclogic0000lewi_x3c4/page/n5/mode/2up
https://iopscience.iop.org/article/10.1088/2058-9565/abae7d
https://doi.org/10.1145/199448.199528
https://doi.org/10.1007/BF01609396
https://doi.org/10.1007/BFb0083080
https://arxiv.org/abs/2309.14432
https://doi.org/10.1002/andp.19504430510
https://ncatlab.org/nlab/files/Lueders-StateChange.pdf
https://arxiv.org/abs/1806.09593
https://global.oup.com/academic/product/computation-and-reasoning-9780198538356
https://www.math.ias.edu/~lurie/papers/HA.pdf
https://link.springer.com/book/10.1007/978-1-4757-4721-8
https://dx.doi.org/10.1007/978-1-4612-0927-0
https://arxiv.org/abs/2305.15327
https://doi.org/10.1007/978-1-4612-9860-1
https://bookstore.ams.org/cworks-20/
http://www.numdam.org/item/?id=SB_1998-1999__41__375_0
https://arxiv.org/abs/quant-ph/9903008
https://doi.org/10.4153/CMB-1966-072-9
https://doi.org/10.1007/978-3-030-89746-8_2
https://arxiv.org/abs/2112.00187
https://ncatlab.org/nlab/files/MartinLoef1971-ATheoryOfTypes.pdf

[ML75] P. Martin-Löf, An intuitionistic theory of types: predicative part, in: Logic Colloquium ‘73, Studies in Logic and the Foundations
of Mathematics 80 (1975), 73-118, [doi:10.1016/S0049-237X(08)71945-1].

[ML82] P. Martin-Löf, Constructive Mathematics and Computer Programming, Studies in Logic and the Foundations of Mathematics 104
(1982), 153-175, [doi:10.1016/S0049-237X(09)70189-2].

[ML84] P. Martin-Löf (notes by G. Sambin of a series of lectures given in Padua in 1980), Intuitionistic type theory, Bibliopolis, Naples
(1984), [ncatlab.org/nlab/files/MartinLofIntuitionisticTypeTheory.pdf]

[Mar09] F. Marty, Des Ouverts Zariski et des Morphismes Lisses en Géométrie Relative, Ph.D. Toulouse (2009),
[theses:2009TOU30071], [ncatlab.org/nlab/files/Marty-DesOuverts.pdf]

[MaSi06] P. May and J. Sigurdsson, Parametrized Homotopy Theory, Mathematical Surveys and Monographs 132 AMS (2006),
[ams:surv-132], [arXiv:math/0411656].

[McB16] C. McBride, I Got Plenty o’ Nuttin’, in: A List of Successes That Can Change the World, Lecture Notes in Computer Science
9600, Springer, Berlin (2016), [doi:10.1007/978-3-319-30936-1 12].

[McDU22] D. McDermott and T. Uustalu, What Makes a Strong Monad?, EPTCS 360 (2022), 113-133,
[doi:10.4204/EPTCS.360.6], [arXiv:2207.00851].

[Me11] C. Meadows, Program Verification and Security, in Encyclopedia of Cryptography and Security, Springer, New York (2011),
[10.1007/978-1-4419-5906-5 863].

[Me55] G. H. Mealy, A method for synthesizing sequential circuits, The Bell System Technical J. 34 (1995), 1045-1079,
[10.1002/j.1538-7305.1955.tb03788.x].

[Me73] J. Mehra, The quantum principle: Its interpretation and epistemology, Dialectica 27 2 (1973), 75-157,
[jstor:42968519].

[MR01] J. Mehra and H. Rechenberg, The Probability Interpretation and the Statistical Transformation Theory, the Physical Inter-
pretation, and the Empirical and Mathematical Foundations of Quantum Mechanics 1926-1932, Part 1 in: The Historical
Development of Quantum Theory. Volume 6: The Completion of Quantum Mechanics, 1926-1941, Springer, Berlin (2001),
[ISBN:978-0-387-98971-6].

[Mel09] P.-A. Melliés, Categorical semantics of linear logic, in: Interactive models of computation and program behaviour, Panoramas et
synthéses 27 (2009), 1-196, [ncatlab.org/nlab/files/Mellies-CategoricalSemanticsLinear.pdf],
[smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire].

[Mer89] N. D. Mermin, What’s Wrong with this Pillow?, Physics Today 42 4 (1989), 9–11, [doi:10.1063/1.2810963].
[MN13] D. Mihályi and V. Novitzká, What about Linear Logic in Computer Science?, Acta Polytechnica Hungarica 10 4 (2013), 147-160,

[acta.uni-obuda.hu/Mihalyi Novitzka 42.pdf]
[Mi19] B. Milewski, Category Theory for Programmers, Blurb (2019), [ISBN:9780464243878],

[github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf]

[MZD20] A. Miranskyy, L. Zhang, and J. Doliskani, Is Your Quantum Program Bug-Free?, in ICSE-NIER ‘20: Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering: New Ideas and Emerging Results (2020), 29–32,
[doi:10.1145/3377816.3381731], [arXiv:2001.10870].

[Mog89a] E. Moggi, An abstract View of Programming Languages, LFCS report ECS-LFCS-90-113 (1989),
[ncatlab.org/nlab/files/Moggi-AbstractView.pdf]

[Mog89] E. Moggi, Computational lambda-calculus and monads, Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (1989), 14-23, [doi:10.1109/LICS.1989.39155].

[Mog91] E. Moggi, Notions of computation and monads, Inform. and Comput. 93 (1991), 55-92,
[doi:10.1016/0890-5401(91)90052-4].

[MEO21] B. Moon, H. Eades and D. Orchard, Graded Modal Dependent Type Theory, Programming Languages and Systems ESOP 2021,
Lecture Notes in Computer Science 12648, Springer, New York (2021), 462-490,
[doi:10.1007/978-3-030-72019-3 17].

[Mo19] V. Moretti, Fundamental Mathematical Structures of Quantum Theory, Springer, New York (2019),
[doi:10.1007/978-3-030-18346-2].

[MHP19] A. Müller-Hermes and C. Perry, All unital qubit channels are 4-noisy operations, Lett. Math. Phys. 109 (2019), 1–9,
[doi:10.1007/s11005-018-1104-x], [arXiv:1802.01337].

[Mur14] D. Murfet, Logic and linear algebra: an introduction, [arXiv:1407.2650].
[MKZ13] M. Musz, M. Kuś, and K. Zyczkowski, Unitary quantum gates, perfect entanglers, and unistochastic maps, Phys. Rev. A 87

(2013) 022111, [doi:10.1103/PhysRevA.87.022111].
[TQP] D. J. Myers, H. Sati, and U. Schreiber, Topological Quantum Gates in Homotopy Type Theory, Communications in Mathematical

Physics, 405 172 (2024) [arXiv:2303.02382], [doi:10.1007/s00220-024-05020-8].
[Mye22] D. J. Myers, Orbifolds as microlinear types in synthetic differential cohesive homotopy type theory,

[arXiv:2205.15887].

117

https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(09)70189-2
https://ncatlab.org/nlab/files/MartinLofIntuitionisticTypeTheory.pdf
https://www.theses.fr/2009TOU30071
https://ncatlab.org/nlab/files/Marty-DesOuverts.pdf
https://bookstore.ams.org/surv-132
https://arxiv.org/abs/math/0411656
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.4204/EPTCS.360.6
https://arxiv.org/abs/2207.00851
https://doi.org/10.1007/978-1-4419-5906-5_863
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://www.jstor.org/stable/42968519
https://link.springer.com/book/9780387989716
https://ncatlab.org/nlab/files/Mellies-CategoricalSemanticsLinear.pdf
https://smf.emath.fr/publications/semantique-categorielle-de-la-logique-lineaire
https://doi.org/10.1063/1.2810963
http://acta.uni-obuda.hu/Mihalyi_Novitzka_42.pdf
https://www.blurb.com/b/9621951-category-theory-for-programmers-new-edition-hardco
https://github.com/hmemcpy/milewski-ctfp-pdf/releases/download/v1.3.0/category-theory-for-programmers.pdf
https://doi.org/10.1145/3377816.3381731
https://arxiv.org/abs/2001.10870
https://ncatlab.org/nlab/files/Moggi-AbstractView.pdf
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-030-72019-3_17
https://doi.org/10.1007/978-3-030-18346-2
https://doi.org/10.1007/s11005-018-1104-x
https://arxiv.org/abs/1802.01337
https://arxiv.org/abs/1407.2650
https://doi.org/10.1103/PhysRevA.87.022111
https://arxiv.org/abs/2303.02382
https://doi.org/10.1007/s00220-024-05020-8
https://arxiv.org/abs/2205.15887

[NPW07] R. Nagarajan, N. Papanikolaou, and D. Williams, Simulating and Compiling Code for the Sequential Quantum Random Access
Machine, Electronic Notes Theor. Comp. Sci. 170 (2007), 101-124,
[doi:10.1016/j.entcs.2006.12.014].

[nLab14] nLab, Necessity and possibility, revision 1 (Nov 2014),
[ncatlab.org/nlab/revision/necessity+and+possibility/1].

[Nie03] M. Nielsen, Quantum computation by measurement and quantum memory, Phys. Lett. A 308 (2003), 96–100,
[doi:10.1016/S0375-9601(02)01803-0].

[NC00] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press (2000),
[ISBN:9780511976667].

[No02] D. Nolan, Topics in the Philosophy of Possible Worlds, Routledge, Boca Raton (2002), [ISBN:9780415516303].
[NPS90] B. Nordström, K. Petersson, and J. M. Smith, Programming in Martin-Löf’s Type Theory, Oxford University Press (1990),

[cse.chalmers.se/research/group/logic/book].
[Nui12] J. Nuiten, Bohrification of local nets of observables, Proceedings of QPL 2011, EPTCS 95 (2012), 211-218,

[doi:10.4204/EPTCS.95.15], [arXiv:1006.1432].
[O’H03] P. O’Hearn, On bunched typing, J. Functional Programming 13 (2003), 747-796, [doi:10.1017/S0956796802004495].
[OP99] P. O’Hearn, D. J. Pym, The Logic of Bunched Implications, Bull. Symbolic Logic 5 2 (1999), 215-244,

[doi:10.2307/421090].
[OM16] J. N. Oliveira and V. C. Miraldo, A practical approach to state-based system calculi, J. Logical and Algebraic Methods in Pro-

gramming 85 4 (2016), 449-474, [doi:10.1016/j.jlamp.2015.11.007].
[Om94] R. Omnés, The Interpretation of Quantum Mechanics, Princeton University Press (1994), [ISBN:9780691036694].
[Par76] B. Pareigis, Non-additive ring and module theory IV: The Brauer group of a symmetric monoidal category, In: Zelinsky, D. (eds)

Brauer Groups. Lecture Notes in Math. 549, Springer, Berlin, Heidelberg (1976), 112–133,
[doi:10.1007/BFb0077339].

[PPR19] D. Park, F. Petruccione, and J.-K. Rhee, Circuit-Based Quantum Random Access Memory for Classical Data, Scientific Reports
9 (2019) 3949, [doi:10.1038/s41598-019-40439-3].

[PB00] A. Pati and S. L. Braunstein, Impossibility of deleting an unknown quantum state, Nature 404 (2000), 164-165,
[doi:10.1038/404130b0], [arXiv:quant-ph/9911090].

[Pa03] D. Pattinson, An Introduction to the Theory of Coalgebras (2003),
[nasslli.sitehost.iu.edu/2003/datas/DirkPattinson.pdf]

[PRZ17] J. Paykin, R. Rand, and S. Zdancewic, QWIRE: a core language for quantum circuits, Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (2017), 846–858,
[doi:10.1145/3009837.3009894].

[PZ19] J. Paykin and S. Zdancewic, A HoTT Quantum Equational Theory, QPL2019 (2019), [arXiv:1904.04371].
[PK23] M. Perone and G. Karachalias, Composable Representable Executable Machines, [arXiv:2307.09090].
[POM13] T. Petricek, D. Orchard, and A. Mycroft, Coeffects: Unified Static Analysis of Context-Dependence, Automata,

Languages, and Programming. ICALP 2013, Lecture Notes in Computer Science 7966 Springer, New York (2013),
[doi:10.1007/978-3-642-39212-2 35].

[PW93] S. L. Peyton Jones and P. Wadler, Imperative functional programming, POPL ’93, Principles of programming languages (1993),
71-84, [doi:10.1145/158511.158524].

[PCG23] K. Phalak, A. Chatterjee, and S. Ghosh, Quantum Random Access Memory For Dummies, [arXiv:2305.01178].
[PP02] G. Plotkin and J. Power, Notions of Computation Determine Monads, in: Foundations of Software Science and Computation Struc-

tures FoSSaCS 2002, Lecture Notes in Computer Science 2303 Springer, New York (2002), [doi:10.1007/3-540-45931-6 24].
[PP13] G. D. Plotkin and M. Pretnar, Handling Algebraic Effects, Logical Methods in Computer Science 9 4 (2013) lmcs:705,

[doi:10.2168/LMCS-9(4:23)2013], [arXiv:1312.1399].
[PS12] K. Ponto and M. Shulman, Duality and traces in indexed monoidal categories, Theor. Appl. Categ. 26 (2012) 23, [tac:26-23],

[arXiv:1211.1555].
[PLMP03] D. Poulin, R. Laflamme, G. J. Milburn, and J. P. Paz, Testing integrability with a single bit of quantum information, Phys. Rev.

A 68 (2003) 22302, [doi:10.1103/PhysRevA.68.022302], [arXiv:quant-ph/0303042].
[PW02] J. Power and H. Watanabe, Combining a monad and a comonad, Theoretical Computer Science 280 1–2 (2002), 137-162,

[doi:10.1016/S0304-3975(01)00024-X].
[Pr92] V. Pratt, Linear logic for generalized quantum mechanics, in Proceedings of Workshop on Physics and Computation (PhysComp’92)

(1992), 166-180, [doi:10.1109/PHYCMP.1992.615518].
[1] V. Pratt, The second calculus of binary relations, in Mathematical Foundations of Computer Science 1993. MFCS 1993, Lecture

Notes in Computer Science 711, Springer (1993) [doi:10.1007/3-540-57182-5 9]
[Pre04] J. Preskill, Quantum Computation, lecture notes (2004-), [theory.caltech.edu/ preskill/ph229].

118

https://doi.org/10.1016/j.entcs.2006.12.014
https://ncatlab.org/nlab/revision/necessity+and+possibility/1
https://doi.org/10.1016/S0375-9601(02)01803-0
https://doi.org/10.1017/CBO9780511976667
https://www.routledge.com/Topics-in-the-Philosophy-of-Possible-Worlds/Nolan/p/book/9780415516303
https://www.cse.chalmers.se/research/group/logic/book
https://dx.doi.org/10.4204/EPTCS.95.15
https://arxiv.org/abs/1006.1432
https://doi.org/10.1017/S0956796802004495
https://doi.org/10.2307/421090
https://doi.org/10.1016/j.jlamp.2015.11.007
http://press.princeton.edu/titles/5525.html
https://doi.org/10.1007/BFb0077339
https://doi.org/10.1038/s41598-019-40439-3
https://doi.org/10.1038/404130b0
https://arxiv.org/abs/quant-ph/9911090
https://nasslli.sitehost.iu.edu/2003/datas/DirkPattinson.pdf
https://doi.org/10.1145/3009837.3009894
https://arxiv.org/abs/1904.04371
https://arxiv.org/abs/2307.09090
https://doi.org/10.1007/978-3-642-39212-2_35
https://doi.org/10.1145/158511.158524
https://arxiv.org/abs/2305.01178
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.2168/LMCS-9(4:23)2013
https://arxiv.org/abs/1312.1399
http://www.tac.mta.ca/tac/volumes/26/23/26-23abs.html
https://arxiv.org/abs/1211.1555
https://doi.org/10.1103/PhysRevA.68.022302
https://arxiv.org/abs/quant-ph/0303042
https://doi.org/10.1016/S0304-3975(01)00024-X
https://doi.ieeecomputersociety.org/10.1109/PHYCMP.1992.615518
https://doi.org/10.1007/3-540-57182-5_9
http://theory.caltech.edu/~preskill/ph229

[Pr18] J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2 (2018) 79, [arXiv:1801.00862],
[doi:10.22331/q-2018-08-06-79].

[Pr22] J. Preskill, The Physics of Quantum Information, talk at The Physics of Quantum Information, 28th Solvay Conference on Physics
(2022), [arXiv:2208.08064].

[Pr83] H. Primas, Chemistry, Quantum Mechanics and Reductionism, Springer, Berlin (1983),
[doi:10.1007/978-3-642-69365-6].

[Pu70] D. Pumplün, Eine Bemerkung über Monaden und adjungierte Funktoren, Math. Annalen 185 (1970), 329-337, [eudml:161964].
[Py02] D. Pym, The Semantics and Proof Theory of the Logic of Bunched Implications, Applied Logic Series 26, Springer, New York

(2002), [doi:10.1007/978-94-017-0091-7].
[Py08] D. J. Pym, Errata and Remarks for: “The Semantics and Proof Theory of the Logic of Bunched Implications” (i.e., for [Py02]),

Bath (2008), [cantab.net/users/david.pym/BI-monograph-errata.pdf]
[Qu23] Quantstamp blog, Applying lightweight formal methods and SAT solvers to build better blockchain applications (2023).
[Ra18] R. Rand, Formally Verified Quantum Programming, PhD Dissertation, UPenn (2018), [ediss:3175].
[RPZ18] R. Rand, J. Paykin, and S. Zdancewic, QWIRE Practice: Formal Verification of Quantum Circuits in Coq, EPTCS 266 (2018),

119-132, [arXiv:1803.00699].
[Ra94] A. Ranta, Type-theoretical grammar, Oxford University Press (1994), [ISBN:ISBN:9780198538578].
[Ra12] K. S. Ratkovic, Morita theory in enriched context, PhD Thesis, Université de Nice (2012), [hal:tel-00785301],

[arXiv:1302.2774].
[Re22] J. M. Renes, Quantum Information Theory, De Gruyter (2022), [doi:10.1515/9783110570250].
[RS20] M. Rennela and S. Staton, Classical Control, Quantum Circuits and Linear Logic in Enriched Category Theory, Log. Meth. Comp.

Sci. 16 1 (2020), [doi:10.23638/LMCS-16(1:30)2020], [arXiv:1711.05159].
[RP11] E. Rieffel and W. Polak, Quantum Computing – A gentle introduction, MIT Press, Boston (2011),

[ISBN:9780262526678].
[Ri22] E. Riehl, On the ∞-topos semantics of homotopy type theory, lecture at Logic and higher structures, CIRM (Feb. 2022),

[emilyriehl.github.io/files/semantics.pdf]
[Rij18] E. Rijke, Dependent type theory, Introduction to Homotopy Type Theory, lecture notes, CMU (2018),

[andrew.cmu.edu/user/erijke/hott].
[Rij23] E. Rijke, Introduction to Homotopy Type Theory, Cambridge University Press (in print), [arXiv:2212.11082].
[RSS20] E. Rijke, M. Shulman, and B. Spitters, Modalities in homotopy type theory, Log. Meth. Comp. Sci. 16 (2020) 1,

[doi:10.23638/LMCS-16(1:2)2020], [arXiv:1706.07526].
[Ri22a] M. Riley, Linear Homotopy Type Theory, talk at: HoTTEST Event for Junior Researchers 2022 (Jan 2022)

[ncatlab.org/nlab/files/Riley-LHoTT-talk.pdf] [youtu.be/o2oWhHabjdM]; based on: A Bunched Homotopy Type The-
ory for Synthetic Stable Homotopy Theory, PhD Thesis, Wesleyan University (2022), [ir:3269], [doi:10.14418/wes01.3.139].

[Ri22b] M. Riley, Dependent Type Theories à la Carte, talk at CQTS (Sep 2022)
[ncatlab.org/nlab/files/CQTS-InitialResearcherMeeting-Riley-220913.pdf].

[Ri23] M. Riley, A Linear Dependent Type Theory with Identity Types (2023),
[mvr.hosting.nyu.edu/pubs/translation.pdf]

[RFL21] M. Riley, E. Finster, and D. R. Licata Synthetic Spectra via a Monadic and Comonadic Modality (2021), [arXiv:2102.04099].
[Ri21] F. Rios, On a Categorically Sound Quantum Programming Language for Circuit Description, PhD thesis, Dalhousie University

(2021), [hdl:10222/80771].
[RS18] F. Rios and P. Selinger, A Categorical Model for a Quantum Circuit Description Language, EPTCS 266 (2018), 164-178,

[doi:10.4204/EPTCS.266.11], [arXiv:1706.02630].
[Rob87] A. Robinson, The extraordinary derived category, Math. Z. 196 (1987), 231-238, [doi:10.1007/BF01163657].
[Ro15] N. J. Ross, Algebraic and Logical Methods in Quantum Computation, PhD thesis, Dalhousie University (2015),

[arXiv:1510.02198].
[SN94] J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Cambridge University Press (1994),

[doi:10.1017/9781108587280].
[Schau01] P. Schauenburg, Turning Monoidal Categories into Strict Ones, New York J. Math. 7 (2001), 257-265,

[nyjm:2001/7-16].
[Schl07] M. Schlosshauer, Decoherence and the Quantum-To-Classical Transition, The Frontiers Collection, Springer, New York (2007),

[doi:10.1007/978-3-540-35775-9].
[Schl19] M. Schlosshauer, Quantum Decoherence, Phys. Rep. 831 (2019), 1-57, [doi:10.1016/j.physrep.2019.10.001],

[arXiv:1911.06282].
[SPWJ19] T. Schrijvers, M. Piróg, N. Wu, and M. Jaskelioff, Monad transformers and modular algebraic effects: what binds them

together, Haskell 2019: Proceedings of the 12th ACM SIGPLAN International Symposium on Haskell (2019), 98–113,
[doi:10.1145/3331545.3342595].

119

https://arxiv.org/abs/1801.00862
https://doi.org/10.22331/q-2018-08-06-79
https://arxiv.org/abs/2208.08064
https://doi.org/10.1007/978-3-642-69365-6
https://eudml.org/doc/161964
https://doi.org/10.1007/978-94-017-0091-7
https://www.cantab.net/users/david.pym/BI-monograph-errata.pdf
https://quantstamp.com/blog/towards-satisfactory-web3-software-engineering
https://repository.upenn.edu/edissertations/3175
https://arxiv.org/abs/1803.00699
https://global.oup.com/academic/product/type-theoretical-grammar-9780198538578
https://theses.hal.science/tel-00785301/document
https://arxiv.org/abs/1302.2774
https://doi.org/10.1515/9783110570250
https://doi.org/10.23638/LMCS-16(1:30)2020
https://arxiv.org/abs/1711.05159
https://mitpress.mit.edu/9780262526678/quantum-computing
https://emilyriehl.github.io/files/semantics.pdf
https://www.andrew.cmu.edu/user/erijke/hott
https://arxiv.org/abs/2212.11082
https://doi.org/10.23638/LMCS-16(1:2)2020
https://arxiv.org/abs/1706.07526
https://ncatlab.org/nlab/files/Riley-LHoTT-talk.pdf
https://youtu.be/o2oWhHabjdM
https://digitalcollections.wesleyan.edu/object/ir%3A3269
https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/files/CQTS-InitialResearcherMeeting-Riley-220913.pdf
https://mvr.hosting.nyu.edu/pubs/translation.pdf
https://arxiv.org/abs/2102.04099
http://hdl.handle.net/10222/80771
https://doi.org/10.4204/EPTCS.266.11
https://arxiv.org/abs/1706.02630
https://doi.org/10.1007/BF01163657
https://arxiv.org/abs/1510.02198
https://doi.org/10.1017/9781108587280
http://nyjm.albany.edu/j/2001/7-16.html
https://doi.org/10.1007/978-3-540-35775-9
https://doi.org/10.1016/j.physrep.2019.10.001
https://arxiv.org/abs/1911.06282
https://doi.org/10.1145/3331545.3342595

[Se13] G. J. Seal, Tensors, monads and actions, Theory Appl. Categ. 28 (2013), 403-434, [tac:28-15], [arXiv:1205.0101].
[Sel07] P. Selinger, Dagger compact closed categories and completely positive maps, Electronic Notes Theor. Comp. Sci. 170 (2007),

139-163, [doi:10.1016/j.entcs.2006.12.018].
[Se16] P. Selinger, Introduction to Quipper, talk at QPL2016 (2016), [youtu.be/59frzb Eqo].
[Sa10] D. Samet, S5 knowledge without partitions, Synthese 172 (2010), 145–155, [doi:10.1007/s11229-009-9469-0].
[SS22] H. Sati and U. Schreiber, Topological Quantum Programming in TED-K, PlanQC 2022 33 (2022),

[arXiv:2209.08331], [ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K].
[SS23a] H. Sati and U. Schreiber, Anyonic defect branes in TED-K-theory, Rev. Math. Phys 35 (2023) 2350009,

[doi:10.1142/S0129055X23500095], [arXiv:2203.11838].
[SS23b] H. Sati and U. Schreiber, Anyonic topological order in TED K-theory, Rev. Math. Phys. 35 03 (2023) 2350001,

[doi:10.1142/S0129055X23500010], [arXiv:2206.13563].
[ss20-Orb] H. Sati and U. Schreiber, Proper Orbifold Cohomology, [arXiv:2008.01101].
[SS21-EqB] H. Sati and U. Schreiber, Equivariant Principal∞-Bundles, [arXiv:2112.13654].
[SS23-EoS] H. Sati and U. Schreiber, Entanglement of Sections, [arXiv:2309.07245].
[SS23-QR] H. Sati and U. Schreiber, Quantum and Reality [arxIV:2311.11035]
[SS24-IHH] H. Sati and U. Schreiber, Introduction to Hypothesis H,

[ncatlab.org/schreiber/show/Introduction+to+Hypothesis+H].
[Sau17] J. Sau, A Roadmap for a Scalable Topological Quantum Computer, Physics 10 68 (2017),

[physics.aps.org/articles/v10/68].
[Sche73] E. Scheibe, The logical analysis of quantum mechanics, Pergamon Press, Oxford (1973),

[archive:logicalanalysiso0000sche].
[SSt04] U. Schöpp and I. Stark, A Dependent Type Theory with Names and Binding, in: Computer Science Logic. CSL 2004, Lecture Notes

in Computer Science 3210 (2004), 235–249, [doi:10.1007/978-3-540-30124-0 20].
[Sch13] U. Schreiber, Differential cohomology in an∞-topos, [arXiv:1310.7930].
[Sch14a] U. Schreiber, Quantization via Linear Homotopy Types, talk notes, [arXiv:1402.7041].
[Sch14b] U. Schreiber, Differential generalized cohomology in Cohesive homotopy type theory, talk at Institut Henri Poincaré (2014),

[ncatlab.org/schreiber/files/SchreiberParis2014.pdf]
[Sch22] U. Schreiber, Quantum Data Types via Linear Homotopy Type Theory talk at Workshop on Quantum Software @ QTML 2022,

Naples (Nov 2022), [ncatlab.org/schreiber/files/QuantumDataInLHoTT-221117.pdf]
[ScSh14] U. Schreiber and M. Shulman, Quantum Gauge Field Theory in Cohesive Homotopy Type Theory, EPTCS 158 (2014), 109-126,

[doi:10.4204/EPTCS.158.8], [arXiv:1408.0054].
[ScSh03] S. Schwede and B. Shipley, Stable model categories are categories of modules, Topology 42 (2003), 103-153,

[doi:10.1016/S0040-9383(02)00006-X].
[Sc70] D. S. Scott, Outline of a mathematical theory of computation, in: Proc. 4th Ann. Princeton Conf. on Information Sciences and

Systems (1970), 169–176, [ncatlab.org/nlab/files/Scott-TheoryOfComputation.pdf]
[ScSt71] D. S. Scott and C. Strachey, Toward a Mathematical Semantics for Computer Languages, Oxford Univ. Computing Laboratory,

Technical Monograph PRG-6 (1971), [cs.ox.ac.uk/files/3228/PRG06.pdf]
[Se89] R. A. G. Seely, Linear logic, ∗-autonomous categories and cofree coalgebras, in: Categories in Computer Science and Logic,

Contemporary Mathematics 92 (1989), [ams:conm-92].
[Se04] P. Selinger, Towards a quantum programming language, Math. Struc. Comp. Sci. 14 (2004), 527–586,

[doi:10.1017/S0960129504004256].
[Se12] P. Selinger, Autonomous categories in which A ≃ A∗, talk at QPL 2012,

[ncatlab.org/nlab/files/SelingerSelfDual.pdf]
[SV05] P. Selinger and B. Valiron, A lambda calculus for quantum computation with classical control, Proc. of TLCA (2005),

[arXiv:cs/0404056].
[SV09] P. Selinger and B. Valiron, Quantum Lambda Calculus, in: Semantic Techniques in Quantum Computation, Cambridge University

Press (2009), 135-172, [doi:10.1017/CBO9781139193313.005].
[Sel88] F. Selleri (ed.), Quantum Mechanics Versus Local Realism – The Einstein-Podolsky-Rosen Paradox, Physics of Atoms and

Molecules (PAMO), Springer, Berlin (1988), [doi:10.1007/978-1-4684-8774-9].
[Sh94] P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, Proc. 35th Annual Symposium on Foundations

of Computer Science (1994), 124-134, [doi:10.1109/SFCS.1994.365700].
[SJ08] P. W. Shor and S. P. Jordan, Estimating Jones polynomials is a complete problem for one clean qubit, Quantum Information and

Computation 8 (2008) 681, [doi:10.5555/2017011.2017012], [arXiv:0707.2831].
[Sh12] M. Shulman, Minicourse on Homotopy Type Theory, University of Swansea (2012),

[home.sandiego.edu/∼shulman/hottminicourse2012].

120

http://www.tac.mta.ca/tac/volumes/28/15/28-15abs.html
https://arxiv.org/abs/1205.0101
https://doi.org/10.1016/j.entcs.2006.12.018
http://qpl2016.cis.strath.ac.uk/
https://youtu.be/59frzb__Eqo
https://doi.org/10.1007/s11229-009-9469-0
https://arxiv.org/abs/2209.08331
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://doi.org/10.1142/S0129055X23500095
https://arxiv.org/abs/2203.11838
https://doi.org/10.1142/S0129055X23500010
https://arxiv.org/abs/2206.13563
https://arxiv.org/abs/2008.01101
https://arxiv.org/abs/2112.13654
https://arxiv.org/abs/2309.07245
https://arxiv.org/abs/2311.11035
https://ncatlab.org/schreiber/show/Introduction+to+Hypothesis+H
https://physics.aps.org/articles/v10/68
https://archive.org/details/logicalanalysiso0000sche/page/n5/mode/2up
https://doi.org/10.1007/978-3-540-30124-0_20
https://arxiv.org/abs/1310.7930
https://arxiv.org/abs/1402.7041
https://ncatlab.org/schreiber/files/SchreiberParis2014.pdf
https://ncatlab.org/schreiber/files/QuantumDataInLHoTT-221117.pdf
https://arxiv.org/html/1407.8427
https://arxiv.org/abs/1408.0054
https://doi.org/10.1016/S0040-9383(02)00006-X
https://ncatlab.org/nlab/files/Scott-TheoryOfComputation.pdf
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf
https://bookstore.ams.org/conm-92
https://doi.org/10.1017/S0960129504004256
https://ncatlab.org/nlab/files/SelingerSelfDual.pdf
https://arxiv.org/abs/cs/0404056
https://doi.org/10.1017/CBO9781139193313.005
https://doi.org/10.1007/978-1-4684-8774-9
https://doi.org/10.1109/SFCS.1994.365700
https://dl.acm.org/doi/10.5555/2017011.2017012
https://arxiv.org/abs/0707.2831
http://home.sandiego.edu/~shulman/hottminicourse2012

[Si97] D. R. Simon, On the power of quantum computation, SIAM J. Computing 26 5 (1997),
[doi:10.1137/S0097539796298637].

[Sip12] M. Sipser, Introduction to the Theory Of Computation, Cengage Learning (2012), [ISBN:978-1-133-18779-0].
[Sk76] B. Skyrms, Possible Worlds, Physics and Metaphysics, Philosophical Studies 30 5 (1976), 323-332, [jstor:4319099].
[SK95] K. Slonneger and B. Kurtz, Denotational semantics, Formal Syntax and Semantics of Programming Languages, Addison-Wesley

(1995), [homepage.divms.uiowa.edu/ slonnegr/plf/Book/].
[Spi19] D. Spivak, Generalized Lens Categories via functors Cop ! Cat, [arXiv:1908.02202].
[Sta15] S. Staton, Algebraic Effects, Linearity, and Quantum Programming Languages, Proceedings of the 42nd Symposium on Principles

of Programming Languages (2015), 395–406, [doi:10.1145/2676726.2676999].
[StSt23] L. Stehouwer and J. Steinebrunner, Dagger categories via anti-involutions and positivity [arXiv:2304.02928]
[Str72] R. Street, The formal theory of monads, J. Pure Appl. Algebra 2 2 (1972), 149-168,

[doi:10.1016/0022-4049(72)90019-9].
[Str04] R. Street, Frobenius monads and pseudomonoids, J. Math. Phys. 45 (2004), 3930–3948,

[doi:10.1063/1.1788852].
[St93] T. Streicher, Investigations into Intensional Type Theory, Habilitation Thesis, Darmstadt (1993),

[ncatlab.org/nlab/files/Streicher-IntensionalTT.pdf]
[Ta00] P. Tappenden, Identity and Probability in Everett’s Multiverse, British J. Philosophy Science 51 1 (2000), 99-114,

[jstor:3541750].
[Te98] M. Tegmark, The Interpretation of Quantum Mechanics: Many Worlds or Many Words?, Fortsch. Phys. 46 (1998), 855-862,

[arXiv:quant-ph/9709032].
[Ter19] V. Terekhovich, Modal Approaches in Metaphysics and Quantum Mechanics, [arXiv:1909.10046].
[Th91] S. Thompson, Type Theory and Functional Programming, Addison-Wesley (1991), [ISBN:0201416670].
[Th96] S. Thompson, Haskell: the Craft of Functional Programming, Addison-Wesley (1996),

[haskellcraft.com/craft3e/Home.html].
[td87] T. tom Dieck, Transformation Groups, de Gruyter, Berlin (1987), [doi:10.1515/9783110858372].
[Tr92] A. S. Troelstra, Lectures on Linear Logic, CSLI Lectures Notes 29 (1992), [ISBN:0937073776].
[UFP13] Univalent Foundations Project, Homotopy Type Theory – Univalent Foundations of Mathematics, Institute for Advanced Study,

Princeton, 2013, [homotopytypetheory.org/book].
[Uu21] T. Uustalu, Monads and Interaction, lecture at Midlands Graduate School in the Foundations of Computing Science (2021),

[ncatlab.org/nlab/files/Uustalu-Monads1.pdf],[2.pdf],[3.pdf],[4.pdf]
[UV08] T. Uustalu and V. Vene, Comonadic Notions of Computation, Electronic Notes Theor. Comp. Sci. 203 5 (2008), 263-284,

[doi:10.1016/j.entcs.2008.05.029].
[Va15] M. Vékár, A Categorical Semantics for Linear Logical Frameworks, in Foundations of Software Science and

Computation Structures, FoSSaCS 2015, Lecture Notes in Computer Science 9034, Springer, New York (2015),
[doi:10.1007/978-3-662-46678-0 7], [arXiv:1501.05016].

[Va17] M. Vékár, In Search of Effectful Dependent Types, PhD Thesis, Oxford University (2017), [arXiv:1706.07997],
[uuid:e91e19b3-7e10-4fda-9433-f23b469e4049].

[Val04] B. Valiron, A functional programming language for quantum computation with classical control, MSc thesis, University of Ottawa
(2004), [doi:10.20381/ruor-18372].

[VRSAS15] B. Valiron, N. J. Ross, P. Selinger, D. S. Alexander, and J. M. Smith, Programming the quantum future, Communications of
the ACM 58 8 (2015), 52–61, [doi:10.1145/2699415].

[VZ14] B. Valiron and S. Zdancewic, Finite Vector Spaces as Model of Simply-Typed Lambda-Calculi, in: Proc. of ICTAC’14, Lecture
Notes in Computer Science 8687, Springer (2014), 442-459, [doi:10.1007/978-3-319-10882-7 26], [arXiv:1406.1310],
[cs.bham.ac.uk/ drg/bll/steve.pdf]

[vWe] J. van de Wetering, ZX-calculus for the working quantum computer scientist, [arXiv:2012.13966].
[VYC22] S. Verma, D. Yadav, and G. Chandra, Introduction of Formal Methods in Blockchain Consensus Mechanism and Its Associated

Protocols, IEEE Access 10 (2022), [doi:10.1109/ACCESS.2022.3184799].
[Vic11] J. Vicary, Categorical Formulation of Finite-Dimensional Quantum Algebras, Commun. Math. Phys. 304 (2011), 765–796,

[doi:10.1007/s00220-010-1138-0].
[Vo10] V. Voevodsky, Univalent Foundations Project, grant proposal application (2010),

[ncatlab.org/nlab/files/Voevodsky-UFP2010.pdf]
[vN30] J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1930), 49–131,

[doi:10.1007/BF01782338].
[vN32] J. von Neumann, Mathematische Grundlagen der Quantenmechanik (1932)

[doi:10.1007/978-3-642-96048-2];
Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955), [doi:10.1515/9781400889921].

121

https://doi.org/10.1137/S0097539796298637
https://fuuu.be/polytech/INFOF408/Introduction-To-The-Theory-Of-Computation-Michael-Sipser.pdf
https://www.jstor.org/stable/4319099
https://homepage.divms.uiowa.edu/~slonnegr/plf/Book/
https://arxiv.org/abs/1908.02202
https://doi.org/10.1145/2676726.2676999
https://arxiv.org/abs/2304.02928
https://doi.org/10.1016/0022-4049(72)90019-9
https://doi.org/10.1063/1.1788852
https://ncatlab.org/nlab/files/Streicher-IntensionalTT.pdf
https://www.jstor.org/stable/3541750
https://arxiv.org/abs/quant-ph/9709032
https://arxiv.org/abs/1909.10046
https://www.cs.BrunerieLicataLumsdaine13kent.ac.uk/people/staff/sjt/TTFP/
https://www.haskellcraft.com/craft3e/Home.html
https://doi.org/10.1515/9783110858372
https://web.stanford.edu/group/cslipublications/cslipublications/site/0937073776.shtml
https://homotopytypetheory.org/book
https://staffwww.dcs.shef.ac.uk/people/G.Struth/mgs21.html
https://ncatlab.org/nlab/files/Uustalu-Monads1.pdf
https://ncatlab.org/nlab/files/Uustalu-Monads2.pdf
https://ncatlab.org/nlab/files/Uustalu-Monads3.pdf
https://ncatlab.org/nlab/files/Uustalu-Monads4.pdf
https://doi.org/10.1016/j.entcs.2008.05.029
https://doi.org/10.1007/978-3-662-46678-0_7
https://arxiv.org/abs/1501.05016
https://arxiv.org/abs/1706.07997
https://ora.ox.ac.uk/objects/uuid:e91e19b3-7e10-4fda-9433-f23b469e4049
http://dx.doi.org/10.20381/ruor-18372
https://doi.org/10.1145/2699415
https://doi.org/10.1007/978-3-319-10882-7_26
https://arxiv.org/abs/1406.1310
https://www.cs.bham.ac.uk/~drg/bll/steve.pdf
https://arxiv.org/abs/2012.13966
https://doi.org/10.1109/ACCESS.2022.3184799
https://doi.org/10.1007/s00220-010-1138-0
https://ncatlab.org/nlab/files/Voevodsky-UFP2010.pdf
https://doi.org/10.1007/BF01782338
https://link.springer.com/book/10.1007/978-3-642-96048-2
https://doi.org/10.1515/9781400889921

[vW51] G. H. von Wright, An Essay in Modal Logic, North-Holland Publishing, Amsterdam (1951),
[philpapers:VONA EI-2].

[Wa90] P. Wadler, Comprehending Monads, Conference on Lisp and functional programming, ACM Press (1990),
[doi:10.1145/91556.91592].

[Wa93] P. Wadler, A syntax for linear logic, Ninth International Conference on the Mathematical Foundations of Programming Semantics,
Lecture Notes in Computer Science 802 Springer, Berlin (1993), [doi:10.1007/3-540-58027-1 24].

[Wei21] T.-C. Wei, Measurement-Based Quantum Computation, Oxford Research Encyclopedia of Physics (2021),
[doi:10.1142/S0219749904000055], [arXiv:2109.10111].

[Wh12] N. Wheeler, Generalized Quantum Measurement (2012),
[ncatlab.org/nlab/files/Wheeler-GeneralizedQuantumMeasurement.pdf]

[Wil13] M. M. Wilde, Quantum Information Theory, Cambridge University Press (2013), [doi:10.1017/CBO9781139525343],
[arXiv:1106.1445].

[Wi20] A. Wilson, The Nature of Contingency: Quantum Physics as Modal Realism, Oxford University Press (2020),
[ISBN:9780198846215].

[Wi22] S. Winitzki, The Science of Functional Programming – A tutorial with examples in Scala (2022), [github:sofp],
[leanpub:sofp].

[WLBF09] J. Woodcock, P. G. Larsen, J. Bicarregui, and J. Fitzgerald, Formal methods: Practice and experience, ACM Computing
Surveys 41 19 (2009), 1–36, [doi:10.1145/1592434.1592436].

[WZ82] W. Wooters and W. Zurek, A single quantum cannot be cloned, Nature 299 (1982), 802-803,
[doi:10.1038/299802a0].

[XCGX23] J. Xuereb, S. Campbell, J. Goold, and A. Xuereb, DQC1 as an Open Quantum System, Phys. Rev. A 107 (2023) 042222,
[doi:10.1103/PhysRevA.107.042222], [arXiv:2209.03947].

[Ya19] R. Yates, Improving Haskell Transactional Memory, PhD thesis, University of Rochester (2019), [hdl:1802/35367].
[Ye90] D. Yetter, Quantales and (noncommutative) linear logic, J. Symbolic Logic 55 (1990), 41-64, [doi:10.2307/2274953].
[YF18] M. Ying and Y. Feng, Model Checking Quantum Systems – A Survey, [arXiv:1807.09466].
[YF21] M. Ying and Y. Feng, Model Checking Quantum Systems – Principles and Algorithms, Cambridge University Press (2021),

[ISBN:9781108484305].
[Yu12] Q. Yuan, Finite noncommutative probability, the Born rule, and wave function collapse (2012),

[qchu.wordpress.com/2012/09/09/].
[Zeh70] H. D. Zeh, On the interpretation of measurement in quantum theory, Found Phys 1 (1970), 69–76,

[doi:10.1007/BF00708656].
[ZBSLY23] L. Zhou, G. Barthe, P.-Y. Strub, J. Liu, and M. Ying, CoqQ: Foundational Verification of Quantum Programs, Proceedings of

the ACM on Programming Languages 7 POPL 09 (2023) 29, 833–865, [doi:10.1145/3554343], [arXiv:2207.11350].
[Zu81] W. Zurek, Pointer basis of quantum apparatus: Into what mixture does the wave packet collapse?, Phys. Rev. D 24 (1981), 1516-

1525, [doi:10.1103/PhysRevD.24.1516].
[ZB04] K. Zyczkowski and I. Bengtsson, On Duality between Quantum Maps and Quantum States, Open Systems & Information Dynam-

ics 11 01 (2004), 3-42, [doi:10.1023/B:OPSY.0000024753.05661.c2].

122

https://philpapers.org/rec/VONAEI-2
https://doi.org/10.1145/91556.91592
https://doi.org/10.1007/3-540-58027-1_24
https://doi.org/10.1142/S0219749904000055
https://arxiv.org/abs/2109.10111
https://ncatlab.org/nlab/files/Wheeler-GeneralizedQuantumMeasurement.pdf
https://doi.org/10.1017/CBO9781139525343
https://arxiv.org/abs/1106.1445
https://global.oup.com/academic/product/the-nature-of-contingency-9780198846215
https://github.com/winitzki/sofp
https://leanpub.com/sofp
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1038/299802a0
https://doi.org/10.1103/PhysRevA.107.042222
https://arxiv.org/abs/2209.03947
https://hdl.handle.net/1802/35367
https://doi.org/10.2307/2274953
https://arxiv.org/abs/1807.09466
https://www.cambridge.org/ae/academic/subjects/computer-science/programming-languages-and-applied-logic/model-checking-quantum-systems-principles-and-algorithms?format=HB
https://qchu.wordpress.com/2012/09/09/finite-noncommutative-probability-the-born-rule-and-wave-function-collapse
https://doi.org/10.1007/BF00708656
https://doi.org/10.1145/3554343
https://arxiv.org/abs/2207.11350
https://doi.org/10.1103/PhysRevD.24.1516
https://doi.org/10.1023/B:OPSY.0000024753.05661.c2

	Motivation
	Quantum Monadology
	Background
	Quantum computing
	Quantum probability
	Monadic effects
	Monoidal categories
	Parameterized spectra

	Quantum Effects
	Quantum Semantics
	Classical Epistemic Logic
	Quantum Epistemic Logic
	Quantum Gates & Measurement
	Mixed Quantum Types

	Quantum Language
	Pseudocode Design
	Example Pseudocode

