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our result: b )1/5
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also predicts anyonic defects where flux is expelled,
(such as for superconducting islands within 2DEG)
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'Martin09]; the colored arc is our addition, for ease
of comparison with the next graphics.
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% magnetic flux
through surface element

Fg(ﬁ.ﬁ'}l,&iﬁ?)
= BJ_ - Axt - Ax?

<.,

The density and orientation of magnetic field flux lines
are encoded in a differential 2-form F5 whose integral over
a given surface is proportional to the total magnetic flux
through that surface. (Graphics adapted from [Hyperphysics].)
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\

group algebra
(flux operators)
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(2.) the algebra of quantum observables
of topological flux through surface:

Obs(X?

)EM

_ (C[m Map* (2%, CP OO)}

Example: On torus X° = T2,
commuting Wilson line observables:

Obo(T?)™ = (i, Wiy | Wiyl = By

EM
) 0 1

BUT in FQH systems one expects deformation:

Wiy = Wiy

0 1 0

What gives?
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use another classifying space!

such as the 2-sphere S? ~ CP! — CP®®
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