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if external control of anyons be achieved

∼
2D

material

anyon worldline

time
braiding

z
i

z
i

quantum state for
fixed anyon positions
z1, z2, · · · at time t1

∣∣ψ(t1)〉 adiaba
tic transp

ort

⇒ quant
um gate!

∣∣ψ(t2)〉
quantum state for

fixed anyon positions
z1, z2, · · · at time t2
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Motivation. observe:

anyonic FQH topology carried by
(surplus) magnetic flux quanta

aka: quasi-holes/particles, vortices

un-paired
flux quantum:
quasi-hole

deficit of a
flux-quantum:
quasi-particle

K flux-quanta absorbed
by each electron: (cf. Störmer 1999 Fig. 16)

Σ 2
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Σ 2
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flux quanta
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but just that magnetic flux quantization

appears inconsistent in the effective CS description!

cf. [Witten 2016 p 35], [Tong 2016 p 159]

(briefly, the EoM Jel =
1
q (F − jquasi) is incompatible with integer Jel)
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⋃

n CP n s.t.:

(1.) π0 Map
(
X, CP∞)︸ ︷︷ ︸

space of maps X −→ CP∞

≃ H2(X;Z) ordinary
cohomology

(2.)
global EM-field is


flux density F2 = E dt + B

charge χ : X −→ CP∞

potential Â : F2 ⇒ ch(χ)


so that, in particular:

Ω2
dR(X) H2

dR(X) H2(X; Z) Map
(
X, CP∞)

F2 [F2] = [χ] χ

ch

total flux = charge character
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(2.) the algebra of quantum observables

of topological flux through surface:

Obs(Σ2)
EM

= C
[
π1Map∗(Σ2

∪{∞}, CP∞)]

pointed mapping space

makes flux vanish-at-infin
ity

(the soliton condition)
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(flux operators)
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of topological flux through surface:
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[
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1
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0
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]Ŵ[
1
0

]〉
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Thm. (1.) Bare flux monodromy gives torus Wilson loop

observables Ŵ as in CS and as expected for FQH anyons:
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(2.) Fin-dim irreps that extend to the

here: modularity︷ ︸︸ ︷
covariantization

by diffeos preserving fermionic (aa) spin structure

have

{
braiding phase a primitive root of unity ζ = e
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observables Ŵ as in CS and as expected for FQH anyons:

π1Map
(
T 2, S2

)
≃

〈
Ŵ[
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0
1

]Ŵ[
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Taking stock.
these results show that

hallmark properties of FQH systems are reproduced:

(fractional statistics, topological order, edge modes)

up to some subtleties
(ground state degeneracy for non-unit filling fraction
may differ from prediction of K-matrix CS formalism)

thus supporting Hypothesis h & making it testable
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Fourth case: Σ2 ≡ R2
\2 the 2-pnctrd plane — para-defects
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Thm. the covariantized flux monodromy is
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2
)

� Diff(R2
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fd-irreps compatible with (R2
\n)∪{∞} ≃ S2 ∨ (S1)∨

n
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have ζ = (ξ1 · ξ2) / ξout

;
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Thm. For n ≥ 3 the covariantized flux monodromy is
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irreps involve braid representations
braiding worldlines of the defects — defect anyons
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Conclusion.

- FQH is candidate for

topological quantum hardware︷ ︸︸ ︷
TQC if anyons controllable

- FQH anyons are exotic flux quanta, but

- effective CS theory does not reflect that well

- turn situation right-side-up: exotic flux quantization

- candidate such law does exist: Hypothesis h

- this re-derives all hallmark FQH anyon properties

- but also predicts anyonic defects where flux is expelled

⇒ TQC via superconducting doping of FQH systems??

in any case:

exotic flux quantization may provide new understanding
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