Super-Exceptional Geometry for 11D Supergravity

Urs Schreiber^a

December 9, 2024

remote talk at

HEP Seminar @ MPI for Grav Physics Albert Einstein Institute, Potsdam

December 9, 2024 seminars.aei.mpg.de/seminar/26232

on joint work with G. Giotopoulos & H. Sati

primarily arXiv:2411.03661

These talk notes are available for download at: ncatlab.org/schreiber/show/Super-Exceptional+Geometry+for+11D+Supergravity

The unreasonable effectiveness of Super-Tangent Spaces. Consider the 11D super-tangent space

$$\mathbb{R}^{1,10 \,|\, \mathbf{32}} \longrightarrow \operatorname{Iso}(\mathbb{R}^{1,10 \,|\, \mathbf{32}}) \longrightarrow \mathfrak{so}(1,10)$$
super-Minkowski super-Poincaré Lorentz

with its super-invariant 1-forms

$$\operatorname{CE}(\mathbb{R}^{1,10\,|\,\mathbf{32}}) \simeq \Omega^{\bullet}_{\mathrm{dR}}(\mathbb{R}^{1,10\,|\mathbf{32}})^{\mathrm{li}} \simeq \mathbb{R}_{\mathrm{d}} \begin{bmatrix} (\Psi^{\alpha})^{32}_{\alpha=1} \\ (E^{a})^{10}_{a=0} \end{bmatrix} / \begin{pmatrix} \mathrm{d}\,\Psi^{\alpha} = 0 \\ \mathrm{d}\,E^{a} = (\overline{\Psi}\,\Gamma^{a}\,\Psi) \end{pmatrix}$$

Remarkably, the 11D quartic Fierz identities entail that

$$\begin{array}{ll} G_4^0 & := & \frac{1}{2} \left(\overline{\Psi} \, \Gamma_{a_1 a_2} \, \Psi \right) E^{a_1} E^{a_2} \\ G_7^0 & := & \frac{1}{5!} \left(\overline{\Psi} \, \Gamma_{a_1 \dots a_5} \, \Psi \right) E^{a_1} \dots E^{a_5} \end{array} \right\} \begin{array}{ll} \in & \operatorname{CE} \left(\mathbb{R}^{1,10 \, | \, \mathbf{32}} \right)^{\operatorname{Spin}(1,10)} & \text{satisfy} : \\ & \text{fully super-invariant forms} \end{array} \begin{array}{l} \mathrm{d} \, G_4^0 = 0 \\ \mathrm{d} \, G_7^0 = & \frac{1}{2} G_4^0 \, G_4^0 \end{array}$$

To globalize this situation, say that an **11D super-spacetime** X is a super-manifold equipped with a super-Cartan connection, locally on an open cover $\widetilde{X} \to X$ given by

$$\begin{array}{c} (\Psi^{\alpha})_{\alpha=1}^{32} \\ (E^{a})_{a=0}^{10} \\ \left(\Omega^{ab} = -\Omega^{ba}\right)_{a,b=0}^{10} \end{array} \end{array} \right\} \begin{array}{c} \text{such that the} \\ \in \ \Omega^{1}_{\mathrm{dR}}(\widetilde{X}) \\ \text{vanishes} \end{array} \quad \text{d} \ E^{a} - \Omega^{a}{}_{b} \ E^{b} = \left(\overline{\Psi} \ \Gamma^{a} \ \Psi\right),$$

and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:

$$\begin{array}{rcl}
G_4^s &:= & G_4 + G_4^0 &:= & \frac{1}{4!}(G_4)_{a_1\cdots a_4}E^{a_1}\cdots E^{a_4} + \frac{1}{2}\left(\overline{\Psi}\,\Gamma_{a_1a_2}\,\Psi\right)E^{a_1}\,E^{a_2} \\
G_7^s &:= & G_7 + G_7^0 &:= & \frac{1}{7!}(G_4)_{a_1\cdots a_7}E^{a_1}\cdots E^{a_7} + \frac{1}{5!}\left(\overline{\Psi}\,\Gamma_{a_1\cdots a_5}\,\Psi\right)E^{a_1}\cdots E^{a_5}
\end{array}$$

Theorem [JHEP07(2024)082]: On an 11D super-spacetime X with C-field super-flux (G_4^s, G_7^s) :

Next consider the involution $\Gamma_{012345} \in \text{Pin}^+(1, 10)$ with super-fixed subspace $\mathbb{R}^{1,5|2\cdot\mathbf{8}_+} \xrightarrow{\phi_0} \mathbb{R}^{1,10|3\mathbf{2}}$ Since $\overline{\Gamma_{012345}} = -\Gamma_{012345}$ it follows that, simply:

$$H_3^0 := 0 \in \operatorname{CE}(\mathbb{R}^{1,5 \mid 2 \cdot \mathbf{8}_+})^{\operatorname{Spin}(1,5)} \quad \text{satisfies}: \quad \mathrm{d}\, H_3^0 = \phi_0^* \, G_4^0$$

To globalize this situation, say that a super-immersion $\Sigma^{1,5|2\cdot\mathbf{8}_+} \xrightarrow{\phi_s} X^{1,10|\mathbf{32}}$ is $1/2\mathbf{BPS}$ M5 if it is "locally like" $1 \phi_0$, and say that **B-field super-flux** on such an M5-probe is a super-form with these co-frame components:

$$H_3^s := H_3 + H_3^0 := \frac{1}{3!} (H_3)_{a_1 a_2 a_3} e^{a_1} e^{a_2} e^{a_3} + 0 \qquad \left(e^{a < 6} := \phi_s^* E^a \right)$$

Theorem [JHEP10(2024)140]: On a super-immersion ϕ_s with B-field super-flux H_3^s :

$$\begin{array}{c} The \\ super-Bianchi \ identity \end{array} \left\{ \mathrm{d}\, H_3^s \ = \ \phi_s^* G_4^s \right\} \qquad \begin{array}{c} is \ equivalent \ to \\ the \ 1/2BPS \ M5 \\ equations \ of \ motion. \end{array}$$

In particular, the (self-)duality conditions on the ordinary fluxes are *implied*: $G_4 \leftrightarrow G_7$ and $H_3 \leftrightarrow H_3$.

These results witness a strong form of Cartan geometry (globalized/curved Kleinian geometry). As slogans:

11D SuGra is the globalization	M5-probes are the globalization
of the super-tangent space $\mathbb{R}^{1,10 32}$	of the immersion $\mathbb{R}^{1,5 2\cdot8_+} \hookrightarrow \mathbb{R}^{1,10 32}$
<i>including</i> its super-flux content.	<i>including</i> its super-flux content.

This motivates looking for more hidden structure on more super-tangent spaces.

¹The technical condition on a super-immersion to be 1/2BPS is that it admits the super-analog of a *Darboux coframe*, see §2.2 in JHEP10(2024)140.

More hidden structure in Super-Space. After reduction to 10D it turns out [ATMP22(2018)5] that the whole structure of (topological) T-duality is preconfigured in the super-fluxes on super-tangent spaces:

This generalizes all the way to T-duality along all 10 space-time directions, where we have [arXiv:2411.10260]

The M-Algebra is the super-Lie algebra which is the maximal central extension of the $\mathcal{N} = 32$ super-point:

$$\begin{split} & \underset{\mathbb{R}^{0|32}}{\mathfrak{M}} & \text{hence } \quad \operatorname{CE}(\mathfrak{M}) & \simeq \ \mathbb{R}\Big[\underbrace{(\Psi^{\alpha})_{\alpha=1}^{32}}_{\operatorname{deg}=(1,\operatorname{odd})}, \underbrace{(E^{a})_{a=0}^{10}}_{\operatorname{deg}=(1,\operatorname{evn})}, \underbrace{(E_{a_{1}a_{2}}=E_{[a_{1}a_{2}]})_{a_{i}=0}^{10}}_{\operatorname{deg}=(1,\operatorname{evn})}, \underbrace{(E_{a_{1}\cdots a_{5}}=E_{[a_{1}\cdots a_{5}]})_{a_{i}=0}^{10}}_{\operatorname{deg}=(1,\operatorname{evn})}\Big], \end{split}$$

with differential on generators given equivalently by [arXiv:2411.11963]:

The Fierz-form on the right shows that $\operatorname{Aut}(\mathfrak{M}) \simeq \operatorname{GL}(32)$ (West '99: "brane-rotating symmetry") \supset Spin(1,10).

 \oplus

 $\mathbb{R}^{1,10}$

It is suggestive to **Hodge-dualize temporal components** in order to identify actual (probe-)brane charges (Hull 1997).

 $\wedge^2 (\mathbb{R}^{1,10})^*$

 \oplus

 $\wedge^{5}(\mathbb{R}^{1,10})^{*}$

The **reduction** of the M-algebra to 10D is the fully extended IIA SuSy algebra, with:

 $\mathfrak{M}_{\mathrm{bos}}~\simeq$

$\left(\begin{array}{cc} \mathrm{d}\Psi &=0 \end{array} \right)$	$II\mathfrak{A}_{bos}$
$\mathrm{d} E^a = + \left(\overline{\Psi} \Gamma^a \Psi \right)$	$\simeq_{-} \mathbb{R}^{1,9} \oplus (\mathbb{R}^{1,9})^{*} \oplus \wedge^{2} (\mathbb{R}^{1,9})^{*} \oplus \wedge^{4} (\mathbb{R}^{1,9})^{*} \oplus \wedge^{5} (\mathbb{R}^{1,9})^{*}$
$\mathrm{d}\tilde{E}_a = -\left(\overline{\Psi}\Gamma_a\Gamma_{10}\Psi\right)$	$\sim \mathbb{R}^{1,9} \oplus (\mathbb{R}^{1,9})^* \oplus \wedge^2(\mathbb{R}^9)^* \oplus \wedge^8(\mathbb{R}^9) \oplus \wedge^4(\mathbb{R}^9)^* \oplus \wedge^6(\mathbb{R}^9) \oplus \wedge^5(\mathbb{R}^{1,9})^*$
$d E_{a_1 a_2} = -\left(\overline{\Psi} \Gamma_{a_1 a_2} \Psi\right)$	
$d E_{a_1 \cdots a_4} = + \left(\overline{\Psi} \Gamma_{a_1 \cdots a_4} \Gamma_{10} \Psi \right)$	The second
$\left(\mathrm{d} E_{a_1 \cdots a_5} = + \left(\Psi \Gamma_{a_1 \cdots a_5} \Psi \right) \right) $	ka - A
	forget

		\mathfrak{M} —		→ IIA -	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	\mathfrak{Dbl}
The full doubling of the		Ψ	\leftarrow	Ψ	\leftarrow	Ψ
10D super-space is by		E^a	\leftarrow	E^a	\leftarrow	E^a
the wrapped M2-brane	wrapped M2- brane charges	$E_{a\ 10}$	\leftarrow	\tilde{E}_a	string charges / dbld spacetime	\tilde{E}_a
charges in the M-algebra!		$E_{a_{1}a_{2}}$	\leftarrow	$E_{a_{1}a_{2}}$		
[arXiv:2411.10260]	E	$210 a_1 \cdots a_4$	~ 1	$E_{a_1\cdots a_4}$		
	i	$E_{a_1\cdots a_5}$	\leftarrow	$E_{a_1\cdots a_5}$	•	

The **restriction** of the bosonic spatial part of the M-algebra to $\mathbb{R}^n \hookrightarrow \mathbb{R}^{10}$ for $n \in \{4, 5, 6, 7\}$ yields the traditional *exceptional tangent spaces* of Hull 2007:

n	$\dim (\mathbb{R}^n)$	\oplus	$\wedge^2(\mathbb{R}^n)^*$	\oplus	$\wedge^5(\mathbb{R}^n)^*$	\oplus	$\wedge^6 \mathbb{R}^n$	$\oplus \wedge^9 \mathbb{R}^n \big)$		$\frac{\text{basic}}{\text{rep}}$ of	excptnl Lie alg
4	4	+	6						\rightsquigarrow	10	$\mathfrak{sl}_{5(5)}$
5	5	+	10	+	1				\rightsquigarrow	16	$\mathfrak{so}_{5,5}$
6	6	+	15	+	6	+	1		\rightsquigarrow	${\bf 27} \oplus {\bf 1}$	$\mathfrak{e}_{6(6)}$
7	7	+	21	+	21	+	7		\rightsquigarrow	56	$\mathfrak{e}_{7(7)}$

Traditional discussion stops here at n = 7 The because **this pattern breaks** for $n \ge 8$.

There are not enough *M*-brane charges to carry the basic $e_{\geq 8}$ -rep!

But our identification of the M-algebra as an M-theoretic incarnation of the fully doubled super-spacetime, supporting super-space T-duality, suggests that in some sense:

resolution on next page...

The M-algebra is the full super-exceptional tangent space, after all.

The M-Algebra completes the hierarchy of Exceptional Tangent Spaces [arXiv:2411.03661] as follows, by appeal to these two observations by Nicolai, Kleinschmidt, et al.:

(i) Local hidden symmetry: While the Kac-Moody Lie algebras \mathfrak{e}_n reflect the expected *global* hidden symmetry, it is only their "maximal compact" (or "involutory") subalgebras, which reflect the corresponding *local* hidden symmetry.

Global \mathfrak{e}_n \longleftrightarrow \mathfrak{k}_n $\underset{\text{symmetry}}{\overset{\text{Kac-Moody}}{\text{Lie algebra}}} \mathfrak{k}_n$ $\underset{\text{sub-algebra}}{\overset{\text{Maximal compact}}{\text{sub-algebra}}}$

 $\mathbf{32}$

 $\mathfrak{so}_{1,10} \longrightarrow \mathfrak{k}_{1,10} \longleftrightarrow \mathfrak{k}_{10}$

 $32 \quad \longmapsto \quad 32$.

(ii) Spinorial hidden symmetry: In contrast to the Kac-Moody algebras \mathfrak{e}_n themselves, their maximal compact \mathfrak{k}_n have non-trivial *finite-dimensional* representations. Among these is a spinorial **32** both for \mathfrak{k}_{10} as well as for $\mathfrak{k}_{1,10}$, which lifts the familiar Majorana spinor representation of 11D SuGra.

Thereby we find this shaded completion of the hierarchy, as explained below:

	n	dim (\mathbb{R}^n	\oplus	$\wedge^2(\mathbb{R}^n)^*$	\oplus	$\wedge^5(\mathbb{R}^n)^*$	\oplus	$\wedge^6 \mathbb{R}^n$	\oplus	$\wedge^9 \mathbb{R}^n$		basic rep of	(max cmp sub-alg	ot of)	excptnl Lie alg
	4	4	+	6							\rightsquigarrow	10			$\mathfrak{sl}_{5(5)}$
	5	5	+	10	+	1					$\sim \rightarrow$	16			$\mathfrak{so}_{5,5}$
	6	6	+	15	+	6	+	1			\rightsquigarrow	$f 27 \oplus f 1$			$\mathfrak{e}_{6(6)}$
	7	7	+	21	+	21	+	7			$\sim \rightarrow$	56			$\mathfrak{e}_{7(7)}$
	8	8	+	28	+	56	$^+$	28			\rightsquigarrow	120	\mathfrak{so}_{16}	\subset	\mathfrak{e}_8
	9	9	+	36	+	126	+	84	+	1	\rightsquigarrow	256	\mathfrak{k}_9	\subset	\mathfrak{e}_9
	10	10	+	45	+	252	+	210	+	10	\rightsquigarrow	527	\mathfrak{k}_{10}	\subset	\mathfrak{e}_{10}
1 +	-10	$\dim \left(\mathbb{R}^{1,} \right)$	¹⁰ ⊕	$\wedge^2(\mathbb{R}^{1,10}$)*	$\oplus \wedge^5(\mathbb{R}^{1,1})$	¹⁰)*	·)			$\sim \rightarrow$	528	$\mathfrak{k}_{1,10}$	С	\mathfrak{e}_{11}

- $\mathbf{n} = \mathbf{8}$: the **248** of \mathfrak{e}_8 branches as $\mathbf{120} \oplus \mathbf{128}$ of the maximal compact \mathfrak{so}_{16} as a representation-theoretic statement this is classical, but as part of a change in pattern from \mathfrak{e}_n to \mathfrak{k}_n this may not have been appreciated.
- $\mathbf{n} = \mathbf{9}$: the (infinite-dimensional) basic rep of \mathfrak{e}_9 branches as $\mathbf{256} \oplus$ higher-parabolic-levels under \mathfrak{k}_9 this was only very recently shown by König 2024;
- $\mathbf{n} = \mathbf{10}$: remarkably, there is an irrep **527** of \mathfrak{k}_{10} , and it appears in the symmetric square of a spinorial **32** irrep as: $\mathbf{32} \otimes_{\text{sym}} \mathbf{32} \simeq \mathbf{1} \oplus \mathbf{527}$ [Damour, Kleinschmidt & Nicolai 2006 p 37], which exactly matches the interpretation here, where the bosonic dimension of the M-algebra is the same expression dim($\mathbf{32} \otimes_{\text{sym}} \mathbf{32}$) the remaining $\mathbf{1}$ is the first summand (the time axis);
- n = 1 + 10: re-including this temporal component and hence going back to the unbroken bosonic M-algebra we need an irrep **528** of $\mathfrak{k}_{1,10}$; this also exists [Gomis, Kleinschmidt & Palmkvist 2019 p 29] and it is isomorphic to the symmetric square $32 \otimes_{sym} 32 \simeq 528$ [Bossard, Kleinschmidt & Sezgin 2019 §D] of the original 32.

In summary this means that the **528** of $\mathfrak{k}_{1,10}$ is the root of the hierarchy of exceptional tangent spaces, while at the same time exactly unifying **11**-dimensional spacetime with the **55** M2- and **462** M5-brane charges:

Finally, the infinite-dimensional $\mathfrak{k}_{1,10}$ must act through a finite-dimensional quotient on **528**, and this turns out [Bossard, Kleinschmidt & Sezgin 2019 p. 42] to be just the "brane-rotating symmetry" $SL(32) \subset Aut(\mathfrak{M})$, so that: All this lifts to the M-algebra \mathfrak{M} , thus identified as the "super-exceptional tangent space"!

T-Duality on Super-exceptional space?

-Duality on Super-exceptiona	i space:		$\exp\left(r\Gamma_{to}\right)$	
	$\mathfrak{M} \longleftarrow$		\mathfrak{M}	
	E^{10}	\mapsto	E^{10}	
The SL(32)-symmetry on \mathfrak{M} which is generated by Γ_{10} is as shown on the right. [arXiv:2411.11963 Ex. 2.4]	E^a	\mapsto	$\cosh(2r)E^a - \sinh(2r)E^{alo}$	- T
	E^{a10}	\mapsto	$\cosh(2r) \frac{E^{a 10}}{E^{a 10}} - \sinh(2r) \frac{E^{a}}{E^{a}}$	$r \in \mathbb{R}$ $a_i < 10$
	E^{ab}	\mapsto	E^{ab}	
	$E^{a_1\cdots a_5}$	\mapsto	$\cosh(2r) E^{a_1 \cdots a_5} + \sinh(2r) \star E^{a_1 \cdots a_5}$	
	$E^{a_1 \cdots a_4 \ 10}$	\mapsto	$E^{a_1\cdots a_4}$ 10	

This mixes the 10D spacetime directions E^a with their T-duals $E^{a\,10}$ but never swaps them.

Hence T-duality is *not* among the "brane-rotating symmetries" $GL(32) \simeq Aut(\mathfrak{M})$.

Indeed, we already saw it must instead be a kind of Fourier-Mukai transformation lifted to \mathfrak{M} .

For this there ought to be an M-theoretic Poincaré 3-form which reduces to the Poincaré 2-form.

Proposition [arXiv:2411.11963, §2.2.3]: There exists a *fermionic extension* (-) (not changing the bosonic body) of II \mathfrak{A} , and hence of \mathfrak{M} , on which the Poincaré 2-form P_2 (controlling super-space T-duality) lifts as follows:

(Here $\widehat{\mathfrak{M}}$ is the "hidden" extension for parameter s = -1 of D'Auria & Fré 1982 and Bandos et al. 2004.)

So while in 10D the Poincareé 2-form cancels the difference between the dual B-field fluxes,

in M-theory the Poincaré 3-form cancels the C-field flux itself.

This makes sense, because the M-algebra correspondence absorbs all fluxes into the exceptionalized geometry! [arXiv:2411.10260 p 80] Hidden M-algebra

Flux quantization. One upshot of these results is their implication on flux-quantization [EncMathPhys4(2025)281]:

Underappreciated Fact:

A C-field configuration is more than a differential 3-form C_3 (and a 6-form C_6).

This is only the data on a single chart $\mathbb{R}^{1,10|\mathbf{32}} \simeq U_i \stackrel{\iota_i}{\longleftrightarrow} X$.

A global C-field configuration is instead:

- $C_3 \& C_6$ on charts of an open cover of spacetime X,
- & gauge transformations on double intersections of charts

& gauge-of-gauge-transformation on triple intersections of charts

& higher gauge transformations on higher intersections of charts

all subject to *some* flux- or charge-quantization law.

Case of electromagnetic field. This is familiar from the electromagnetic field

which is a 1-form A_i on each chart

with gauge transformations $\lambda_{ij} : A_j = A_i + d\lambda_{ij}$ on each double intersection

and charge quantization $\lambda_{ij} + \lambda_{jk} - \lambda_{ik} = n_{ijk}$ on each triple intersection

making a cocycle in ordinary differential cohomology

(equivalently to a principal U(1)-bundle with connection).

This flux quantization stabilizes the solitons of electromagnetism: Dirac monopoles and Abrikosov vortices.

Case of NS/RR-field. The analogue is famous for the NS/RR-fields in IIA:

the duality symmetric fluxes $dF_{2\bullet} = F_{2\bullet-2}H_3$ have the form of the image of the Chern-character on K-theory hence one may ask that the RR-fields are globally cocycles in differential K-theory.

Doing so stabilizes certain non-supersymmetric D-branes.

Case of C-field in 11D bulk [JHEP07(2024)082].

Similarly the C-field may be flux-quantized in any generalized cohomology theory whose character image is of the form $dG_4 = 0$, $dG_7 = \frac{1}{2}G_4 G_4$ (e.g.: 4-Cohomotopy). except for one issue: this does not *seem* to account for the constraint $G_7 = \star G_4$ resolution: on superspace this constraint is already implied by $dG_4^s = 0$, $dG_7^s = \frac{1}{2}G_4^s G_4^s$

Case of the Self-dual field on M5 [JHEP10(2024)140].

Similarly the tensor field on M5 probes $\Sigma \xrightarrow{\phi} X$ may be flux-quantized in any generalized cohomology theory whose character image is in addition of the form $dH_3 = \phi^*G_4$ (e.g. bulk-twisted 3-Cohomotopy). except for one issue: this does not *seem* to account for the non-linear self-duality constraint resolution on superspace this constraint is already implied by $dH_3^s = \phi^*G_4^s$

In summary: On super-space, the Bianchi-identities on the super-fluxes

determine the admissible flux-quantization laws and hence determine the possible global completions of the SuGra field content .

Vista.

On the other hand, exceptional geometry seems to provide *local* completion of SuGra field content. Hence the full completion of 11D SuGra ("M-Theory") seems to require super-exceptional geometry:

Flux Quantization: C_{10} , E_{11} -Program:	$\left.\begin{array}{l} \text{Global completion} \\ \text{Local completion} \end{array}\right\}$	of 11D Sugra field content	<pre>{ via super-geometry via exceptional-geometry</pre>		
suggests:	Full completion	of 11D Sugra	via super-exceptional geometry ?		

Where super-exceptional geometry should be Cartan geometry locally modeled on the M-algebra \mathfrak{M} .