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The unreasonable effectiveness of Super-Tangent Spaces. Consider the 11D super-tangent space

R1,10 | 32

super-Minkowski

Iso
(
R1,10 | 32)

super-Poincaré

so(1, 10)
Lorentz

with its super-invariant 1-forms

CE
(
R1,10 | 32) ≃ Ω•

dR

(
R1,10|32)li

super-transl. invar. forms

≃ Rd

[
(Ψα)32α=1

(Ea)10a=0

]/( dΨα = 0

dEa =
(
ΨΓaΨ

) )
Remarkably, the 11D quartic Fierz identities entail that

G0
4 := 1

2

(
ΨΓa1a2 Ψ

)
Ea1Ea2

G0
7 := 1

5!

(
ΨΓa1···a5 Ψ

)
Ea1 · · ·Ea5

 ∈ CE
(
R1,10 | 32)Spin(1,10)

fully super-invariant forms

satisfy :
dG0

4 = 0

dG0
7 = 1

2G
0
4 G

0
4

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-
Cartan connection, locally on an open cover X̃ ↠ X given by

(Ψα)32α=1

(Ea)10a=0(
Ωab = −Ωba

)10
a,b=0

 ∈ Ω1
dR

(
X̃
) such that the

super-torsion
vanishes

dEa − ΩabE
b =

(
ΨΓaΨ

)
,

and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:

Gs
4 := G4 + G0

4 := 1
4! (G4)a1···a4E

a1 · · ·Ea4 + 1
2

(
ΨΓa1a2 Ψ

)
Ea1 Ea2

Gs
7 := G7 + G0

7 := 1
7! (G4)a1···a7E

a1 · · ·Ea7 + 1
5!

(
ΨΓa1···a5 Ψ

)
Ea1 · · ·Ea5

Theorem [JHEP07(2024)082]: On an 11D super-spacetime X with C-field super-flux (Gs
4, G

s
7):

The duality-symmetric
super-Bianchi identity

 dGs
4 = 0

dGs
7 = 1

2 G
s
4 G

s
4

 is equivalent to
the full 11D SuGra
equations of motion!

Next consider the involution Γ012345 ∈ Pin+(1, 10) with super-fixed subspace R1,5 | 2·8+ R1,10 | 32ϕ0

Since Γ012345 = −Γ012345 it follws that, simply:

H0
3 := 0 ∈ CE

(
R1,5 | 2·8+

)Spin(1,5)
satisfies : dH0

3 = ϕ∗
0 G

0
4

To globalize this situation, say that a super-immersion Σ1,5 | 2·8+ X1,10 | 32ϕs
is 1/2BPS M5 if it is “locally

like” 1 ϕ0, and say that B-field super-flux on such an M5-probe is a super-form with these co-frame components:

Hs
3 := H3 + H0

3 := 1
3! (H3)a1a2a3e

a1 ea2 ea3 + 0
(
ea<6 := ϕ∗

sE
a
)

Theorem [JHEP10(2024)140]: On a super-immersion ϕs with B-field super-flux Hs
3 :

The
super-Bianchi identity

{
dHs

3 = ϕ∗
sG

s
4

} is equivalent to
the 1/2BPS M5

equations of motion.

In particular, the (self-)duality conditions on the ordinary fluxes are implied: G4 ↔ G7 and H3 ↔ H3.

These results witness a strong form of Cartan geometry (globalized/curved Kleinian geometry). As slogans:

11D SuGra is the globalization
of the super-tangent space R1,10|32

including its super-flux content.

M5-probes are the globalization
of the immersion R1,5|2·8+ ↪−→ R1,10|32

including its super-flux content.

This motivates looking for more hidden structure on more super-tangent spaces.

1The technical condition on a super-immersion to be 1/2BPS is that it admits the super-analog of a Darboux coframe, see §2.2 in
JHEP10(2024)140.
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More hidden structure in Super-Space. After reduction to 10D it turns out [ATMP22(2018)5] that
the whole structure of (topological) T-duality is preconfigured in the super-fluxes on super-tangent spaces:

doubled
super-space

Dbl1

type IIA
super-space

R1,9 | 16⊕16 R1,9 | 16⊕16 type IIB
super-space

R1,8 | 16⊕16

fiber
product

πBπA

HA
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ΨΓaΓ10 Ψ

)
Ea

F≤0 := 0
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ΨΓ10 Ψ
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F4 := 1

2
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)
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F6 := 1
4!

(
ΨΓ10Γa1···a4 Ψ

)
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F8 := 1
6!
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ΨΓa1···a6 Ψ
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F10 := 1
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ΨΓ10Γa1···a8 Ψ

)
Ea1 · · ·Ea8

F12 := 1
10!

(
ΨΓa1···a10 Ψ

)
Ea1 · · ·Ea10

F≥14 = 0︸ ︷︷ ︸
∈ CE

(
R1,9 | 16⊕16

)
s.t.

{
dHA

3 = 0

dF2•+2 = HA
3 F2• ,

∫
πB

eP
1
2 · π∗

A(−)

Fourier-
Mukai transform

super-
Poincaré form

P 1
2 := e9B e9A︸ ︷︷ ︸
∈ CE

(
Dbl1

)
s.t. dP 1

2 =

π∗
AH

A
3 − π∗

BH
B
3

HB
3 :=

(
ΨΓBa Γ10 Ψ

)
Ea

F≤1 = 0

F3 :=
(
ΨΓBa Γ9 Ψ

)
Ea

F5 := 1
3!

(
ΨΓBa1a2a3Γ9Γ10 Ψ

)
Ea1Ea2Ea3

F7 := 1
5!

(
ΨΓBa1···a5Γ9 Ψ

)
Ea1 · · ·Ea5

F9 := 1
7!

(
ΨΓBa1···a7Γ9Γ10 Ψ

)
Ea1 · · ·Ea7

F11 := 1
7!

(
ΨΓBa1···a9Γ9 Ψ

)
Ea1 · · ·Ea9

F≥13 := 0︸ ︷︷ ︸
∈ CE

(
R1,9 | 16⊕16

)
s.t.

{
dHB

3 = 0

dF2•+1 = HB
3 F2•−1 ,

This generalizes all the way toT-duality along all 10 space-time directions, where we have [arXiv:2411.10260]

fully doubled
super-space

Dbl

R1,9 | 16⊕16 R̃1,9 | 16⊕16

R0 | 32

fiber
product

π π̃

type IIA
super-space

type IIÃ
super-space

(
HA

3 , F2•
)

∫
π̃

eP2 · π∗(−)

Fourier-
Mukai transform

(
HÃ

3 , F̃2•
)

full super-
Poincaré form

P2 := ea ẽa︸ ︷︷ ︸ s.t. dP2 = π∗HA
3 − π̃∗HÃ

3

∈ CE(Dbl)But the fully doubled Dbl is a 10D
version of the M-algebra! – as follows
(all diamonds are fiber products):

M

F IIA

R1,10 | 32 Dbl Brn

R1,9 | 16⊕16 R̃1,9 | 16⊕16

R0 | 32

super-
point

Basic M-algebra

1
2e
aeabe

b=:P37−→

ea ẽ
a=:P2

pBrn
bas p

M
∗Poincaré

super-forms

pBrn pM

full
F-theory
super-

spacetime

fully
extended

type IIA algebra

11D
super-

spacetime
fully

doubled
super- spacetime

pure brane
charge algebra

ext
end

by
bra

ne
cha

rge
s

type IIA
super-

spacetime

fully T-dual
type IIA

super-spacetime
(string charges)extend by spacetime dimensions
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The M-Algebra is the super-Lie algebra which is the maximal central extension of the N = 32 super-point:

M

R0|32

hence CE
(
M
)
≃ R

[
(Ψα)32α=1︸ ︷︷ ︸
deg=(1,odd)

, (Ea)10a=0︸ ︷︷ ︸
deg=(1,evn)

, (Ea1a2 = E[a1a2])
10
ai=0︸ ︷︷ ︸

deg=(1,evn)

, (Ea1···a5 = E[a1···a5])
10
ai=0︸ ︷︷ ︸

deg=(1,evn)

]
,

with differential on generators given equivalently by [arXiv:2411.11963]:

dΨ = 0

dEa = +
(
ΨΓaΨ

)
dEa1a2 = −

(
ΨΓa1a2 Ψ

)
dEa1···a5 = +

(
ΨΓa1···a5Ψ

)


Eαβ :=

1
32

(
Ea Γαβ

a +
1
2E

a1a2 Γαβ
a1a2

+
1
5!E

a1···a5 Γαβ
a1···a5

)
by Fierz decomposition

 dΨα = 0

dEαβ = ΨαΨβ .

The Fierz-form on the right shows that Aut(M) ≃ GL(32) (West ’99: “brane-rotating symmetry”) ⊃ Spin(1, 10).

It is suggestive toHodge-dualize
temporal components in order
to identify actual (probe-)brane
charges (Hull 1997).

Mbos ≃ R1,10 ⊕ ∧2(R1,10)∗ ⊕ ∧5(R1,10)∗

≃ R0,1

tim
e

⊕ R10

space

⊕ ∧2(R10)∗
M
2-brane

charges
⊕ ∧9R10

“9-brane”

charges

⊕ ∧5(R10)∗

M
5-brane

charges

⊕ ∧6R10

“6-brane”

charges

The reduction of the M-algebra to 10D is the fully extended IIA SuSy algebra, with:

dΨ = 0

dEa = +
(
ΨΓaΨ

)
d Ẽa = −

(
ΨΓaΓ10 Ψ

)
dEa1a2 = −

(
ΨΓa1a2 Ψ

)
dEa1···a4 = +

(
ΨΓa1···a4Γ10 Ψ

)
dEa1···a5 = +

(
ΨΓa1···a5 Ψ

)



IIAbos

≃R R1,9 ⊕ (R1,9)∗ ⊕ ∧2(R1,9)∗ ⊕ ∧4(R1,9)∗ ⊕ ∧5(R1,9)∗

≃R R1,9
space-tim

e

⊕ (R1,9)∗

fully
T
-dual

space-tim
e
/

string
charges

⊕∧2(R9)∗

D
2-brane

charges

⊕ ∧8(R9)

D
8-brane

charges

⊕∧4(R9)∗

D
4-brane

charges

⊕ ∧6(R9)

D
6-brane

charges

⊕∧5(R1,9)∗

N
S5-brane

charges

The full doubling of the
10D super-space is by
the wrapped M2-brane
charges in the M-algebra!

[arXiv:2411.10260]

M IIA Dbl

Ψ ←− [ Ψ ←− [ Ψ

Ea ←− [ Ea ←− [ Ea

Ea 10 ←− [ Ẽa Ẽa

Ea1a2 ←− [ Ea1a2

E10 a1···a4 ←− [ Ea1···a4

Ea1···a5 ←− [ Ea1···a5 .

M-circle fibration
forget

brane charges

string charges /
dbld spacetime

wrapped M2-
brane charges

The restriction of the bosonic spatial part of the M-algebra to Rn ↪−→ R10 for n ∈ {4, 5, 6, 7}
yields the traditional exceptional tangent spaces of Hull 2007:

n dim( Rn ⊕ ∧2(Rn)∗ ⊕ ∧5(Rn)∗ ⊕ ∧6Rn ⊕ ∧9Rn) basic
rep

of
excptnl
Lie alg

4 4 + 6 ⇝ 10 sl5(5)

5 5 + 10 + 1 ⇝ 16 so5,5

6 6 + 15 + 6 + 1 ⇝ 27⊕ 1 e6(6)

7 7 + 21 + 21 + 7 ⇝ 56 e7(7)

Traditional discussion stops here at n = 7
because this pattern breaks for n ≥ 8.

There are not enough M-brane charges
to carry the basic e≥8-rep!

But our identification of the M-algebra as an
M-theoretic incarnation of the fully doubled super-spacetime,
supporting super-space T-duality, suggests that in some sense:

The M-algebra is the full super-exceptional tangent space, after all.

resolution on
next page...

4

https://arxiv.org/abs/2411.11963
https://arxiv.org/abs/hep-th/9912226
https://arxiv.org/pdf/hep-th/9705162#page=8
https://arxiv.org/abs/2411.10260
https://arxiv.org/abs/hep-th/0701203


The M-Algebra completes the hierarchy of Exceptional Tangent Spaces [arXiv:2411.03661] as follows,
by appeal to these two observations by Nicolai, Kleinschmidt, et al.:

(i) Local hidden symmetry: While the Kac-Moody Lie
algebras en reflect the expected global hidden symmetry, it is
only their “maximal compact” (or “involutory”) subalgebras,
which reflect the corresponding local hidden symmetry.

Global
symmetry

en kn
Local

symmetry

Kac-Moody
Lie algebra

Maximal compact
sub-algebra

(ii) Spinorial hidden symmetry: In contrast to the Kac-Moody algebras
en themselves, their maximal compact kn have non-trivial finite-dimensional
representations. Among these is a spinorial 32 both for k10 as well as for
k1,10, which lifts the familiar Majorana spinor representation of 11D SuGra.

so1,10 k1,10 k10

32 ←− [ 32 7−→ 32 .

Thereby we find this shaded completion of the hierarchy, as explained below:

n dim( Rn ⊕ ∧2(Rn)∗ ⊕ ∧5(Rn)∗ ⊕ ∧6Rn ⊕ ∧9Rn) basic
rep

of
(max cmpt
sub-alg

of)
excptnl
Lie alg

4 4 + 6 ⇝ 10 sl5(5)

5 5 + 10 + 1 ⇝ 16 so5,5

6 6 + 15 + 6 + 1 ⇝ 27⊕ 1 e6(6)

7 7 + 21 + 21 + 7 ⇝ 56 e7(7)

8 8 + 28 + 56 + 28 ⇝ 120 so16 ⊂ e8

9 9 + 36 + 126 + 84 + 1 ⇝ 256 k9 ⊂ e9

10 10 + 45 + 252 + 210 + 10 ⇝ 527 k10 ⊂ e10

1+10 dim
(
R1,10 ⊕ ∧2(R1,10)∗ ⊕ ∧5(R1,10)∗

)
⇝ 528 k1,10 ⊂ e11

• n = 8 : the 248 of e8 branches as 120 ⊕ 128 of the maximal compact so16 — as a representation-theoretic
statement this is classical, but as part of a change in pattern from en to kn this may not have been appreciated.

• n = 9 : the (infinite-dimensional) basic rep of e9 branches as 256⊕higher-parabolic-levels under k9 — this was
only very recently shown by König 2024;

• n = 10 : remarkably, there is an irrep 527 of k10, and it appears in the symmetric square of a spinorial 32
irrep as: 32 ⊗sym 32 ≃ 1 ⊕ 527 [Damour, Kleinschmidt & Nicolai 2006 p 37], which exactly matches the
interpretation here, where the bosonic dimension of the M-algebra is the same expression dim(32 ⊗sym 32) —
the remaining 1 is the first summand (the time axis);

• n = 1+ 10 : re-including this temporal component and hence going back to the unbroken bosonic M-algebra
we need an irrep 528 of k1,10; this also exists [Gomis, Kleinschmidt & Palmkvist 2019 p 29] and it is isomorphic
to the symmetric square 32⊗sym 32 ≃ 528 [Bossard, Kleinschmidt & Sezgin 2019 §D] of the original 32.

In summary this means that the 528 of k1,10 is the root of the hierarchy of exceptional tangent spaces, while at
the same time exactly unifying 11-dimensional spacetime with the 55 M2- and 462 M5-brane charges:

k1,10

528
local

Lorentz
symmetry

local hidden symmetries

32⊗
sym

32
so1,10 k10 k9 so16

11⊕ 55⊕ 462 527⊕ 1 7−→ 256⊕ · · · 7−→ 120⊕ · · ·
M-algebra

(bosonic body)
exceptional tangent spaces

∼

∼ ∼

Finally, the infinite-dimensional k1,10 must act through a finite-dimensional quotient on 528, and this turns out
[Bossard, Kleinschmidt & Sezgin 2019 p. 42] to be just the “brane-rotating symmetry” SL(32) ⊂ Aut(M), so that:
All this lifts to the M-algebra M, thus identified as the “super-exceptional tangent space”!

5

https://arxiv.org/abs/2411.03661
https://arxiv.org/pdf/2411.03661#page=4
https://arxiv.org/abs/2407.12748
https://arxiv.org/abs/hep-th/0606105
https://arxiv.org/abs/1809.09171
https://arxiv.org/abs/1907.02080
https://arxiv.org/abs/1907.02080


T-Duality on Super-exceptional space?

The SL(32)-symmetry on M

which is generated by Γ10

is as shown on the right.

[arXiv:2411.11963 Ex. 2.4]

M M

E10 7−→ E10

Ea 7−→ cosh(2r)Ea − sinh(2r)Ea10

Ea10 7−→ cosh(2r)Ea10 − sinh(2r)Ea

Eab 7−→ Eab

Ea1···a5 7−→ cosh(2r)Ea1···a5 + sinh(2r) ⋆ Ea1···a5

Ea1···a4 10 7−→ Ea1···a4 10

exp
(
r Γ10

)

r ∈ R
ai < 10

This mixes the 10D spacetime directions Ea with their T-duals Ea10 but never swaps them.

Hence T-duality is not among the “brane-rotating symmetries” GL(32) ≃ Aut(M).

Indeed, we already saw it must instead be a kind of Fourier-Mukai transformation lifted to M.

For this there ought to be an M-theoretic Poincaré 3-form which reduces to the Poincaré 2-form.

Proposition [arXiv:2411.11963, §2.2.3]: There exists a fermionic extension (̂−) (not changing the bosonic body)

of IIA, and hence of M, on which the Poincaré 2-form P2 (controlling super-space T-duality) lifts as follows:

hidden M-algebra

M̂ P̂3 d P̂3 = G4

F ÎIA P̂2 d P̂2 = HA
3

Dbl P2 dP2 = HA
3

−HB
3

pM
fiber

product

∫
pM

fi
b
e
r

in
te
g
ra

tio
n

F-theory
spacetime

hidden
IIA-algebrapBrn

pBrn
bas

d
isc

a
rd

b
ra

n
e
ch

a
rg

e

fully doubled
super-spacetime

Poincaré
2-form

(Here M̂ is the “hidden” extension for parameter s = −1 of D’Auria & Fré 1982 and Bandos et al. 2004.)

So while in 10D the Poincareé 2-form cancels the difference between the dual B-field fluxes,

in M-theory the Poincaré 3-form cancels the C-field flux itself.

This makes sense, because the M-algebra correspondence absorbs all fluxes into the exceptionalized geometry!

[arXiv:2411.10260 p 80]

M̂

M

lS4 R1,10 | 32 Brn bR11 .

R0 | 32

bR528

p̃p

(G4,G7) (ψ Γψ)


(ψΓψ),

(ψΓΓψ),

(ψΓΓΓΓΓψ)



Basic
M-algebra

Hidden M-algebra

11D super-spacetime
carrying

M-brane charges

M-brane charges
carrying

spacetime extension

Superpoint
carrying 528

0-brane charges

full
reduction fu

ll
re
du
ct
io
n
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Flux quantization. One upshot of these results is their implication on flux-quantization [EncMathPhys4(2025)281]:

Underappreciated Fact:

A C-field configuration is more than a differential 3-form C3 (and a 6-form C6).

This is only the data on a single chart R1,10 | 32 ≃ Ui
ιi

↪−−→ X.

A global C-field configuration is instead:

C3 & C6 on charts of an open cover of spacetime X,

& gauge transformations on double intersections of charts

& gauge-of-gauge-transformation on triple intersections of charts

& higher gauge transformations on higher intersections of charts

all subject to some flux- or charge-quantization law.

Case of electromagnetic field. This is familiar from the electromagnetic field

which is a 1-form Ai on each chart

with gauge transformations λij : Aj = Ai + dλij on each double intersection

and charge quantization λij + λjk − λik = nijk on each triple intersection

making a cocycle in ordinary differential cohomology

(equivalently to a principal U(1)-bundle with connection).

This flux quantization stabilizes the solitons of electromagnetism: Dirac monopoles and Abrikosov vortices.

Case of NS/RR-field. The analogue is famous for the NS/RR-fields in IIA:

the duality symmetric fluxes dF2• = F2•−2 H3 have the form of the image of the Chern-character on K-theory

hence one may ask that the RR-fields are globally cocycles in differential K-theory.

Doing so stabilizes certain non-supersymmetric D-branes.

Case of C-field in 11D bulk [JHEP07(2024)082].

Similarly the C-field may be flux-quantized in any generalized cohomology theory

whose character image is of the form dG4 = 0, dG7 = 1
2G4 G4 (e.g.: 4-Cohomotopy).

except for one issue: this does not seem to account for the constraint G7 = ⋆G4

resolution: on superspace this constraint is already implied by dGs
4 = 0, dGs

7 = 1
2G

s
4 G

s
4

Case of the Self-dual field on M5 [JHEP10(2024)140].

Similarly the tensor field on M5 probes Σ
ϕ−→ X may be flux-quantized in any generalized cohomology theory

whose character image is in addition of the form dH3 = ϕ∗G4 (e.g. bulk-twisted 3-Cohomotopy).

except for one issue: this does not seem to account for the non-linear self-duality constraint

resolution on superspace this constraint is already implied by dHs
3 = ϕ∗Gs

4

In summary: On super-space, the Bianchi-identities on the super-fluxes

determine the admissible flux-quantization laws and hence

determine the possible global completions of the SuGra field content .

Vista.
On the other hand, exceptional geometry seems to provide local completion of SuGra field content.

Hence the full completion of 11D SuGra (“M-Theory”) seems to require super-exceptional geometry:

Flux Quantization: Global completion

E10, E11-Program: Local completion

}
of 11D Sugra field content

{
via super-geometry

via exceptional-geometry

suggests: Full completion of 11D Sugra via super-exceptional geometry ?

Where super-exceptional geometry should be Cartan geometry locally modeled on the M-algebra M.
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