Super-Exceptional Geometry for 11D Supergravity

Urs Schreiber [a](#page-0-0)

December 9, 2024

remote talk at

[HEP Seminar](https://www.aei.mpg.de/358528/seminars-in-potsdam) @ [MPI for Grav Physics](https://www.aei.mpg.de/) Albert Einstein Institute, Potsdam

December 9, 2024 [seminars.aei.mpg.de/seminar/26232](https://t.co/MTK4dVKoPK)

> on joint work with G. Giotopoulos & H. Sati

primarily [arXiv:2411.03661](https://arxiv.org/abs/2411.03661)

These talk notes are available for download at: ncatlab.org/schreiber/show/Super-Exceptional+Geometry+for+11D+Supergravity

The unreasonable effectiveness of Super-Tangent Spaces. Consider the 11D super-tangent space

$$
\mathbb{R}^{1,10|32} \longleftrightarrow \text{Iso}(\mathbb{R}^{1,10|32}) \longrightarrow \mathfrak{so}(1,10)
$$

super-Minkowski super-Poincaré Lorentz

with its super-invariant 1-forms

$$
\mathrm{CE}(\mathbb{R}^{1,10 \,|\, 32}) \;\; \simeq \; \Omega^{\bullet}_{\mathrm{dR}}(\mathbb{R}^{1,10 \,|\, 32})^{\mathrm{li}} \;\; \simeq \;\; \mathbb{R}_{\mathrm{d}}\left[\begin{array}{c} (\Psi^{\alpha})^{32}_{\alpha=1} \\ (E^{a})^{10}_{a=0} \end{array} \right] \Big/ \begin{pmatrix} \mathrm{d}\,\Psi^{\alpha} \,=\, 0 \\ \mathrm{d}\, E^{a} \,=\, (\overline{\Psi}\,\Gamma^{a}\,\Psi) \end{pmatrix}
$$

Remarkably, the 11D quartic Fierz identities entail that

$$
G_4^0 := \frac{1}{2} (\overline{\Psi} \Gamma_{a_1 a_2} \Psi) E^{a_1} E^{a_2}
$$

\n
$$
G_7^0 := \frac{1}{5!} (\overline{\Psi} \Gamma_{a_1 \cdots a_5} \Psi) E^{a_1} \cdots E^{a_5}
$$

\n
$$
\left.\begin{matrix}\n\end{matrix}\right} \in \text{CE}(\mathbb{R}^{1,10} | \mathbf{32})^{\text{Spin}(1,10)} \text{ satisfy : } \begin{matrix}\ndG_4^0 = 0 \\
\end{matrix} dG_7^0 = \frac{1}{2} G_4^0 G_4^0
$$

To globalize this situation, say that an $11D$ super-spacetime X is a super-manifold equipped with a super-Cartan connection, locally on an open cover $\tilde{X} \to X$ given by

$$
\left. \begin{array}{ll} (\Psi^\alpha)^{32}_{\alpha=1} \\ (E^a)^{10}_{a=0} \\ \left(\Omega^{ab}=-\Omega^{ba}\right)^{10}_{a,b=0} \end{array} \right\} \in \ \Omega^1_{\rm dR}\big(\widetilde{X}\big) \quad \quad \text{such that the} \quad \quad \mathrm{d}\, E^a-\Omega^a{}_b\, E^b \ = \ \left(\overline{\Psi}\, \Gamma^a\, \Psi\right),
$$
 vanishes

and say that **C-field super-flux** on such a super-spacetime are super-forms with these co-frame components:

$$
G_4^s := G_4 + G_4^0 := \frac{1}{4!} (G_4)_{a_1 \cdots a_4} E^{a_1} \cdots E^{a_4} + \frac{1}{2} (\overline{\Psi} \Gamma_{a_1 a_2} \Psi) E^{a_1} E^{a_2}
$$

$$
G_7^s := G_7 + G_7^0 := \frac{1}{7!} (G_4)_{a_1 \cdots a_7} E^{a_1} \cdots E^{a_7} + \frac{1}{5!} (\overline{\Psi} \Gamma_{a_1 \cdots a_5} \Psi) E^{a_1} \cdots E^{a_5}
$$

Theorem [\[JHEP07\(2024\)082\]](https://ncatlab.org/schreiber/show/Flux+Quantization+on+11d+Superspace): On an 11D super-spacetime X with C-field super-flux (G_4^s, G_7^s) :

The duality-symmetric
super-Bianchi identity
$$
\begin{cases} dG_4^s = 0 \\ dG_7^s = \frac{1}{2}G_4^sG_4^s \end{cases}
$$
 is equivalent to
the full 11D SuGra
equations of motion!

Next consider the involution $\Gamma_{012345} \in \mathrm{Pin}^+(1,10)$ with super-fixed subspace $\mathbb{R}^{1,5|2\cdot8_+} \xrightarrow{\phi_0} \mathbb{R}^{1,10|32}$ Since $\overline{\Gamma_{012345}} = -\Gamma_{012345}$ it follws that, simply:

$$
H_3^0 \ := \ 0 \ \ \in \ \mathrm{CE}\left(\mathbb{R}^{1,5\,|\,2\cdot8_+}\right)^{\mathrm{Spin}(1,5)} \qquad \text{satisfies} \ : \qquad \ \ \mathrm{d}\,H_3^0 \ = \ \phi_0^*\,G_4^0
$$

To globalize this situation, say that a super-immersion $\Sigma^{1,5|2\cdot8_+} \xrightarrow{\phi_s} X^{1,10|32}$ is $1/2BPS M5$ if it is "locally like" $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ ϕ_0 , and say that **B-field super-flux** on such an M5-probe is a super-form with these co-frame components:

$$
H_3^s := H_3 + H_3^0 := \frac{1}{3!} (H_3)_{a_1 a_2 a_3} e^{a_1} e^{a_2} e^{a_3} + 0 \qquad (e^{a < 6} := \phi_s^* E^a)
$$

Theorem [\[JHEP10\(2024\)140\]](https://ncatlab.org/schreiber/show/Flux+Quantization+on+M5-Branes): On a super-immersion ϕ_s with B-field super-flux H_3^s :

The
super-Bianchi identity
$$
\begin{cases} d H_3^s = \phi_s^* G_4^s \end{cases}
$$
 is equivalent to
the 1/2BPS M5
equations of motion.

In particular, the (self-)duality conditions on the ordinary fluxes are *implied:* $G_4 \leftrightarrow G_7$ and $H_3 \leftrightarrow H_3$.

These results witness a strong form of Cartan geometry (globalized/curved Kleinian geometry). As slogans:

This motivates looking for more hidden structure on more super-tangent spaces.

¹The technical condition on a super-immersion to be $1/2BPS$ is that it admits the super-analog of a *[Darboux coframe](https://ncatlab.org/nlab/show/Riemannian+immersion#AdaptedDarbouxCoframes)*, see §[2.2](https://arxiv.org/pdf/2406.11304#page=17) in [JHEP10\(2024\)140.](https://ncatlab.org/schreiber/show/Flux+Quantization+on+M5-Branes)

More hidden structure in Super-Space. After reduction to 10D it turns out [\[ATMP22\(2018\)5\]](https://doi.org/10.4310/ATMP.2018.v22.n5.a3) that the whole structure of (topological) T-duality is preconfigured in the super-fluxes on super-tangent spaces:

This generalizes all the way to T-duality along all 10 space-time directions, where we have [[arXiv:2411.10260](https://arxiv.org/abs/2411.10260)]

The M-Algebra is the super-Lie algebra which is the maximal central extension of the $\mathcal{N} = 32$ super-point:

$$
\begin{array}{ll}\mathfrak{M} & \downarrow \quad \ \ \, \text{hence}\quad \ \, \mathrm{CE}\big(\mathfrak{M}\big) & \simeq \mathbb{R}\Big[\underbrace{\left(\Psi^{\alpha}\right)^{32}_{\alpha=1}}_{\deg = (1,\mathrm{odd})}, \underbrace{\left(E^{a}\right)^{10}_{a=0}}_{\deg = (1,\mathrm{even})}, \underbrace{\left(E_{a_{1}a_{2}}=E_{[a_{1}a_{2}]}\right)^{10}_{a_{i}=0}}_{\deg = (1,\mathrm{even})}, \underbrace{\left(E_{a_{1}\cdots a_{5}}=E_{[a_{1}\cdots a_{5}]}\right)^{10}_{a_{i}=0}}_{\deg = (1,\mathrm{even})}\Big], \end{array}
$$

with differential on generators given equivalently by $[arXiv:2411.11963]$ $[arXiv:2411.11963]$ $[arXiv:2411.11963]$:

$$
\left.\begin{array}{lll} \displaystyle\mathrm{d}\,\Psi & = & 0\\ \displaystyle\mathrm{d}\,E^a & = & +\big(\,\overline\Psi\,\Gamma^a\,\Psi\big)\\ \displaystyle\mathrm{d}\,E_{a_1a_2} & = & -\big(\,\overline\Psi\,\Gamma_{a_1a_2}\,\Psi\big)\\ \displaystyle\mathrm{d}\,E_{a_1\cdots a_5} & = & +\big(\,\overline\Psi\,\Gamma_{a_1\cdots a_5}\,\Psi\big) \end{array}\right\}\quad \stackrel{E^{\alpha\beta}:=\frac{1}{32}\Big(E^a\,\Gamma_a^{\alpha\beta}+\frac{1}{2}E^{a_1a_2}\,\Gamma_{a_1a_2}^{\alpha\beta}+\frac{1}{5!}E^{a_1\cdots a_5}\,\Gamma_{a_1\cdots a_5}^{\alpha\beta}\,\Gamma_{a_1\cdots a_5}^{\alpha\beta}\Big)}{\text{by Fierz decomposition}}\quad \left\{\begin{array}{ll} \displaystyle\mathrm{d}\,\Psi^\alpha & = & 0\\ \displaystyle\mathrm{d}\,E^{\alpha\beta}=\Psi^\alpha\,\Psi^\beta\,. \end{array}\right.
$$

The Fierz-form on the right shows that $\text{Aut}(\mathfrak{M}) \simeq \text{GL}(32)$ [\(West '99:](https://arxiv.org/abs/hep-th/9912226) "brane-rotating symmetry") $\supset \text{Spin}(1,10)$.

It is suggestive to Hodge-dualize temporal components in order to identify actual (probe-)brane charges [\(Hull 1997\)](https://arxiv.org/pdf/hep-th/9705162#page=8).

The reduction of the M-algebra to 10D is the fully extended IIA SuSy algebra, with:

		M	M-circle fibration		TOTECL brane charges \rightarrow 1121 $\frac{1}{2}$	→ Dbl
The full doubling of the 10D super-space is by the wrapped M2-brane charges in the M-algebra! [arXiv:2411.10260]	wrapped M2- brane charges	Ψ		Ψ		Ψ
		F^a		E^a		E^a
		E_{a} 10	$\overline{}$	\tilde{E}_a	$\begin{array}{c} \mbox{string charges}\ /\\\ \mbox{dbld spacetime} \end{array}$	\tilde{E}_a
		$E_{a_1a_2}$		$E_{a_1a_2}$		
		$E_{10\,a_1\cdots a_4}$	$E_{a_1\cdots a_4}$			
		$E_{a_1\cdots a_5}$		$E_{a_1\cdots a_5}$.		

The **restriction** of the bosonic spatial part of the M-algebra to $\mathbb{R}^n \hookrightarrow \mathbb{R}^{10}$ for $n \in \{4, 5, 6, 7\}$ yields the traditional exceptional tangent spaces of [Hull 2007:](https://arxiv.org/abs/hep-th/0701203)

Traditional discussion stops here at $n = 7$ because this pattern breaks for $n \geq 8$. There are not enough M-brane charges to carry the basic $\mathfrak{e}_{\geq 8}$ -rep!

But our identification of the M-algebra as an

M-theoretic incarnation of the fully doubled super-spacetime, supporting super-space T-duality, suggests that in some sense:

resolution on next page...

The M-algebra is the full super-exceptional tangent space, after all.

The M-Algebra completes the hierarchy of Exceptional Tangent Spaces [\[arXiv:2411.03661\]](https://arxiv.org/abs/2411.03661) as follows, by appeal to [these two observations by Nicolai, Kleinschmidt, et al.:](https://arxiv.org/pdf/2411.03661#page=4)

(i) Local hidden symmetry: While the Kac-Moody Lie algebras e_n reflect the expected global hidden symmetry, it is only their "maximal compact" (or "involutory") subalgebras, which reflect the corresponding *local* hidden symmetry.

Global $\lim_{\text{symmetry}} \mathfrak{e}_n \quad \longleftrightarrow \qquad \qquad \mathfrak{k}_n$ Local symmetry Kac-Moody Lie algebra Maximal compact sub-algebra

(ii) Spinorial hidden symmetry: In contrast to the Kac-Moody algebras \mathfrak{e}_n themselves, their maximal compact \mathfrak{k}_n have non-trivial finite-dimensional representations. Among these is a spinorial 32 both for \mathfrak{k}_{10} as well as for $\mathfrak{k}_{1,10}$, which lifts the familiar Majorana spinor representation of 11D SuGra.

 $\mathfrak{so}_{1,10} \longleftrightarrow \mathfrak{k}_{1,10} \longleftrightarrow \mathfrak{k}_{10}$ 32 ← 32 \mapsto 32 .

Thereby we find this shaded completion of the hierarchy, as explained below:

- $n = 8$: the 248 of \mathfrak{e}_8 branches as 120 \oplus 128 of the maximal compact \mathfrak{so}_{16} as a representation-theoretic statement this is classical, but as part of a change in pattern from \mathfrak{e}_n to \mathfrak{e}_n this may not have been appreciated.
- $n = 9$: the (infinite-dimensional) basic rep of \mathfrak{e}_9 branches as $256 \oplus$ higher-parabolic-levels under \mathfrak{k}_9 this was only very recently shown by König 2024;
- $n = 10$: remarkably, there is an irrep 527 of \mathfrak{k}_{10} , and it appears in the symmetric square of a spinorial 32 irrep as: 32 ⊗_{sym} 32 \simeq 1 ⊕ 527 [\[Damour, Kleinschmidt & Nicolai 2006 p 37\]](https://arxiv.org/abs/hep-th/0606105), which exactly matches the interpretation here, where the bosonic dimension of the M-algebra is the same expression dim(32 \otimes_{sym} 32) the remaining 1 is the first summand (the time axis);
- $n = 1 + 10$: re-including this temporal component and hence going back to the unbroken bosonic M-algebra we need an irrep 528 of $\mathfrak{k}_{1,10}$; this also exists [\[Gomis, Kleinschmidt & Palmkvist 2019 p 29\]](https://arxiv.org/abs/1809.09171) and it is isomorphic to the symmetric square $32 \otimes_{sym} 32 \simeq 528$ [\[Bossard, Kleinschmidt & Sezgin 2019](https://arxiv.org/abs/1907.02080) §D] of the original 32.

In summary this means that the 528 of $\mathfrak{k}_{1,10}$ is the root of the hierarchy of exceptional tangent spaces, while at the same time exactly unifying 11-dimensional spacetime with the 55 M2- and 462 M5-brane charges:

Finally, the infinite-dimensional $\mathfrak{k}_{1,10}$ must act through a finite-dimensional quotient on 528, and this turns out [\[Bossard, Kleinschmidt & Sezgin 2019 p. 42\]](https://arxiv.org/abs/1907.02080) to be just the "brane-rotating symmetry" $SL(32) \subset Aut(\mathfrak{M})$, so that: All this lifts to the M-algebra \mathfrak{M} , thus identified as the "super-exceptional tangent space"!

T-Duality on Super-exceptional space?

This mixes the 10D spacetime directions E^a with their T-duals E^{a10} but never swaps them.

Hence T-duality is *not* among the "brane-rotating symmetries" $GL(32) \simeq Aut(\mathfrak{M})$.

Indeed, we already saw it must instead be a kind of Fourier-Mukai transformation lifted to M.

For this there ought to be an M-theoretic Poincaré 3-form which reduces to the Poincaré 2-form.

Proposition [\[arXiv:2411.11963,](https://arxiv.org/abs/2411.11963) §[2.2.3\]](https://arxiv.org/pdf/2411.11963#page=15): There exists a *fermionic extension* $\widehat{(-)}$ (not changing the bosonic body) of II2, and hence of \mathfrak{M} , on which the Poincaré 2-form P_2 (controlling super-space T-duality) lifts as follows:

(Here $\widehat{\mathfrak{M}}$ is the "hidden" extension for parameter $s = -1$ of D'Auria & Fré 1982 and [Bandos et al. 2004.](https://arxiv.org/abs/hep-th/0406020))

So while in 10D the Poincare e2-form cancels the difference between the dual B-field fluxes,

in M-theory the Poincaré 3-form cancels the C-field flux itself.

This makes sense, because the M-algebra correspondence absorbs all fluxes into the exceptionalized geometry! [\[arXiv:2411.10260 p 80\]](https://arxiv.org/pdf/2411.10260#page=80) Hidden M-algebra

Flux quantization. One upshot of these results is their implication on flux-quantization [\[EncMathPhys4\(2025\)281\]](https://doi.org/10.1016/B978-0-323-95703-8.00078-1):

Underappreciated Fact:

A C-field configuration is more than a differential 3-form C_3 (and a 6-form C_6).

This is only the data on a *single chart* $\mathbb{R}^{1,10}$ ³² $\simeq U_i \stackrel{\iota_i}{\hookrightarrow} X$.

A global C-field configuration is instead:

- C_3 & C_6 on charts of an open cover of spacetime X,
- & gauge transformations on double intersections of charts
- & gauge-of-gauge-transformation on triple intersections of charts
- & higher gauge transformations on higher intersections of charts
- all subject to some flux- or charge-quantization law.

Case of electromagnetic field. This is familiar from the electromagnetic field

which is a 1-form A_i on each chart

with gauge transformations λ_{ij} : $A_j = A_i + d\lambda_{ij}$ on each double intersection

and charge quantization $\lambda_{ij} + \lambda_{jk} - \lambda_{ik} = n_{ijk}$ on each triple intersection

making a cocycle in ordinary differential cohomology

(equivalently to a principal U(1)-bundle with connection).

This flux quantization stabilizes the solitons of electromagnetism: Dirac monopoles and Abrikosov vortices.

Case of NS/RR-field. The analogue is famous for the NS/RR-fields in IIA:

the duality symmetric fluxes d $F_{2\bullet} = F_{2\bullet-2} H_3$ have the form of the image of the Chern-character on K-theory hence one may ask that the RR-fields are globally cocycles in differential K-theory. Doing so stabilizes certain non-supersymmetric D-branes.

Case of C-field in 11D bulk [\[JHEP07\(2024\)082\]](https://doi.org/10.1007/JHEP07(2024)082).

Similarly the C-field may be flux-quantized in any generalized cohomology theory whose character image is of the form $dG_4 = 0$, $dG_7 = \frac{1}{2}G_4 G_4$ (e.g.: 4-Cohomotopy). except for one issue: this does not *seem* to account for the constraint $G_7 = \star G_4$ resolution: on superspace this constraint is already implied by $dG_4^s = 0$, $dG_7^s = \frac{1}{2}G_4^s G_4^s$

Case of the Self-dual field on M5 [\[JHEP10\(2024\)140\]](https://doi.org/10.1007/JHEP10(2024)140).

Similarly the tensor field on M5 probes $\Sigma \stackrel{\phi}{\to} X$ may be flux-quantized in any generalized cohomology theory whose character image is in addition of the form $dH_3 = \phi^* G_4$ (e.g. bulk-twisted 3-Cohomotopy). except for one issue: this does not *seem* to account for the non-linear self-duality constraint resolution on superspace this constraint is already implied by $dH_3^s = \phi^* G_4^s$

In summary: On super-space, the Bianchi-identities on the super-fluxes

determine the admissible flux-quantization laws and hence

determine the possible global completions of the SuGra field content .

Vista.

On the other hand, exceptional geometry seems to provide local completion of SuGra field content. Hence the full completion of 11D SuGra ("M-Theory") seems to require super-exceptional geometry:

Where super-exceptional geometry should be Cartan geometry locally modeled on the M-algebra \mathfrak{M} .