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Examples of twisted orbifold cohomology.
A = Fred(H) 2 graded

Fredholm operators on Zs-graded

g — PUgr(H) o ZQ Zp-graded Hilbert space

projective unitaries

= twisted orbifold K-theory

A
g — O(n + 1) orthogonal

group

= twisted orbifold Cohomotopy
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From this point on one can define
differential twisted orbifold cohomology

via the twisted equivariant character
of the coefficient object | ¥ (A /(I'xG))

ncatlab.org/schreiber/show/Twisted + Equivariant+Character

Hisham Sati and Urs Schreiber:

The Character Map in Twisted Equivariant Nonabelian Cohomology

Applied Algebraic Topology, special issue of

Beijing Journal of Pure and Applied Mathematics (2025, in print)
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¢ Domenico Fiorenza, Hisham Sati, and Urs Schreiber:

The Character Map in Nonabelian Cohomology
- Twisted, Differential, and Generalized

World Scientific (2023)
doi:10.1142 /13422

ncatlab.org/schreiber/show/Twisted + Equivariant+Character

Hisham Sati and Urs Schreiber:

The Character Map in Twisted Equivariant Nonabelian Cohomology

Applied Algebraic Topology, special issue of
Beijing Journal of Pure and Applied Mathematics (2025, in print)
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Urs Schreiber on joint work with ~ Hisham Sati:

an invitation to the monographs:

- Equivariant Principal oo-Bundles, CUP (2025, in print)
-Geometric Orbifold Cohomology, CRC (2026, to appear)

Geometric Orbifold Cohomology
in Singular-Cohesive oco-Topoi
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(June 2025) find these slides at: [ncatlab.org/schreiber/show/ItaCa+Fest+2025]
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