
Urs Schreiber on joint work with Hisham Sati:

an invitation to the monographs:

-Equivariant Principal ∞-Bundles, CUP (2025, in print)

-Geometric Orbifold Cohomology, CRC (2026, to appear)

Geometric Orbifold Cohomology
in Singular-Cohesive ∞-Topoi

talk at ItaCa Fest 2025

17 June 2025

@

(June 2025) find these slides at: [ncatlab.org/schreiber/show/ItaCa+Fest+2025]

1

https://ncatlab.org/nlab/show/Urs+Schreiber
https://nyuad.nyu.edu/en/academics/divisions/science/faculty/hisham-sati.html
https://ncatlab.org/schreiber/show/Equivariant+Principal+infinity-Bundles
https://ncatlab.org/schreiber/show/Geometric+Orbifold+Cohomology
https://ncatlab.org/schreiber/show/ItaCa+Fest+2025
https://progetto-itaca.github.io/
https://progetto-itaca.github.io/fests/fest25.html
https://progetto-itaca.github.io/fests/fest25.html#jun
https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems
https://nyuad.nyu.edu/en/research/faculty-labs-and-projects/cqts/urs-schreiber.html
https://ncatlab.org/schreiber/show/ItaCa+Fest+2025


Cohomology – Motivation.

2



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

3



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

4



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

5



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

6



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

7



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

8



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

9



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

10



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

11



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

12



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

13



Cohomology – Motivation.

in math: topology via algebra
(
Hopf-, Kervaire-invrnt,
chromatic nilpotence, ...

)
in physics: topology of fields

(
solitons, instantons, anyons,
monopoles, Skyrmions, ...

)
Need to understand concept in great generality:

nonabelian-
twisted-

equivariant-
differential-

extraordinary-
hyper sheaf-

global orbifold-


cohomology

paradigmatic case for
higher category theory

14



Cohomology – Motivation.
in
tr
ig
ui
ng
ly

15



Cohomology – Motivation.

generalized orbifold cohomology
connects the most abstract math

to cutting edge technologyin
tr
ig
ui
ng
ly

16



Cohomology – Motivation.

generalized orbifold cohomology
connects the most abstract math

to cutting edge technologyin
tr
ig
ui
ng
ly

crystalline quantum materials

have “stable band topology”

in the orbi-K-cohomology of

their space of crystal momenta

and “fragile band topology” in

generalized nonabelian cohomology

witnesses “anyonic topological order”,

holy grail of robust quantum hardware

17

https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/FQAH+Anyons


Cohomology – Motivation.

generalized orbifold cohomology
connects the most abstract math

to cutting edge technologyin
tr
ig
ui
ng
ly

crystalline quantum materials

have “stable band topology”

in the orbi-K-cohomology of

their space of crystal momenta

and “fragile band topology” in

generalized nonabelian cohomology

witnesses “anyonic topological order”,

holy grail of robust quantum hardware

18

https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/FQAH+Anyons


Cohomology – Motivation.

generalized orbifold cohomology
connects the most abstract math

to cutting edge technologyin
tr
ig
ui
ng
ly

crystalline quantum materials

have “stable band topology”

in the orbi-K-cohomology of

their space of crystal momenta

and “fragile band topology” in

generalized nonabelian cohomology

witnesses “anyonic topological order”,

holy grail of robust quantum hardware

19

https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/FQAH+Anyons


Cohomology – Motivation.

generalized orbifold cohomology
connects the most abstract math

to cutting edge technologyin
tr
ig
ui
ng
ly

crystalline quantum materials

have “stable band topology”

in the orbi-K-cohomology of

their space of crystal momenta

and “fragile band topology” in

generalized nonabelian cohomology

witnesses “anyonic topological order”,

holy grail of robust quantum hardware

20

https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/FQAH+Anyons


Orbifolds – Motivation.

21



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

22



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

23



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

24



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

⇒

orbifolds = smooth manifolds with identifications of points

= Lie groupoids! (étale: source map is local diffeo)

= smooth stacks! (étale) if regarded intrinsically

25



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

⇒

orbifolds = smooth manifolds with identifications of points

= Lie groupoids! (étale: source map is local diffeo)

= smooth stacks! (étale) if regarded intrinsically

26



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

⇒

orbifolds = smooth manifolds with identifications of points

= Lie groupoids! (étale: source map is local diffeo)

= smooth stacks! (étale) if regarded intrinsically

27



Orbifolds – Motivation.

as manifolds are locally modeled on Rns
so orbifolds are locally modeled on Rn�Gs
(on quotients of finite diffeo actions G ↷Rn)

⇒

orbifolds = smooth manifolds with identifications of points

= Lie groupoids! (étale: source map is local diffeo)

= smooth stacks! (étale) if regarded intrinsically

28



Orbifolds – Motivation.
good orbifolds are discrete quotients of manifolds

e.g. the

pillowcase

T2�Z2:

or the Kummer surface T4�Z2:

29



Orbifolds – Motivation.
good orbifolds are discrete quotients of manifolds

e.g. the

pillowcase

T2�Z2:

or the Kummer surface T4�Z2:

30



Orbifolds – Motivation.
good orbifolds are discrete quotients of manifolds

e.g. the

pillowcase

T2�Z2:

or the Kummer surface T4�Z2:

31



Orbifolds – Motivation.
good orbifolds are discrete quotients of manifolds

e.g. the

pillowcase

T2�Z2:

or the Kummer surface T4�Z2:

32



Orbifolds – Motivation.
orbifolds arise as

in math: degeneration limits of manifolds

(ADE-singularities, G2-singularities, ...)

geometric moduli spaces

(of elliptic curves, of Calabi-Yau mfds, ...)

in physics: all of the above and:

spaces of discernible crystal momenta in

symmetry-protected quantum materials:

B ≡ Rd � crystallographic group

≃ Td � crystal point group

33



Orbifolds – Motivation.
orbifolds arise as

in math: degeneration limits of manifolds

(ADE-singularities, G2-singularities, ...)

geometric moduli spaces

(of elliptic curves, of Calabi-Yau mfds, ...)

in physics: all of the above and:

spaces of discernible crystal momenta in

symmetry-protected quantum materials:

B ≡ Rd � crystallographic group

≃ Td � crystal point group

34



Orbifolds – Motivation.
orbifolds arise as

in math: degeneration limits of manifolds

(ADE-singularities, G2-singularities, ...)

geometric moduli spaces

(of elliptic curves, of Calabi-Yau mfds, ...)

in physics: all of the above and:

spaces of discernible crystal momenta in

symmetry-protected quantum materials:

B ≡ Rd � crystallographic group

≃ Td � crystal point group

35



Orbifolds – Motivation.
orbifolds arise as

in math: degeneration limits of manifolds

(ADE-singularities, G2-singularities, ...)

geometric moduli spaces

(of elliptic curves, of Calabi-Yau mfds, ...)

in physics: all of the above and:

spaces of discernible crystal momenta in

symmetry-protected quantum materials:

B ≡ Rd � crystallographic group

≃ Td � crystal point group

36



Orbifolds – Motivation.
orbifolds arise as

in math: degeneration limits of manifolds

(ADE-singularities, G2-singularities, ...)

geometric moduli spaces

(of elliptic curves, of Calabi-Yau mfds, ...)

in physics: all of the above and:

spaces of discernible crystal momenta in

symmetry-protected quantum materials:

B ≡ Rd � crystallographic group

≃ Td � crystal point group

37



Orbifolds – Motivation.
orbifolds arise as

in math: degeneration limits of manifolds

(ADE-singularities, G2-singularities, ...)

geometric moduli spaces

(of elliptic curves, of Calabi-Yau mfds, ...)

in physics: all of the above and:

spaces of discernible crystal momenta in

symmetry-protected quantum materials:

B ≡ Rd � crystallographic group

≃ Td � crystal point group

Brillou
in

torus o
rbifold

38



Geometric Cohomology – Motivation.

39



Geometric Cohomology – Motivation.

geometric cohomology is sensitive,
beyond the homotopy type,
to the geometry of orbifolds

(differential, Riemannian, Cartan)
notably to differential form data

40



Geometric Cohomology – Motivation.

geometric cohomology is sensitive,
beyond the homotopy type,
to the geometry of orbifolds

(differential, Riemannian, Cartan)
notably to differential form data

41



Geometric Cohomology – Motivation.

geometric cohomology is sensitive,
beyond the homotopy type,
to the geometry of orbifolds

(differential, Riemannian, Cartan)
notably to differential form data

e.g.
differential cohomology of B
reflects the Berry connection
on electron Bloch states,
(not just its curvature class)

fine detail of physical fields!

42

https://arxiv.org/pdf/2105.12294#page=2


Geometric Cohomology – Motivation.

geometric cohomology is sensitive,
beyond the homotopy type,
to the geometry of orbifolds

(differential, Riemannian, Cartan)
notably to differential form data

e.g.
differential cohomology of B
reflects the Berry connection
on electron Bloch states,
(not just its curvature class)

fine detail of physical fields!

43

https://arxiv.org/pdf/2105.12294#page=2


Geometric Orbi-Cohomology – Motivation.

44



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

45



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

46



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

our paradigm:

any flavour of cohomology is
mapping classes in a type of ∞-topoi

e.g. differential cohomology is
mapping classes in cohesive ∞-topoi

our claim:

geometric orbi-cohomology is
mapping classes in singular-cohesive ∞-topoi

47



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

our paradigm:

any flavour of cohomology is
mapping classes in a type of ∞-topoi

e.g. differential cohomology is
mapping classes in cohesive ∞-topoi

our claim:

geometric orbi-cohomology is
mapping classes in singular-cohesive ∞-topoi

H(−;−)

≡

π0H(−;−)

coh
omolog

y

∞-topos

48



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

our paradigm:

any flavour of cohomology is
mapping classes in a type of ∞-topoi

e.g. differential cohomology is
mapping classes in cohesive ∞-topoi

our claim:

geometric orbi-cohomology is
mapping classes in singular-cohesive ∞-topoi

H(−;−)

≡

π0H(−;−)

coh
omolog

y

∞-topos

49



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

our paradigm:

any flavour of cohomology is
mapping classes in a type of ∞-topoi

e.g. differential cohomology is
mapping classes in cohesive ∞-topoi

our claim:

geometric orbi-cohomology is
mapping classes in singular-cohesive ∞-topoi

H(−;−)

≡

π0H(−;−)

coh
omolog

y

∞-topos

50



Geometric Orbi-Cohomology – Motivation.

so we desire geometric orbi-cohomology,
but general picture had remained elusive

our paradigm:

any flavour of cohomology is
mapping classes in a type of ∞-topoi

e.g. differential cohomology is
mapping classes in cohesive ∞-topoi

our claim:

geometric orbi-cohomology is
mapping classes in singular-cohesive ∞-topoi

H(−;−)

≡

π0H(−;−)

coh
omolog

y

∞-topos

51



Geometric Orbi-Cohomology.

our paradigm:

any flavour of cohomology is
mapping classes in a type of ∞-topoi

e.g. differential cohomology is
mapping classes in cohesive ∞-topoi

our claim:

geometric orbi-cohomology is
mapping classes in singular-cohesive ∞-topoi

§4.5[EPB]

52

https://ncatlab.org/schreiber/show/Equivariant+Principal+infinity-Bundles


Geometric Orbi-Cohomology.

§4.5[EPB]

[GOC]

53

https://ncatlab.org/schreiber/show/Equivariant+Principal+infinity-Bundles
https://ncatlab.org/schreiber/show/Geometric+Orbifold+Cohomology


Paradigm: Cohomology is Mapping Classes

54



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

55



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)

56



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)
A ≡ BG H1(X; G)

ordinary non-abelian
cohomology

A ≡ BnA Hn(X; A)
ordinary abelian
cohomology

A ≡ En En(X)
extra-ordinary abelian

cohomology

A ≡ A H1(X; ΩA)
extra-ordinary non-abelian

cohomology

tplg
cl

grou
p

57



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)
A ≡ BG H1(X; G)

ordinary non-abelian
cohomology

A ≡ BnA Hn(X; A)
ordinary abelian
cohomology

A ≡ En En(X)
extra-ordinary abelian

cohomology

A ≡ A H1(X; ΩA)
extra-ordinary non-abelian

cohomology

abe
lian

grou
p

58



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)
A ≡ BG H1(X; G)

ordinary non-abelian
cohomology

A ≡ BnA Hn(X; A)
ordinary abelian
cohomology

A ≡ En En(X)
extra-ordinary abelian

cohomology

A ≡ A H1(X; ΩA)
extra-ordinary non-abelian

cohomology
stag

e of

a spec
trum

of s
pac

es

59



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)
A ≡ BG H1(X; G)

ordinary non-abelian
cohomology

A ≡ BnA Hn(X; A)
ordinary abelian
cohomology

A ≡ En En(X)
extra-ordinary abelian

cohomology

A ≡ A H1(X; ΩA)
extra-ordinary non-abelian

cohomology
any

spac
e!

60



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)
A ≡ BG H1(X; G)

ordinary non-abelian
cohomology

A ≡ BnA Hn(X; A)
ordinary abelian
cohomology

A ≡ En En(X)
extra-ordinary abelian

cohomology

A ≡ A H1(X; ΩA)
extra-ordinary non-abelian

cohomology

61



Paradigm: Cohomology is Mapping Classes

domain space X A classifying space

H1
(
X; ΩA

)
≡ π0Map

(
X, A

)
A ≡ BG H1(X; G)

ordinary non-abelian
cohomology

A ≡ BnA Hn(X; A)
ordinary abelian
cohomology

A ≡ En En(X)
extra-ordinary abelian

cohomology

A ≡ A H1(X; ΩA)
extra-ordinary non-abelian

cohomology

e.g., H1
(
X; ΩSn

)
is Cohomotopy (Borsuk, Pontrjagin 1930s)

62



Paradigm: Cohomology is Mapping Classes

63



Paradigm: Cohomology is Mapping Classes

tw
ist
ed
co
ho
m
olo
gy

64



Paradigm: Cohomology is Mapping Classes

A E

X BΓτ

classifying
fibration

Hτ
(
X; A

)
≡ π0Map

(
X, E

)
BΓ

tw
ist
ed
co
ho
m
olo
gy

65



Paradigm: Cohomology is Mapping Classes

A E

X BΓτ

classifying
fibration

Hτ
(
X; A

)
≡ π0Map

(
X, E

)
BΓ

tw
ist
ed
co
ho
m
olo
gy

slice mapping
space

66



Paradigm: Cohomology is Mapping Classes

A E

X BΓτ

classifying
fibration

Hτ
(
X; A

)
≡ π0Map

(
X, E

)
BΓ

tw
ist
ed
co
ho
m
olo
gy

eq
ui
va
ria
nt

co
ho
m
olo
gy

67



Paradigm: Cohomology is Mapping Classes

A E

X BΓτ

classifying
fibration

Hτ
(
X; A

)
≡ π0Map

(
X, E

)
BΓ

tw
ist
ed
co
ho
m
olo
gy

G ↷X G ↷A
classifying
G-space

H0
G

(
X; A

)
≡ π0Map

(
X, A

)Geq
ui
va
ria
nt

co
ho
m
olo
gy

68



Paradigm: Cohomology is Mapping Classes

A E

X BΓτ

classifying
fibration

Hτ
(
X; A

)
≡ π0Map

(
X, E

)
BΓ

tw
ist
ed
co
ho
m
olo
gy

G ↷X G ↷A
classifying
G-space

H0
G

(
X; A

)
≡ π0Map

(
X, A

)Geq
ui
va
ria
nt

co
ho
m
olo
gy

equivariantmapping space

69



Paradigm: Cohomology is Mapping Classes

A E

X BΓτ

classifying
fibration

Hτ
(
X; A

)
≡ π0Map

(
X, E

)
BΓ

tw
ist
ed
co
ho
m
olo
gy

G ↷X G ↷A
classifying
G-space

H0
G

(
X; A

)
≡ π0Map

(
X, A

)Geq
ui
va
ria
nt

co
ho
m
olo
gy

70



Paradigm: Cohomology is Mapping Classes

71



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

72



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)

73



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)

74



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)
A ≡ BnA Hn(X; A)

ordinary abelian
sheaf cohomology

A ≡ HA• H0(X; A•)
hyper abelian

sheaf cohomology

A ≡ A H0(X; A)
extra-ordinary non-abelian
geometric cohomology

shea
f of

abe
lian

grou
ps

75



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)
A ≡ BnA Hn(X; A)

ordinary abelian
sheaf cohomology

A ≡ HA• H0(X; A•)
hyper abelian

sheaf cohomology

A ≡ A H0(X; A)
extra-ordinary non-abelian
geometric cohomologyshea

f of

chai
n com

plex
es

76



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)
A ≡ BnA Hn(X; A)

ordinary abelian
sheaf cohomology

A ≡ HA• H0(X; A•)
hyper abelian

sheaf cohomology

A ≡ A H0(X; A)
extra-ordinary non-abelian
geometric cohomology

any

∞-sta
ck!

77



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)
A ≡ BnA Hn(X; A)

ordinary abelian
sheaf cohomology

A ≡ HA• H0(X; A•)
hyper abelian

sheaf cohomology

A ≡ A H0(X; A)
extra-ordinary non-abelian
geometric cohomology

e.g., H0
(
X; Ω1

dR(-; g)�G
)
is nonab diff cohomology

78



Paradigm: Cohomology is Mapping Classes

ge
om

et
ric

co
ho
m
olo
gy

X A
classifying
∞-stack

in ∞-topos
H

H0
(
X; A

)
≡ π0H

(
X, A

)
A ≡ BnA Hn(X; A)

ordinary abelian
sheaf cohomology

A ≡ HA• H0(X; A•)
hyper abelian

sheaf cohomology

A ≡ A H0(X; A)
extra-ordinary non-abelian
geometric cohomology

e.g., H0
(
X; Ω1

dR(-; g)�G
)
is nonab diff cohomology

79



A really convenient category of spaces.

80



A really convenient category of spaces.

Now to combine all this!

first, pass to the
really convenient category of spaces

SmthGrpd∞ := Sh∞(CrtSp) smooth
∞-groupoids

∈

X : Rn 7−→
plain ∞-groupoid
of smooth maps

Rn −→ X

modeled on

probe
spaces

CrtSp :=
{

Rn Rn′smooth
∣∣∣ n ∈ N

}
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In SmthGrpd∞

... exist the homotopy quotients X�G:

as X ≡
{
x

∣∣∣ x ∈ X
}

so X�G ≡


g ·x

x g′ ·g ·x

g′
∼g

∼

g′·g
∼

∣∣∣∣∣∣∣∣∣
x ∈ X

g ∈ G


eg. BG ≡ ∗�G ≃

{
•
g

∣∣∣∣ g ∈ G

}
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Basic idea of twisted orbifold cohomology

SmthGrpd∞ is the place to speak
about twisted orbifold cohomology.

In the following, square brackets
mean concordance classes of maps
hence geometric homotopy classes:[
X A

]
:= π0 SMap

(
X, A

)
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Basic idea of twisted orbifold cohomology

SmthGrpd∞ is the place to speak
about twisted orbifold cohomology.

In the following, square brackets
mean concordance classes of maps
hence geometric homotopy classes:[
X A

]
:= π0 SMap

(
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)
internal
hom

shape
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Basic idea of twisted orbifold cohomology
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Basic idea of twisted orbifold cohomology

first recall equivariant cohomology
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Basic idea of twisted orbifold cohomology

equivariant cohomology

for G-spaces G ↷X and G ↷A

HG

(
X; A

)
=



A�( )G

X�G

BG

G

G
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Basic idea of twisted orbifold cohomology

equivariant cohomology

equivalently, maps
of quotient stacks
sliced over BG!

for G-spaces G ↷X and G ↷A

HG
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X; A

)
=



A�( )G

X�G

BG
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Basic idea of twisted orbifold cohomology

equivariant cohomology

bu
t t
his

ad
mi
ts

na
tur

al
gen

era
liza

tio
n

HG

(
X; A

)
=



A�( )G

X�G

BG
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology

bu
t t
his

ad
mi
ts

na
tur

al
gen

era
liza

tio
n

H
τ
G
G

(
X; A

)
=



A�(Γ⋊G)

X�G B(Γ⋊G)

BG

τ
G
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology

classes of
sections of


G-equivariant
Γ-structured
A-fiber bundle

H
τ
G
G

(
X; A

)
=



A�(Γ⋊G)

X�G B(Γ⋊G)

BG

τ
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology

G-equivariance is absorbed into the twisting!
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology

G-equivariance is absorbed into the twisting!

key principle:
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology

key principle:
suppose coefficient bundle is
pullback of universal one

un
iv
er
sa
l

co
effi

ci
en
t

bu
nd
le

H
τ
G
G

(
X; A

)
=



A�(Γ⋊G) A�G

X�G B(Γ⋊G) BG

BG

(pb)

τ
G
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology

universal property of the pullback

H
τ
G
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Basic idea of twisted orbifold cohomology

twisted equivariant cohomology
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Basic idea of twisted orbifold cohomology

twisted cohomology of ho-quotient

equivalent universal twist

Hτ
(
X�G; A

)
=



A�G

X�G B(Γ⋊G) BGτ
G

τ



120



Basic idea of twisted orbifold cohomology

twisted cohomology of ho-quotient

Hτ
(
X; A

)
=



A�G

X BG
τ
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Basic idea of twisted orbifold cohomology

twisted cohomology of ho-quotient

choice of G ↷X
disappeared!

⇒ manifestly dependent only on
ho-quotient X ≃ X � G

Hτ
(
X; A

)
=



A�G

X BG
τ
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(
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Examples of twisted orbifold cohomology.
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Examples of twisted orbifold cohomology.

A ≡ Fred(H) Z2-graded
Fredholm operators

G ≡ PU
gr

(H)⋊Z2
Z2-graded

projective unitaries

⇒ twisted orbifold K-theory

on Z2-graded
Hilbert space

A ≡ Sn
n-sphere

G ≡ O(n+ 1) orthogonal
group

⇒ twisted orbifold Cohomotopy
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The need for singular cohesion.
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The need for singular cohesion.

while this is nice, we are not done yet:

mapping classes considered so far are concordances

Hτ
(
X; A

)
= π0 SMap

(
X, A�G

)
BG

but a good cohomology theory is of the form

Hτ
(
X; A

)
= π0H

(
X, A

)
BG

= π0 ♭Map
(
X, A

)
BG

so we need Oka principles to
“take the shape inside the mapping space”
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The need for singular cohesion.

Smooth Oka principle:

For X ∈ SmthMfd , A ∈ SmthGrpd∞:

SMap
(
X, A

)
≃ ♭Map

(
SX, SA

)
Elmendorf theorem – recast:

For G-spaces X, A:

SMap
(
X�G, A�G

)
BG

≃ ⊂Map
(

S ≺X�G, S ≺A�G
)

S ≺BG

[E
P
B

3
.3
.5
3
]

goes b
ack to

[Pavlo
v 2014]
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The need for singular cohesion.

Smooth Oka principle:

For X ∈ SmthMfd , A ∈ SmthGrpd∞:

SMap
(
X, A

)
≃ ♭Map

(
SX, SA

)
Elmendorf theorem – recast:

For G-spaces X, A:

SMap
(
X�G, A�G

)
BG

≃ ⊂Map
(

S ≺X�G, S ≺A�G
)

S ≺BG

[E
P
B

3
.3
.5
3
]

[E
P
B

4
.5
.2
]

works with
another

m
odality

appearing:

“orbi-singular”
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Where it takes place: Singular-Cohesive ∞-Topoi

CrtSp :=
{

Rn Rn′smooth
∣∣∣ n ∈ N

}
Snglrt :=

{
∗�G ∗�G′

∣∣∣ G finite
}

H := Sh∞
(
CrtSp× Snglrt

)
singular-cohesive ∞-topos

≃ Sh
(
Snglrt, Sh∞(CrtSp)

)
globally equivariant

smooth homotopy theory

≃ Sh
(
CrtSp, Sh∞(Snglrt)

)
smooth

gbl equivariant homotopy theory

≃ Sh∞(CrtSp)×
Topos∞

Sh∞(Snglrt)smooth & globally equivariant
homotopy theory
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Where it takes place: Singular-Cohesive ∞-Topoi
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Where it takes place: Singular-Cohesive ∞-Topoi

H SmthGrpd∞Smth

Cncl×

Spc

Sngl

⊥

⊥

⊥

conical

spatial

smooth

singular

purely conical
aspect < := Spc ◦ Cncl

⊥
purely smooth

aspect ⊂ := Spc ◦ Smth
⊥

purely orbi-singular
aspect ≺ := Snglr ◦ Smth .
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Where it takes place: Singular-Cohesive ∞-Topoi
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Where it takes place: Singular-Cohesive ∞-Topoi

Here we have a yet better Oka principle,

true to “absorbing equivariance into the twist”:

Twisted Elmendorf theorem

For G-space X, and (Γ⋊G)-space A:

SMap
(
X�G, A�(Γ⋊G)

)
B(Γ⋊G)

≃ ⊂ ♭Map
(
S ≺X�G, S ≺A�(Γ⋊G)

)
S ≺B(Γ⋊G)
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Where it takes place: Singular-Cohesive ∞-Topoi

This witnesses twisted orbifold cohomology

as a good geometric cohomology theory:

Hτ (X; A)

≡ π0 SMap
(
X, A�G

)
≃ π0 SMap

(
X�G, A�(Γ⋊G)

)
B(Γ⋊G)

≃ π0H/ ≺BG

(
S ≺(X�G), S ≺(A�(Γ⋊G))

)
S ≺B(Γ⋊G)
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Where it takes place: Singular-Cohesive ∞-Topoi

This witnesses twisted orbifold cohomology

as a good geometric cohomology theory:

Hτ (X; A) twisted orbi cohomology

≡ π0 SMap
(
X, A�G

)
≃ π0 SMap

(
X�G, A�(Γ⋊G)

)
B(Γ⋊G)

≃ π0H/ ≺BG

(
S ≺(X�G), S ≺(A�(Γ⋊G))

)
S ≺B(Γ⋊G)

176



Outlook: Differential twisted orbifold cohomology
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Outlook: Differential twisted orbifold cohomology

From this point on one can define
differential twisted orbifold cohomology
via the twisted equivariant character
of the coefficient object S ≺(A�(Γ⋊G))
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Outlook: Differential twisted orbifold cohomology
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Urs Schreiber on joint work with Hisham Sati:

an invitation to the monographs:

-Equivariant Principal ∞-Bundles, CUP (2025, in print)

-Geometric Orbifold Cohomology, CRC (2026, to appear)

Geometric Orbifold Cohomology
in Singular-Cohesive ∞-Topoi

talk at ItaCa Fest 2025

17 June 2025

@

(June 2025) find these slides at: [ncatlab.org/schreiber/show/ItaCa+Fest+2025]

The End.
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