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Today, to explain this phenomenon:

global definition of
higher gauge fields

⇔ flux-quantization
law

⇔ generalized
cohomology

classical examples in electromagnetism:

Dirac charge-quantization of electromagnetic field in integral 2-cohomology
(makes quantum electron well-defined & stabilizes Abrikosov vortices in superconductors)

Dirac quantization of “statistical gauge field” in integral 2-cohomology
(quantizes electron number in effective field theory of quantum Hall effect)

famous proposals in 10D super-gravity:

flux-quantization of B-field in integral 3-cohomology
(makes quantum string well-defined & stabilizes NS5-branes)

flux-quantization of RR-field in K-theoretic cohomology
(stabilizes certain non-supersymmetric D-branes)

previous gap in 11D super-gravity: how to flux-quantize the C-field?

subtle because:
non-linear

Maxwell equation
⇒ non-abelian

cohomology
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If super-gravity does not motivate you:

The third lecture will explain:

A non-standard flux-quantization
of the EM-field, in 2-Cohomotopy,
which makes magnetic flux quanta behave
as seen in fractional quantum Hall systems.

Question: But where would this exotic law come from?

Answer: Naturally from M5-probes of Seifert orbifolds in 11D supergravity.

6



Recall Electromagnetic Flux:

7



Example – Magnetic monopoles.
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Example – Abrikosov Vortices.
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Higher Flux Densities.
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Higher Maxwell-type Equations.
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Recall Phase Space.
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Higher Flux Solution Space.

17



The Idea of Flux-Quantization.
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Key Observation:

Beware: Uncommon use of L∞-valued forms.

Traditionally: gauge potentials — flatness is extra condition

Here: Flux densities — flatness = Bianchi identities !
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Higher Flux Solution Space – Redux.
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Charges in Non-abelian de Rham cohomology.
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Non-abelian cohomology.

Hence for flux-quantization
we need to understand
non-abelian de Rham cohomology
as an approximation to
non-abelian generalized cohomology.

Key Observation:

Reasonable cohomology theories have classifying spaces.

23



24



25



L∞-algebras approxima of spaces.
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Conclusion.
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Outlook.

The full definition of
flux-quantized higher gauge fields

needs geometric homotopy theory
a.k.a. higher topos theory

where unification happens of:

differential forms & classifying spaces
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Here exists the moduli stack of flux densities:
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The full definition of flux-quantized higher gauge fields.
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