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(quantizes electron number in effective field theory of quantum Hall effect)
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If super-gravity does not motivate you:

The third lecture will explain:

A non-standard flux-quantization

of the EM-field, in 2-Cohomotopy.

which makes magnetic flux quanta behave

as seen in fractional quantum Hall systems.

Question: But where would this exotic law come from?
Answer: Naturally from Mb5-probes of Seifert orbifolds in 11D supergravity:.



Recall Electromagnetic Flux:

Faraday observed “lines of force” — now called flux of the magnetic field — concentrating towards the poles of rod
magnets. In modern differential-geometric formulation, the density of these flux lines through any given surface-

magnetic flux
through surface element

Fy (5:1:1,5:52)
= B -Azx' - Az?

e

<.,
From Faraday’s Diary of experimental investigation, The density and orientation of magnetic field flux lines are
vol VI, entry from 11th Dec. 1851, as reproduced in  encoded in a differential 2-form whose integral over a given
[Martin09]; the colored arc is our addition, for ease surface is proportional to the total magnetic flux through
of comparison with the schematics on the right. that surface. (Graphics adapted from [Hyperphysics].)

Electromagnetic flux density.

X1 spacetime 4-fold

F, € Q3r(XY Faraday tensor

= x(Eij dz* Ada?) | electric flux density
+ B;jdzi Adz? | magnetic flux density

More in detail, with respect to any foliation X* ~ R x X3 of
a globally hyperbolic spacetime X? by spacelike Cauchy surfaces
X3, the spatial component of F, is the magnetic flux density B,
while the Hodge dual (with respect to X*) of the temporal com-
ponent is the electric flux density FE.




Example — Magnetic monopoles.
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Imagining, with Dirac, that Fara- A

‘wi 'L“e". 3 Gaufl law
day’s rod magnet could be made e e away from singular locus integrated magnatic flux
. - . — N _ i 1Irough any sphere
mﬁmtely 1011g and thlIl, alny one of F2 = B(T) dvo],,-?zg ’ dFz =0, [32 2 = around the munulpﬂltl:.
prop. to monopole charge

its poles would look like an isolated
mono-pole with flux concentrating A
towards it from all directions.

m"‘%’;mq‘w
At the point of the idealized A\ B*™
monopole itself, the flux density B
per unit volume would diverge —
a “singularity” much in the sense >
of black holes, which therefore is

not to be regarded as part of
space(-time): The spacetime do-
main on which to discuss the fluxes
sourced by a magnetic monopole
is (more on all this below in §2.2)
not Minkowski spacetime R>1 it-
self, but its complement around
the worldline R%! of the would-be
monopole. [T] magnetic monopole

2 .
S'r- sphere at radius r
around monopole
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As such, magnetic monopoles are the singular 0-branes of electromagnetism (cf. §2.2) — in theory: Whether



Example — Abrikosov Vortices.

However, in the EM-field there
are also solitonic 1-branes
which are experimentally well-
established as the Abrikosov
vortices formed in type II super-
conductors within a transverse
magnetic field [Abrikosov 1957]
[Loudon et al. 2009]

[Timm 2020, §6.5]. These
may be regarded as strings
approximated by a Nambu-
Goto action [Nielsen et al. 1973]
[Beekman et al. 2011].

B magnetic flux lines

[[] superconductor

I]vurtcx in electron current

Gaull law
dfs = 0, / Fy =
Eq % Ea

electron
current

/B da' dz?

total magnetic flux
prop. to # vortices
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Figure adapted from

[Loudon & Midgley (2009) Fig. 1]
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Higher Flux Densities.

On this backdrop of ordinary electromagnetic flux (§2.1) and of the general rule for measuring flux sourced by
singular branes or solitonic branes (§2.2) it clearly makes sense to consider physical theories of higher gauge fields
whose precise nature remains to be discussed, but whose flux densities are reflected in higher-degree differential

forms F@ ¢ Qgifi (XD) ’ (2)
these possibly being of different field species to be labeled by a finite index set I € FinSet and jointly to be denoted
as follows: F = {F(%’) c Qgifi (XD)} , (3)

Such higher flux densities appear in higher

dimensional supergravity, namely as “super- Field | Flux | Singular source
partners” of the gravitino field that cannot be Ded M monopole
= axwell theo A-field F:

accounted for by the graviton itself. In par- Y ’ 0-branes
ticular, in D = 10 supergravity and D = Hjy NS5-brane
11 supergravity these higher flux densities —10 < : B-field . (4)

perg Y g D =10 supergravity H- F1l-branes
are known under the (now) fairly standard RRfiald | £ Dot
symbols shown on the right, along with the s . poranes
stand: . e g ine si . G M5-branes
standard Ild;:ill? of th(f (orr(-espondmg slngujl:a,r D=11 supergravity Cofield 4 5
branes (the “higher-dimensional monopoles™), G- M2-branes

e.g. [Blumenhagen et al. 2013, §18.5].



Higher Maxwell-type Equations.

Bianchi identities flux species flux degrees flux densities
—+

QF — P(F)| |1 €Set, (deg; € Nx1),,, F = (FO € QG (xP))

higher Maxwell-type
equations of motion in .
duality-symmetric form *x F = ﬁ'( F) P graded-symm. polynomial , i invertible matrix

el

self-duality flux self-sourcing vacuum permittivity

Concretely:
e P is an I-tuple of graded-symmetric polynomials with rational coefficients in I variables of degrees deg,
e i is a linear endomorphism on the vector space spanned by these variables.



Example 2.9 (Motion of the ordinary electromagnetic fluxes).
The classical Maxwell equations expressed in terms of dif-
ferential forms are as shown on the left (e.g. [Frankel 1997,

§3.5 & §7.2b]), with their “premetric” form shown on the dF,
right. dxFy = J3

I
=

Here the differential 3-form .J3 embodies the density of an
electric current carrying an electric field and inducing a
magnetic field.

This kind of external or background source term, where the
source is not given by (a polynomial in) the flux densities

themselves, does not fit into the Definition 2.6 and will d F,
be disregarded for the purpose of the present discussion, dx Fy

Il 1l
oo

meaning that we focus on the special case of Maxwell’s
equations “in vacuum”.

dfEs, = 0
dGy = J3
Gg = *FQ
dfs, = 0
dG, = 0
GQ = *Fg

(9)



Example 2.10 (Motion of unbounded RR-field fluxes). The equations of motion of the RR-field fluxes in D =
10 supergravity in the case of vanishing B-field-fluxes are often taken to be as follows (e.g. [Mkrtchyan & Valach 2023])

dF2!+CF = 0 dFQ-—I-cr = 0 V2e+o ec N
dx F2.+g = 0 (10)
V2ed4o < 5
xFy = Fyifo=1 o 0 for type IIA
(10-2e-0) * Foeto 1 for type I1B
and, more generally, those with non-vanishing B-field as follows:
dHs = 0
dI5e s = H3 A Foejo-2 dH: _ .
(1F2.+g - Hg/\FQ.+g_2 dH3 =0 (11)

(1*F2-+g — H3/\*FD_2._J+2 d *Hg — e

Fp_oe—6 = *Faqyqs H; = «Hj

Beware, while these equations are now often stated in this form, and while this is the form that motivates the
traditional Hypothesis K (§4.1), it is at least subtle to see them in entirety as actually arising from ordinary D = 10
supergravity (namely from KK-compactification of D = 11 supergravity, in the case o = (), since in that context:
e The fluxes Fj and Fjg are not actually present: They are from massive type IIA, which has its own subtleties.
e The flux H; has a non-linear Bianchi (dH; = —F4 A Fy + F5 A Fg) which does not fit the pattern (cf. Ex. 2.13).



Example 2.11 (Motion of self-dual higher gauge field fluxes).
Since Def. 2.6 regards every higher gauge the-
ory (of Maxwell-type) as being “self-dual” in

: . : . : dF =0
a sense, the equations of motion of flux den- equations of motion of D/2
sities of actual self-dual higher gauge fields — self-dual higher gauge field (12)
in the strict sense that one and the same flux in D=4k + 2 _
; : : F Dj/2 * D/2
density form is required to be Hodge dual to

itself — are readily an example of Def. 2.6:

Due to the properties of the square of the Hodge operator (7), this has non-trivial solutions iff the degree of the
flux is odd, deg = 2k + 1, and hence iff spacetime dimension is D = 4k + 2, kK € N.



Example 2.12 (Motion of C-field fluxes).

The equations of motion of the C-field in
D = 11 supergravity (originally the “3-
index A-field” due to [Cremmer et al. 1978]
(cf. [Miemiec et al. 2006, p. 32]) are tradi-
tionally as shown on the left here, with their
equivalent “duality-symmetric” reformulation
[Bandos et al. 1998] shown on the right, cf.
[Giotopoulos et al. 2024a].

dGy
d*G4

= O

G4 NGy

(13)



Recall Phase Space.

CovariantPhaseSpace

e

time evolution
P

CanonicalPhaseSpace

on-shell
~ field history
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canonical coordinate
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Higher Flux Solution Space.

Proposition 2.14 ([Sati & Schreiber2023b]).

On a globally hyperbolic spacetime XP ~ RO x X< the solution

space given higher Mazwell-equations of motion (Def. 2.6) is isomorphic to the solution of (just) the duality-

symmetric Bianchi identities restricted (i.e.: pulled back to) to any Cauchy surface t :

called the higher Gauss law:

Space of flux densities

on spacetime, solving SolSpace

the equations of motion

%12

electromagnetic flux densities on spacetime

F=(FO e o (xP)) )
1€

magnetic flux densities on Cauchy surface

> ; deg,

B = (BYW e Qi (X4)
dR i€l

2

Bianchi identities
4AF = B(F)
*F = ji (ﬁ )

self-duality

} covariant form

GauB law

— =

d g = P(B) } canonical form

X4 < XP. there to be

(14)



The Idea of Flux-Quantization.

With the solution space (Prop. 2.14) of higher Maxwell-type equations of motion (Def. 2.6) in hand, the question
of flux quantization is to further constrain the flux densities such that the total fluxes and their total source charges
take values in some discrete space. The technical issue to be resolved here is that:
e this is a global condition on the flux densities: The local flux densities may take any value (compatible with the
equations of motion) and yet the total accumulation of all these local contributions needs to be constrained;
e the evident idea of constraining the ordinary integrals of the flux densities (their “periods”) makes sense only for
closed differential forms and hence does not work for non-linear Bianchi identities (such as those of the C-field,

Ex. 2.12, and the B&RR-field, Ex. 2.13).

To resolve this, one may first observe that:
e the integrals/periods of ordinary closed differential n-forms

fn over m-manifolds are in natural correspondence with H*(X;7Z) [X] iﬁﬁg%;zl
their de Rham-classes, [F,,] € Hjz(—), which in turn are "
equivalently their “deformation classes”, namely their con- L | character
cordance classes: Hp(—) ~ QZ[LR(_)CISd/cncrdnc; Vg (X)asa — Hig(X)  ch[X]

e so that integrality of the closed flux density F), is witnessed fAlux |2 __/integral
by an integral cohomology class [X] € H™(X;Z) whose “de density = [ total flux

Rham character” image ch[X] € HJ (X) coincides with the
deformation class [F,];



and, second, one may observe that this perspective generalizes |Florenza et al. 202o||>at1l & Schreiber2025b):

Higher Maxwell-type equations have a characteris-
tic L. -algebra a: The flux densities are equivalently
a-valued differential forms, and the Gaufl law (14) is
equivalently the condition that these be closed (i.e.:
flat, aka “Maurer-Cartan elements”; in Italian SuGra
literature: “satisfying an FDA”).

Also every topological space A (under mild condi-
tions) has a characteristic L. -algebra: Its R-rational
Whitehead bracket L..-algebra [A.

The nonabelian Chern-Dold character map turns
A-valued maps into closed [A-valued differential
forms, generalizing the Chern character for 4 = KUj,.

The possible flux quantization laws for a given
higher gange field are those spaces A whose White-
head L _.-algebra is the characteristic one.

Given a flux quantization law A, the corresponding
higher gauge potentials are deformations of the
flux densities into characters of A-valued maps, wit-
nessing the flux densities as reflecting discrete charges
quantized in A-cohomology.

(It is not obvious that this reduces to the usual notion
of gauge potentials, but it does.)

These non-perturbatively completed higher gauge
fields form a smooth higher groupoid: the “canonical
differential .A-cohomology moduli stack”. Since
these are now the flux-quantized on-shell fields, this
is the phase space of the flux-quantized higher gauge
theorv (o0 110

SolSpace(X4) ~

flux densitics on Caunchy surface

{E’ = (B® € Q5 (X?))

satislyving Ganll's law

dB = P(B) }

i

flat differential forms valoed
clsd  in characteristic Lo,-algebra

~ Qur (X% a)

(homotopy type of) A
a topological space

LA Whitehesd

) T L -algebra
E-rationalization

charge (I . X‘I — ../'1.) — (‘h()i:} - Iﬂ{]R(XJ.', [.A.)

character map in A-cohomology

clad

Spaces encodes the Ganll Law

A A~a
FIIIXQIIHHtLﬂWE — { classifying | whose rational homotopy

X  charge
I character
ch(X)
Aux ol o _/ﬁ rauge potential
density F lsha_p; F gauge potcntla
flux-guantizcd
phase space —
stack is F e ﬂdﬂ_(Xd; LA}Clﬁd -
A(Xd} = X € Mﬂp(X,A} charge
differential E ch (x) — F
E e LIEEL

A-cohomology
moduli stack




Key Observation:

Flux densities satisfying Gaufl law are closed L-valued differential forms. Remarkably, it follows
that polynomials P defining Bianchi identities (6) and Gauss laws (14) are equivalently structure constants of
Loo-algebras a, such that the Bianchi/Gauf} law is the closure/flatness condition on a-valued forms:

systems of flux densities satisfying this Gauli law

= P(B)}

Sheaf of closed L..-algebra-valued differential forms

Q}]H(:; a)c]sd = Homdgmg(CE(Q), :iR(_)) — {B (B(,,) c Q(.{Lgt( ))

&n
A’,a.,.{'r,r_rl:?,, " 666’
.."‘5 23, ‘%‘ g‘aﬁo't"}
@ o 2
\\e(.:o . “w&e B_\Q&aﬁﬁ
RS ¢ a«*"".,@"“@eﬁat ¢
GXWEQB@'%GK, ;9\%" “Ge 1""‘“\ A Q,E' atisfying these differential relations (19)
(s
— pto) h— p ”)
Cf}(u) = [ O Y|/ (a6 = P
ob
S o
ab&-.a {’;3601‘:"
© gv'"’na o ¢
e ° -&O‘ﬁ o o~ 1)6“ equipped with these higher Lie brackets
\J"p

<{?}dtg1—1}1}ef> [0 ] = 3, PYL o

Beware: Uncommon use of L..-valued forms.

Traditionally: gauge potentials — flatness is extra condition

Here: Flux densities  — flatness = Bianchi identities !



Higher Flux Solution Space — Redux.

With Prop. 2.14, this means:

Proposition 3.1 (Flux solutions as closed L,,-valued forms). Given a higher gauge theory of Mazwell-type (Def.

2.6) with Bianchi identities given by graded-symmetric polynomials P (6), its space of flur densities solving the
higher Mazwell equations is identified with the space of closed differential forms with coefficients in the L -algebra
a on |1 deg -graded generators with structure constants P:

4 Bianchi identities
electromagnetic flux densities on spacetime ( )
dF = P(F
- de
F = (F(t} € ﬂ g, (XD)) . covariant form
'« F = ji(F)

\ self-duality

Space of flux densities

on spacetime, solving SD]SP&CE(X D)
the equations of motion

e

r magnetic flux densities on Cauchy surface CanB law (20)

— — . =

~ B = (B(i] = Qd&g“(}{d)) ; dg = P(B) canonical form
L* s

.y d. space of closed (flat)
- QdR (X ! Cl) clsd o-valued differential forms

Example 3.2. The characteristic Loo-algebra of ordinary vacuum electromagnetism is the direct sum bu(1) & bu(1)
of two copies of the line Lie 2-algebra, which by the previous example and Prop. 3.1 corresponds to:

SolSpacepy (X?) ~ Qg (X7; bu(l) x bu(1)) ., =~ QUr(X?) x Qr(X7).



Charges in Non-abelian de Rham cohomology.

| Canchy datn S ho Q8R(X9)
) T B,
: by,
on-shell () Xd tat F— CE
field history iR (X% [t t1]) « F (a)

Cauchy data

Definition 3.3 (Non-abelian de Rham cohomology [Fiorenza et al. 2023, Def. 6.3|). Given an L..-algebra a
and a smooth manifold X9, we say that a pair of flat closed a-valued differential forms By, By € Qig (X d, a)

clsd
(16) are cohomologous iff they are concordant: iff there exists a closed a-valued differential form F on the cylinder
over X% whose pullback to the kth boundary component equals By:

-
F,
=

~ 22
B[} — LnF. ( )

The quotient set by this equivalence relation is a-valued nonabelian de Rham cohomology of X

Har (X% 0) = Qi (X% a) g/~ -

Bo~ B & 3FeQu(x*x[01;a),, wih {BI =

* =¥

(23)



Non-abelian cohomology.

Hence for flux-quantization

we need to understand

non-abelian de Rham cohomology
as an approximation to

non-abelian generalized cohomology.

Key Observation:

Reasonable cohomology theories have classifying spaces.



The archetypical examples are Eilenberg-MacLane spaces
like K(Z,n) which classify ordinary cohomology such as
integral cohomology, in any degree n. As n ranges, these
EM-spaces happen to be loop spaces of each other, via weak
homotopy equivalences: K(Z,n) ~ QK(Z,n+ 1).
Generalizing from this classical example, one consid-
ers Whitehead-generalized cohomology theories which are
classified by any sequence of pointed topological spaces
{ E,, }nen equipped with weak homotopy equivalences E,, ~
QE, 41, called a spectrum of spaces or just a spectrum.
This entails that each E,, is an infinite-loop space, which
makes them be “abelian co-groups”, reflecting the fact that
the homotopy classes of maps into these spaces indeed have
the structure of abelian groups.

Perhaps the most familiar example of such abelian gener-
alized cohomology is topological K-theory, whose classify-
ing space KUy may be identified with the space of Fred-
holm operators on an infinite-dimensional separable com-
plex Hilbert space.

While Whitehead-generalized cohomology theory has re-
celved so much attention that it 1s now widely understood
as the default or even the exclusive meaning of “general-
ized cohomology”, historically long preceding it is the non-
abelian cohomology of Chern-Weil theory, classified by the
original classifying spaces B of compact Lie groups G.
Unless G happens to be abelian itself, this nonabelian co-
homology does not assign abelian cohomology groups, nor
even any groups at all, but just pointed cohomology sets.
Nevertheless, as the historical name “nonabelian cohomol-
ogy” clearly indicates, these systems of cohomology sets
may usefully be regarded as constituting a kind of coho-
mology theory, too.

ordinary cohomology

H™(X; Z)

topological K-theory

Whitohoad-
generalized cohomology

nonabelian cohomology

HY(X; G)

coHomotopy

generalisoed
nonabelian cohomology

H'(X, QA)

7wy Maps {X \

wy Maps (X ,

o Mu]}:-iI:X,

coboundary

( homotopy )

!

VAT A aEE

";'Ul.ibl"'l.'-ll.‘ | &g

F
|

']

cocycle




Character maps on generalized cohomology. Moreover, it is classical that, over smooth manifolds, reasonable
cohomology theories have their non-torsion content reflected in de Rham cohomology via character maps:

Ordinary H™ (X, Z) de Rham map N H(?R(X) ~ HOmdgAlgn (]R[wn], Hc;R(X)) differential forms

integral cohomology in degree n

Chern-Weil homomorphism

Traditional Hl (X G)

\ : L] . differential forms for
nonabelian cohomology - H()mdgAlgn (lIlV (G)? HdR(X ))

g-invariant polynomials

Topological 0 Chern character . . differential forms
K-theory K (‘X) ’ HomdgAlgR (R[w[], W2, Wy, ]" HdR(X)) in every even degree (25)

differential forms for

abelian Whitehead- n Chern-Dold character . v otn .
seneralized conomatogy & (X) » Homagaigs (A°(ma(E) @3 R)Y, Hin™ (X)) rojonat homeuces moee

nonabelian
. *haracter differential forms with
Generalized 1 . ¢ 1 . _— . .z .
non-abelian cohmnolong (X, QA) —_— HdR(X? [A) = H()IlldgAlg“ (CE( [.A), dH(X)) /N cocfficients in

Whitehead L-algebra



L..-algebras approxima of spaces.

Proposition 3.7. Quillen-Sullivan-Whitehead L..-algebra cf. [Fiorenza et al. 2023, Prop. 4.23, 5.6 & 5.13]
For a topological space A which is

o simply connected: moA = *, mA=1;

e of rational finite type: dimQ(H (A, Q)) < 00,
there is a polynomial dgc-algebra over R, unique up to dga-isomorphism, whose

o generators are the R-rational homotopy groups of A,

CE([A) = ( /\' ( e (SZ.A) Q@RR)V, dCE(lA))
o cochain cohomology is the ordinary real cohomology of A

H*(CE(IA)) = H*(A; R).

This dgc-algebra is known as the minimal Sullivan model of A. By (15) it is the Chevalley-Eilenberg algebra of
an Ly,-algebra which we denote [ A: The Whitehead bracket algebra structure on the R-rational homotopy groups
of the loop space (think of "[(—)” as standing for ”Lie” or for "loops”):

A = 7a(QA) @z R. (26)



Circle: A= S' ~ BZ.

(me(8")®,R)" =~ R{w1), H*(S";R) ~ Rluwi]
Since R[w,] is already the correct cohomology ring,
it must be that dg: = 0 and hence

CE(IS) ~ R[wi]/(dw: = 0)

While the circle is not simply connected, it is a “nilpo-
tent space”, and Sullivan’s theorem actually applies in
this generality.

Nilpotent spaces have nilpotent fundamental group
(e.g.: abelian) such that all higher homotopy groups
are nilpotent modules (e.g.: trivial modules).

2-Sphere: A = 2.

(me(S?) @, R)" ~ R{wz, w3), H*(S*;R) =~ Rlws]/(w3)
The differential on R[ws,ws] needs to remove w3 and ws
from cohomology, hence it must be that:

o 2\ ws, dws = —zwe A w2
cr(s) = k[ /(9 252" )

The homotopy group coresponding to the generator
ws is that represented by the complex Hopf fibration

3 he 2
ST — 5°.

3-Sphere: A = S°.

(e (S?)®,R)" ~ R{ws), H*(S*R) ~ Rlws]
Since R[ws] is already the correct cohomology ring,
it must be that dgs = 0 and hence

CE(1S%) ~ Rlws]/(dws = 0)

While S* ~ SU(2), we see that [SU(2) is different
from su(2). But the former captures the cocycles of
the latter:

su(2) — 1SU(2)

CE(su(2)) «+—— CE(ISU(2))

tr(—, [—,—]) < w3

4-Sphere: A= 5%,

(e (S‘l)@JER)V ~ R{wa, wr), H*(S*R) ~ Rlw4]/(wi)
The differential on R|wa,w7] needs to remove w; and wr
from cohomology, hence it must be that:

Srrady o w7, dws —5Wa A wy
cu(s') = & 7| / (G 25 F )

The homotopy group corresponding to the generator
wr is that represented by the quaternionic Hopf fibra-
tion

s7 M, gt




Complex Projective space: A= CP".

(ﬂ'. (@P“)@zﬁ)v ~ R(ws, Wani1),

H*(CP™;R) ~ Rwa]/(w3*)

The differential on Rws, w2, 1] needs to remove w
from cohomology, hence it must be that:

CE(ICP") ~ R [w2“+1’] / (dw2n+1 = —w;”rl)

Wwao dl’.dz = 0

n+1
2

This is related to the above sequence of examples by
the fact that CP" is an S'-quotient of S*"*1:

511 52ﬂ+1

!

cp*

Infinite Projective space: A = CP*> ~ BU(1) ~ B*Z.
(me(CP®)®,R)" ~ R{ws), H*(CP™R) =~ Rlws]

Since R[ws] is already the correct cohomology ring,

it must be that dgpe = 0:

CE(ICP™) ~ R [wz] / (dw2=0)

This is the Lie 2-algebra of the shifted circle group:

[BU(1) ~ bu(l)

Eilenberg-MacLane space: A= B"U(1) ~ B"*'Z.
(e (B"HZ)®,R)" ~ R{wny1), H*(B"*'Z) ~ Rlwp 1]
Since R[wn 1] is already the correct cohomology ring,
it must be that dgny15 = 0O:

CE(IB"Z) ~ R [wn+1] / (dwns1=0)

This is the Lie (n 4 1)-algebra of the circle (n + 1)-

group:
IB"U(1) =~ b™u(1)

Classifying space: A = BG of cpt. 1-conn. Lie group.

H*(BG;R) ~ inv*(g) the invar. polynomials on Lie alg.
(Chern-Weil theory)

Since H*(BG;R) is already a free graded-symmetric ring

it must be that d,, = 0 (cf. [Fiorenza et al. 2023, Lem. 8.2]):

CE(IBG) ~ inv®(g)/(dgze =0)

[BG captures all the curvature invariants
hence all the invariant flux densities
of g-connections A € Qir(X) ® g,

CE(IBSU(2)) —— Qg (X)
tr(—, —)

e.g.
— {SijFJE:) N FJ&”




Rational homotopy theory: Discarding torsion in nonabelian cohomology. From the perspective (above)
that any topological space A serves as the classifying space of a generalized nonabelian cohomology theory, the
idea of rational homotopy theory (survey in [Hess 2006]; [Fiorenza et al. 2023, §4]) becomes that of extracting the
non-torsion content of such a cohomology theory, which we will see is, over smooth manifolds, that shadow of it
that is reflected in the non-abelian de Rham cohomology (Def. 3.3) of [ A-valued differential forms.

regard spaces as

Rational

Sullivan model

( Homotopy theory

classifying spaces

Nonabelian cohomology

Non-torsion

de Rham cohomology

(28)

Hence to have a classifying space for the non-torsion part of A-cohomology means to ask for:

The rationalization of A:

A topological space

all whose homotopy groups have
the structure of Q-vector spaces

equipped with a map from A
which induces isomorphisms on
rationalized homotopy groups

and is universal
with this property

LA
Tr (L@A) € Modg

Q
A A

4 ®,0Q

Tn(A)®,Q 2 1




The Fundamental Theorem of dg-Algebraic Rational Homotopy Theory (review in [Fiorenza et al. 2023,
Prop. 5.6]) says that the homotopy theory of rational spaces (simply-connected with fin-dim rational cohomology)
is all encoded by their Whitehead L.-algebras (26) over the rational numbers. In particular, for X a CW-complex,
the homotopy classes of maps into the rationalization L2A (29) of a space A is identified with dg-homotopy classes

of homomorphisms from the rational Sullivan model of A to the “piecewise QQ-polynomial de Rham complex” of
the topological space X:

Map (X, £24) gy = Homigars(CB(RA), D1 ()) @)

/concordance,

The general non-abelian character map is now immediate [Fiorenza et al. 2023, Def. IV.2|: It is the co-

homology operation induced by R-rationalization of classifying spaces (32), seen under the non-abelian de Rham
theorem (33):

( character map on .4-cohomology :lf
H X '_QA) ratmuallzatlgu Hl (X LQQ.A) extension Hl (X, LR.QA) nonabelian \ H&R (X, [A) (35)
de Rham theorem :

of scalars

cxt )* H H

roMap(X, A) G VN moMap(X, LeA) —247 moMap(X, LRA) —>— Homggais (CE(LA), Q5 (X))

fundamental theorem
of dg-algebraic RHT

Jenerd



Conclusion.

Global flux quantization. Higher gauge fields
on a spatial Cauchy surface satisfying their
GauB} law constraint are equivalently closed L -
valued forms for some characteristic Ly,-algebra
a; the global total fluxis their class in nonabelian
de Rham cohomology.

A compatible flur quantization law is a choice of
classifying space A with Whitehead L,-algebra
A ~ a; and to quantize total flux is to lift
it through the character map to nonabelian A-
cohomology.

choice of
A-cohomology
with [A ~ a
H'(X? QA)
"g; _J.-':T
n\“n\ff -
F"‘m“"’ d
10 W e cha(X%)
\_‘“\.\‘f_, c sourced flux
, OV -~
. 'l\.‘."f'::‘..-"
9:” total 4
- Aux
- — 1 d- 1 d.
* B ? QdR(X 3 a)clsd ? HdR(X , ﬂ)
flux densities on Cauchy surface a-valued

satisfying their higher Gaufl law de Rham cohomology




Example 3.9 (Flux quantization laws for ordinary electromagnetism). By Ex. 2.15, the characteristic
Loo-algebra of vacuum electromagnetism is two copies of the line Lie 2-algebra bu(1). This is the Whitehead Lo-
algebra of the classifying space BU(1) ~ BZ2Z and hence of its rationalization B?Q. Therefore — among many
further variants — there are the following choices of flux quantization laws for ordinary electromagnetism:

B2Q x B2Q This choice imposes essentially no flux quantization (it does rule out irra-
—— N tional total fluxes) and as such was the tacit choice since [Maxwell 1865] until
mag el - -
[Dirac 1931].
B27, % B2Q This choice imposes integrality of magnetic charge but no further condition on
M electric flux — common choice since [Dirac 1931], for instance in [Alvarez 1985,
ma,
¢ l p. 299] [Brylinski 1993, §7.1|[Freed 2000, Ex. 2.1.2].
B27 % B27. This choice imposes integrality of both magnetic and electric charge — consid-
el o ered in [Freed et al. 2007b|[Freed et al. 2007c|[Becker et al. 2017, Rem. 2.3]
£ [Lazaroiu & Shahbazi 2022|[Lazaroiu & Shahbazi 2023]
B27 w BK x B%7 |For a finite group K — Aut(Z) — this choice induces non-commutativity
‘::;; — between EL/EL- and EL/M-fluxes, an example of a “non-evident” flux quan-
e . " . . . .
tization condition considered in [Sati & Schreiber 2023c].




Outlook.

The full definition of
flux-quantized higher gauge fields

needs geometric homotopy theory
a.k.a. higher topos theory

where unification happens of:

differential forms & classitying spaces

smooth sets oo-groupoids
smooth oco-groupoids
SIIlthSCt %} higher gauge transf. Grpdm
(R gauge transf.) SIIlthGI'IJdoo (discrete <mooth struc.)
[1so PSh(CartSp) | PSh(A)kan
w [ 1heq l’HlJ((‘-;LI'IH]}. PSh(A)kan) W
1 .
QdR (_" u)clsd T W ch 4 _— A
e — . haracter
moduli of shape unit J‘Qtlﬂi (_; [1) clsd differential character moduli of
flux densities charges

deformations of
flux densities



Here exists the moduli stack of flux densities:

IQ

1
dR

BE u)-::lsd =

(

take endpoint of
deformation path

flux densitites satisfying
\ their Bianchi identities

()

Qir(—; @cisa

1
deformation paths
of deformation paths )1 . 3 .
of deformation paths Qdﬂ( X&EED‘ I:l) clsd
0 9 of flux densities
()23 (Dpo.2.3) (H)o,1,31 (Ho,1,2)
(
1
" " . S
deformation paths r.
. 1 2 —
of deformation paths Q —xA . a =
of flux densities dR( g0’ )CISd
ﬂ 2 e e
\
(—)o.11 | (Do,21 | (—)p,2
deformation paths 1 1, —
0 1 of s densities 2R (—XDgeot @) gog =

(—)o

take starting point
of deformation path

{ B, Bio,1]

{B}

5)




The full definition of flux-quantized higher gauge fields.

this object that flux densities become comparable to their charges:
eled > TR (= a)clsd [Fiorenza et al. 2023, (9.3)], which

we may identify as the shape unit of the moduli of flux densities;

(ii) given an identification a ~ [A with a Whitehead L.-algebra (37), then the fundamental theorem of dg-
algebraic rational homotopy theory (31) furthermore says [Fiorenza et al. 2023, Lem. 9.1] that we have a
(homotopy-) equivalence to the R-rationalization L®A of A (32), so that rationalization gives a differential
character map [Fiorenza et al. 2023, Def. 9.2]:

shape unit

(i) There is an evident inclusion Qi (—;a)

extension fundamental thm. of RHT
rationalization . 70 of scalars . TR plecewise smooth version ) 1
L ch F
differential character map

Local flux quantization: Gauge potentials in differential Sy charges

) i X e > A
cohomology. This way one may now [ocally implement flux quan- . X
tization, by taking the higher gauge field fields on X 4 to be ho- ! %ﬂuge
motopies deforming flux densities 3 into the differential character fux i . potentials differential
of local Chﬂ.l'g&h X. densities :B ch character (3(})
On equivalence classes, this reproduces the quantization of to- ! ‘
tal fluxes (37) and thereby lifts it to a local structure. Indeed, ~ I -

the higher gauge fields defined this way are the cocyles of the chiR(_;u) clsd — J QéR(—;u) clsd

shape
nonabelian differential A-cohomology [Fiorenza et al. 2023, Def. it

9.3].




