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Today, to explain Hypothesis H.

Given higher Maxwell-type equations of motion,

last time we saw the rules by which to choose flux-quantization laws.

But there is still a choice involved, namely of a cohomology theory.
That choice is a choice of completion of the higher gauge theory;,

hence a Hypothesis about the non-perturbative physics it describes.

For the RR-field of 10D supergravity
a traditional choice is: K-theoretic cohomology theory:

this choice could be called Hypothesis K.

For the C-field of 11D supergravity,
and the B-field on its Mb5-probes
an admissible choice is a

twisted /twistorial form of

“Co-Homotopy Theory”, hence of “Homotopy cohomology theory”.

Hypothesis H states that: This is the correct choice for M-theory.



The Bianchi identities

are these:
A-ield dF5 = 0 dGij = 0 C-field
self-dual d HS = Qb*GS + QFs Fs dG: = le G's dual
B-field 3 = Ts+4 272 7T 2744 C-field
: Ps
M5 probe »1o |2-8+ y X111 |32 SuGra bulk

1/2BPS immersion

The next two slides indicate
the remarkable way in which
these equations come about
in 11D supergravity
(technical, may be skipped).



Bianchi identities on M5-Probes of 11D SuGra via super-geometry. Consider the 11D super-tangent

space
RL.10032 isum(R1=m|32) —» s0(1,10)

super-Minkowski super-Poincaré Lorentz
. a\32 ¥
CE(R10132) ~ . (R1’1“|32)h ~ Ry (T*) ety / (d v )
- dR - a\10 a _ (\{Ta )
super-transl. invar. forms (E )a_U dE® = (‘;[J I ‘;[J)

Remarkably, the quartic Fierz identities entail that [19][84][49, Prop. 2.73]:

with its super-invariant 1-forms (cf. [49, §2.1])

|
o

GY = (¥4, Y)E"E in dG% =0
4 2( ) c CE(R1=1“|32)SP (1,10) satisfy : 4

0o . IS 0 _ 1~0~0
G7 = Bl ( v Fal---as III) Er ... E9s fully super-invariant forms d G7 2G4 G4

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-
Cartan connection, locally on an open cover X — X given by

(,1,0)32
a=1
T such that the a 2 b ——
(B0, € QdR,(X) super-torsion dE* — Q% E° = (IIJF ‘I’),
Qeb — _ba 10 vanishes
( - )a,b_{)
and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:
Gi = G4 + Gg = %(Gal)a]...a‘lEal e Ea4 + %(E ].—‘ala2 l:[’,).Eﬂ‘l .Eh‘:]’2
Gi = Gr+ GY = H(Ga)aya, B - EY + L(UTy, . gy ¥)EY - E%

Theorem [49, Thm. 3.1]: On an 11D super-spacetime X with C-field super-flux (G§, G%):

the full 11D SuGra

The duality-symmetric dGi = 0
% equations of motion!

super-Bianchi identity dGs = } 18 equivalent to



) ¢ . . . .
Next, on the super-subspace R° (284 0, RLIOI32Z feag by the involution I'gj2345 € P1n+(1, 10) we have:

HY = 0 € CE(R1,5|2‘8+)Spin(1’5) satisfies : dHY = ¢§GY

To globalize this situation, say that a super-immersion X° 2-8, %=, x1,10132 44 12BPS M5 if it is “locally
like” ¢, and say that B-field super-flux on such an M5-probe is a super-form with these co-frame components:

H-g = Hq —+ H.? = ?ll(H?r)alaza;;eal %2 23 4 () (ECL(G — ¢zEa)

Theorem [50, §3.3]: On a super-immersion ¢ with B-field super-flux H3:

the M5’s B-field

. . . 5 S — * 5 5 .
The super-Bianchi identity {d Hj; ¢53G4} 18 equivalent to o e

In particular, the (non-linear self-)duality conditions on the ordinary fluxes are implied: G4 <> G7 and H3 <> Hj.

Seeing from this that also trivial tangent super-cochains may have non-trivial globalization, observe next that:
— . 5| 92. Spin(1,5 .
FO = (Y9) = 0 € CE(RV128:)PR00)  ooticfo . dF? = 0

Globalizing this to 12128+ via

Fs == Fy + F5 := 1(F2)aya, €2 + 0

we have on top of the above:

Theorem [108, p 7]:

the Chern-Simons

The super-Bianchi identity {d 5 = U} 15 equivalent to E.OM.: Fy — 0.



Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan ge-
ometry locally modeled on the 11D super-Minkowski spacetime R':10132 entails that on-shell 11D supergravity
probed by magnetized 1/2BPS Mb5-branes implies and is entirely governed by these Bianchi identities on super-flux
densities:

-ie = — -le
A-field  d FY 0 dGj 0 C-field
self-dual s __ * /18 s 178 s _ 1/vs /s dual
Brea  4H; = 0;Gi + 0 F5 F3 dG7 = 3G G} C-field (2)
i bs
M5 probe »Ls | 2-84 > xb1 | 32 SuGra bulk

1/2BPS immersion
Here we have observed that the Green-Schwarz term F35 F5 may equivalently be included for any theta-angle 6 € R
without affecting the equations of motion (since, recall, the CS e.o.m. F3 = 0 is already implied by d F5 = 0).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic
and torsion charges of the fields. The choice of flux quantization according to Hypothesis H [32][33] is the following:

Admissible fibrations of -classifying 0 =0 S7 JU(1) ~ S7 x CP° s 7 ha w HPL

spaces for cohomology theories with the H-Hopf fibration ™
above character images (2). The homotopy
quotient of S7 is (i) for § = 0 by the triv-
ial action and (ii) for 6 # 0 by the principal ¥

action of the complex Hopf fibration. 0#0 S7T/U(1) = s CP3 tn » HP!

Twistor fibration’

C-Hopf fibration

X
.




Proof. This may be seen as follows [33, Lem. 2.13]: dog—2 ~ BU(1)
H*(CP™ R) ~ R[7¢]/(FY)  H*(CP®;R) ~ Re]

2

Since the real cohomology of projective space

is a truncated polynomial algebra, H*(HP™ R) ~ R[ip1]/ (ptth) H*(CP*; R) ~ R[ipi]
N T o
deg—4 ~ BSp(1) ~ B5U(2)
n [ f2 dfz =0
the minimal dge-algebra model for CP™ needs CE([CP ) ~ Ry homi1) / dhoni1 = (fo)"H!

a closed generator fy to span the cohomology

and a generator hg,; in order to truncate it; r 2

" g4 / d g4 =0
L o E(IHP") ~ R
analogously for HI CE( ) 9 ganss ] ( dginss = ( 94)1;+1)

Furthermore, since the second Chern class of BU(1) ”(‘H‘di"‘g[““*))} BSU(2)

an S(U(1)?)-bundle is minus the cup square ) .

of the first Chern class (by the Whitney sum —(e1) — 3P1 = C2

rule)

the minimal model of CP? relative to that of J2 dfz2=0

HP,; needs to adjoin to the latter not only f5 CE(l ,CP?) ~ Ry h3 / dhy = g2+ fa/o
but also a generator hs imposing this relation - ga dgs =0

in cohomology. L g7 dgr = 39494

The resulting fibration of L., -algebras is manifestly just that classifying the desired Bianchi identities (2)
we are showing the case 6 # 0, which by isomorphic rescaling may be taken to be 6 = 1):

Fs dFe =0
28 - > Qig(—; 1. CP? Q0 (B6) ¢---- CE(l_,CpP3 €N, (26
dR( (T )ulsd dﬂf ) ( up ) Ho dH-( ) dH; = Gy+ F, F,
¢ (Ttm). — " (V)" <
e h . Gd dG4 — 0
»iro_ > QL (—; THP? Q5T O, G L) P — CE(IHP! € 8, (X1
ar (= ) etsa ar(X) ( ) an (XH) dG7 = 5G4 Gy




Aside: Projective Spaces and their Fibrations - some classical facts.

Consider:

division algebras R < C — H generically denoted K € {R, C, H}

groups of units K* := K\ {0} understood with the multiplicative group structure

projective spaces KP™ := (K"*1\ {0})/K*
higher spheres ~ S™ ~ (R™*!'\ {0})/R_,

K-Hopf fibrations are the quotient co-projections induced by ¢ : R_, — K

The classical Hopf fibrations hy are:

SO~ R*/R_, St~ C*/R,,

v}m chr

St~ (R*\{0}) /R, $3 ~ (C2\{0}) /R,

:;!m l;,,, q;hc ib*

St~ £R2\{0})/Ri 52 ~ \gC?\{O})/C’i
RP! CP!

The Hopf fibrations in higher dimensions are the attaching

maps exhibiting the topological cell-complex structure of
projective spaces [88], from which the (cellular) cohomology
follows readily.

S3 ~ H*/R_,

ker

e

ST~ (H2\{0})/R._,

hy L
~
~

S~ (]HIQ\{[)})/]HI"J

L.

J—L}r’ :

S(K”H) — %

th( /11"3 )

KP" 8 KP"!



Further factor-fibrations arise by factoring the Hopf fibra-
tions via the stage-wise quotienting along

R «3R<—>C— H.

=0

Notably, the classical quaternionic Hopf fibration hy fac-
tors through a higher-dimensional complex Hopf fibration
followed by the

Calabi-Penrose twistor fibration iy [33, §2].

Equivariantization: Since the quotienting is by right actions,
these fibrations are equivariant under the left action of

Spin(5) ~ Sp(2) := {g € GLy(H) |.ng g =e}.

§1~C*/R,,

complex

2
S ~ H* / Cx he Hopf fibration

\v

CP? ~ (H?\{0})/C*

ST~ (H\{0})/R.,

quaternionic " Calabi-Penrose
Hopf fibration H H twistor fibration

T

HP! ~ (H?\{0})/H*

cp? = > HP?
N =
 (HxH\{0})/C* — (HxH\{0})/H"
For example, the involution o = [[1} é] € Sp(2) o \ \ o
. AV v
swaps the two copies of H: ) (H&BH\{O})/CX _ (]HI@]HI\{O})/]HIX
- A R i
cp? t S HP?
H
(CP3)™ ~ (H\{0})/C* ~ S?
The resulting Zo-fixed locus is the 2-sphere: l(m)zz l J
(HPY)™ =~ (H\{0})/H* =~ «x



Aside: Implications of Hypothesis H, in
view of traditional expectations for M-theory.

The plain Hypothesis H in the bulk says
that the non-perturbative completion of the
C-field in 11d supergravity involves a map
x from spacetime to the homotopy type of
the 4-sphere, with the C-field gauge potentials
(C3, Cg) exhibiting the flux densities (G4, G7)
as R-rational representatives of vy.

In other words, this is the postulate that the
non-perturbative C-field is a cocycle in canon-
ical, unstable differential 4-Cohomotopy

~4 T s

7 [30, §4][54, §3.1][36, Ex. 9.3].

As an immediate plausibility check: This im-
plies, from the well-known homotopy groups
of spheres in low degrees, that:

integral quantization of charges carried by sin-
gular M5-brane branes and

integral quantization of charges carried by sin-
gular M2-branes... plus a torsion-contribution
(a first prediction of Hypothesis H).

Cohomotopical
charge sector

Maps(X; 5'4) X

Jﬁh l
I

Qg (X5 15%) 1™ T2 (X5 15%) 40y chi)

cls

character
image

(G4: GT) — (_6‘5"0\.?’“

C-field flux densities e
&

??I(G4, GT) /@6\. o

canonical differential
non-abelian (unstable) non-abelian (unstable)
4-Cohomotopy 4-Cohomotopy
(C3,Cs) €

7H(X) . > (X))
full nonperturbative

topological sector
11d SuGra C-field

plain

flux

(G4,G7) densities

Har (X 15%)

[S*-valued de Rham cohomology

’:T4(]R10’1 \Rfi,l) I (R-ﬁ,l xR, x 54)
= 74(8%) = m(S?) = Z

W4(Rln’l \RE,l) — 71,4 (R2’1 X R+ % ST)
= ']‘T4(ST) = TT7(84) = Z %ZLZ




Hypothesis H with curvature corrections. More generally, the curvature corrections from the coupling to
the background gravity are postulated to be reflected in tangentially twisted 4-Cohomotopy (33|, analogous to the
well-known twisting of the RR-field flux-quantization in K-theory by its background B-field:

-

-

—

5%/Sp(2)

>
-
-~

twisted
Cohomotopy

l

Hypothesis K Hypothesis H
KU, /PU(H)
o
\é\»/’f . A -
sel= twisted ot
"‘g“?:" K-theory E:L'"
9 . M- ) T ivebrane stract
X7 - . » BPU(H) T2 % X8 _Fi‘ie_h_lf‘ll_e_b_tEE‘itP_r_% BSp(2)
~-Yigy By R 2 /
""%&5; ~by v bacy L by
&ﬁéoq‘”d IR gr.-dgr:“‘}}}d
qd B2U(1) Vity,

To distinguish M2/Mb5-charge, the
tangential twisting needs to pre-
serve the H-Hopf fibration = tan-
gential Sp(2) < Spin(8)-structure
[33, §2.3]. With this, integrality
of M2’s Page charge & anomaly-
cancellation of the Mb5’s Hopf-WZ
term follows from trivialization of
the Euler 8-class, which means lift
to the Fivebrane 6-group Sp(2) —
Sp(2) (32, §4].

This implies [33, Prop. 3.13][32, Thm. 4.8|:

(i) half-integrally shifted quantization of M5-
brane charge in curved backgrounds, and

R 1(1,, (V8 4(v8.
(G4 := @ + 1 (3p(TX®)) € H* (X3, Z)

C-field
4-flux

integral Spin-
Pontrjagin class

(ii) integral quantization of the Page charge
of M2-branes.

2(Gy] = 2([G7]+%[H3/\é4]) e H'(X%Z)

Both of these quantization conditions on M-brane charge Previously, item (i) had remained enigmatic and item

are thought to be crucial for M-theory to make any sense.

There is more:

Provable implications from Hypothesis H
of subtle effects expected in M-theory:

It is these results which suggest that Hy-
pothesis H goes towards the correct flux-
quantization law for the C-field in M-theory.

. - non-abelian gerbe field on M5

(ii) had remained wide open.
(- half-integral shift of 4-flux
- DMW anomaly cancellation
- the C-field’s “integral EoM”
{ - M2 Page charge quantization
- integrality of §(G4)?
- M5-brane anomaly cancellation [106]

33, Prop. 3.13]
33, Prop. 3.7

133, §3.6]

32, Thm. 4.§]

[54, Rem. 2.9]

[34]



Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to orbifolds * by generalizing the
cohomology of the charges to equivariant cohomology [102].

In terms of classifying spaces this simply Z

o orbi-brane ¢ ( J'-
means that all spaces are now equipped with orbi- (El charges }( _Al- Cp3
the action of a finite group G and all maps are worldvolume et ctvaiant _
required to be G-equivariant, o l S i
We take G := Z, and the classifying fibration . fibration...
- - . . orol- — 14
to be the twistor fibration p := ty equivari- spacetime X T obibulk B == f*‘—" ¥
ant under swapping the H-summands, (&7 charges () Ly
and the brane/bulk orbifold we take to be as on p. 3:
The orbi-brane diagram for a flat Mb-brane {EZ{L ( Ezl
wrapped on a trivial Seifert-fibered orbi-singularity. Y o= RLO » R2 x Sl x 2
Shaded is the Zy-fixed locus/orbi-singularity. U{eo} gu
We are adjoining the point at infinity to the space ¢'[ {Ez )
a2 —~ 2 . . .
3, {0} p 5< which is thereby designated as X — RO « R2 « S x Rg < RS
transverse to any worldvolume solitons to be mea- (r U{eo} gn
sured in reduced cohomology. Lo & trnsvrs space M /IIA- orbi- trnsvrs space
umne to solitons circle cone to Mb5-brane
Zo 3
But since the cone o - the inclusion of the Zo- Y2~ W
2 * s o- ) ) ’ u T ] hmtp
Lo CREEH is equivari EL “hmtp Z; * fixed loci is actually a ho- 2 l \L qﬁ

antly contractible, motopy equivalence

2y _~
W X4z Tntp {Xir

G
Therefore our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the
fixed-locus and hence the charges are localized on the orbi-singularily where they take values in 2-Cohomotopy:

( "
Z.
Y ( 2 11 4 3
EE\l __________ , Cp vz _____ y (CPH)EQ g2
- L{:"
L7 t ~ ﬁf’z"‘i ltz"- ~ 2 1 2
9 ‘ﬁl lﬂ SR H p Ri{oo} X 9 » S
X - 5 G4 ) ¢ —— > (84)32 _ % charges in 2-Cohomotopy
h. . - . of B-field solitons
{zz’r Eﬂﬁ%ﬁ’;ﬁn {E;}. L charges localized on orbi-singularity ) on M5 orbi-singularity




Remarkably, there is an equivalence between Cohomotopy of spacetime/worldvolumes and Cobordism classes of
submanifolds behaving like solitonic branes carrying the corresponding Cohomotopy charge [103, §2.2] [101, §2.1]:

The Pontrjagin theorem
[70][69, §IX]| identifics the

assign Colomaotopy charge — .

manifold (aka scanning
map or Ponirjagin-Thom
collapse) is represented by
mapping points of the am-
bient space to their directed
distance if inside a tubular
neighbourhood, else to co.
Conversely, every Cohomo-
topy class is representated
by a smooth map with 0
a regular value, whose pre-
image is a normally framed
submanifold with that Co-
homotopy charge.

s . ™ Treanmed winstabie T _— st bobe
unstable n-Cohomotopy of = mw=iws=ete — R —_— AR o
. . R " . — —— reted asymplotic i Te——

a closed manifold with the - Coy, (y4) = NFramedSubmildss- (M) - Maps (M, $7) - 7 (M),
cobordism classes of its nor- -~ ~—— pre-image of regular vahe 0 —— . A
X —— e manifuld
mdlljr [r‘un{:{l ﬁlll}m'mlfﬂhiﬁ T — recoistruct submanifold G its charse ™ -
of co-dimension n.
c n
E.rf —n C >~ M > IRE = 5"
s b " directed asymptotic distance from X ) o .
The Cohomotopy charge ¢ osed “ilj T“‘m '"Ild' manifold ~ cocycle representing Cohomotopy charge of & Cohomotopy d::ﬂ?-'"ﬂ Space
normally frumet (n-sphere
of a normally framed sub- e o
L ] - "

-
- - -

- ponstant on O at E

directed distance

- . . —




Moduli space of soliton configurations. But the Pontrjagin theorem concerns only the total cohomotopical

charge, identifying it with the net (anti-)brane content.

(considered now specialized to our 2D
transverse space), and Segal’s the-
orem [l11] says that the cohomo-
topy charge map (scanning map) iden-
tifies this with a moduli space of
brane positions, namely with the group-

completed configuration space of points
[15][120][43]:

moduli space
of solitonic
brane charges

moduli space
of solitonic

where the configuration space of points
is the space of finite subsets of R? — here
understood as the space of positions of
cores of solitons of unit charge +1,

brane positions

Conf(R?) =

Beyond that we have the whole moduli space of charges

2- Cohomotopy

[—]

net charge

Maps* (R}, 5%)

) ('U;. g‘;.’.‘”n
.. O
Segal Pontrjagin ) ~
theorem theorem / Z
[—] 2
G Conf(IR?) » Cobg, (R?)
&anr net brane content .
Cop, Oy, 01;,5g 2-Cobordism
b, ©toy Ddf‘@ (unstable)
\an® positions of
w-‘,\;e\“f’ﬂ v \ / soliton cores ==
T AL
v > T “

E -



and 1ts group completion (3(—) 1s the topological completion ot the topological Configurations of chargoed
partial monoid structure given by disjoint union of soliton configurations. points | strings
Naively this is given by including also anti-solitons in the form of configurations of
+-charged points, topologized such as to allow for their pair annihilation/creation O—0 @
as shown in the left column on the right. 5
Remarkably, closer analysis reveals [89] that the group completion G(—) produces O
configurations of strings (extending parallel to one axis in R*) with charged O ® §
endpoints whose pair annihilation/creation is smeared-out to string worldsheets é O ®
as shown in the right column. » 5
This means [105] that the vacuum-to-vacuum soliton scattering processes, 5 (i
forming the loop space 2 G Conf(R?), are identified with framed links ([90, pp 15]), o 5
for instance ®»
e O e §
- . _g '3_—';'
o= 8 g =0 &
T *— 5 0 O
— :‘:I ':_'. : : tracing out
GOm0 F— worldlines worldsheets
’ A —
] L ¥
Lt AT O—0 &9
o s [ O Q ’
O e o =0 ) | Oe——
-%2 B ¥ PO
n, - Y g @ (O
[ ]T. .T(‘
@
subject to link cobordism (cf. [76]): 2
S— ﬁ :(( "1!.1: ~ | It follows [105, Thm 3.17] that the charge of a soliton
( s e I . scattering process L is the sum over crossings of the
L 'y [
p s e Py N\ " _
N . e I - —t crossing number # (/\) Fl1, # (/\') 1,
- _ w-w»| which equals the linking}framing number:
. * 2y ™ 2 - 2y ~
s ® B ~ _a QGConf(R?) = QMaps™/ (R, 5%) = m3(5?) ~ Z
e =) P, ol L total crossing number = s #
r—y ' linking + framing number ’ #
g e But this is precisely the Wilson loop observable
At 8 = B of L in (abelian) Chern-Simons theory! [105, §4]
"_'.—:'r—'-_', As we explain next.




The k-Soliton sector. More generally, we may con- net charge k

Hopl degree &

sider loops based in the kth connected component of ~ GConf(R?) —~— Maps;, (Rﬁ{m}, S%)

the moduli space, corresponding to scattering pro- ix £

cess from &k to k net number of solitons. GConf(R?) —~— Maps" (Rfj (oo} S”)

Since the double loop space Maps* (R? 52) admits the structure of a 4
Py ps” (Ri(ooy, 5%) Q) GConf (R2)

topological group, all these connected components have the same homo-
topy type, and hence these scattering processes L are again classified by
the integer total crossing number # L which is the abelian Chern-Simons

Wilson-loop observable.

For instance, a generic k — 3 process looks like this:

-
am™ h‘_.

and via the framed cobordism moves

X = R )

Tmﬂ;_- GC{}ﬂf(Rz)

¥

L
W_,

LY

il

it computes to the trivial scattering process accompanied by # L vacuuum pair braiding processes:

£ L
f ] L] [ ]
" " l Il 1
L ] L] Ll
[] L] []
L] L] L]
[ ] L ] [ ]
[ ] [ [ ]
L] L] L]
' NN 1 '
L ] L] L]
L] L] L]
L] [ ] L]
' 1 '
[ [ [
L1 L1

s

2



Chern-Simons level. We will see below further meanings of the number k:

the number of fractional quasi-hole vortices in a quantum Ilall system,
This integer k is equivalently ¢ the level of their effective abelian Chern-Simons theory,
the mazximal denominator for filling fractions of their quantum states.

Generally, we will recover in a novel non-Lagrangian way the features of quantum Chern-Simons theory that are
traditionally argued starting with the kth multiple of the local Lagrangian density a A da for a gauge potential
1-form a.

The situation on the 2-Sphere.

Furthermore consider k solitons on the actual 2-sphere S2. a2 a2

Here the 2-Cohomotopy moduli space satisfies (cf. [42]): moQi Maps(S?, §) = Zoj,

and the long homotopy fiber sequence induced by point evaluation shows that the generator of this cyclic group is
again identified with the basic half-braiding operation:

point-

fiber of.. evaluation

Maps* (Ru{m},S‘) —SL2ey Maps (52, 52) S

m5(5%) — mofMaps® (Ru{w}asﬂ) — moS%Maps($°,5%) —— m (S7)
T g ’ ”v ’ 1
o | b

N <]




With flux-quantized ficlds being equipped with a classifying space A, there is a ncat way to directly obtain the
topological quantum observables — via the following observation:

Topological flux observables in Yang-Mills theory — Theorem [104]. For G-Yang-Mills theory on RY! x ¥2,
non-perturbative quantization of the algebra of flux observables through the closed surface 2 is given, via a
choice of Ad-invariant lattice A C g, by the group C*-algebra C[—]| of the Fréchet-Lie group of smooth maps
¥2 — G x (g/A) — and the subalgebra of topological observables coincides with the Pontrjagin homology algebra
of pointed maps (R x £?) oy — B(G x (g/A)):

:c[cm (32, G) x O (32, (g/A))} 'y {HO (32 G) x H (52 A)] ~ Hy (Maps*((Rl % 32) 10y, B(G % (g/A)); cc:

non-perturbative gquantum algebra of sub-algebra of Pontrjagin homology algebra of
observables on flux through 32 topological observables moduli space of soliton charges

For example in clectromagnetism, C[Hl v2.7) 5 (27 ] ~ (M'l & ((R! x 72 BU1) x BUM) ): (C\
with G =U(1) and A :=Z — R: N (v’ ) (V’ ) | = Ho P (( )U{oo}a (1) ()), y

electric magentic classifying space for

This allows to gCHOI'a].iZC: Dirac flux quantization
Topological flux observables of any higher gauge theory.

For a higher gauge theory flux-quantized in A-cohomology .l rol D3

the quantum algebra of topological flux observables Obs, := H, (Maps (R' x = )ufoo}s A); C)
on a spacetime of the form RV x £P—2 b

is the Pontrjagin homology algebra of the soliton moduli = H, (Q Maps(E ’ A); C)

hence in deg = 0 is the group algebra of
vacuum soliton processes “on the light-cone”:

Obsy = C [WQQ Maps (%P2, A)]



For note that the star-involution { - complex conjugation (time reversal) where RL! ~ R (t, ),

is given by the combination of - loop reversal (hence z-reversal)
and the
opcrator A A
product L t

is given / X
by loop
concate- /

nation:

— topological classes _ -

of

vacuum-to-vacuum -
processes of — A

quantized flux t

along t —z e /

and their .
concatenation ~




In the next lecture we discuss
concretely these quantum observables
on orbi-M5 probes
finding them exhibit
anyonic topological order

as in fractional quantum Hall systems.



