Urs Schreiber^a on joint work with Hisham Sati^a:

Introduction to *Hypothesis H*

lecture series at

45th Srní Winter School GEOMETRY AND PHYSICS 18-25 Jan 2025, Srní, Czechia

Materials:

- [1] Flux Quantization, Enzyclopedia of Mathematical Physics 2nd ed. 4 (2025) 281-324 [ncatlab.org/schreiber/show/Flux+Quantization]
- [2] *Engineering of Anyons on M5 probes via Flux Quantization*, lecture notes (2025) [ncatlab.org/schreiber/show/Engineering+of+Anyons+on+M5-Probes]

Given higher Maxwell-type equations of motion,

last time we saw the *rules by which to choose flux-quantization laws.*

But there is still a *choice* involved, namely of a cohomology theory. That choice is a *choice of completion* of the higher gauge theory, hence a *Hypothesis* about the non-perturbative physics it describes.

For the RR-field of 10D supergravity a traditional choice is: K -theoretic cohomology theory; this choice could be called $Hypothesis$ K.

For the C-field of 11D supergravity,

and the B-field on its M5-probes an admissible choice is a twisted/twistorial form of

"Co- \bm{H} omotopy Theory", hence " \bm{H} omotopy cohomology theory".

Given higher Maxwell-type equations of motion,

last time we saw the *rules by which to choose* flux-quantization laws.

But there is still a *choice* involved, namely of a cohomology theory. That choice is a *choice of completion* of the higher gauge theory, hence a *Hypothesis* about the non-perturbative physics it describes.

For the RR-field of 10D supergravity a traditional choice is: K -theoretic cohomology theory; this choice could be called *Hypothesis* \boldsymbol{K} .

For the C-field of 11D supergravity,

and the B-field on its M5-probes an admissible choice is a twisted/twistorial form of

"Co- \bm{H} omotopy Theory", hence " \bm{H} omotopy cohomology theory".

Given higher Maxwell-type equations of motion,

last time we saw the *rules by which to choose* flux-quantization laws.

But there is still a *choice* involved, namely of a cohomology theory. That choice is a *choice of completion* of the higher gauge theory, hence a *Hypothesis* about the non-perturbative physics it describes.

For the RR-field of 10D supergravity a traditional choice is: K -theoretic cohomology theory; this choice could be called *Hypothesis* \boldsymbol{K} .

For the C-field of 11D supergravity,

and the B-field on its M5-probes an admissible choice is a twisted/twistorial form of

"Co- \bm{H} omotopy Theory", hence " \bm{H} omotopy cohomology theory".

Given higher Maxwell-type equations of motion,

last time we saw the *rules by which to choose* flux-quantization laws.

But there is still a *choice* involved, namely of a cohomology theory. That choice is a *choice of completion* of the higher gauge theory, hence a *Hypothesis* about the non-perturbative physics it describes.

For the RR-field of 10D supergravity a traditional choice is: \boldsymbol{K} -theoretic cohomology theory; this choice could be called *Hypothesis* \boldsymbol{K} .

For the C-field of 11D supergravity, and the B-field on its M5-probes an admissible choice is a twisted/twistorial form of

"Co- \bm{H} omotopy Theory", hence " \bm{H} omotopy cohomology theory".

Given higher Maxwell-type equations of motion,

last time we saw the *rules by which to choose* flux-quantization laws.

But there is still a *choice* involved, namely of a cohomology theory. That choice is a *choice of completion* of the higher gauge theory, hence a *Hypothesis* about the non-perturbative physics it describes.

For the RR-field of 10D supergravity a traditional choice is: \boldsymbol{K} -theoretic cohomology theory; this choice could be called *Hypothesis* \boldsymbol{K} .

For the C-field of 11D supergravity, and the B-field on its M5-probes an admissible choice is a twisted/twistorial form of "Co- \bm{H} omotopy Theory", hence " \bm{H} omotopy cohomology theory".

The Bianchi identities

for fluxes on M5-probes of 11D supergravity are these:

 $d F_2^s = 0$ $dG_4^s = 0$ A-field C-field self-dual dual $dG_7^s = \frac{1}{2} G_4^s G_4^s$ $dH_3^s = \phi_s^* G_4^s + \theta F_2^s F_2^s$ C-field **B-field** $\sum_{i=1,5}^{n} \frac{12.8}{1/2} + \frac{\phi_s}{1/2}$ $\;\rightarrow\; X^{1,10 \,|\, \bm{32}}$ M5 probe **SuGra bulk**

Flux-quantizing this situation means to find/specify a fibration of spaces which has these same formulas as its relative minimal Sullivan model.

The Bianchi identities

for fluxes on M5-probes of 11D supergravity are these:

Flux-quantizing this situation means to find/specify a fibration of spaces which has these same formulas as its relative minimal Sullivan model.

But first:

The next two slides indicate the remarkable way in which these Bianchi identites come about in 11D supergravity (technical, may be skipped).

Bianchi identities on M5-Probes of 11D SuGra via super-geometry. Consider the 11D super-tangent space

 $\mathbb{R}^{1,10 \,|\, 32} \quad \longleftrightarrow \quad \mathfrak{isom}\big(\mathbb{R}^{1,10 \,|\, 32}\big) \quad \longrightarrow \quad \mathfrak{so}(1,10)$ super-Poincaré super-Minkowski Lorentz

with its super-invariant 1-forms (cf. $[49, §2.1]$)

$$
\mathrm{CE}(\mathbb{R}^{1,10 \,|\, 32}) \simeq \Omega_{\mathrm{dR}}^{\bullet}(\mathbb{R}^{1,10 \,|\, 32})^{\mathrm{li}} \simeq \mathbb{R}_{\mathrm{d}} \left[\frac{(\Psi^{\alpha})_{\alpha=1}^{32}}{(E^{a})_{a=0}^{10}} \right] / \left(\frac{\mathrm{d} \Psi^{\alpha} = 0}{\mathrm{d} E^{a} = (\Psi \Gamma^{a} \Psi)} \right).
$$

Remarkably, the quartic Fierz identities entail that [19][84][49, Prop. 2.73]:

$$
G_4^0 := \frac{1}{2} (\overline{\Psi} \Gamma_{a_1 a_2} \Psi) E^{a_1} E^{a_2}
$$

\n
$$
G_7^0 := \frac{1}{5!} (\overline{\Psi} \Gamma_{a_1 \cdots a_5} \Psi) E^{a_1} \cdots E^{a_5} \n\begin{cases} \n\epsilon \text{ CE} (\mathbb{R}^{1,10} | \mathbf{32})^{\text{Spin}(1,10)} & \text{satisfy} : \n\begin{cases} \n\mathrm{d} \, G_4^0 = 0 \\ \n\mathrm{d} \, G_7^0 = \frac{1}{2} G_4^0 G_4^0 \n\end{cases} \n\end{cases}
$$

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-Cartan connection, locally on an open cover $\widetilde{X} \to X$ given by

$$
\left(\begin{array}{c}\n(\Psi^{\alpha})_{\alpha=1}^{32} \\
(E^{a})_{a=0}^{10} \\
(\Omega^{ab}=-\Omega^{ba})_{a,b=0}^{10}\n\end{array}\right)\n\in \Omega^{1}_{\text{dR}}(\tilde{X})\n\qquad\n\text{such that the super-torsion}\qquad\n\text{d } E^{a}-\Omega^{a}{}_{b}E^{b} = (\overline{\Psi}\Gamma^{a}\Psi),
$$

and say that **C-field super-flux** on such a super-spacetime are super-forms with these co-frame components:

$$
G_4^s := G_4 + G_4^0 := \frac{1}{4!} (G_4)_{a_1 \cdots a_4} E^{a_1} \cdots E^{a_4} + \frac{1}{2} (\overline{\Psi} \Gamma_{a_1 a_2} \Psi) E^{a_1} E^{a_2}
$$

$$
G_7^s := G_7 + G_7^0 := \frac{1}{7!} (G_4)_{a_1 \cdots a_7} E^{a_1} \cdots E^{a_7} + \frac{1}{5!} (\overline{\Psi} \Gamma_{a_1 \cdots a_5} \Psi) E^{a_1} \cdots E^{a_5}
$$

Theorem [49, Thm. 3.1]: On an 11D super-spacetime X with C-field super-flux (G_4^s, G_7^s) :

The duality-symmetric $\begin{cases} dG_4^s = 0 \\ dG_7^s = \frac{1}{2}G_4^sG_4^s \end{cases}$ is equivalent to the full 11D SuGra equations of motion!

Next, on the super-subspace $\mathbb{R}^{1,5|2\cdot8_+} \xrightarrow{\phi_0} \mathbb{R}^{1,10|32}$ fixed by the involution $\Gamma_{012345} \in \text{Pin}^+(1,10)$ we have:

 $H_3^0 := 0 \in \text{CE}(\mathbb{R}^{1,5|2\cdot8_+})^{\text{Spin}(1,5)}$ $dH_3^0 = \phi_0^* G_4^0$ satisfies:

To globalize this situation, say that a super-immersion $\Sigma^{1,5|2\cdot8_+} \xrightarrow{\phi_s} X^{1,10|32}$ is $1/2BPS M5$ if it is "locally like" ϕ_0 , and say that **B-field super-flux** on such an M5-probe is a super-form with these co-frame components:

$$
H_3^s := H_3 + H_3^0 := \frac{1}{3!} (H_3)_{a_1 a_2 a_3} e^{a_1} e^{a_2} e^{a_3} + 0 \qquad (e^{a < 6} := \phi_s^* E^a)
$$

Theorem [50, §3.3]: On a super-immersion ϕ_s with B-field super-flux H_3^s :

The super-Bianchi identity $\left\{ d H_3^s = \phi_s^* G_4^s \right\}$ is equivalent to the M5's B-field equations of motion.

In particular, the (non-linear self-)duality conditions on the ordinary fluxes are *implied*: $G_4 \leftrightarrow G_7$ and $H_3 \leftrightarrow H_3$. Seeing from this that also trivial tangent super-cochains may have non-trivial globalization, observe next that:

$$
F_2^0 := (\overline{\psi}\,\psi) = 0 \in \mathrm{CE}(\mathbb{R}^{1,5\,|\,2\cdot8_+})^{\mathrm{Spin}(1,5)} \quad \text{ satisfies : } dF_2^0 = 0
$$

Globalizing this to $\Sigma^{1,5|2.8_+}$ via

$$
F_2^s := F_2 + F_2^s := \frac{1}{2}(F_2)_{a_1 a_2} e^{a_1} e^{a_2} + 0
$$

we have on top of the above:

Theorem [108, p 7]:

The super-Bianchi identity
$$
\{d F_2^s = 0\}
$$
 is equivalent to the

 $Chern-Simons$ $E.O.M.: F_2 = 0.$

Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan geometry locally modeled on the 11D super-Minkowski spacetime $\mathbb{R}^{1,10|32}$ entails that on-shell 11D supergravity probed by magnetized $1/2BPS$ M5-branes implies and is entirely governed by these Bianchi identities on super-flux densities:

A-field
$$
dF_2^s = 0
$$
 $dG_4^s = 0$ C-field
\nself-dual $dH_3^s = \phi_s^* G_4^s + \theta F_2^s F_2^s$ $dG_7^s = \frac{1}{2} G_4^s G_4^s$ dual
\nM5 probe $\sum_{1,5}^{1,5} 2 \cdot 8_+$ $\xrightarrow[\tfrac{\phi_s}{\tfrac{1}{2} BPS \text{ immersion}}]} X^{1,10} 32$ SuGra bulk

Here we have observed that the Green-Schwarz term $F_2^s F_2^s$ may equivalently be included for any theta-angle $\theta \in \mathbb{R}$ without affecting the equations of motion (since, recall, the CS e.o.m. $F_2^s = 0$ is already implied by $dF_2^s = 0$).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic and torsion charges of the fields. The choice of flux quantization according to $Hypothesis H [33][35]$ is the following:

Admissible fibrations of classifying spaces for cohomology theories with the above character images (2) . The homotopy quotient of S^7 is (i) for $\theta = 0$ by the trivial action and (ii) for $\theta \neq 0$ by the principal action of the complex Hopf fibration.

Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan geometry locally modeled on the 11D super-Minkowski spacetime $\mathbb{R}^{1,10|32}$ entails that on-shell 11D supergravity probed by magnetized $1/2BPS$ M5-branes implies and is entirely governed by these Bianchi identities on super-flux densities:

A-field
$$
dF_2^s = 0
$$
 $dG_4^s = 0$ C-field
\nself-dual $dH_3^s = \phi_s^* G_4^s + \theta F_2^s F_2^s$ $dG_7^s = \frac{1}{2} G_4^s G_4^s$ dual
\nM5 probe $\sum_{1,5}^{1,5} 2.8_+$ $\xrightarrow[\tfrac{\phi_s}{\tfrac{1}{2}BPS \text{ immersion}}]} X^{1,10} 32$ SuGra bulk

Here we have observed that the Green-Schwarz term $F_2^s F_2^s$ may equivalently be included for any theta-angle $\theta \in \mathbb{R}$ without affecting the equations of motion (since, recall, the CS e.o.m. $F_2^s = 0$ is already implied by $dF_2^s = 0$).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic and torsion charges of the fields. The choice of flux quantization according to $Hypothesis H [33][35]$ is the following:

Admissible fibrations of classifying spaces for cohomology theories with the above character images (2) . The homotopy quotient of S^7 is (i) for $\theta = 0$ by the trivial action and (ii) for $\theta \neq 0$ by the principal action of the complex Hopf fibration.

Choosing the flux-quantization law represented by this fibration means that the charges on a spacetime domain with M5-probe are maps as on the right:

Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan geometry locally modeled on the 11D super-Minkowski spacetime $\mathbb{R}^{1,10|32}$ entails that on-shell 11D supergravity probed by magnetized $1/2BPS$ M5-branes implies and is entirely governed by these Bianchi identities on super-flux densities:

Here we have observed that the Green-Schwarz term $F_2^s F_2^s$ may equivalently be included for any theta-angle $\theta \in \mathbb{R}$ without affecting the equations of motion (since, recall, the CS e.o.m. $F_2^s = 0$ is already implied by $dF_2^s = 0$).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic and torsion charges of the fields. The choice of flux quantization according to $Hypothesis H [33][35]$ is the following:

Admissible fibrations of classifying spaces for cohomology theories with the above character images (2) . The homotopy quotient of S^7 is (i) for $\theta = 0$ by the trivial action and (ii) for $\theta \neq 0$ by the principal action of the complex Hopf fibration.

Choosing the flux-quantization law represented by this fibration means that the charges on a spacetime domain with M5-probe are maps as on the right:

That this choice is the "right" one is Hypothesis H.

Proof. This may be seen as follows $[33, \text{ Lem. } 2.13]$:

Since the real cohomology of projective space is a truncated polynomial algebra,

the minimal dgc-algebra model for $\mathbb{C}P^n$ needs a closed generator f_2 to span the cohomology and a generator h_{2n+1} in order to truncate it; analogously for $\mathbb{H}P^n$.

Furthermore, since the second Chern class of an $S(U(1)^2)$ -bundle is minus the cup square of the first Chern class (by the Whitney sum rule)

the minimal model of $\mathbb{C}P^3$ relative to that of $\mathbb{H}P_1$ needs to adjoin to the latter not only f_2 but also a generator h_3 imposing this relation in cohomology.

 \simeq $BU(1)$ $H^{\bullet}(\mathbb{C}P^n;\mathbb{R}) \simeq \mathbb{R} \left[\overbrace{c_1}^{\deg=2} \middle| \big/ (c_1^{n+1}) \quad H^{\bullet}(\overbrace{\mathbb{C}P^{\infty}}^{\approx B\cup(1)};\mathbb{R}) \simeq \mathbb{R}[c_1] \right]$ $H^{\bullet}(\mathbb{H}P^n;\mathbb{R}) \simeq \mathbb{R}[\frac{1}{2}p_1]/(p_1^{n+1}) \quad H^{\bullet}(\mathbb{C}P^{\infty};\mathbb{R}) \simeq \mathbb{R}[\frac{1}{2}p_1]$ $\simeq BSp(1) \simeq BSU(2)$ $\overline{\text{deg}=4}$ $CE(\text{IC}P^n) \simeq \mathbb{R}_{d} \left[\begin{matrix} f_2 \\ h_{2n+1} \end{matrix} \right] / \left(\begin{matrix} d f_2 = 0 \\ d h_{2n+1} = (f_2)^{n+1} \end{matrix}\right)$ $CE(\text{I\#}P^n) \simeq \mathbb{R}_{d} \left[\frac{g_4}{g_{4n+3}} \right] / \left(\frac{dg_4}{dg_{4n+3}} \right) = (g_4)^{n+1}$

$$
B\text{U}(1) \xrightarrow{B(c \mapsto \text{diag}(c, c^*))} B\text{SU}(2)
$$

$$
-(c_1)^2 \longleftrightarrow \frac{1}{2}p_1 = c_2
$$

$$
CE(I_{_{\rm HP}1} \mathbb{C}P^3) \simeq \mathbb{R}_{\rm d} \begin{bmatrix} f_2 \\ h_3 \\ g_4 \\ g_7 \end{bmatrix} / \begin{pmatrix} d f_2 = 0 \\ d h_3 = g_4 + f_2 f_2 \\ d g_4 = 0 \\ d g_7 = \frac{1}{2} g_4 g_4 \end{pmatrix}
$$

The resulting fibration of L_{∞} -algebras is manifestly just that classifying the desired Bianchi identities (2) we are showing the case $\theta \neq 0$, which by isomorphic rescaling may be taken to be $\theta = 1$:

$$
\Sigma^{6} \longrightarrow \Omega_{dR}^{1}(\text{C}; \mathfrak{l}_{\text{HP}1} \mathbb{C}P^{3})_{\text{clsd}} \qquad \Omega_{dR}^{\bullet}(\Sigma^{6}) \leftarrow \text{C}E(\mathfrak{l}_{\text{HP}1} \mathbb{C}P^{3}) \qquad \qquad \frac{F_{2}}{H_{3}} \in \Omega_{dR}^{\bullet}(\Sigma^{6}) \left| \frac{d F_{2} = 0}{d H_{3} = G_{4} + F_{2} F_{2}} \right|_{\text{H}^{1} \to \mathbb{C}E(\mathfrak{l}_{\text{HP}1} \oplus \mathbb{C}P^{3})} \right|_{\text{C}E(\mathcal{L}_{\text{HP}1})} \qquad \qquad \frac{F_{2}}{H_{3}} \in \Omega_{dR}^{\bullet}(\Sigma^{6}) \left| \frac{d F_{2} = 0}{d H_{3} = G_{4} + F_{2} F_{2}} \right|_{\text{H}^{1} \to \mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3}))} \qquad \qquad \frac{F_{2}}{H_{3}} \in \Omega_{dR}^{\bullet}(\Sigma^{6}) \left| \frac{d F_{2} = 0}{d H_{3} = G_{4} + F_{2} F_{2}} \right|_{\text{H}^{1} \to \mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3}))} \qquad \qquad \frac{F_{2}}{H_{3}} \in \Omega_{dR}^{\bullet}(\Sigma^{6}) \left| \frac{d F_{2} = 0}{d H_{3} = G_{4} + F_{2} F_{2}} \right|_{\text{H}^{1} \to \mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3})) \oplus \mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3}))} \right|_{\text{H}^{1} \to \mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3})) \oplus \mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3})) \oplus \mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\mathbb{C}EP^{3})) \oplus \mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\mathbb{C}E(\math
$$

Aside: Projective Spaces and their Fibrations – some classical facts. Consider:

division algebras $\mathbb{R} \hookrightarrow \mathbb{C} \hookrightarrow \mathbb{H}$ generically denoted $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}, \mathbb{H}\}\$ groups of units $\mathbb{K}^{\times} := \mathbb{K} \setminus \{0\}$ understood with the multiplicative group structure

projective spaces
$$
\mathbb{K}P^n := (\mathbb{K}^{n+1} \setminus \{0\})/\mathbb{K}^n
$$

higher spheres $S^n \simeq (\mathbb{R}^{n+1} \setminus \{0\})/\mathbb{R}_{>0}$

K-Hopf fibrations are the quotient co-projections induced by $\iota : \mathbb{R}_{>0} \hookrightarrow \mathbb{K}$ The classical Hopf fibrations $h_{\mathbb{K}}$ are:

$$
S^{0} \simeq \mathbb{R}^{\times}/\mathbb{R}_{>0}
$$
\n
$$
\int_{\ker}^{\ker} S^{1} \simeq (\mathbb{R}^{2} \setminus \{0\})/\mathbb{R}_{>0}
$$
\n
$$
S^{2} \simeq (\mathbb{C}^{2} \setminus \{0\})/\mathbb{R}_{>0}
$$
\n
$$
S^{3} \simeq (\mathbb{C}^{2} \setminus \{0\})/\mathbb{R}_{>0}
$$
\n
$$
\int_{\ker} h_{\mathbb{R}} \qquad \int_{\ker} \iota_{*} \qquad \int_{\ker} h_{\mathbb{C}} \qquad \int_{\ker} \iota_{*}
$$
\n
$$
S^{1} \simeq (\mathbb{R}^{2} \setminus \{0\})/\mathbb{R}^{\times}
$$
\n
$$
S^{2} \simeq (\mathbb{C}^{2} \setminus \{0\})/\mathbb{C}^{\times}
$$

$$
S^3 \simeq \mathbb{H}^\times / \mathbb{R}_{>0}
$$

\n
$$
\int_{\mathsf{Ker}} \ker \frac{S^7 \simeq (\mathbb{H}^2 \setminus \{0\}) / \mathbb{R}_{>0}}{\int_{\mathsf{K}^2} h_{\mathbb{H}}} \qquad \qquad \downarrow \downarrow \downarrow
$$

\n
$$
S^4 \simeq \underbrace{(\mathbb{H}^2 \setminus \{0\}) / \mathbb{H}^\times}_{\mathbb{H}P^1}
$$

The Hopf fibrations in higher dimensions are the attaching maps exhibiting the topological cell-complex structure of projective spaces [88], from which the (cellular) cohomology follows readily.

Further factor-fibrations arise by factoring the Hopf fibrations via the stage-wise quotienting along

 $\mathbb{R}_{\geq 0} \hookrightarrow \mathbb{R} \hookrightarrow \mathbb{C} \hookrightarrow \mathbb{H}.$

Notably, the classical quaternionic Hopf fibration $h_{\mathbb{H}}$ factors through a higher-dimensional complex Hopf fibration followed by the

Calabi-Penrose twistor fibration t_{H} [33, §2].

Equivariantization: Since the quotienting is by right actions, these fibrations are equivariant under the left action of

$$
Spin(5) \simeq Sp(2) := \{ g \in GL_2(\mathbb{H}) \, | \, g^{\dagger} \cdot g = e \} \, .
$$

The resulting \mathbb{Z}_2 -fixed locus is the 2-sphere:

$$
(\mathbb{C}P^3)^{\mathbb{Z}_2} \simeq (\mathbb{H}\backslash \{0\})/\mathbb{C}^{\times} \simeq S^2
$$

$$
\downarrow_{(t_{\mathbb{H}})^{\mathbb{Z}_2}}^{(t_{\mathbb{H}})^{\mathbb{Z}_2}} \downarrow \qquad \qquad \downarrow
$$

$$
(\mathbb{H}P^1)^{\mathbb{Z}_2} \simeq (\mathbb{H}\backslash \{0\})/\mathbb{H}^{\times} \simeq *
$$

Aside: Implications of Hypothesis H, in view of traditional expectations for M-theory.

The plain Hypothesis H in the bulk says that the non-perturbative completion of the C-field in 11d supergravity involves a map χ from spacetime to the homotopy type of the 4-sphere, with the C-field gauge potentials $(\widehat{C}_3, \widehat{C}_6)$ exhibiting the flux densities (G_4, G_7) as R-rational representatives of χ .

In other words, this is the postulate that the non-perturbative C-field is a cocycle in canonical, unstable *differential* 4-Cohomotopy $\hat{\pi}^4$ [30, §4][54, §3.1][36, Ex. 9.3].

As an immediate plausibility check: This implies, from the well-known homotopy groups of spheres in low degrees, that:

integral quantization of charges carried by singular M5-brane branes and

integral quantization of charges carried by singular M2-branes... plus a torsion-contribution (a first prediction of Hypothesis H).

Maps $(X; S^4)$	χ ^{Chomotopical} charge sector		
$\Omega_{dR}^1(X; LS^4)_{clsd} \longrightarrow \Omega_{dR}^1(X; LS^4)_{clsd}$	$\text{ch}(\chi)$ character		
(G_4, G_7)	\mapsto	$\eta^1(G_4, G_7)$	$\text{C}_3^{\text{C}_6}$ of $\text{C}_4^{\text{C}_5}$
C-field flux densities	gauge		
canonical differential non-abelian (unstable) 4-Chomotopy 4-Chomotopy 4-Chomotopy			
full non-abelian (unstable) 4-Chomotopy 11d SuperC-field 11d SuperC-field (G_4, G_7) densities 4	$H_{dR}(X; LS^4)$ LS ⁴ -valued de Rham cohomology		
$\pi^4(\mathbb{R}^{10,1} \setminus \mathbb{R}^{5,1}) = \pi^4(\mathbb{R}^{5,1} \times \mathbb{R}_+ \times S^4)$			
$= \pi^4(S^4) = \pi_4(S^4) = \mathbb{Z}$			
$\pi^4(\mathbb{R}^{10,1} \setminus \mathbb{R}^{2,1}) = \pi^4(\mathbb{R}^{2,1} \times \mathbb{R}_+ \times S^7)$			
$= \pi^4(S^7) = \pi_7(S^4) = \mathbb{Z} \oplus \mathbb{Z}_{12}$			

Hypothesis H with curvature corrections. More generally, the curvature corrections from the coupling to the background gravity are postulated to be reflected in *tangentially twisted* 4-Cohomotopy [33], analogous to the well-known twisting of the RR-field flux-quantization in K-theory by its background B-field:

To distinguish $M2/M5$ -charge, the tangential twisting needs to preserve the H-Hopf fibration \Rightarrow tangential $Sp(2) \hookrightarrow Spin(8)$ -structure $[33, §2.3]$. With this, integrality of $M2$'s Page charge $\&$ anomalycancellation of the M5's Hopf-WZ term follows from trivialization of the Euler 8-class, which means lift to the Fivebrane 6-group $Sp(2) \rightarrow$ $Sp(2)$ [32, §4].

This implies [33, Prop. 3.13][32, Thm. 4.8]:

- (i) half-integrally shifted quantization of M5brane charge in curved backgrounds, and
- (ii) integral quantization of the Page charge of M2-branes.

Both of these quantization conditions on M-brane charge Previously, item (i) had remained enigmatic and item are thought to be crucial for M-theory to make any sense. (ii) had remained wide open.

There is more:

Provable implications from Hypothesis H of subtle effects expected in M-theory:

It is these results which suggest that Hypothesis H goes towards the correct fluxquantization law for the C-field in M-theory.

$$
[\widetilde{G}_4] := \underbrace{[G_4]}_{\substack{\text{C-field} \\ 4\text{-flux}}} + \frac{1}{2} \underbrace{\left(\frac{1}{2}p_1(TX^8)\right)}_{\substack{\text{integral Spin-} \\ \text{Portrjagin class}}} \in H^4(X^8; \mathbb{Z})
$$

$$
2[\widetilde{G}_7] := 2\big([G_7] + \frac{1}{2}[H_3 \wedge \widetilde{G}_4]\big) \in H^7(\widehat{X}^8; \mathbb{Z})
$$

\n- halt-integral shift of 4-flux [33, Prop. 3.13]
\n- DMW anomaly cancellation [33, Prop. 3.7]
\n- the C-field's "integral EoM" [33, §3.6]
\n- M2 Page charge quantization [32, Thm. 4.8]
\n- integrality of
$$
\frac{1}{6}(G_4)^3
$$
 [54, Rem. 2.9]
\n- M5-brane anomaly cancellation [106]
\n

- non-abelian gerbe field on M5 $|34|$

Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to *orbifolds*⁴ by generalizing the cohomology of the charges to *equivariant cohomology* [102].

In terms of classifying spaces this simply means that all spaces are now equipped with the action of a finite group G and all maps are required to be G -equivariant.

We take $G := \mathbb{Z}_2$ and the classifying fibration to be the **twistor fibration** $p := t_{\text{H}}$ equivariant under swapping the H-summands,

and the brane/bulk orbifold we take to be as on p. 3:

The orbi-brane diagram for a flat M5-brane wrapped on a trivial Seifert-fibered orbi-singularity. Shaded is the \mathbb{Z}_2 -fixed locus/orbi-singularity.

We are adjoining the *point at infinity* to the space $\mathbb{R}^2_{\cup{\{\infty\}}}$ \cong S^2 which is thereby designated as transverse to any worldvolume solitons to be measured in reduced cohomology.

But since the cone $\mathbb{Z}_2 \zeta \mathbb{R}^2_{\text{sgn}}$ is equivariantly contractible,

hmtp

Therefore our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the fixed-locus and hence the charges are *localized on the orbi-singularity* where they take values in 2-Cohomotopy:

$$
\begin{array}{c}\n\begin{pmatrix}\n\mathbb{Z}_2 \\
\mathbb{Z} \\
\mathbb{Z}_3\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_2 \\
\mathbb{Z}_3\n\end{pmatrix} \\
\begin{pmatrix}\n\mathbb{Z}_3 \\
\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} \\
\begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_4\n\end{pmatrix} \\
\begin{pmatrix}\n\mathbb{Z}_4\n\end
$$

Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to *orbifolds*⁴ by generalizing the cohomology of the charges to *equivariant cohomology* [102].

In terms of classifying spaces this simply means that all spaces are now equipped with the action of a finite group G and all maps are required to be G -equivariant.

We take $G := \mathbb{Z}_2$ and the classifying fibration to be the **twistor fibration** $p := t_{\text{H}}$ equivariant under swapping the H-summands,

and the brane/bulk orbifold we take to be as on p. 3:

This situation to be

analyzed in the third lecture,

using the following general tools:

- Pontriagin theorem: Cohomotopy sets \leftrightarrow Cobordism classes of solitons

- Segal theorem: Cohomotopy moduli \leftrightarrow configuration spaces of solitons

- Pontrjagin algebra of Cohomotopy moduli: quantum observables on solitons

Therefore our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the fixed-locus and hence the charges are *localized on the orbi-singularity* where they take values in 2-Cohomotopy:

$$
\begin{array}{c}\n\begin{pmatrix}\n\mathbb{Z}_2 \\
\mathbb{Z} \\
\mathbb{Z}_3\n\end{pmatrix} & \begin{pmatrix}\n\mathbb{Z}_2 \\
\mathbb{Z}_3\n\end{pmatrix} \\
\mathbb{Z}_4\n\end{array}
$$
\n
$$
\begin{array}{c}\n\mathbb{Z}_2 \\
\mathbb{Z}_3\n\end{array}
$$
\n
$$
\begin{array}{c}\n\mathbb{Z}_3 \\
\mathbb{Z}_4\n\end{array}
$$
\n
$$
\begin{array}{c}\n\mathbb{Z}_2 \\
\mathbb{Z}_2\n\end{array}
$$
\n $$

Remarkably, there is an equivalence between *Cohomotopy* of spacetime/worldvolumes and *Cobordism* classes of submanifolds behaving like solitonic branes carrying the corresponding Cohomotopy charge $[103, §2.2]$ $[101, §2.1]$:

Moduli space of soliton configurations. But the Pontriagin theorem concerns only the total cohomotopical charge, identifying it with the *net* (anti-)brane content. Beyond that we have the whole *moduli space* of charges

(considered now specialized to our 2D) transverse space), and Segal's theorem $[111]$ says that the cohomotopy charge map (scanning map) identifies this with a moduli space of brane positions, namely with the *group*completed configuration space of points $[15][120][43]$:

where the *configuration space* of *points* is the space of finite subsets of \mathbb{R}^2 – here understood as the space of positions of cores of solitons of unit charge $+1$,

and its *group completion* $\mathbb{G}(-)$ is the topological completion of the topological partial monoid structure given by disjoint union of soliton configurations.

Naïvely this is given by including also anti-solitons in the form of configurations of \pm -*charged points*, topologized such as to allow for their pair annihilation/creation as shown in the left column on the right.

Remarkably, closer analysis reveals [89] that the group completion $\mathbb{G}(-)$ produces configurations of strings (extending parallel to one axis in \mathbb{R}^3) with charged endpoints whose pair annihilation/creation is smeared-out to string worldsheets as shown in the right column.

This means $[105]$ that the vacuum-to-vacuum soliton scattering processes, forming the loop space $\Omega \mathbb{G}$ Conf(\mathbb{R}^2), are identified with *framed links* ([90, pp 15]), for instance

subject to *link cobordism* (cf. $[76]$):

It follows $[105, Thm 3.17]$ that the charge of a soliton scattering process L is the sum over crossings of the crossing number $\#(\times)$ $= +1, \#$ $=-1,$ which equals the linking+framing number:

$$
\Omega \mathbb{G}\text{Conf}(\mathbb{R}^2) \stackrel{\sim}{\rightarrow} \Omega \text{Maps}^{*/}(\mathbb{R}^2_{\cup \{\infty\}} S^2) \stackrel{[-]}{\rightarrow} \pi_3(S^2) \simeq \mathbb{Z}
$$
\n
$$
L \xrightarrow{\text{total crossing number}} \#L
$$
\n
$$
L \xrightarrow{\text{linking} + \text{framing number}} \#L
$$

But this is precisely the Wilson loop observable of L in (abelian) Chern-Simons theory! $[105, §4]$ As we explain next.

The k -Soliton sector. More generally, we may consider loops based in the kth connected component of the moduli space, corresponding to scattering process from k to k net number of solitons.

net charge k Hopf degree k $\mathbb{G}\text{Conf}_k(\mathbb{R}^2) \xrightarrow{\sim} \text{Maps}_k^*(\mathbb{R}^2_{\cup{\{\infty\}}}, S^2)$
 $\downarrow \qquad \qquad \downarrow$
 $\mathbb{G}\text{Conf}(\mathbb{R}^2) \xrightarrow{\sim} \text{Maps}^*(\mathbb{R}^2_{\cup{\{\infty\}}}, S^2)$

Since the double loop space Maps^{*} ($\mathbb{R}^2_{\cup{\{\infty\}}}$, S^2) admits the structure of a topological group, all these connected components have the same homotopy type, and hence these scattering processes L are again classified by the integer total crossing number $#L$ which is the abelian Chern-Simons Wilson-loop observable.

and via the framed cobordism moves

it computes to the trivial scattering process accompanied by $#L$ vacuum pair braiding processes:

Chern-Simons level. We will see below further meanings of the number k .

Generally, we will recover in a novel non-Lagrangian way the features of quantum Chern-Simons theory that are traditionally argued starting with the kth multiple of the local Lagrangian density $a \wedge da$ for a gauge potential 1-form a .

The situation on the 2-Sphere.

Furthermore consider k solitons on the actual 2-sphere S^2 .

Here the 2-Cohomotopy moduli space satisfies (cf. $[42]$):

$$
\pi_0 \Omega_k \operatorname{Maps}(S^2, S^2) \; \simeq \; \mathbb{Z}_{2|k|} \, ,
$$

and the long homotopy fiber sequence induced by point evaluation shows that the generator of this cyclic group is again identified with the basic half-braiding operation:

$$
\underbrace{\pi_2(S^2)}_{\mathbb{Z}} \xrightarrow{2k} \underbrace{\pi_0 \Omega_k \text{Maps}^*(\mathbb{R}^2_{\cup \{\infty\}}, S^2)}_{\mathbb{Z}} \xrightarrow{6k} \underbrace{\pi_0 \Omega_k \text{Maps}^*(\mathbb{R}^2_{\cup \{\infty\}}, S^2)}_{\mathbb{Z}} \xrightarrow{7k} \underbrace{\pi_0 \Omega_k \text{Maps}(S^2, S^2)}_{\mathbb{Z}_{2|k|}} \xrightarrow{7k} \underbrace{\pi_1(S^2)}_{1}
$$

With flux-quantized fields being equipped with a classifying space A , there is a neat way to directly obtain the topological quantum observables $-$ via the following observation:

Topological flux observables in Yang-Mills theory – Theorem [108]. For G-Yang-Mills theory on $\mathbb{R}^{1,1} \times \Sigma^2$, with a choice of Ad-invariant lattice $\Lambda \subset \mathfrak{a}$:

(i) Non-perturbative quantization of the algebra of flux observables through the closed surface Σ^2 is given by the group C^{*}-algebra $\mathbb{C}[-]$ of the Fréchet-Lie group of smooth maps $\Sigma^2 \to G \ltimes (\mathfrak{g}/\Lambda)$

(ii) the subalgebra of topological observables coincides with the Pontriagin homology algebra of pointed maps $(\mathbb{R}^1 \times \Sigma^2)_{\cup \{\infty\}} \to B(G \ltimes (\mathfrak{g}/\Lambda))$:

$$
\mathbb{C}\Big[C^{\infty}(\Sigma^{2}, G) \ltimes C^{\infty}(\Sigma^{2}, (\mathfrak{g}/\Lambda))\Big] \stackrel{\{\pi^{0}\}}{\longleftarrow} \mathbb{C}\Big[H^{0}(\Sigma^{2}; G) \ltimes H^{1}(\Sigma^{2}; \Lambda)\Big] \simeq H_{0}\Big(\text{Maps}^{*}((\mathbb{R}^{1} \times \Sigma^{2})_{\cup{\{\infty\}}}, B(G \ltimes (\mathfrak{g}/\Lambda)); \mathbb{C}\Big)
$$

\nnon-perturbative quantum algebra of
\nobservables on flux through Σ^{2}
\nFor example in electromagnetism, $\mathbb{C}\Big[H^{1}(\Sigma^{2}; \mathbb{Z}) \times H^{1}(\Sigma^{2}; \mathbb{Z})\Big] \simeq H_{0}\Big(\text{Maps}^{*}((\mathbb{R}^{1} \times \Sigma^{2})_{\cup{\{\infty\}}}, B\cup{1}) \times B\cup{1})\Big); \mathbb{C}\Big)$
\nwith $G = \mathrm{U}(1)$ and $\Lambda := \mathbb{Z} \hookrightarrow \mathbb{R}$:
\n $\Big[\underbrace{H^{1}(\Sigma^{2}; \mathbb{Z})}_{\text{electric}} \times \underbrace{H^{1}(\Sigma^{2}; \mathbb{Z})}_{\text{magnetic}}\Big] \simeq H_{0}\Big(\text{Maps}^{*}((\mathbb{R}^{1} \times \Sigma^{2})_{\cup{\{\infty\}}}, B\cup{1}) \times B\cup{1})\Big); \mathbb{C}\Big)$

This allows to generalize:

Topological flux observables of any higher gauge theory.

For a higher gauge theory flux-quantized in A -cohomology the quantum algebra of topological flux observables on a spacetime of the form $\mathbb{R}^{1,\bar{1}}\times \Sigma^{D-2}$ is the Pontrjagin homology algebra of the soliton moduli hence in $\text{deg} = 0$ is the group algebra of vacuum soliton processes "on the light-cone":

$$
\begin{array}{rcl}\n\text{Obs}_{\bullet} & := & H_{\bullet}\Big(\text{Maps}^*((\mathbb{R}^1 \times \Sigma^{D-2})_{\cup \{\infty\}}, \mathcal{A}); \mathbb{C}\Big) \\
& \simeq & H_{\bullet}\Big(\Omega \text{Maps}(\Sigma^{D-2}, \mathcal{A}); \mathbb{C}\Big) \\
& \text{Obs}_{0} & = & \mathbb{C}\Big[\pi_0 \Omega \text{Maps}(\Sigma^{D-2}, \mathcal{A})\Big]\n\end{array}
$$

Dirac flux quantization

In the next lecture we discuss concretely these quantum observables on orbi-M5 probes finding them exhibit anyonic topological order as in fractional quantum Hall systems.