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Given higher Maxwell-type equations of motion,

last time we saw the rules by which to choose flux-quantization laws.

But there is still a choice involved, namely of a cohomology theory.
That choice is a choice of completion of the higher gauge theory;,

hence a Hypothesis about the non-perturbative physics it describes.

For the RR-field of 10D supergravity
a traditional choice is: K-theoretic cohomology theory:

this choice could be called Hypothesis K.

For the C-field of 11D supergravity,
and the B-field on its Mb5-probes
an admissible choice is a

twisted /twistorial form of

“Co-Homotopy Theory”, hence “Homotopy cohomology theory”.

Hypothesis H states that: This is the correct choice for M-theory.



The Bianchi identities
for fluxes on Mb5-probes of 11D supergravity

are these:
A-field dF5 = 0 dG; = O C-field
self-dual dHs = ¢*Gs L QFs Fs dGs = le G's dual
B-field 3 s 74 2 472 7 2744 C-field
. Gs
M5 probe Y12 1284 , X1,10]32 SuGra bulk

1/2BPS immersion

Flux-quantizing this situation means
to find /specify a fibration of spaces
which has these same formulas as

its relative minimal Sullivan model.



The Bianchi identities
for fluxes on Mb5-probes of 11D supergravity

are these:
A-field dF5 = 0 dG; = O C-field
self-dual dHs = ¢>|< G + QFs ES dGs = le G's dual
B-field 3 s—4 2~ 2 7 244 C-field
M5 probe Y12 1284 P , X1,10]32 SuGra bulk
1/2BPS immersion
But first:
Flux-quantizing this situation means The next two slides indicate
to find /specify a fibration of spaces the remarkable way in which
which has these same formulas as these Bianchi identites come about
its relative minimal Sullivan model. in 11D supergravity

(technical, may be skipped).



Bianchi identities on M5-Probes of 11D SuGra via super-geometry. Consider the 11D super-tangent

space
RL.10032 isum(R1=m|32) —» s0(1,10)

super-Minkowski super-Poincaré Lorentz
. a\32 ¥
CE(R10132) ~ . (R1’1“|32)h ~ Ry (T*) ety / (d v )
- dR - a\10 a _ (\{Ta )
super-transl. invar. forms (E )a_U dE® = (‘;[J I ‘;[J)

Remarkably, the quartic Fierz identities entail that [19][84][49, Prop. 2.73]:

with its super-invariant 1-forms (cf. [49, §2.1])

|
o

GY = (¥4, Y)E"E in dG% =0
4 2( ) c CE(R1=1“|32)SP (1,10) satisfy : 4

0o . IS 0 _ 1~0~0
G7 = Bl ( v Fal---as III) Er ... E9s fully super-invariant forms d G7 2G4 G4

To globalize this situation, say that an 11D super-spacetime X is a super-manifold equipped with a super-
Cartan connection, locally on an open cover X — X given by

(,1,0)32
a=1
T such that the a 2 b ——
(B0, € QdR,(X) super-torsion dE* — Q% E° = (IIJF ‘I’),
Qeb — _ba 10 vanishes
( - )a,b_{)
and say that C-field super-flux on such a super-spacetime are super-forms with these co-frame components:
Gi = G4 + Gg = %(Gal)a]...a‘lEal e Ea4 + %(E ].—‘ala2 l:[’,).Eﬂ‘l .Eh‘:]’2
Gi = Gr+ GY = H(Ga)aya, B - EY + L(UTy, . gy ¥)EY - E%

Theorem [49, Thm. 3.1]: On an 11D super-spacetime X with C-field super-flux (G§, G%):

the full 11D SuGra

The duality-symmetric dGi = 0
% equations of motion!

super-Bianchi identity dGs = } 18 equivalent to



) ¢ . . . .
Next, on the super-subspace R° (284 0, RLIOI32Z feag by the involution I'gj2345 € P1n+(1, 10) we have:

HY = 0 € CE(R1,5|2‘8+)Spin(1’5) satisfies : dHY = ¢§GY

To globalize this situation, say that a super-immersion X° 2-8, %=, x1,10132 44 12BPS M5 if it is “locally
like” ¢, and say that B-field super-flux on such an M5-probe is a super-form with these co-frame components:

H-g = Hq —+ H.? = ?ll(H?r)alaza;;eal %2 23 4 () (ECL(G — ¢zEa)

Theorem [50, §3.3]: On a super-immersion ¢ with B-field super-flux H3:

the M5’s B-field

. . . 5 S — * 5 5 .
The super-Bianchi identity {d Hj; ¢53G4} 18 equivalent to o e

In particular, the (non-linear self-)duality conditions on the ordinary fluxes are implied: G4 <> G7 and H3 <> Hj.

Seeing from this that also trivial tangent super-cochains may have non-trivial globalization, observe next that:
— . 5| 92. Spin(1,5 .
FO = (Y9) = 0 € CE(RV128:)PR00)  ooticfo . dF? = 0

Globalizing this to 12128+ via

Fs == Fy + F5 := 1(F2)aya, €2 + 0

we have on top of the above:

Theorem [108, p 7]:

the Chern-Simons

The super-Bianchi identity {d 5 = U} 15 equivalent to E.OM.: Fy — 0.



Flux quantization in Twistorial Cohomotopy. In summary, a remarkable kind of higher super-Cartan ge-
ometry locally modeled on the 11D super-Minkowski spacetime R19132 entails that on-shell 11D supergravity
probed by magnetized 1/2BPS M5-branes implies and is entirely governed by these Bianchi identities on super-flux
densities:

Afield dF5 = 0 dGj = 0 C-field
self-dual S __ 1%/ 1§ s IS 8 __ 1lgys s dual
B-fied 4113 = 95Gi + 0F5 Fy dG7 = 361G Clad (2)
. ?s
M5 probe 21’5 |2-8+ > Xl’lo |32 SuGra bulk

1/2BPS immersion
Here we have observed that the Green-Schwarz term F3 F5 may equivalently be included for any theta-angle 6 € R
without affecting the equations of motion (since, recall, the CS e.o.m. Fj = 0 is already implied by d F5 = 0).

But non-vanishing theta-angle does affect the admissible flux-quantization laws and hence the global solitonic
and torsion charges of the fields. The choice of flux quantization according to Hypothesis H [33][35] is the following:

Admissible fibrations of classifying =0 37% U(l) ~ ST x CP>® » 7 hu s HPL

spaces for cohomology theories with the ‘ H-Hopf fibration
above character images (2). The homotopy

C-Hopf fibration

quotient of S7 is (i) for & = 0 by the triv-

ial action and (ii) for 8 # 0 by the principal ¥ i .

action of the complex Hopf fibration. 6+ 0 87//U(1) =~ s CP3 — ]Eb —» HP!L
WISTOTr ration
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Choosing the flux-quantization law
B-field charge
M5-probe 26 S N N CP?)

represented by this fibration

worldvolume e=
means that the charges on 6| &7 ltH
a spacetime domain Wlth Mb5-probe _— n 5, ol
are maps as on the right: spacetime Clfield charge
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means that the charges on é =777 ltH the “right” one

is Hypothesis H.

a spacetime domain with Mb5-probe bulk 1 c3 g4
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Proof. This may be seen as follows [33, Lem. 2.13]: dog—2 ~ BU(1)
H*(CP™ R) ~ R[7¢]/(FY)  H*(CP®;R) ~ Re]

2

Since the real cohomology of projective space

is a truncated polynomial algebra, H*(HP™ R) ~ R[ip1]/ (ptth) H*(CP*; R) ~ R[ipi]
N T o
deg—4 ~ BSp(1) ~ B5U(2)
n [ f2 dfz =0
the minimal dge-algebra model for CP™ needs CE([CP ) ~ Ry homi1) / dhoni1 = (fo)"H!

a closed generator fy to span the cohomology

and a generator hg,; in order to truncate it; r 2

" g4 / d g4 =0
L o E(IHP") ~ R
analogously for HI CE( ) 9 ganss ] ( dginss = ( 94)1;+1)

Furthermore, since the second Chern class of BU(1) ”(‘H‘di"‘g[““*))} BSU(2)

an S(U(1)?)-bundle is minus the cup square ) .

of the first Chern class (by the Whitney sum —(e1) — 3P1 = C2

rule)

the minimal model of CP? relative to that of J2 dfz2=0

HP,; needs to adjoin to the latter not only f5 CE(l ,CP?) ~ Ry h3 / dhy = g2+ fa/o
but also a generator hs imposing this relation - ga dgs =0

in cohomology. L g7 dgr = 39494

The resulting fibration of L., -algebras is manifestly just that classifying the desired Bianchi identities (2)
we are showing the case 6 # 0, which by isomorphic rescaling may be taken to be 6 = 1):

Fs dFe =0
28 - > Qig(—; 1. CP? Q0 (B6) ¢---- CE(l_,CpP3 €N, (26
dR( (T )ulsd dﬂf ) ( up ) Ho dH-( ) dH; = Gy+ F, F,
¢ (Ttm). — " (V)" <
e h . Gd dG4 — 0
»iro_ > QL (—; THP? Q5T O, G L) P — CE(IHP! € 8, (X1
ar (= ) etsa ar(X) ( ) an (XH) dG7 = 5G4 Gy




Aside: Projective Spaces and their Fibrations - some classical facts.

Consider:

division algebras R < C — H generically denoted K € {R, C, H}

groups of units K* := K\ {0} understood with the multiplicative group structure

projective spaces KP™ := (K"*1\ {0})/K*
higher spheres ~ S™ ~ (R™*!'\ {0})/R_,

K-Hopf fibrations are the quotient co-projections induced by ¢ : R_, — K

The classical Hopf fibrations hy are:

SO~ R*/R_, St~ C*/R,,

v}m chr

St~ (R*\{0}) /R, $3 ~ (C2\{0}) /R,

:;!m l;,,, q;hc ib*

St~ £R2\{0})/Ri 52 ~ \gC?\{O})/C’i
RP! CP!

The Hopf fibrations in higher dimensions are the attaching

maps exhibiting the topological cell-complex structure of
projective spaces [88], from which the (cellular) cohomology
follows readily.

S3 ~ H*/R_,

ker

e

ST~ (H2\{0})/R._,

hy L
~
~

S~ (]HIQ\{[)})/]HI"J

L.

J—L}r’ :

S(K”H) — %

th( /11"3 )

KP" 8 KP"!



Further factor-fibrations arise by factoring the Hopf fibra-
tions via the stage-wise quotienting along

R «3R<—>C— H.

=0

Notably, the classical quaternionic Hopf fibration hy fac-
tors through a higher-dimensional complex Hopf fibration
followed by the

Calabi-Penrose twistor fibration iy [33, §2].

Equivariantization: Since the quotienting is by right actions,
these fibrations are equivariant under the left action of

Spin(5) ~ Sp(2) := {g € GLy(H) |.ng g =e}.

§1~C*/R,,

complex

2
S ~ H* / Cx he Hopf fibration

\v

CP? ~ (H?\{0})/C*

ST~ (H\{0})/R.,

quaternionic " Calabi-Penrose
Hopf fibration H H twistor fibration

T

HP! ~ (H?\{0})/H*

cp? = > HP?
N =
 (HxH\{0})/C* — (HxH\{0})/H"
For example, the involution o = [[1} é] € Sp(2) o \ \ o
. AV v
swaps the two copies of H: ) (H&BH\{O})/CX _ (]HI@]HI\{O})/]HIX
- A R i
cp? t S HP?
H
(CP3)™ ~ (H\{0})/C* ~ S?
The resulting Zo-fixed locus is the 2-sphere: l(m)zz l J
(HPY)™ =~ (H\{0})/H* =~ «x



Aside: Implications of Hypothesis H, in
view of traditional expectations for M-theory.

The plain Hypothesis H in the bulk says
that the non-perturbative completion of the
C-field in 11d supergravity involves a map
x from spacetime to the homotopy type of
the 4-sphere, with the C-field gauge potentials
(C3, Cg) exhibiting the flux densities (G4, G7)
as R-rational representatives of vy.

In other words, this is the postulate that the
non-perturbative C-field is a cocycle in canon-
ical, unstable differential 4-Cohomotopy

~4 T s

7 [30, §4][54, §3.1][36, Ex. 9.3].

As an immediate plausibility check: This im-
plies, from the well-known homotopy groups
of spheres in low degrees, that:

integral quantization of charges carried by sin-
gular M5-brane branes and

integral quantization of charges carried by sin-
gular M2-branes... plus a torsion-contribution
(a first prediction of Hypothesis H).

Cohomotopical
charge sector

Maps(X; 5'4) X

Jﬁh l
I

Qg (X5 15%) 1™ T2 (X5 15%) 40y chi)

cls

character
image

(G4: GT) — (_6‘5"0\.?’“

C-field flux densities e
&

??I(G4, GT) /@6\. o

canonical differential
non-abelian (unstable) non-abelian (unstable)
4-Cohomotopy 4-Cohomotopy
(C3,Cs) €

7H(X) . > (X))
full nonperturbative

topological sector
11d SuGra C-field

plain

flux

(G4,G7) densities

Har (X 15%)

[S*-valued de Rham cohomology

’:T4(]R10’1 \Rfi,l) I (R-ﬁ,l xR, x 54)
= 74(8%) = m(S?) = Z

W4(Rln’l \RE,l) — 71,4 (R2’1 X R+ % ST)
= ']‘T4(ST) = TT7(84) = Z %ZLZ




Hypothesis H with curvature corrections. More generally, the curvature corrections from the coupling to
the background gravity are postulated to be reflected in tangentially twisted 4-Cohomotopy (33|, analogous to the
well-known twisting of the RR-field flux-quantization in K-theory by its background B-field:

-

-

—

5%/Sp(2)

>
-
-~

twisted
Cohomotopy

l

Hypothesis K Hypothesis H
KU, /PU(H)
o
\é\»/’f . A -
sel= twisted ot
"‘g“?:" K-theory E:L'"
9 . M- ) T ivebrane stract
X7 - . » BPU(H) T2 % X8 _Fi‘ie_h_lf‘ll_e_b_tEE‘itP_r_% BSp(2)
~-Yigy By R 2 /
""%&5; ~by v bacy L by
&ﬁéoq‘”d IR gr.-dgr:“‘}}}d
qd B2U(1) Vity,

To distinguish M2/Mb5-charge, the
tangential twisting needs to pre-
serve the H-Hopf fibration = tan-
gential Sp(2) < Spin(8)-structure
[33, §2.3]. With this, integrality
of M2’s Page charge & anomaly-
cancellation of the Mb5’s Hopf-WZ
term follows from trivialization of
the Euler 8-class, which means lift
to the Fivebrane 6-group Sp(2) —
Sp(2) (32, §4].

This implies [33, Prop. 3.13][32, Thm. 4.8|:

(i) half-integrally shifted quantization of M5-
brane charge in curved backgrounds, and

R 1(1,, (V8 4(v8.
(G4 := @ + 1 (3p(TX®)) € H* (X3, Z)

C-field
4-flux

integral Spin-
Pontrjagin class

(ii) integral quantization of the Page charge
of M2-branes.

2(Gy] = 2([G7]+%[H3/\é4]) e H'(X%Z)

Both of these quantization conditions on M-brane charge Previously, item (i) had remained enigmatic and item

are thought to be crucial for M-theory to make any sense.

There is more:

Provable implications from Hypothesis H
of subtle effects expected in M-theory:

It is these results which suggest that Hy-
pothesis H goes towards the correct flux-
quantization law for the C-field in M-theory.

. - non-abelian gerbe field on M5

(ii) had remained wide open.
(- half-integral shift of 4-flux
- DMW anomaly cancellation
- the C-field’s “integral EoM”
{ - M2 Page charge quantization
- integrality of §(G4)?
- M5-brane anomaly cancellation [106]

33, Prop. 3.13]
33, Prop. 3.7

133, §3.6]

32, Thm. 4.§]

[54, Rem. 2.9]

[34]



Orbi-worldvolumes and Equivariant charges. Flux-quantization generalizes to orbifolds * by generalizing the
cohomology of the charges to equivariant cohomology [102].

In terms of classifying spaces this simply Z

o orbi-brane ¢ ( J'-
means that all spaces are now equipped with orbi- (El charges }( _Al- Cp3
the action of a finite group G and all maps are worldvolume et ctvaiant _
required to be G-equivariant, o l S i
We take G := Z, and the classifying fibration . fibration...
- - . . orol- — 14
to be the twistor fibration p := ty equivari- spacetime X T obibulk B == f*‘—" ¥
ant under swapping the H-summands, (&7 charges () Ly
and the brane/bulk orbifold we take to be as on p. 3:
The orbi-brane diagram for a flat Mb-brane {EZ{L ( Ezl
wrapped on a trivial Seifert-fibered orbi-singularity. Y o= RLO » R2 x Sl x 2
Shaded is the Zy-fixed locus/orbi-singularity. U{eo} gu
We are adjoining the point at infinity to the space ¢'[ {Ez )
a2 —~ 2 . . .
3, {0} p 5< which is thereby designated as X — RO « R2 « S x Rg < RS
transverse to any worldvolume solitons to be mea- (r U{eo} gn
sured in reduced cohomology. Lo & trnsvrs space M /IIA- orbi- trnsvrs space
umne to solitons circle cone to Mb5-brane
Zo 3
But since the cone o - the inclusion of the Zo- Y2~ W
2 * s o- ) ) ’ u T ] hmtp
Lo CREEH is equivari EL “hmtp Z; * fixed loci is actually a ho- 2 l \L qﬁ

antly contractible, motopy equivalence

2y _~
W X4z Tntp {Xir

G
Therefore our equivariant classifying maps are determined up to equivariant homotopy by their restriction to the
fixed-locus and hence the charges are localized on the orbi-singularily where they take values in 2-Cohomotopy:

( "
Z.
Y ( 2 11 4 3
EE\l __________ , Cp vz _____ y (CPH)EQ g2
- L{:"
L7 t ~ ﬁf’z"‘i ltz"- ~ 2 1 2
9 ‘ﬁl lﬂ SR H p Ri{oo} X 9 » S
X - 5 G4 ) ¢ —— > (84)32 _ % charges in 2-Cohomotopy
h. . - . of B-field solitons
{zz’r Eﬂﬁ%ﬁ’;ﬁn {E;}. L charges localized on orbi-singularity ) on M5 orbi-singularity
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o orbi-brane
means that all spaces are now equipped with orbi- ':El___fl_h'_n;g_ef__
the action of a finite group GG and all maps are worldvolume "
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We take G := Zy and the classifying fibration .
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ant under swapping the H-summands, G charges

and the brane/bulk orbifold we take to be as on p. 3:

(°) (™)
A: cp?
Hl”h-fl.ri.“ht ...for equivariant
pJ( ia'lllkrlli\:f]i;:éilﬁ t“l twistorial Cohomotopy
» B 94
(o7 (3,

This situation to be
analyzed in the third lecture,

using the following general tools:

- Pontrjagin theorem: Cohomotopy sets
- Segal theorem:

- Pontrjagin algebra  of Cohomotopy moduli:

< Cobordism classes of solitons
Cohomotopy moduli <+ configuration spaces of solitons

quantum observables on solitons

Therelore our equivariant classilying maps are determined up to equivariant homotopy by their restriction to the
fixed-locus and hence the charges are localized on lhe orbi-singularily where they take values in 2-Cohomotopy:

i} 3
v P
din 2 r ) N \
B RN > tI{IP% yP2 oy (CP?)™ == 57

=" 2| &7 ,
= Hie -
q = J(tn } ~ 4 ¢ zl J’tnz J{ .

X - » S X%z e > (84)%2 %
{E'..JT n:hm{]g‘n?slgn {I’.; \ charges localized on orbi-singularity

L orbifo )

----- y 52 }

charges in 2-Cohomotopy
of B-field solitons
on M5 orbi-singularity



Remarkably, there is an equivalence between Cohomotopy of spacetime/worldvolumes and Cobordism classes of
submanifolds behaving like solitonic branes carrying the corresponding Cohomotopy charge [103, §2.2] [101, §2.1]:

The Pontrjagin theorem
[70][69, §IX]| identifics the

assign Colomaotopy charge — .

manifold (aka scanning
map or Ponirjagin-Thom
collapse) is represented by
mapping points of the am-
bient space to their directed
distance if inside a tubular
neighbourhood, else to co.
Conversely, every Cohomo-
topy class is representated
by a smooth map with 0
a regular value, whose pre-
image is a normally framed
submanifold with that Co-
homotopy charge.

s . ™ Treanmed winstabie T _— st bobe
unstable n-Cohomotopy of = mw=iws=ete — R —_— AR o
. . R " . — —— reted asymplotic i Te——

a closed manifold with the - Coy, (y4) = NFramedSubmildss- (M) - Maps (M, $7) - 7 (M),
cobordism classes of its nor- -~ ~—— pre-image of regular vahe 0 —— . A
X —— e manifuld
mdlljr [r‘un{:{l ﬁlll}m'mlfﬂhiﬁ T — recoistruct submanifold G its charse ™ -
of co-dimension n.
c n
E.rf —n C >~ M > IRE = 5"
s b " directed asymptotic distance from X ) o .
The Cohomotopy charge ¢ osed “ilj T“‘m '"Ild' manifold ~ cocycle representing Cohomotopy charge of & Cohomotopy d::ﬂ?-'"ﬂ Space
normally frumet (n-sphere
of a normally framed sub- e o
L ] - "

-
- - -

- ponstant on O at E

directed distance

- . . —




Moduli space of soliton configurations. But the Pontrjagin theorem concerns only the total cohomotopical

charge, identifying it with the net (anti-)brane content.

(considered now specialized to our 2D
transverse space), and Segal’s the-
orem [l11] says that the cohomo-
topy charge map (scanning map) iden-
tifies this with a moduli space of
brane positions, namely with the group-

completed configuration space of points
[15][120][43]:

moduli space
of solitonic
brane charges

moduli space
of solitonic

where the configuration space of points
is the space of finite subsets of R? — here
understood as the space of positions of
cores of solitons of unit charge +1,

brane positions

Conf(R?) =

Beyond that we have the whole moduli space of charges

2- Cohomotopy

[—]

net charge

Maps* (R}, 5%)

) ('U;. g‘;.’.‘”n
.. O
Segal Pontrjagin ) ~
theorem theorem / Z
[—] 2
G Conf(IR?) » Cobg, (R?)
&anr net brane content .
Cop, Oy, 01;,5g 2-Cobordism
b, ©toy Ddf‘@ (unstable)
\an® positions of
w-‘,\;e\“f’ﬂ v \ / soliton cores ==
T AL
v > T “

E -



and 1ts group completion (3(—) 1s the topological completion ot the topological Configurations of chargoed
partial monoid structure given by disjoint union of soliton configurations. points | strings
Naively this is given by including also anti-solitons in the form of configurations of
+-charged points, topologized such as to allow for their pair annihilation/creation O—0 @
as shown in the left column on the right. 5
Remarkably, closer analysis reveals [89] that the group completion G(—) produces O
configurations of strings (extending parallel to one axis in R*) with charged O ® §
endpoints whose pair annihilation/creation is smeared-out to string worldsheets é O ®
as shown in the right column. » 5
This means [105] that the vacuum-to-vacuum soliton scattering processes, 5 (i
forming the loop space 2 G Conf(R?), are identified with framed links ([90, pp 15]), o 5
for instance ®»
e O e §
- . _g '3_—';'
o= 8 g =0 &
T *— 5 0 O
— :‘:I ':_'. : : tracing out
GOm0 F— worldlines worldsheets
’ A —
] L ¥
Lt AT O—0 &9
o s [ O Q ’
O e o =0 ) | Oe——
-%2 B ¥ PO
n, - Y g @ (O
[ ]T. .T(‘
@
subject to link cobordism (cf. [76]): 2
S— ﬁ :(( "1!.1: ~ | It follows [105, Thm 3.17] that the charge of a soliton
( s e I . scattering process L is the sum over crossings of the
L 'y [
p s e Py N\ " _
N . e I - —t crossing number # (/\) Fl1, # (/\') 1,
- _ w-w»| which equals the linking}framing number:
. * 2y ™ 2 - 2y ~
s ® B ~ _a QGConf(R?) = QMaps™/ (R, 5%) = m3(5?) ~ Z
e =) P, ol L total crossing number = s #
r—y ' linking + framing number ’ #
g e But this is precisely the Wilson loop observable
At 8 = B of L in (abelian) Chern-Simons theory! [105, §4]
"_'.—:'r—'-_', As we explain next.




The k-Soliton sector. More generally, we may con- net charge k

Hopl degree &

sider loops based in the kth connected component of ~ GConf(R?) —~— Maps;, (Rﬁ{m}, S%)

the moduli space, corresponding to scattering pro- ix £

cess from &k to k net number of solitons. GConf(R?) —~— Maps" (Rfj (oo} S”)

Since the double loop space Maps* (R? 52) admits the structure of a 4
Py ps” (Ri(ooy, 5%) Q) GConf (R2)

topological group, all these connected components have the same homo-
topy type, and hence these scattering processes L are again classified by
the integer total crossing number # L which is the abelian Chern-Simons

Wilson-loop observable.

For instance, a generic k — 3 process looks like this:

-
am™ h‘_.

and via the framed cobordism moves

X = R )

Tmﬂ;_- GC{}ﬂf(Rz)

¥

L
W_,

LY

il

it computes to the trivial scattering process accompanied by # L vacuuum pair braiding processes:

£ L
f ] L] [ ]
" " l Il 1
L ] L] Ll
[] L] []
L] L] L]
[ ] L ] [ ]
[ ] [ [ ]
L] L] L]
' NN 1 '
L ] L] L]
L] L] L]
L] [ ] L]
' 1 '
[ [ [
L1 L1
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Chern-Simons level. We will see below further meanings of the number k:

the number of fractional quasi-hole vortices in a quantum Ilall system,
This integer k is equivalently ¢ the level of their effective abelian Chern-Simons theory,
the mazximal denominator for filling fractions of their quantum states.

Generally, we will recover in a novel non-Lagrangian way the features of quantum Chern-Simons theory that are
traditionally argued starting with the kth multiple of the local Lagrangian density a A da for a gauge potential
1-form a.

The situation on the 2-Sphere.

Furthermore consider k solitons on the actual 2-sphere S2. a2 a2

Here the 2-Cohomotopy moduli space satisfies (cf. [42]): moQi Maps(S?, §) = Zoj,

and the long homotopy fiber sequence induced by point evaluation shows that the generator of this cyclic group is
again identified with the basic half-braiding operation:

point-

fiber of.. evaluation

Maps* (Ru{m},S‘) —SL2ey Maps (52, 52) S

m5(5%) — mofMaps® (Ru{w}asﬂ) — moS%Maps($°,5%) —— m (S7)
T g ’ ”v ’ 1
o | b

N <]




With flux-quantized fields being equipped with a classifying space A, there is a neat way to directly obtain the
topological quantum observables — via the following observation:

Topological flux observables in Yang-Mills theory — Theorem [108]. For G-Yang-Mills theory on R1! x %2,
with a choice of Ad-invariant lattice A C g:

(i) Non-perturbative quantization of the algebra of flux observables through the closed surface X2 is given by the
group C*-algebra C[—] of the Fréchet-Lie group of smooth maps ¥? — G x (g/A)

(ii) the subalgebra of topological observables coincides with the Pontrjagin homology algebra of pointed maps

(R x ¥2)y{00r = B(G x (g/A)):
c[cw(z?, G) x C*= (%2, (g/A))] ¢ [H0(22; G) x H(x2; A)] ~H, (Maps*((Rl X 52) 4003, B(G % (g/A)); cc)

non-perturbative quantum algebra of sub-algebra of Pontrjagin homology algebra of
observables on flux through 32 topological observables moduli space of soliton charges

For example in electromagnetism, (C[Hl v2.7) « H1(Y2.7, ] ~ H (Ma ¢ ((RY x 2 BU(1) x BU() ): C)
WlthG:U(l)aﬂdA:Z"—)R . (Va _)/ = (V: _), — 11p P (( )U{OO}?\_ ()V (2):

electric magentic classifying space for
This allows to generalize: Dirac flux quantization
Topological flux observables of any higher gauge theory.

For a higher gauge theory flux-quantized in A-cohomology
the quantum algebra of topological flux observables

on a spacetime of the form R x ¥P—2

is the Pontrjagin homology algebra of the soliton moduli

Obse := H, (Maps"’((Rl X %P72) j{oo} A); (C)

2

H. (Q Maps(2P~2, A); (C)

hence in deg = 0 is the group algebra of
vacuum soliton processes “on the light-cone”:

Obsg = C [ﬂgQ Maps (29—21 A)]



For note that the star-involution { - complex conjugation (time reversal) where RL! ~ R (t, ),

is given by the combination of - loop reversal (hence z-reversal)
and the
opcrator A A
product L t

is given / X
by loop
concate- /

nation:

— topological classes _ -

of

vacuum-to-vacuum -
processes of — A

quantized flux t

along t —z e /

and their .
concatenation ~




In the next lecture we discuss
concretely these quantum observables
on orbi-M5 probes
finding them exhibit
anyonic topological order

as in fractional quantum Hall systems.



