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but real quantum circuits have classical control & effects
(Example: QBit Teleportation protocol)
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Existing quantum typed circuit languages
are embedded inside classical type theories:
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Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

unverified linear type universe

Quantum Circuit Language
e.g. QML, Quipper, QWIRE, ...

for lack of a universal linear type theory.

Why did that not exist?
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics”.

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics”.

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction
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)
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Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...

17

https://ncatlab.org/nlab/show/quantum+logic#BirkhoffvonNeumann36
https://ncatlab.org/nlab/show/linear+logic#Girard1987
https://ncatlab.org/nlab/show/quantum+logic#MagisteralMistake
https://ncatlab.org/nlab/show/quantum+information+theory+via+dagger-compact+categories#AbramskyDuncan05
https://ncatlab.org/nlab/show/quantum+logic#NonLogic
https://ncatlab.org/nlab/show/quantum+measurement#CoeckePavlovi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font)              }\let \protect \immediate\write \m@ne {LaTeX Font Info:     on input line 4918.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 c\egroup \spacefactor \accent@spacefactor }
https://ncatlab.org/nlab/show/ZX-calculus#CoeckeDuncan08
https://ncatlab.org/nlab/show/linear+logic#Murfet14
https://ncatlab.org/nlab/show/quantum+logic#LinearLogicAndDependentLinearTypeTheory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#FuKishidaSelinger20
https://ncatlab.org/nlab/show/bunched+logic#O'HearnPym99
https://ncatlab.org/nlab/show/bunched+logic#Unsatisfactory
https://ncatlab.org/nlab/show/bunched+logic#Sch%C3%B6ppStark04
https://ncatlab.org/nlab/show/bunched+logic#UnsatisfactorySch%C3%B6ppStark
https://ncatlab.org/nlab/show/Joyal+locus#Joyal08
https://ncatlab.org/nlab/show/Joyal+locus#Hoyois19
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/nlab/show/bireflective+subcategory#RFL21
https://ncatlab.org/schreiber/show/Quantum+Certification+via+Linear+Homotopy+Types


Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics”.

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2
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(
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)
P 2
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Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics”.

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...

31

https://ncatlab.org/nlab/show/quantum+logic#BirkhoffvonNeumann36
https://ncatlab.org/nlab/show/linear+logic#Girard1987
https://ncatlab.org/nlab/show/quantum+logic#MagisteralMistake
https://ncatlab.org/nlab/show/quantum+information+theory+via+dagger-compact+categories#AbramskyDuncan05
https://ncatlab.org/nlab/show/quantum+logic#NonLogic
https://ncatlab.org/nlab/show/quantum+measurement#CoeckePavlovi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font)              }\let \protect \immediate\write \m@ne {LaTeX Font Info:     on input line 9581.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 c\egroup \spacefactor \accent@spacefactor }
https://ncatlab.org/nlab/show/ZX-calculus#CoeckeDuncan08
https://ncatlab.org/nlab/show/linear+logic#Murfet14
https://ncatlab.org/nlab/show/quantum+logic#LinearLogicAndDependentLinearTypeTheory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#FuKishidaSelinger20
https://ncatlab.org/nlab/show/bunched+logic#O'HearnPym99
https://ncatlab.org/nlab/show/bunched+logic#Unsatisfactory
https://ncatlab.org/nlab/show/bunched+logic#Sch%C3%B6ppStark04
https://ncatlab.org/nlab/show/bunched+logic#UnsatisfactorySch%C3%B6ppStark
https://ncatlab.org/nlab/show/Joyal+locus#Joyal08
https://ncatlab.org/nlab/show/Joyal+locus#Hoyois19
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/nlab/show/bireflective+subcategory#RFL21
https://ncatlab.org/schreiber/show/Quantum+Certification+via+Linear+Homotopy+Types


Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...

33

https://ncatlab.org/nlab/show/quantum+logic#BirkhoffvonNeumann36
https://ncatlab.org/nlab/show/linear+logic#Girard1987
https://ncatlab.org/nlab/show/quantum+logic#MagisteralMistake
https://ncatlab.org/nlab/show/quantum+information+theory+via+dagger-compact+categories#AbramskyDuncan05
https://ncatlab.org/nlab/show/quantum+logic#NonLogic
https://ncatlab.org/nlab/show/quantum+measurement#CoeckePavlovi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font)              }\let \protect \immediate\write \m@ne {LaTeX Font Info:     on input line 10235.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 c\egroup \spacefactor \accent@spacefactor }
https://ncatlab.org/nlab/show/ZX-calculus#CoeckeDuncan08
https://ncatlab.org/nlab/show/linear+logic#Murfet14
https://ncatlab.org/nlab/show/quantum+logic#LinearLogicAndDependentLinearTypeTheory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#FuKishidaSelinger20
https://ncatlab.org/nlab/show/bunched+logic#O'HearnPym99
https://ncatlab.org/nlab/show/bunched+logic#Unsatisfactory
https://ncatlab.org/nlab/show/bunched+logic#Sch%C3%B6ppStark04
https://ncatlab.org/nlab/show/bunched+logic#UnsatisfactorySch%C3%B6ppStark
https://ncatlab.org/nlab/show/Joyal+locus#Joyal08
https://ncatlab.org/nlab/show/Joyal+locus#Hoyois19
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/nlab/show/bireflective+subcategory#RFL21
https://ncatlab.org/schreiber/show/Quantum+Certification+via+Linear+Homotopy+Types


Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we clearly want classically-dependent linear types such as n : N ⊢ Cn :
LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger 2020 present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but did not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...

62

https://ncatlab.org/nlab/show/quantum+logic#BirkhoffvonNeumann36
https://ncatlab.org/nlab/show/linear+logic#Girard1987
https://ncatlab.org/nlab/show/quantum+logic#MagisteralMistake
https://ncatlab.org/nlab/show/quantum+information+theory+via+dagger-compact+categories#AbramskyDuncan05
https://ncatlab.org/nlab/show/quantum+logic#NonLogic
https://ncatlab.org/nlab/show/quantum+measurement#CoeckePavlovi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font)              }\let \protect \immediate\write \m@ne {LaTeX Font Info:     on input line 19755.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 c\egroup \spacefactor \accent@spacefactor }
https://ncatlab.org/nlab/show/ZX-calculus#CoeckeDuncan08
https://ncatlab.org/nlab/show/linear+logic#Murfet14
https://ncatlab.org/nlab/show/quantum+logic#LinearLogicAndDependentLinearTypeTheory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#FuKishidaSelinger20
https://ncatlab.org/nlab/show/bunched+logic#O'HearnPym99
https://ncatlab.org/nlab/show/bunched+logic#Unsatisfactory
https://ncatlab.org/nlab/show/bunched+logic#Sch%C3%B6ppStark04
https://ncatlab.org/nlab/show/bunched+logic#UnsatisfactorySch%C3%B6ppStark
https://ncatlab.org/nlab/show/Joyal+locus#Joyal08
https://ncatlab.org/nlab/show/Joyal+locus#Hoyois19
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/nlab/show/bireflective+subcategory#RFL21
https://ncatlab.org/schreiber/show/Quantum+Certification+via+Linear+Homotopy+Types


Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...

66

https://ncatlab.org/nlab/show/quantum+logic#BirkhoffvonNeumann36
https://ncatlab.org/nlab/show/linear+logic#Girard1987
https://ncatlab.org/nlab/show/quantum+logic#MagisteralMistake
https://ncatlab.org/nlab/show/quantum+information+theory+via+dagger-compact+categories#AbramskyDuncan05
https://ncatlab.org/nlab/show/quantum+logic#NonLogic
https://ncatlab.org/nlab/show/quantum+measurement#CoeckePavlovi{\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {c\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \let \typeout \protect \begingroup \def \MessageBreak {
(Font)              }\let \protect \immediate\write \m@ne {LaTeX Font Info:     on input line 21064.}\endgroup \endgroup \relax \let \ignorespaces \relax \accent 19 c\egroup \spacefactor \accent@spacefactor }
https://ncatlab.org/nlab/show/ZX-calculus#CoeckeDuncan08
https://ncatlab.org/nlab/show/linear+logic#Murfet14
https://ncatlab.org/nlab/show/quantum+logic#LinearLogicAndDependentLinearTypeTheory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#FuKishidaSelinger20
https://ncatlab.org/nlab/show/bunched+logic#O'HearnPym99
https://ncatlab.org/nlab/show/bunched+logic#Unsatisfactory
https://ncatlab.org/nlab/show/bunched+logic#Sch%C3%B6ppStark04
https://ncatlab.org/nlab/show/bunched+logic#UnsatisfactorySch%C3%B6ppStark
https://ncatlab.org/nlab/show/Joyal+locus#Joyal08
https://ncatlab.org/nlab/show/Joyal+locus#Hoyois19
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/nlab/show/bireflective+subcategory#RFL21
https://ncatlab.org/schreiber/show/Quantum+Certification+via+Linear+Homotopy+Types


Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Historical search for quantum/linear logic/type-theory — a goose chase:
Birkhoff-von Neumann 1936 (BvN) give physically well-motivated quantum logic,
but seemingly formally unsatisfactory (infamous lack of implication-connective, etc.)
Girard 1987 finds BvN a “magisterial mistake”, introduces linear logic in the
“wild hope of direct connection with quantum mechanics – but let’s not dream!”

Abramsky, & Duncan 2005 also find BvN “a non-logic...never satisfactory”
consider the internal logic of †-compact closed categories, like FDHilb, which
Coecke & Pavlović 2008 equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first practically successful quantum logic.

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard’s
linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, enhancing the internal linear logic of FDVect with type dependency,
(to see the slices FDVect/H ) would immediately recover BvN’s quantum logic:

Internal logic in FDVect/H

proposition conjunction disjunction

P

H

p

P 1 P 1∩P 2 P 2

H

p1 p1∧p2 p2

P 1⊕P 2

P 1 Span
(
P 1, P 2

)
P 2

H

p1 p1∨p2 p2

Also, we need classically-dependent linear types, eg. n : N ⊢ Cn : LinType
– these ought to be interpreted as vector (Hilbert) bundles.

Fu, Kishida & Selinger (2020) present a classically-dependent linear type theory
explicitly as a practical quantum programming language (proto-Quipper) with
categorical semantics in (notably) vector bundles over sets: VectSet.
NB: A linear-dependent internal logic of VectSet would still see BvN quantum logic.
NB: VectSet carries two monoidal structures: cartesian (×) and “external” (⊗) tensor.

Hence full dependency requires handling nested contexts like X×
(
H ⊗V

)
×W .

O’Hearn & Pym (1999) already experimented with such “bunched” contexts, but
ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory
but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

Joyal (2008), Hoyois (2016) show unification of classical and linear homotopy-types:
remarkably: ∞-categories of bundles of linear homotopy types are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret
a modal, namely infinitesimally cohesive Homotopy Type Theory (HoTT), and
S. (Feb 2014) suggests that classical HoTT should have a linear extension with
multiplicative conjunction ⊗ interpreted as the (external) smash product of spectra.
Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of ⊗:
the resulting bunched & infinitesimally cohesive homotopy type theory
seems to finally deal with all the above technical issues.

CQTS (2023) understand this Linear Homotopy Type Theory (LHoTT)
as the missing quantum certification language (close to Quipper)...
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Our Solution
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

84

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39


Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
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and
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
via a bireflective modality ♮ exhibiting linear extension of classical types
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
via a bireflective modality ♮ exhibiting linear extension of classical types

Idea: Frobenius monad on type system carves out classical types

classical
types

all
types

ClType Type

bireflective among

β

ι

β

⊥

⊥
♮ classical

modality

such that: ♮ idB

♮

ε♮

η♮
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
via a bireflective modality ♮ exhibiting linear extension of classical types
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
via a bireflective modality ♮ exhibiting linear extension of classical types
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)
closed base type

B : BType ⊢
B-dependent linear types

LinTypeB :≡ B→ LinType

linear base change

closed function

f : B→ B′ ⊢ LinTypeB LinTypeB′

f!

f ∗

f∗

E
(−) : LinTypeB′ ⊢

(
f ∗E

(−)

)
:≡ b 7→ E f (b) precomposition

E
(−) : LinTypeB ⊢

(
f∗E(−)

)
:≡ b′ 7→ ∏

(b,p) :fib f (b′)
Eb dependent product

E
(−) : LinTypeB ⊢

(
f!E(−)

)
:≡ b′ 7→

∨
(b,p) :fib f (b′)

Eb
HIT cofiber of

zero inclusion in
dependent sum
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Linear Homotopy Type Theory (LHoTT)
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Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
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conservative over classical Homotopy Type Theory (HoTT)
and
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Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types

fibered over

LHoTT is like a quantum microscope for Classical Data Types

tangent ∞-topos of

T Grpd∞ :≡

parameterized
R-linear homotopy types∫
B∈Grpd∞

RModB ≡



module
bundle

module
bundle

E ′ E
f ∗E

B′ B′ B
parameter
base space

parameter
base space

morphism

f
morphism of
base spaces


96

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39


Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
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(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types

fibered over

Classical Data Types

tangent ∞-topos of

T Grpd∞ :≡

parameterized
R-linear homotopy types∫
B∈Grpd∞

RModB ≡

module
bundle

module
bundle

E ′ E
f ∗E

B′ B′ B
parameter
base space

parameter
base

morphism

f
morphism of
base spaces

LH
oT
T

LH
oT
T

117

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39


Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ classical & linear dependent type theory
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]
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QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

Quantum Systems Language (QS)
for quantum logic circuits

Topological Quantum Gate Circuits
for realistic quantum computation

ambient LHoTT verifies classically dependent quantum linear types
ambient HoTT provides specification of topological quantum gates
ambient dTT provides full verified classical control
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
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Linear/Quantum Data Types
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Quantum Effects
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Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:

D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

effectful program

output data of nominal type D2
causing effects of type E (−)

prog23

second program

input data of type D2
causing effects of type E (−) bind previous effects

into second program

retED

returning trivial E (−)-effect

prog12 bindE prog23

carry any previous E (−)-effects along

compose

bindE retED
= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects
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Recall: Monadic computational effects.
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Recall: Monadic effect handlers.

D1 D2 data type to absorb E -effects

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−→ E (D1)
hndlED2

prog12
−−−−−−−→ D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects
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Recall: Monadic effect handlers.
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Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2
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−−−−−−−→ D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥
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Now just to work this out

for the effects induced by

dependent data type formers

in LHoTT −→
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′ )b′:B 7→ pb pb 7→ (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(b,p) 7→ p p 7→ (p)b:B

classicaldata types

185



Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′ )b′:B 7→ pb pb 7→ (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(b,p) 7→ p p 7→ (p)b:B

classicaldata types

186



Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′ )b′:B 7→ pb pb 7→ (b,pb)

ε
9B
P

entails

η
⃝B
P

entails

(b,p) 7→ p p 7→ (p)b:B

classicaldata types

188



Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •
□B H •

actually H •
H •

possibly H •
♢B H •

necessarily H •
□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H
⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7→ |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7→⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7→ ∑b |ψb⟩
quantum superposition

|ψ⟩ 7→ ⊕b|ψ⟩b
quantum parallelization
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :ClType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
(pB)

∗(pB)!H •

b : B ⊢ ⊕
b′:B

H b′ H b b : B ⊢ H b ⊕
b′:B

H b′

9B︷ ︸︸ ︷
(pB)!(pB)

∗H H H

⃝B︷ ︸︸ ︷
(pB)∗(pB)

∗H

⊕
b:B

H H H ⊕
b:B

H

ε
□B
H •

necessity counit

η
♢B
H •

possibility unit

⊕b′ |ψb′ ⟩ 7→ |ψb⟩
quantum measurement

|ψb⟩ 7→ ⊕b′

{
|ψb⟩ if b′=b
0 else

quantum state preparation

“ the actual is possible ”“ the necessary becomes actual ”

“ the random becomes potential ” “ the potential is indefinite ”

adjoints←−−−−−→

ε
9B
H

randomness counit

η
⃝B
H

indefiniteness unit

⊕b|ψb⟩ 7→ ∑b |ψb⟩
quantum superposition

|ψ⟩ 7→ ⊕b|ψ⟩b
quantum parallelism
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The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:
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The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.
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The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.
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The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.
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b : B ⊢ ⊕
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H b′ H b b : B ⊢ H b ⊕
b′:B
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(pB)!(pB)

∗H H H
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Q-bits are the free linear indefiniteness-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−→ LType

Bit

⊕Bit−−→∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−→∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle⃝Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃
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Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B⊗H □B1B⊗K 1B⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B

su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

quantum gate

H φ−→ QBit⊗K ≃ ⃝BK

⃝B

hndl⃝B
⃝BK⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B
⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7→ |ψb⟩

quantum state collapse
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Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−→
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−→
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−→
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B⊗1B

1
B

1

unit co-product product co-unit
η

1 7→ ∑
b:B

Pb

δ

Pb 7→ Pb⊗Pb

µ

Pb⊗Pb′ 7→

{
Pb if b=b′

0 else

ε

Pb 7→ 1
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LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−→
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−→
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−→
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B⊗1B

1
B

1

unit co-product product co-unit
η

1 7→ ∑
b:B

Pb

δ

Pb 7→ Pb⊗Pb

µ

Pb⊗Pb′ 7→

{
Pb if b=b′

0 else

ε

Pb 7→ 1
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Exmp: Deferred measurement principle – Proven by monadic effect logic.

Kl
(
□B

)
□B-Kleisli morphisms

LTypeB□B

□B-coalgebra homomorphisms

Kl
(
□B

)
□B-Kleisli morphisms

□BH •
F−→□BH •

ε
□B

H •−−→H •
G•−→H •

measurement-controlled quantum gate
7→ □BH •

diagB(G•)◦F−−−−−−−→□BH •
quantum-controlled quantum gate...

7→ □BH •
diagB(G•)◦F−−−−−−−→□BH •

ε
□B

H •−−→H •
...followed by measurement

B0 1

F

G•

Deferred Measurement Principle←−−−−−−−−−−−−−−−−−−→

B0 1

F

G•

∼
δ B ◦□B(−)

id
Kleisli equivalence

∼

ε□B◦(−)

classically controlled gate quantumly controlled gate

BB

KK G•

B•⊠K B•⊠K

b : B ⊢ K K

G•

Gb

BB

KK G•

□BB•⊠K □BB•⊠K

b : B ⊢ ⊕
b′B

K ⊕
b′B

K

□BG•

⊕
b′:B

Gb′
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The Quantum modality.
Also the exponential modality traditionally postulated in linear logic
is an emergent effect in LHoTT,
as is the crucial Quantum Modality, not considered before:

Type LType exponential
modality

classical
types

linear
types

quantum
modality Q

Ω∞

Σ∞
+ : B 7→ 9B1

linear randomization
aka: stabilization/motivization

⊥ !
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Quantum Circuits
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Quantum effects are compatible with tensor product.
Linear Randomness and Indefiniteness are “very strong” effects, in that:

⃝B
(
D⊗D′

)
≃

(
⃝BD

)
⊗D′ , 9B

(
D⊗D′

)
≃

(
9BD

)
⊗D′

There is a whole system of them:

⃝B⃝B′ ≃ ⃝B×B′ , NB: ⃝B⃝′B ≃ ⃝B1⊗⃝′B

which under dynamic lifting (monadicity comparison functor)
gives the external tensor product of dependent linear types:

free⃝B-effect handlers
in linear data types LType⃝B

⃝B×B′⃝B×B′H

B-dependent
linear data types LTypeB

(
□B1B

)
⊠

external
tensor product

(
□B′1B′

)
⊗H

K
⊕

B
1

B ⊗

com
parison

functor

⃝
B×B′

so...235



Quantum circuits with classical control & effects
are the effectful string diagrams in the linear type system

E.g.
The dependent linear type of a measurement on a pair of qbits:

0 1

0 1

type of a pair of
coherent qbits

□Bit2
(
QBit•⊠QBit•

)
type of

collapsed qbits
dependent on

measured bits b,b′

QBit•⊠QBit•

measured bits

(b,b′) : Bit2 ⊢ □Bit2
(
QBit•⊠QBit•

)
(b,b′) ≃ C2⊗C2 C .

εBit2 (QBit•⊠QBit•)

pair of measurements

∑d,d′ qdd′ |d⟩⊗|d
′⟩ 7→ qbb′ |b⟩⊗|b

′⟩

collapse of the quantum state

236



Example: Bell states of q-bits are typed as follows (regarded in LTypeBit×Bit):

|0⟩

|0⟩

H

Bell state preparation

QBit•⊠QBit•
(
♢BitQBit•

)
⊠
(
♢BitQBit•

)
≃ □Bit2

(
QBit•⊠QBit•

)
□Bit2

(
QBit•⊠QBit•

)
b,b′ : Bit ⊢ C C2⊗C2

1 7→ |0⟩⊗|0⟩ 7→ 1√
2

(
|0⟩+|1⟩

)
⊗|0⟩ 7→ 1√

2

(
|0⟩⊗|0⟩+ |1⟩⊗|1⟩

)

H

Bell state measurement

0 1

0 1

□Bit2
(
QBit•⊠QBit•

)
QBit•⊠QBit•

b1,b2 : Bit ⊢ C2⊗C2 C
∑b′1b′2

qb′1b′2
·|b′1⟩⊗|b

′
2⟩ 7→

(
q0,b2+(−1)b1 ·q1,(1−b2)

)
·|b1⟩⊗|b2⟩
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QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

discussedelsewhere

Quantum Systems Language (QS)
for quantum logic circuits

discussed inthis talk
Topological Quantum Gate Circuits

for realistic quantum computation
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Effective Quantum Certification
via Linear Homotopy Types

Urs Schreiber (NYU Abu Dhabi)
on joint work at CQTS with

D. J. Myers, M. Riley,
and Hisham Sati

presentation at:

The Topos Institute Colloquium, 13 Apr 2023

slides and further pointers at: ncatlab.org/Quantum+Certification+via+Linear+Homotopy+Types#TI2023

Thanks!
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