Effective Quantum Certification via Linear Homotopy Types

Urs Schreiber (NYU Abu Dhabi) on joint work at <u>CQTS</u> with D. J. Myers, M. Riley, and Hisham Sati

presentation at:

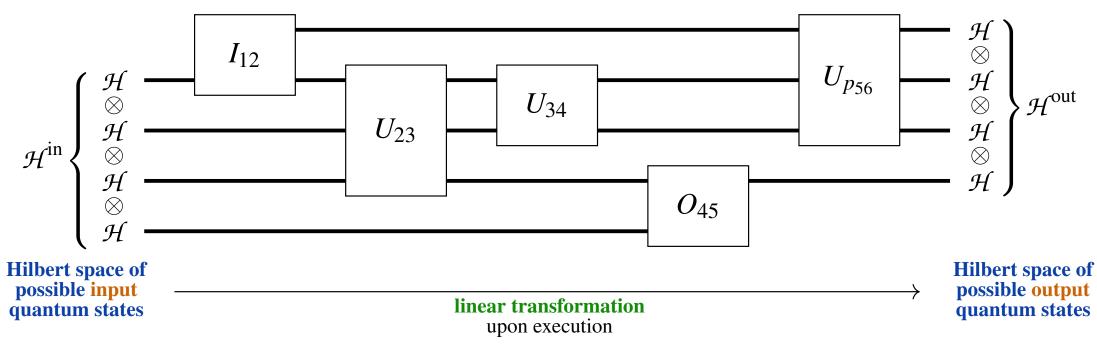
The Topos Institute Colloquium, 13 Apr 2023

slides and further pointers at: ncatlab.org/Quantum+Certification+via+Linear+Homotopy+Types#TI2023

The Problem in Quantum Computing

Pure quantum circuits are easy...

Linear operator composed & tensored from given quantum logic gates



Pure quantum circuits are easy...

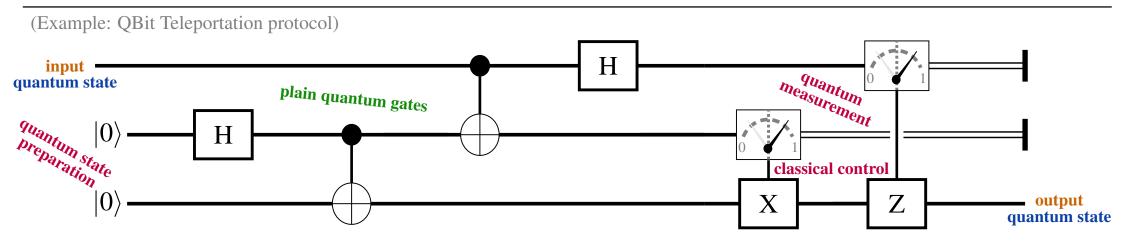
 $\mathcal{H}^{\text{in}} \left\{ \begin{array}{c} \mathcal{H} \\ \otimes \\ \mathcal{H} \end{array} \right\} \mathcal{U}_{23} \qquad U_{34} \qquad U_{p_{56}} \\ \mathcal{U}_{34} \\ \mathcal{U}_{p_{56}} \\ \mathcal{H} \\ \mathcal$

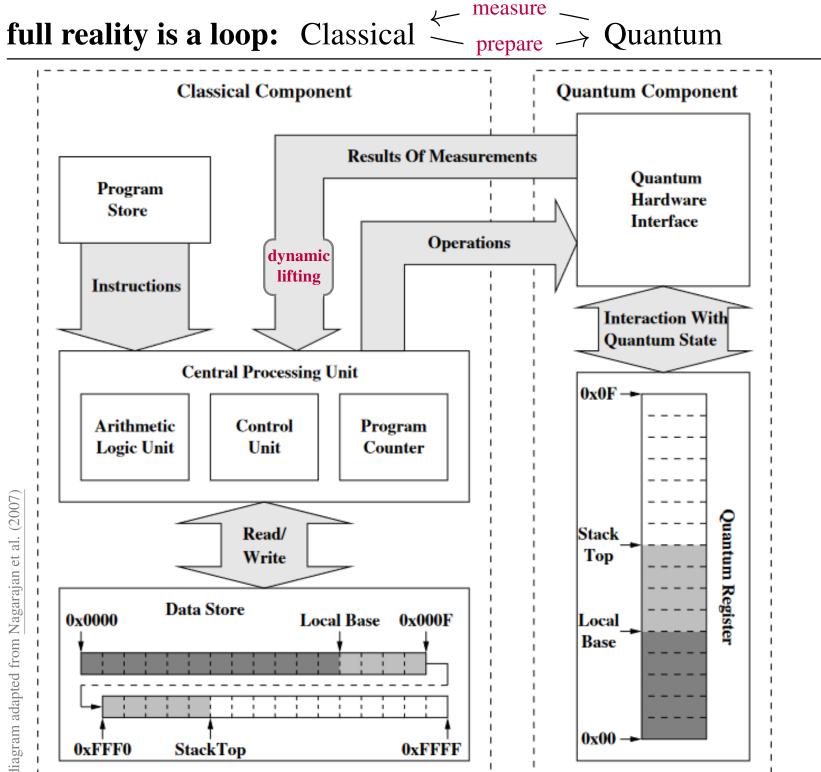
Linear operator composed & tensored from given quantum logic gates

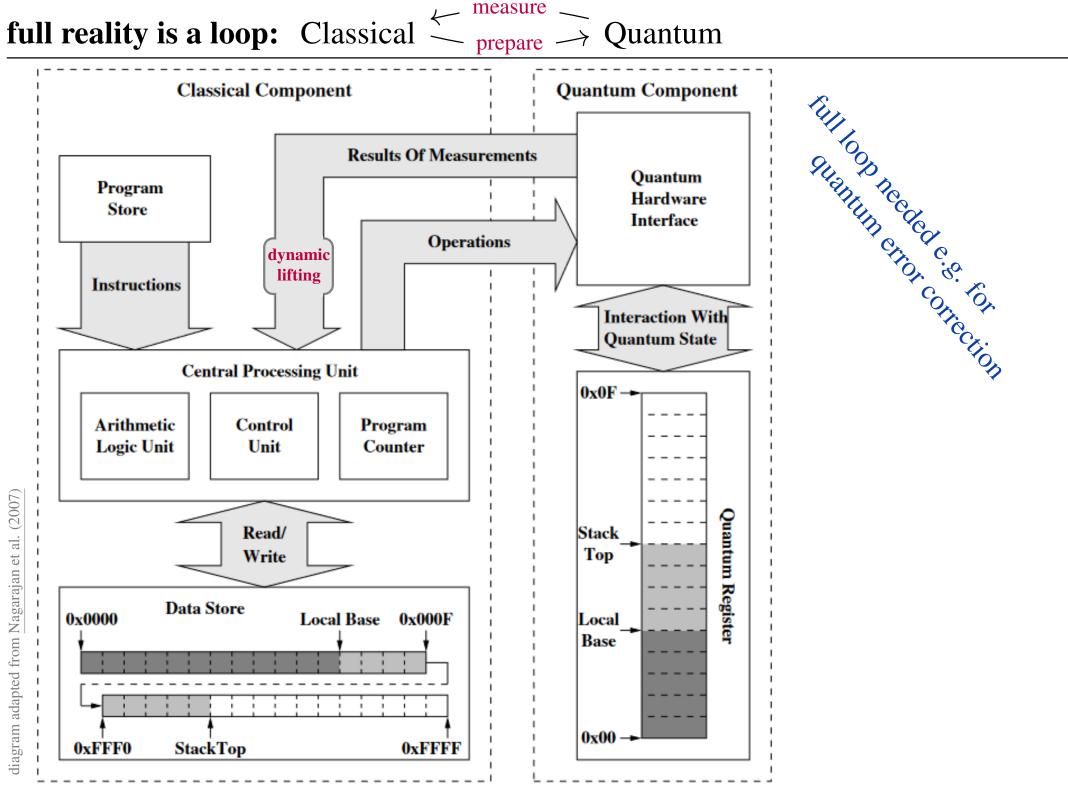
 Hilbert space of possible input quantum states
 Hilbert space of possible output quantum states

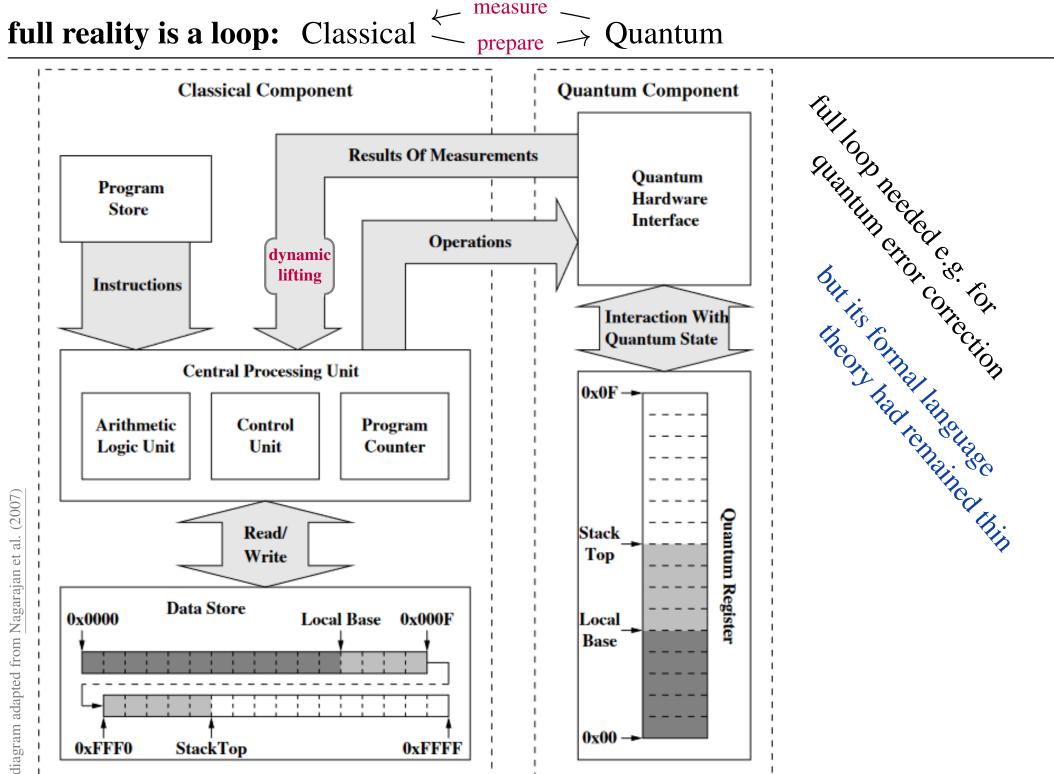
 linear transformation upon execution
 Hilbert space of possible output quantum states

but real quantum circuits have classical control & effects









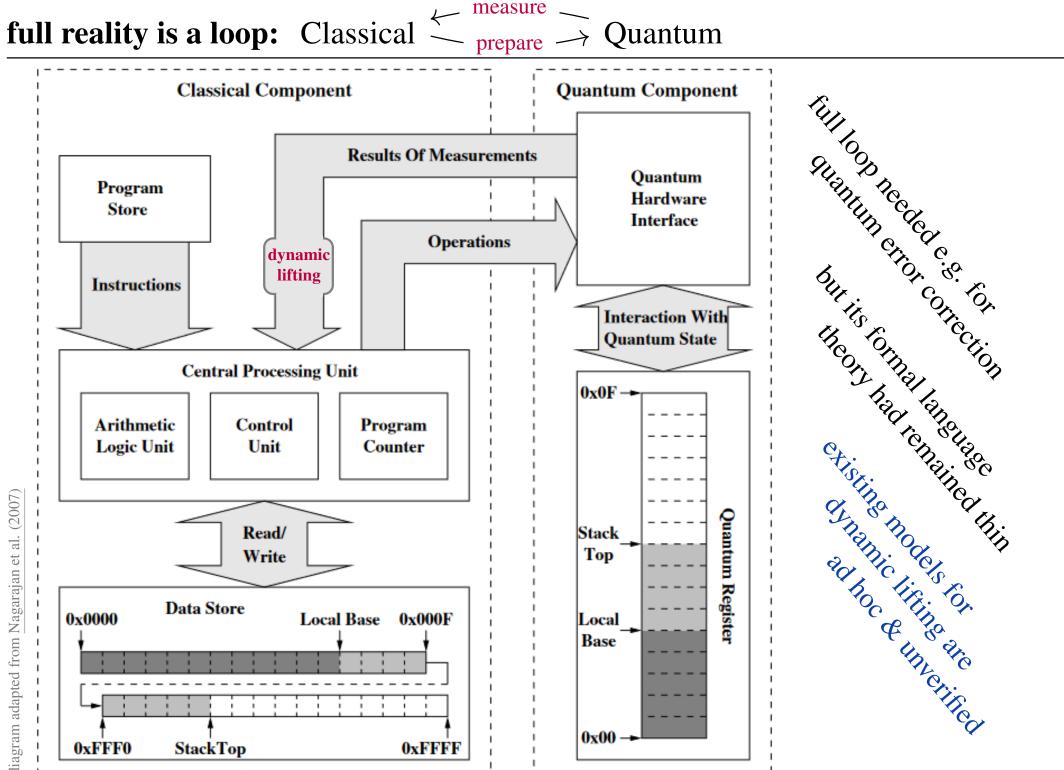
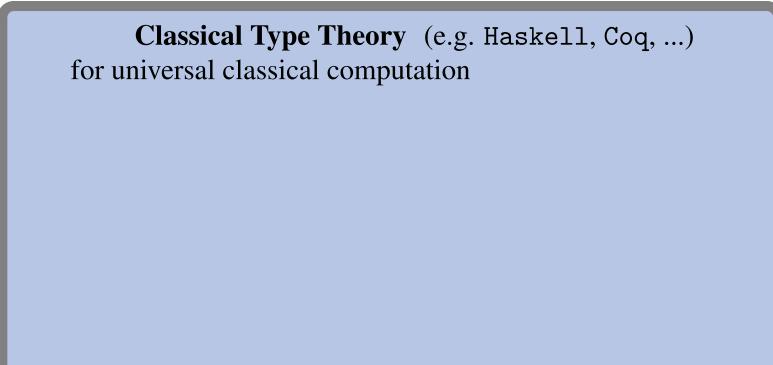
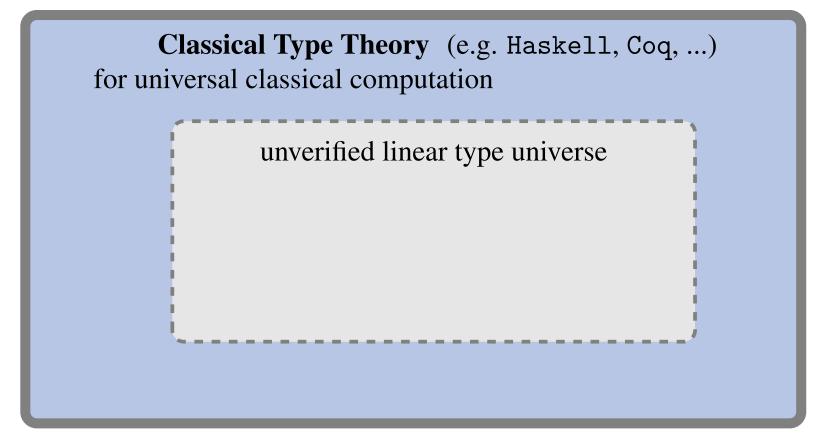
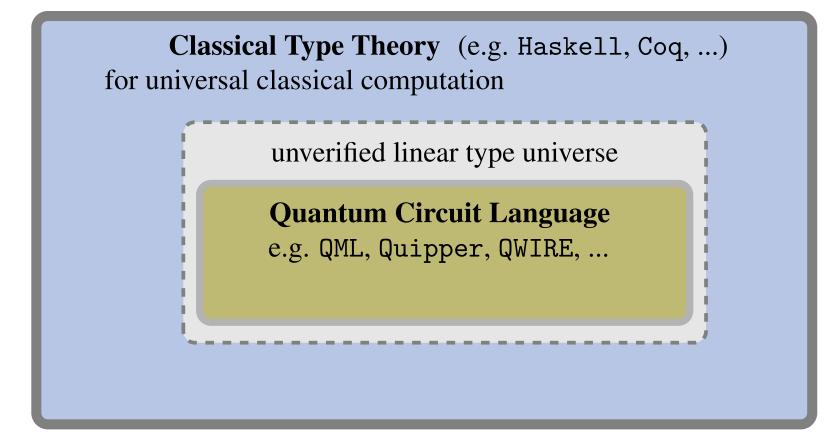


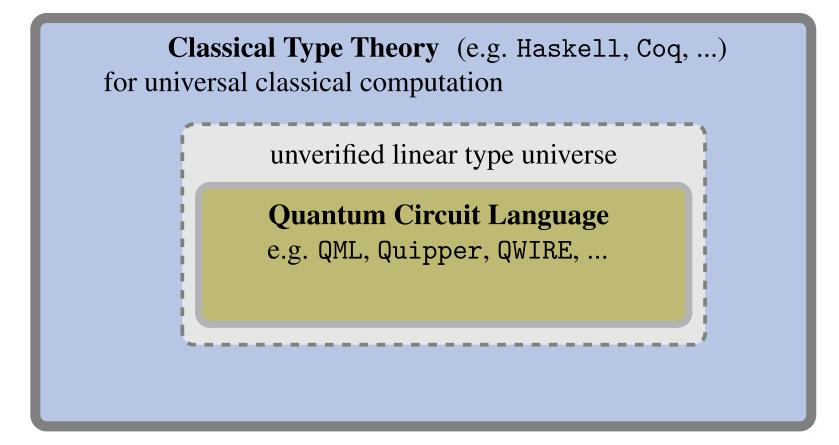
diagram adapted from





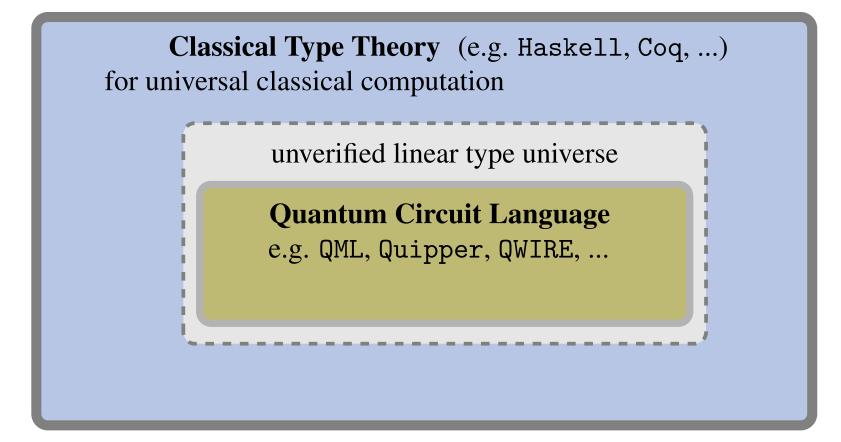


are embedded inside *classical* type theories:



for lack of a universal linear type theory.

are embedded inside *classical* type theories:



for lack of a universal linear type theory.

Why did that not exist?

The Problem in Type Theory

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) ANNALS OF MATHEMATICS Vol. 37, No. 4, October, 1936

Histori

Birkhof

but seer

logic, ve, etc.)

THE LOGIC OF QUANTUM MECHANICS

BY GARRETT BIRKHOFF AND JOHN VON NEUMANN

(Received April 4, 1936)

1. Introduction. One of the aspects of quantum theory which has attracted the most general attention, is the novelty of the logical notions which it presupposes. It asserts that even a complete mathematical description of a physical system \mathfrak{S} does not in general enable one to predict with certainty the result of an experiment on \mathfrak{S} , and that in particular one can never predict with certainty both the position and the momentum of \mathfrak{S} (Heisenberg's Uncertainty Principle). It further asserts that most pairs of observations are incompatible, and cannot be made on \mathfrak{S} simultaneously (Principle of Non-commutativity of Observations).

The object of the present paper is to discover what logical structure one may hope to find in physical theories which, like quantum mechanics, do not conform to classical logic. Our main conclusion, based on admittedly heuristic arguments, is that one can reasonably expect to find a calculus of propositions which is formally indistinguishable from the calculus of linear subspaces with respect to set products, linear sums, and orthogonal complements—and resembles the usual calculus of propositions with respect to and, or, and not.

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.)

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Birkhe Theoretical Computer Science 50 (1987) 1-102 but see North-Holland

LINEAR LOGIC*

Girard

"wild

Jean-Yves GIRARD

Équipe de Logique Mathématique, UA 753 du CNRS, UER de Mathématiques, Université de Paris VII, 75251 Paris, France

Communicated by M. Nivat Received October 1986

A la mémoire de Jean van Heijenoort

Abstract. The familiar connective of negation is broken into two operations: linear negation which is the purely negative part of negation and the modality "of course" which has the meaning of a reaffirmation. Following this basic discovery, a completely new approach to the whole area between constructive logics and programmation is initiated.

i logic, tive, etc.) e um!"

1

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic...never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic...never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb

A categorical quantum logic

Published online by Cambridge University Press: 04 July 2006

SAMSON ABRAMSKY and ROSS DUNCAN

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

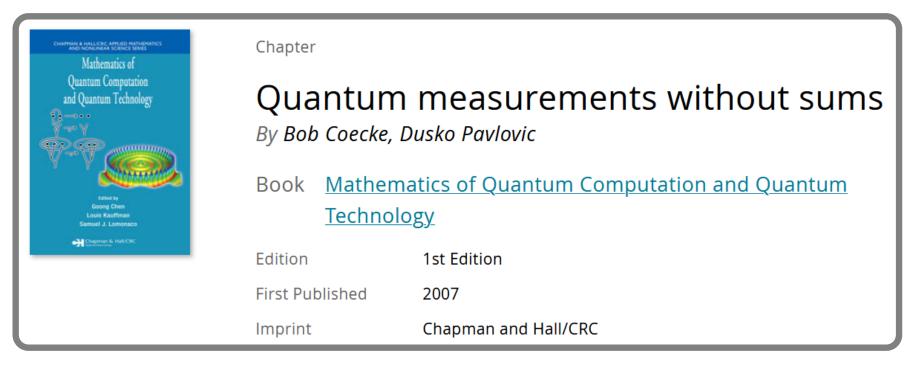
Abramsky, & Duncan 2005 also find BvN "a non-logic...never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "<u>a non-logic...never satisfactory</u>" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "<u>a non-logic...never satisfactory</u>" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.



<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "<u>a non-logic...never satisfactory</u>" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

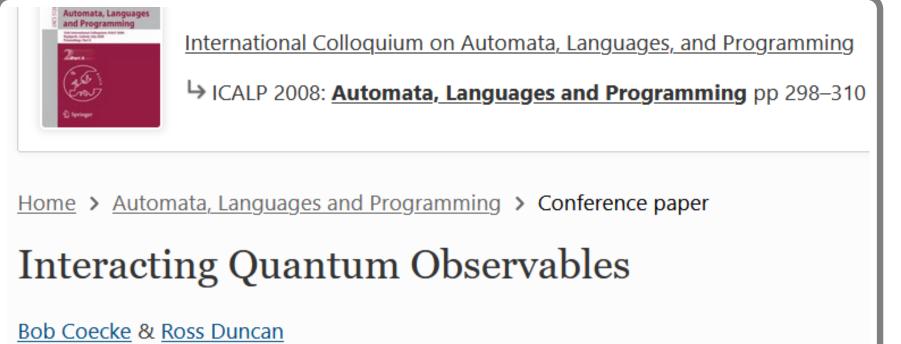
Abramsky, & Duncan 2005 also find BvN "a non-logic…never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "<u>a non-logic...never satisfactory</u>" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.



<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic…never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "<u>a non-logic...never satisfactory</u>" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

<u>Birkhoff-von Neumann 1936</u> (BvN) give physically well-motivated *quantum logic*, but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic…never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic…never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

<u>Coecke & Duncan 2008</u> make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

but seemingly formally unsatisfactory (infamous lack of *implication*-connective, etc.) <u>Girard 1987</u> finds BvN a "<u>magisterial mistake</u>", introduces *linear logic* in the "wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic...never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

<u>Coecke & Duncan 2008</u> make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

Internal logic in $FDVect_{/\mathcal{H}}$		
conjunction	disjunction	
	$\mathscr{P}_1\oplus \mathscr{P}_2$	
$\mathscr{P}_1 \longleftarrow \mathscr{P}_1 \cap \mathscr{P}_2 \longrightarrow \mathscr{P}_2$	\mathcal{P}_1 Span $(\mathcal{P}_1, \mathcal{P}_2)$ \mathcal{P}_2	
	conjunction	

"wild hope of direct connection with quantum mechanics – but let's not dream!"

Abramsky, & Duncan 2005 also find BvN "a non-logic...never satisfactory" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

<u>Coecke & Duncan 2008</u> make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

Internal logic in $FDVect_{/\mathcal{H}}$		
proposition	conjunction	disjunction
		$\begin{array}{c} \mathcal{P}_1 \oplus \mathcal{P}_2 \\ \downarrow & \checkmark \\ \downarrow & \checkmark \\ \uparrow & \downarrow & \checkmark \\ \uparrow & \downarrow & \land \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow &$
$\mathcal{P} \ \bigcap_{p} \ \mid$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} \mathcal{P}_1 & \operatorname{Span}(\mathcal{P}_1, \mathcal{P}_2) & \mathcal{P}_2 \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$

<u>Abramsky, & Duncan 2005</u> also find BvN "<u>a non-logic...never satisfactory</u>" consider the internal logic of †-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

Internal logic in $FDVect_{/H}$		
proposition	conjunction	disjunction
$egin{array}{c} \mathcal{P} \ & igcap \ & p \ & \downarrow \ & \mathcal{H} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathcal{P}_{1} \oplus \mathcal{P}_{2} \\ \downarrow & \swarrow \\ \mathcal{P}_{1} \operatorname{Span}(\mathcal{P}_{1}, \mathcal{P}_{2}) \mathcal{P}_{2} \\ & & & \uparrow \\ p_{1} p_{1} \lor p_{2} p_{2} \\ & & \downarrow \\ \mathcal{H} \end{array}$

consider the internal logic of *†*-compact closed categories, like FDHilb, which <u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

Internal logic in $FDVect_{/H}$		
proposition	conjunction	disjunction
$\mathcal{P} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \mathcal{P}_{1} \oplus \mathcal{P}_{2} \\ \downarrow \\ \mathcal{P}_{1} \operatorname{Span}(\mathcal{P}_{1}, \mathcal{P}_{2}) \mathcal{P}_{2} \\ \downarrow \\ \downarrow \\ p_{1} p_{1} \lor p_{2} p_{2} \\ \downarrow \\ \mathcal{H} \end{array} $

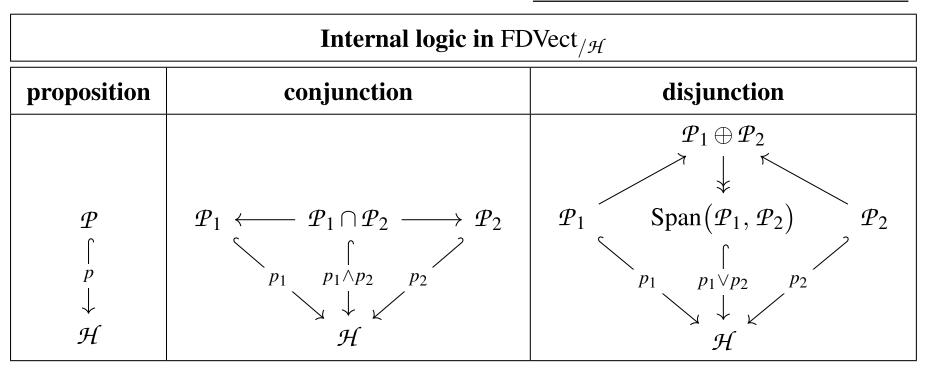
<u>Coecke & Pavlović 2008</u> equip with Frobenius monads for quantum measurement.

Coecke & Duncan 2008 make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:



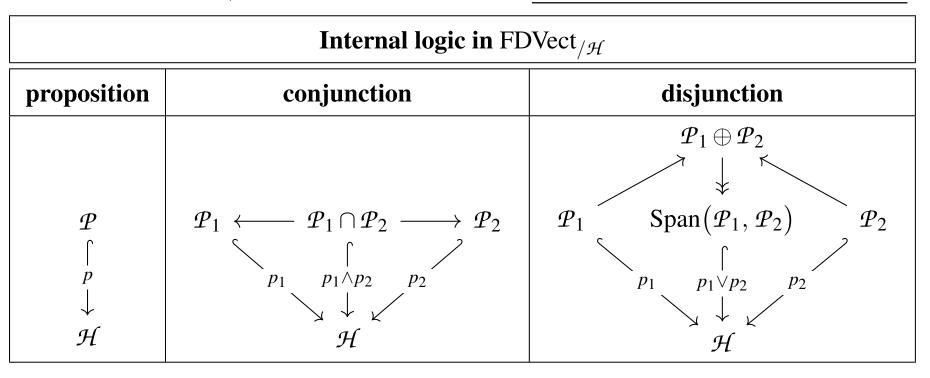
Also, we need classically-dependent linear types, eg. $n : \mathbb{N} \vdash \mathbb{C}^n$: LinType – these ought to be interpreted as vector (Hilbert) *bundles*.

<u>Coecke & Duncan 2008</u> make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:



Also, we need classically-dependent linear types, eg. $n : \mathbb{N} \vdash \mathbb{C}^n$: LinType – these ought to be interpreted as vector (Hilbert) *bundles*.

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory

<u>Coecke & Duncan 2008</u> make this the first *practically* successful quantum logic.

<u>Murfet 2014</u> gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

	Internal logic in $FDVect_{/H}$			
	proposition	conjunction	disjunction	
Volume	I Methods in Com e 18, Issue 3, 202 Imcs.episciences.	2, pp. 28:1–28:44	Submitted Published	
LINEAR DEPENDENT TYPE THEORY FOR QUANTUM PROGRAMMING LANGUAGES PENG FU ^a , KOHEI KISHIDA ^b , AND PETER SELINGER ^c				

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory

Murfet 2014 gives rare amplification that (FD)Vect, of course, interprets Girard's linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

	Internal logic in $FDVect_{/\mathcal{H}}$			
	proposition	conjunction	disjunction	
Volum	I Methods in Com e 18, Issue 3, 202 Imcs.episciences.	2, pp. 28:1–28:44	Submitted Published	
LINEAR DEPENDENT TYPE THEORY FOR QUANTUM PROGRAMMING LANGUAGES				
	P.	ENG FU ^a ©, KOHEI KISHIDA ^b (▶, AND PETER SELINGER ^e (>	
Fu, Kishida & Selinger (2020) present a <i>classically</i> -dependent linear type theory				

explicitly as a practical quantum programming language (proto-Quipper)

linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

	Internal logic in $FDVect_{/\mathcal{H}}$			
	proposition	conjunction	disjunction	
Volume	Methods in Com e 18, Issue 3, 202 Imcs.episciences.	2, pp. 28:1–28:44	Submitted Published	
LINEAR DEPENDENT TYPE THEORY FOR QUANTUM PROGRAMMING LANGUAGES				
	Р	ENG FU ^a ©, KOHEI KISHIDA ^b	D , AND PETER SELINGER c	
u, Kis		I	ally-dependent linear type theory	ry

explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: Vect_{Set}.

linear logic: So this was secretly a successful quantum logic all along!

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

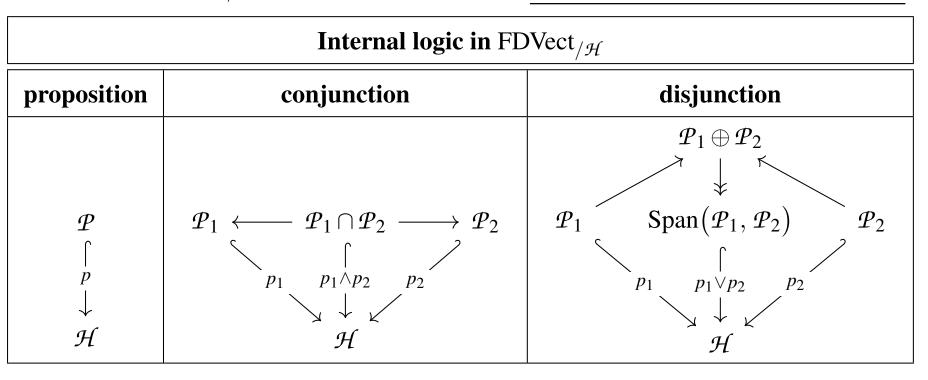
Internal logic in $FDVect_{/H}$		
proposition	conjunction	disjunction
$egin{array}{c} \mathcal{P} & \ & igcap_p & \ & igcap_p & \ & \downarrow & \ & \mathcal{H} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} \mathcal{P}_1 \oplus \mathcal{P}_2 \\ \downarrow & & & \\ \mathcal{P}_1 \operatorname{Span}(\mathcal{P}_1, \mathcal{P}_2) \mathcal{P}_2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & $

Also, we need classically-dependent linear types, eg. $n : \mathbb{N} \vdash \mathbb{C}^n$: LinType – these ought to be interpreted as vector (Hilbert) *bundles*.

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

But it is still unsatisfactory as a type theory, notably lacking type-dependency.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

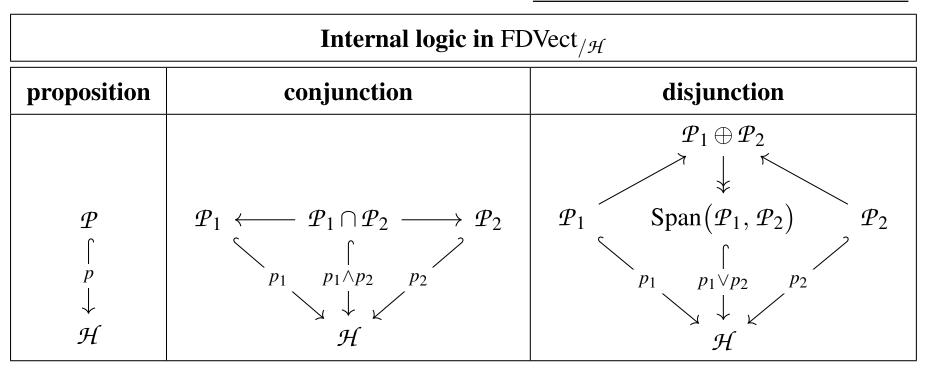


Also, we need classically-dependent linear types, eg. $n : \mathbb{N} \vdash \mathbb{C}^n$: LinType – these ought to be interpreted as vector (Hilbert) *bundles*.

Fu, Kishida & Selinger (2020)present a *classically*-dependent linear type theoryexplicitly as a practical quantum programming language (proto-Quipper) withcategorical semantics in (notably) vector bundles over sets: Vect_{Set}.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

Ironically, *enhancing* the internal linear logic of FDVect with type dependency, (to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:



Also, we need classically-dependent linear types, eg. $n : \mathbb{N} \vdash \mathbb{C}^n$: LinType – these ought to be interpreted as vector (Hilbert) *bundles*.

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

(to see the slices $FDVect_{\mathcal{H}}$) would immediately recover BvN's quantum logic:

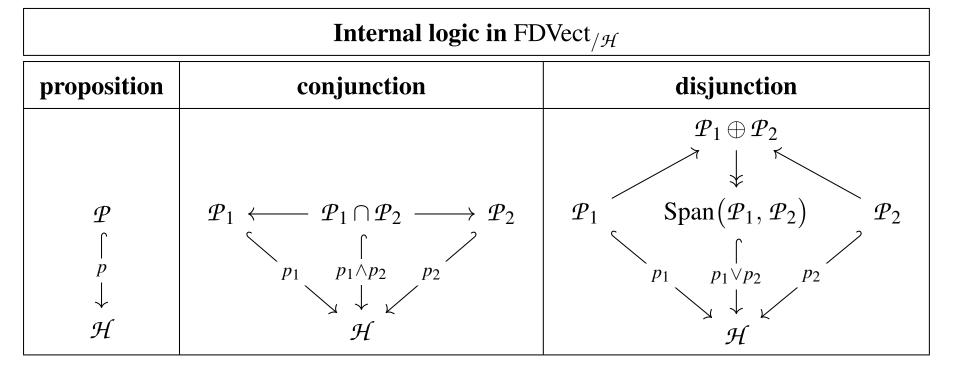
Internal logic in $FDVect_{/H}$		
proposition	conjunction	disjunction
$egin{array}{c} \mathcal{P} & \ & igcap_p & \ & igcap_p & \ & \downarrow & \ & \mathcal{H} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} \mathcal{P}_1 \oplus \mathcal{P}_2 \\ & \swarrow & \swarrow \\ \mathcal{P}_1 & \operatorname{Span}(\mathcal{P}_1, \mathcal{P}_2) & \mathcal{P}_2 \\ & & & & & & \\ & & & & & & \\ & & & & &$

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.



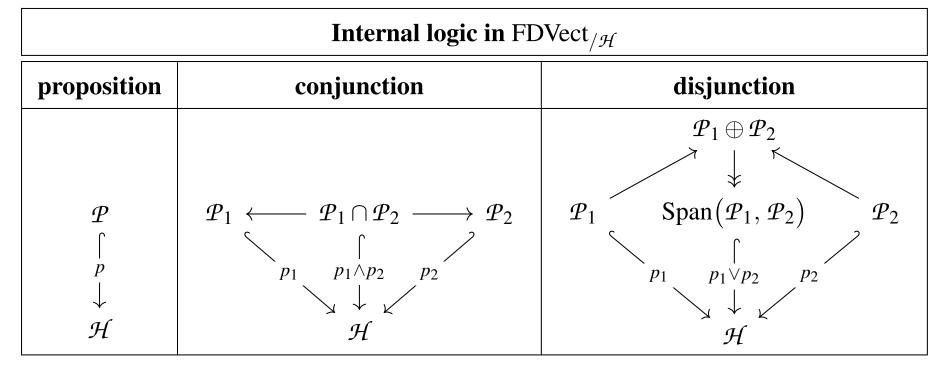
Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

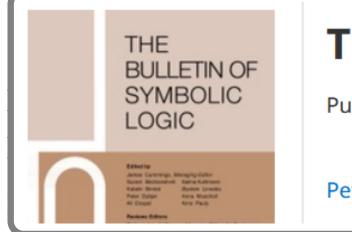
NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but



Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory

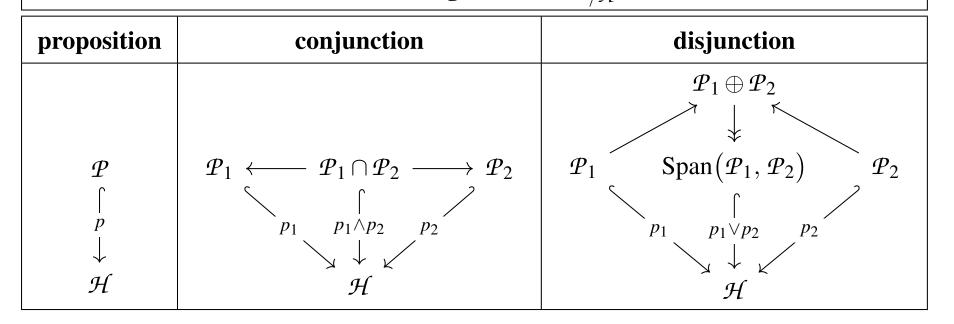


The Logic of Bunched Implications

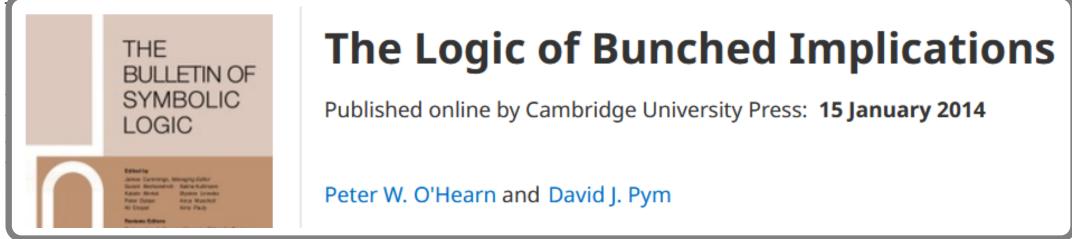
Published online by Cambridge University Press: 15 January 2014

Peter W. O'Hearn and David J. Pym

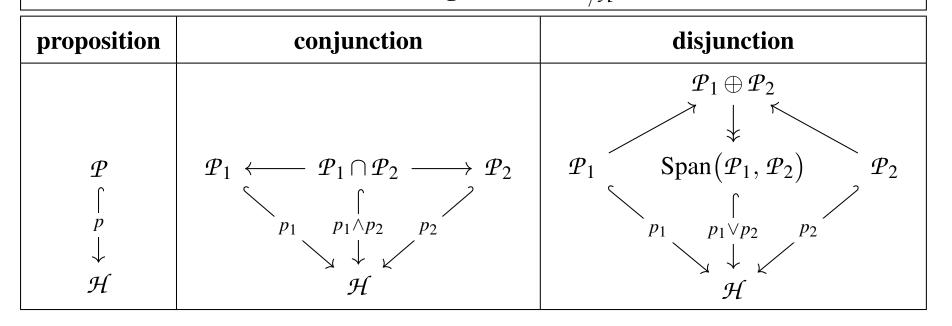
O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but



Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory



O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.



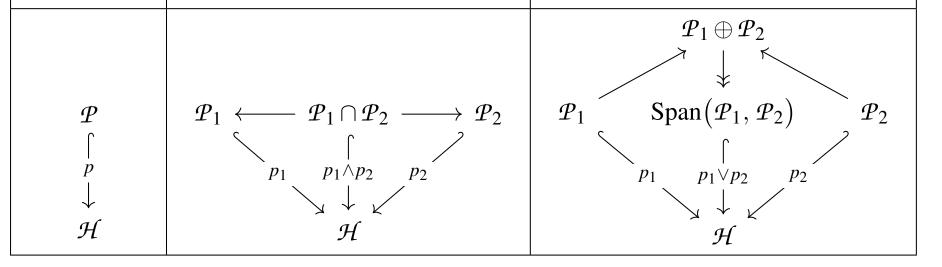
Fu, Kishida & Selinger (2020)present a classically-dependent linear type theoryexplicitly as a practical quantum programming language (proto-Quipper) withcategorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.



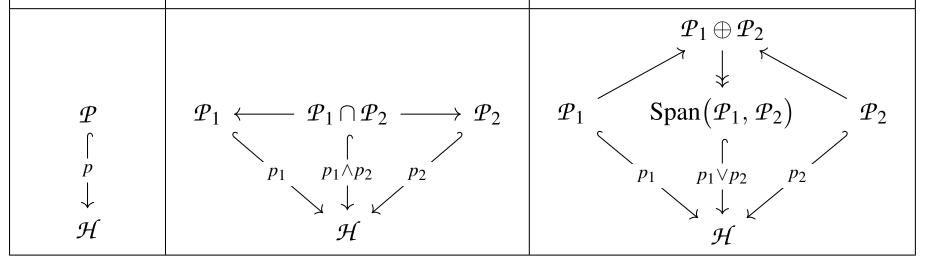
Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

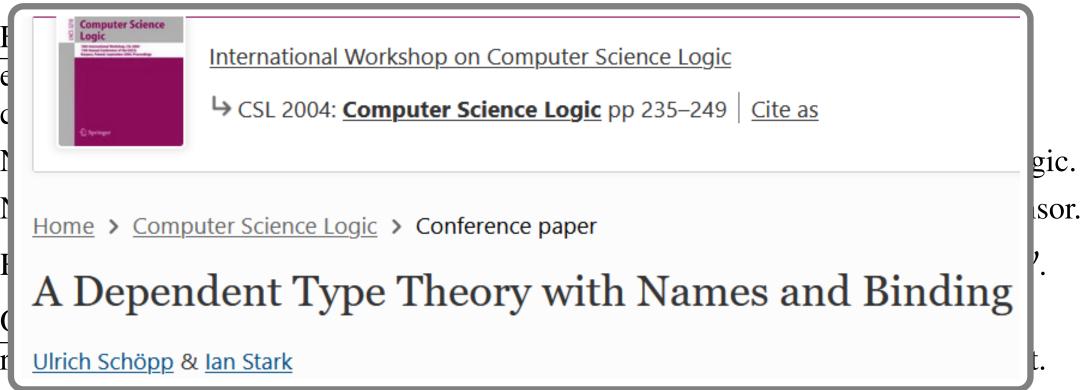
NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic. NB: Vect_{Set} carries *two* monoidal structures: cartesian (×) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

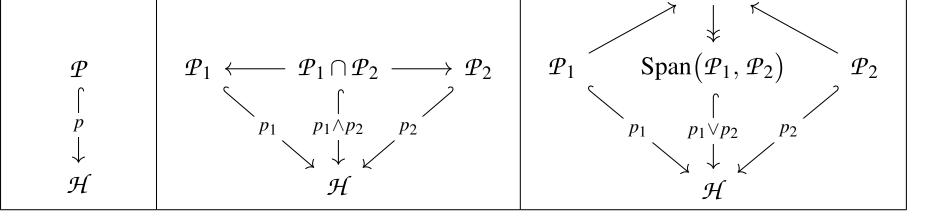
O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

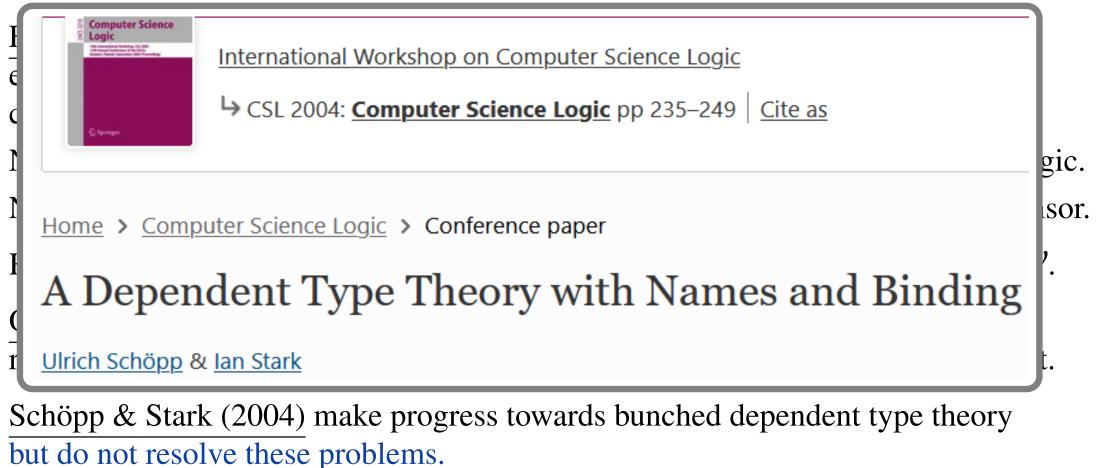
Schöpp & Stark (2004) make progress towards bunched dependent type theory

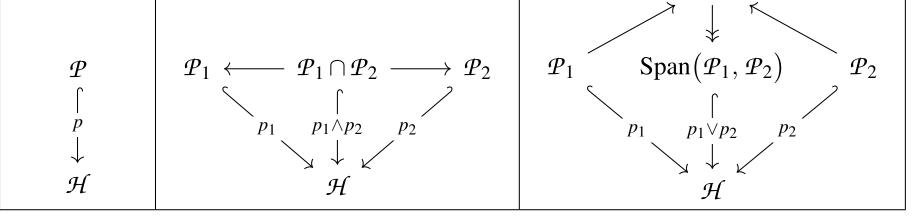




Schöpp & Stark (2004) make progress towards bunched dependent type theory







Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

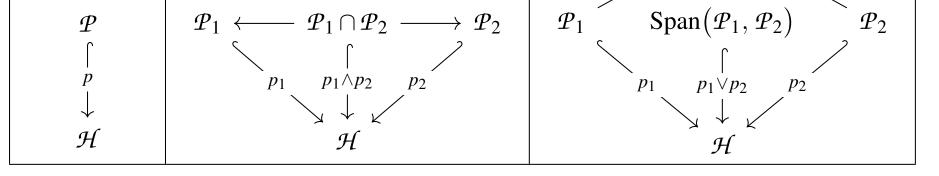
NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

Schöpp & Stark (2004) make progress towards bunched dependent type theory but do not resolve these problems.



Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (×) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

Fu, Kishida & Selinger (2020) present a *classically*-dependent linear type theory explicitly as a practical quantum programming language (proto-Quipper) with categorical semantics in (notably) vector bundles over sets: $Vect_{Set}$.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

categorical semantics in (notably) vector bundles over sets: Vect_{Set}.

NB: A *linear*-dependent internal logic of Vect_{Set} would *still* see BvN quantum logic.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

NB: Vect_{Set} carries *two* monoidal structures: cartesian (×) and "external" (\otimes) tensor. Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$. O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but

ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

The key hint for how to progress came from developments in higher topos theory:

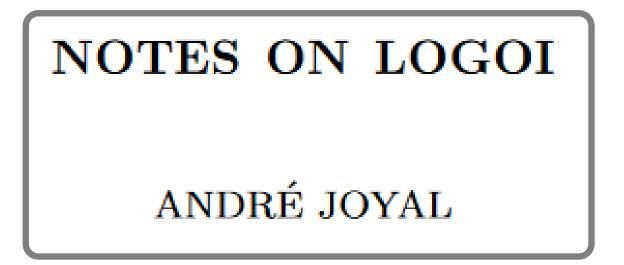
<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!



O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT),

NB: Vect _{Set} cai	Differential generalized cohomology	and "external" (\otimes) tensor.
Hence full dep		$\operatorname{ce} X \times \big(\mathcal{H} \otimes \mathcal{V} \big) \times \mathcal{W}.$
O'Hearn & Py		unched" contexts, but
ran into technic	Urs Schreiber May 8, 2014	assical and linear unit.
Schöpp & Star		endent type theory
but do <u>not reso</u>		
The key hint fo	notes supplementing a talk at	n higher topos theory:
$\frac{\text{Joyal (2008), } \text{H}}{\text{remarkably: } \infty}$		nd linear <i>homotopy</i> -types: bes are again ∞-toposes!
5		

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT),

Differential cohomology in a cohesive ∞ -topos

Urs Schreiber

21st century

NB: Vect _{Set} car	Differential generalized cohomology	and "external" (\otimes) tensor.
Hence full dep		$\operatorname{ke} X imes \left(\mathcal{H} \otimes \mathcal{V} \right) imes \mathcal{W}.$
O'Hearn & Py	in Cohesive homotopy type theory	unched" contexts, but
ran into technic	Urs Schreiber May 8, 2014	assical and linear unit.
Schöpp & Star		endent type theory
but do not reso		
The key hint fo	notes supplementing a talk at	n higher topos theory:
Joyal (2008), H	Semantics of proofs and certified mathematics	nd linear homotopy-types:
remarkably: ∞	ihp 2014. pp s. univ-paris-diderot. fr/doku. php	bes are again ∞-toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

[Submitted on 27 Feb 2014]

Quantization via Linear homotopy types

Urs Schreiber

<u>S. (Feb 2014)</u> suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (\times) and "external" (\otimes) tensor.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

[Submitted on 27 Feb 2014]

Quantization via Linear homotopy types

Urs Schreiber

<u>S. (Feb 2014)</u> suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

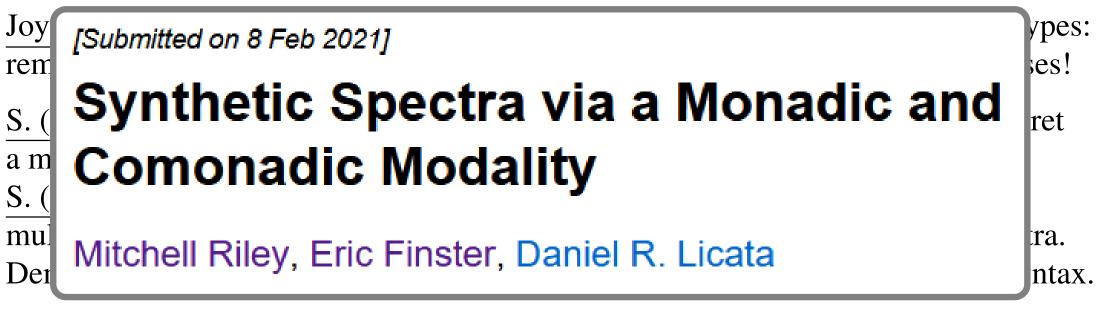
Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (×) and "external" (\otimes) tensor. Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$. O'Hearn & Pum (1000) already experimented with such "bunched" contexts, but

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

The key hint for how to progress came from developments in higher topos theory:



Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

NB: Vect_{Set} carries *two* monoidal structures: cartesian (×) and "external" (\otimes) tensor. Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of \otimes :

Hence full dependency requires handling nested contexts like $X \times (\mathcal{H} \otimes \mathcal{V}) \times \mathcal{W}$.

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra.

<u>Mitchell Riley</u>, A Bunched Homotopy Type Theory for Synthetic Stable Homotopy Theory, PhD Thesis (2022) [doi:10.14418/wes01.3.139, ir:3269, pdf]

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of \otimes :

O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra.

<u>Mitchell Riley</u>, A Bunched Homotopy Type Theory for Synthetic Stable Homotopy Theory, PhD Thesis (2022) [<u>doi:10.14418/wes01.3.139</u>, <u>ir:3269</u>, <u>pdf</u>]

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of \otimes : the resulting bunched & infinitesimally cohesive homotopy type theory seems to finally deal with all the above technical issues. O'Hearn & Pym (1999) already experimented with such "bunched" contexts, but ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of \otimes : the resulting bunched & infinitesimally cohesive homotopy type theory seems to finally deal with all the above technical issues.

ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret a modal, namely *infinitesimally cohesive* Homotopy Type Theory (HoTT), and S. (Feb 2014) suggests that classical HoTT should have a linear extension with multiplicative conjunction \otimes interpreted as the (external) smash product of spectra. Demonstrates potential relevance as a quantum language – but gives no formal syntax.

Riley, Fister & Licata (2021) propose a syntax for such infinitesimally cohesive HoTT.

Riley (2022) realizes that infinitesimal cohesion allows to fix the bunching of \otimes : the resulting bunched & infinitesimally cohesive homotopy type theory seems to finally deal with all the above technical issues.

ran into technical problems, eg. unsound identification of classical and linear unit.

 $\frac{\text{Schöpp \& Stark (2004)}}{\text{but do not resolve these problems.}}$ make progress towards bunched dependent type theory

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret

Effective Quantum Certification via Linear Homotopy Types

David J. Myers djm10080@nyu.edu Mitchell Riley mvr9774@nyu.edu

hsati@nyu.edu

Hisham Sati

Urs Schreiber us13@nyu.edu

Χ.

New York University Abu Dhabi, UAE

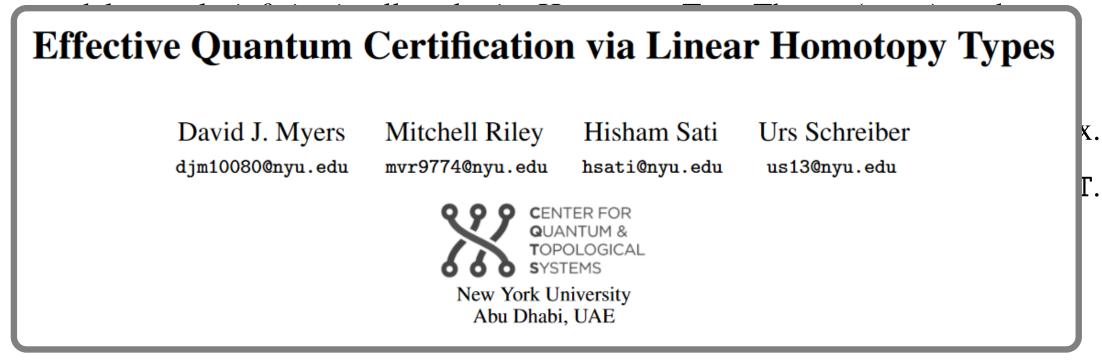
CENTER FOR

Schöpp & Stark (2004) make progress towards bunched dependent type theory but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret



but do not resolve these problems.

The key hint for how to progress came from developments in higher topos theory:

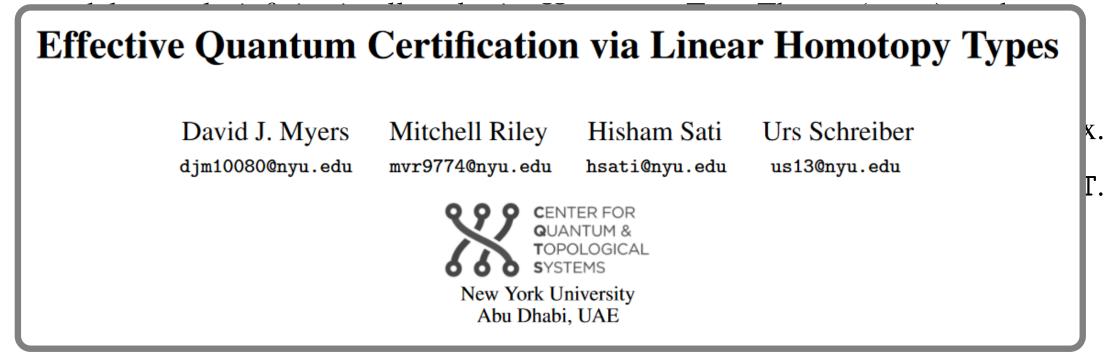
<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of spectra should interpret

The key hint for how to progress came from developments in higher topos theory:

<u>Joyal (2008)</u>, <u>Hoyois (2016)</u> show unification of classical and linear *homotopy*-types: remarkably: ∞ -categories of *bundles* of linear homotopy types are again ∞ -toposes!

S. (2013), §4.1.2; S. (May 2014) points out that bundles of *spectra* should interpret



Our Solution

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]:

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]:

∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT)

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]:

∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:

∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) via a bireflective modality
the exhibiting linear extension of classical types

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]: \exists classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) via a bireflective modality \u00e4 exhibiting linear extension of classical types Idea: Frobenius monad on type system carves out classical types classical all such that: bireflective among types types $\xrightarrow{\perp}{\iota} \xrightarrow{} \text{Type}$ $\xrightarrow{\perp}{\beta} \xrightarrow{}$ classical ClType –

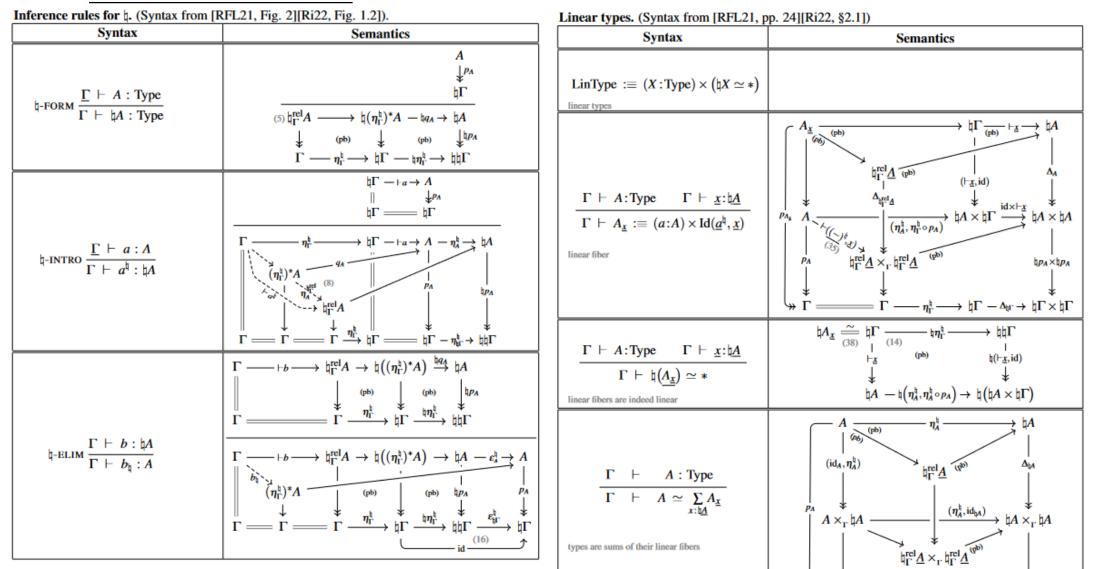
Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:

∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) via a bireflective modality
t exhibiting linear extension of classical types

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:

∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT)

via a bireflective modality \(\zeta\) exhibiting linear extension of classical types



Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:

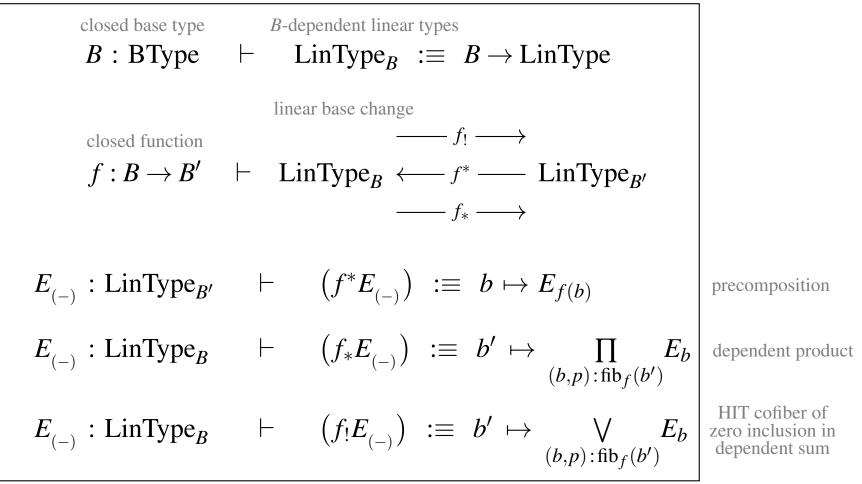
∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) via a bireflective modality
t exhibiting linear extension of classical types

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

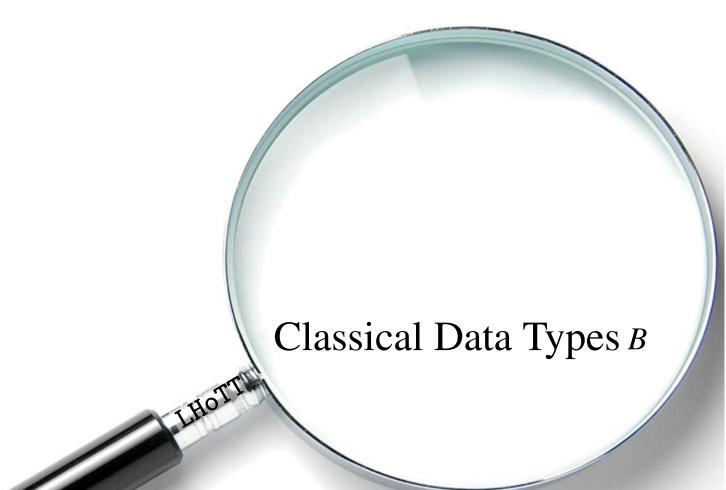
verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

LHoTT is like a quantum microscope for Classical Data Types B

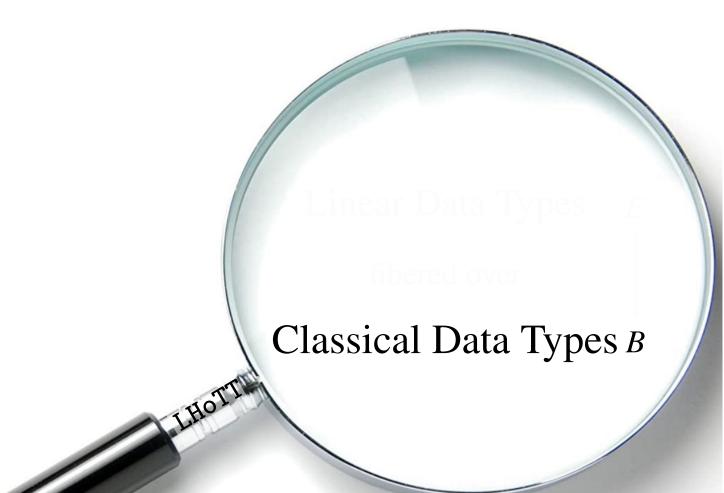
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



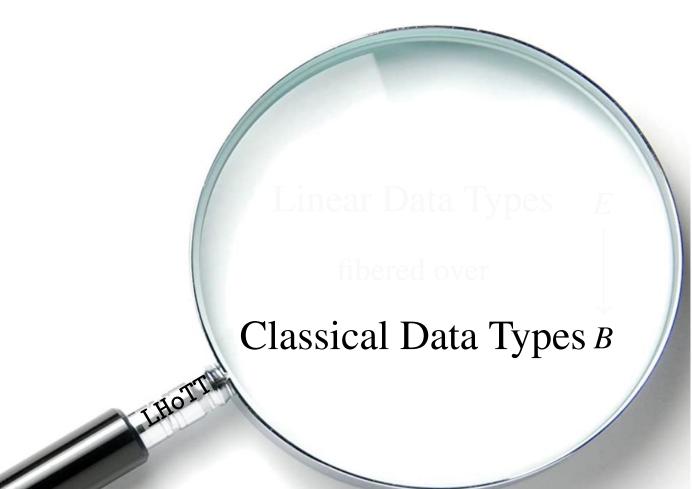
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



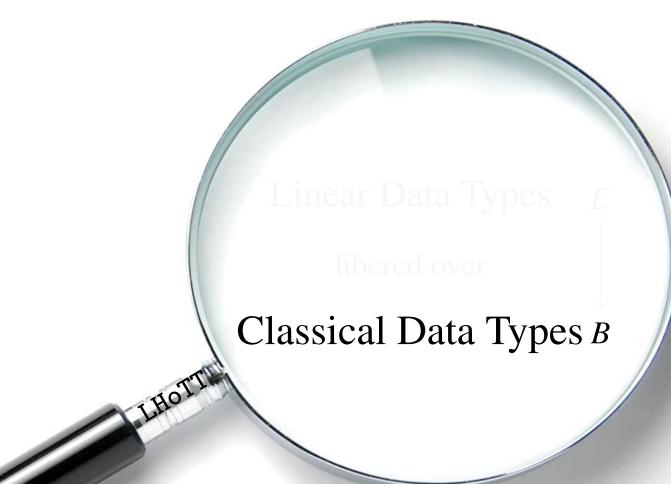
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



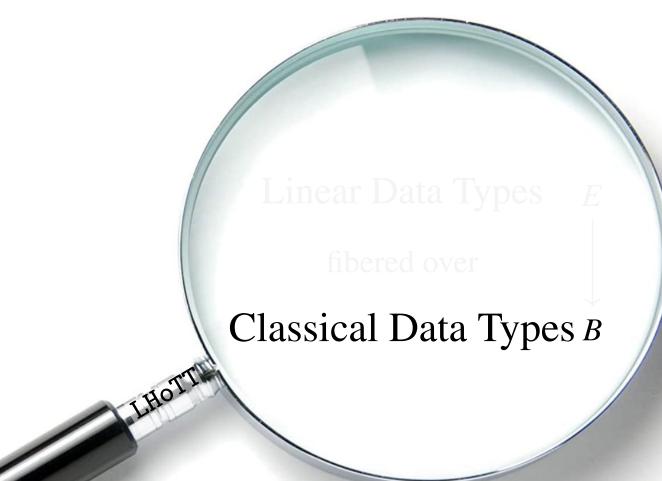
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



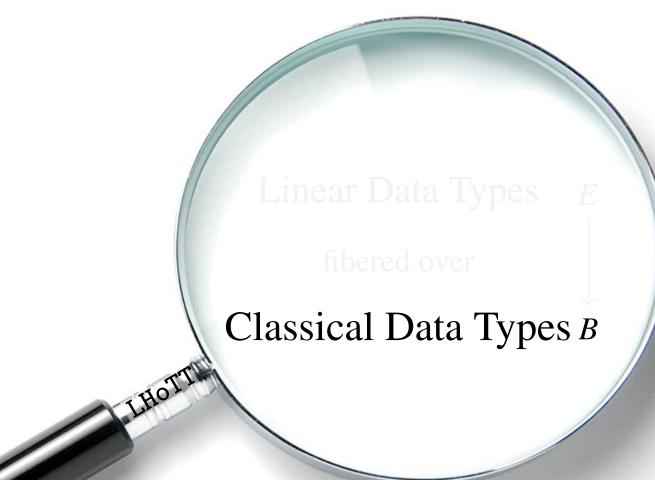
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



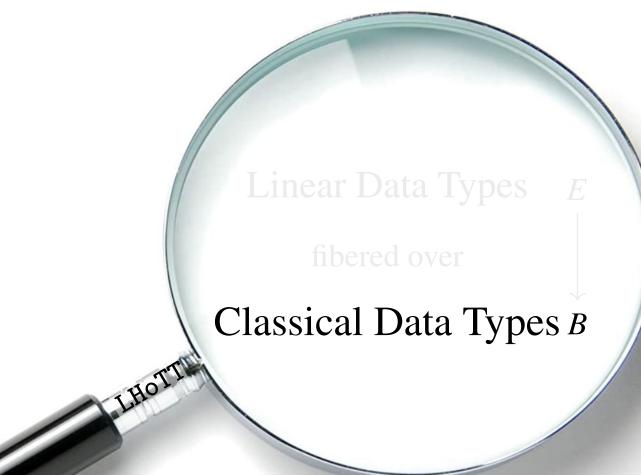
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



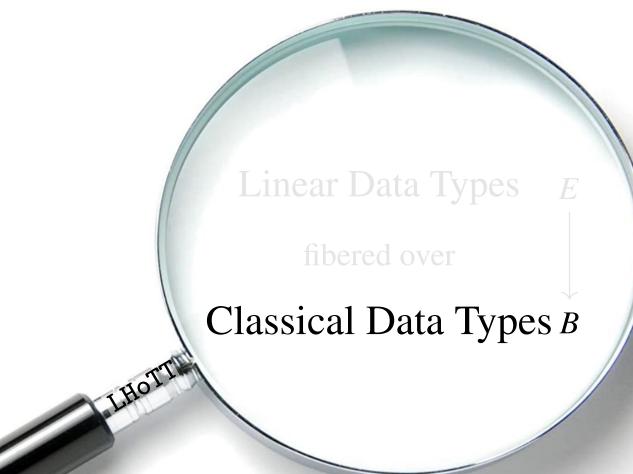
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



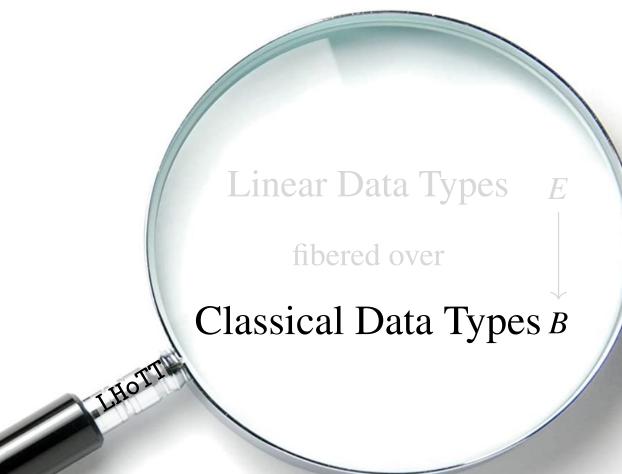
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



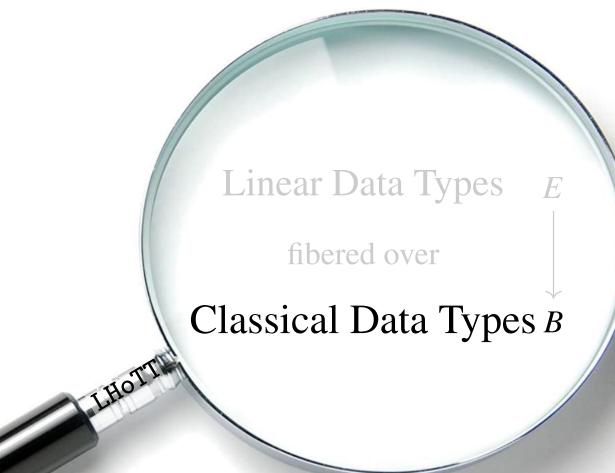
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

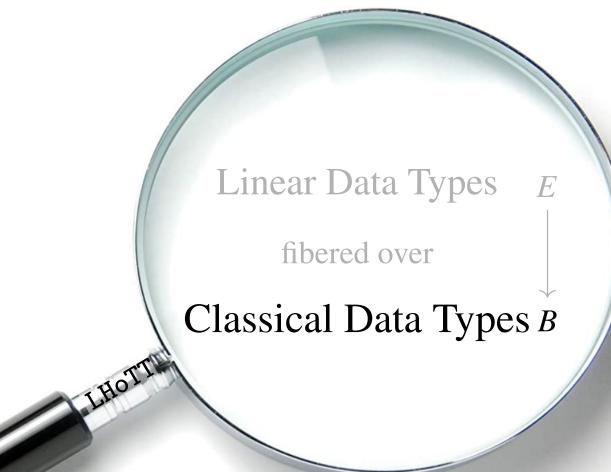


Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

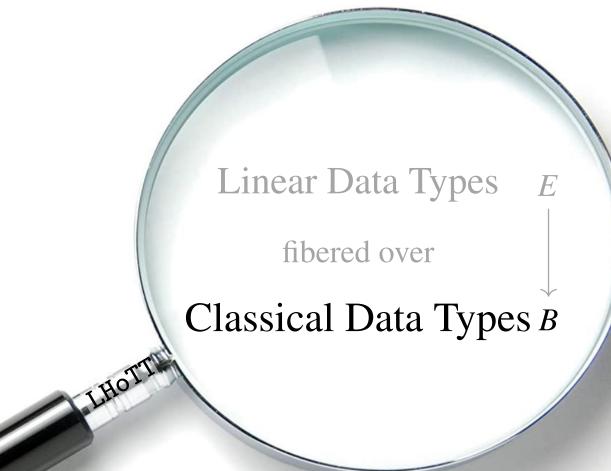
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



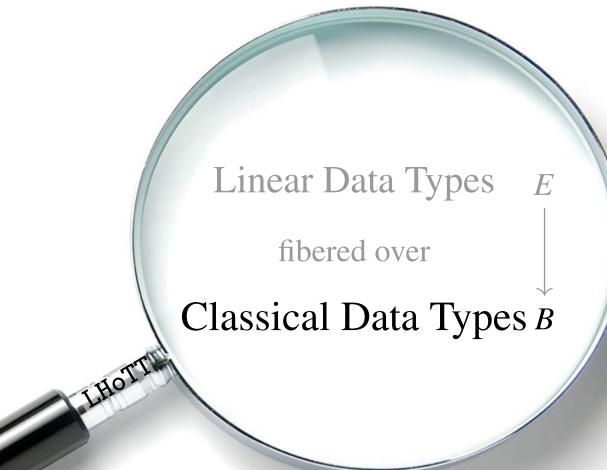
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck's six operations à la Wirthmüller — more on all this below)

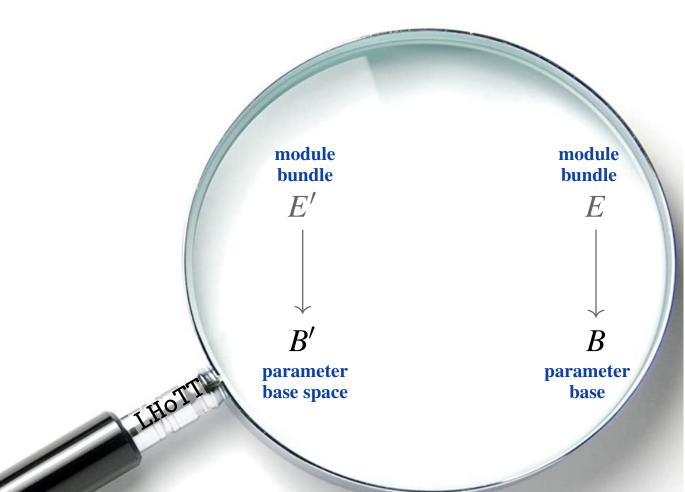
Linear Data Types \boldsymbol{E} fibered over Classical Data Types B

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

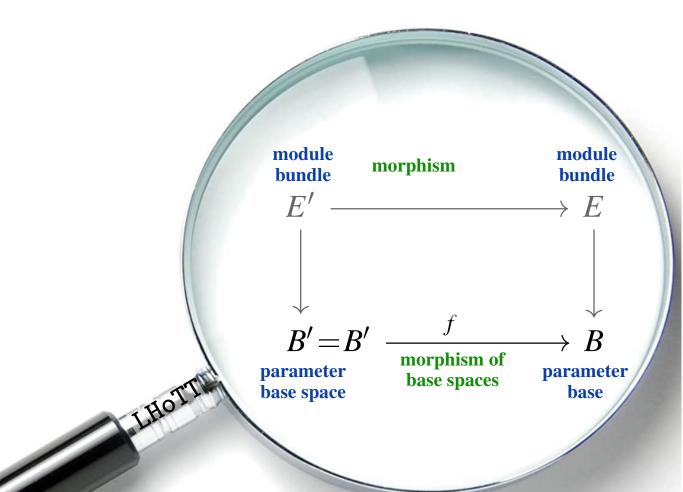
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



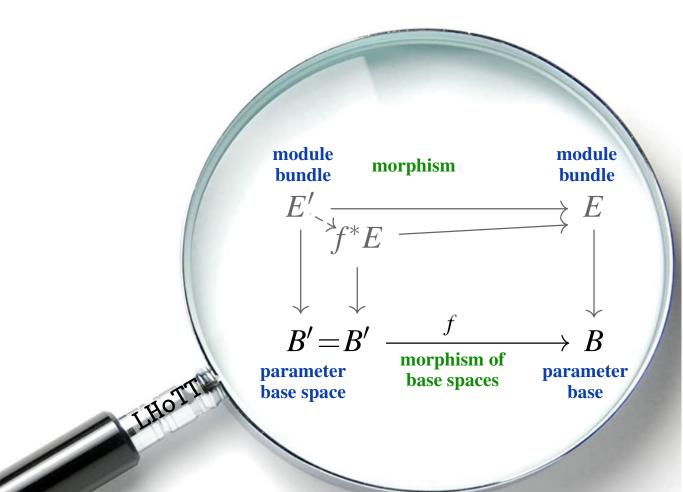
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



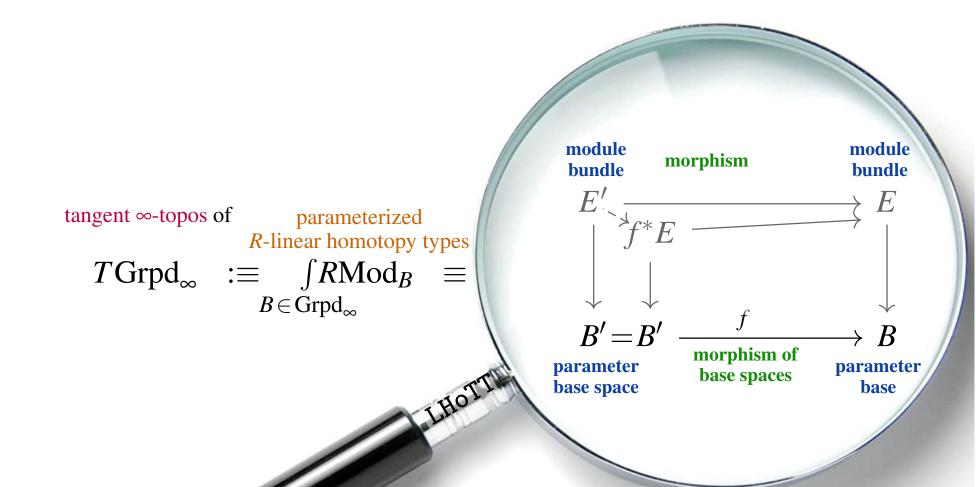
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

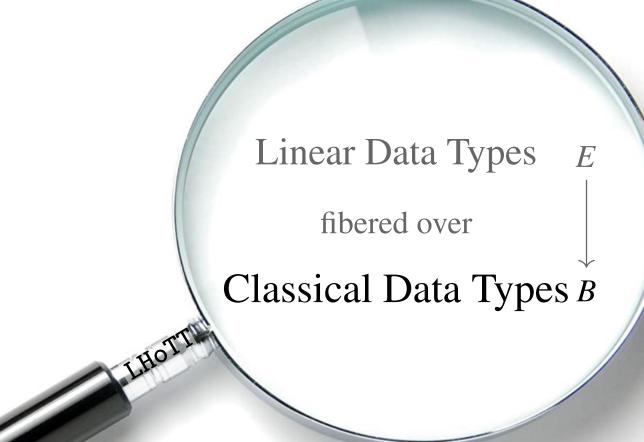
(i.e. Grothendieck's six operations à la Wirthmüller — more on all this below)

Linear Data Types \boldsymbol{E} fibered over Classical Data Types B

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in <u>S. (2014)</u>, §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

More technically:

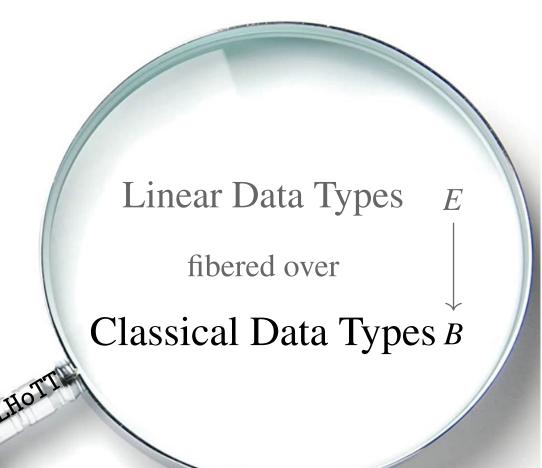


Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [<u>Riley, §2.4</u>, anticipated in <u>S. (2014)</u>, <u>§3.2</u>] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

More technically:

The categorical semantics of LHoTT is in *"infinitesimally cohesive"* ∞-toposes

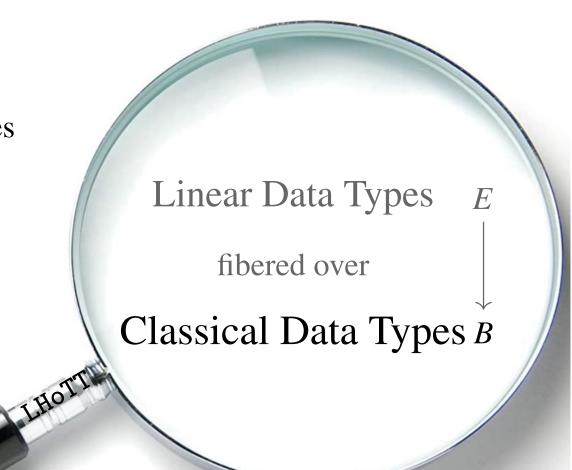


Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [<u>Riley, §2.4</u>, anticipated in <u>S. (2014)</u>, <u>§3.2</u>] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

More technically:

The categorical semantics of LHoTT is in *"infinitesimally cohesive"* ∞-toposes of module spectra parameterized over classical homotopy types. [S. (2013), §4.1.2] [S. (2014), §3.2, IHP] [Riley, Finster & Licata (2021)].



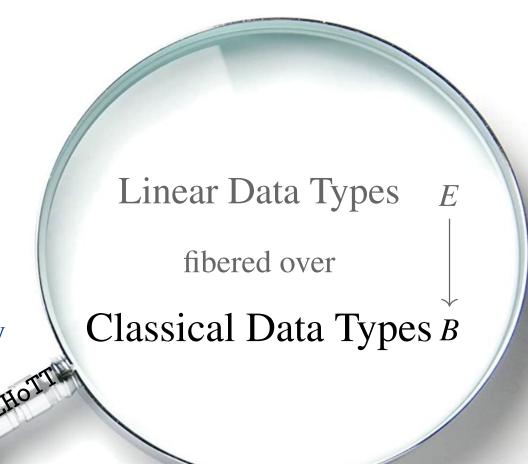
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [<u>Riley, §2.4</u>, anticipated in <u>S. (2014)</u>, <u>§3.2</u>] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

More technically:

The categorical semantics of LHoTT is in *"infinitesimally cohesive"* ∞ -toposes of module spectra parameterized over classical homotopy types. [<u>S. (2013), §4.1.2</u>] [<u>S. (2014), §3.2, IHP</u>] [Riley, Finster & Licata (2021)].

For traditional quantum information theory this faithfully subsumes the fragment



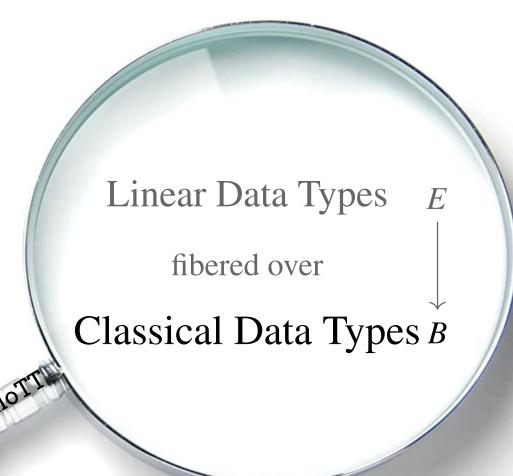
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [<u>Riley, §2.4</u>, anticipated in <u>S. (2014)</u>, <u>§3.2</u>] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

More technically:

The categorical semantics of LHoTT is in *"infinitesimally cohesive"* ∞ -toposes of module spectra parameterized over classical homotopy types. [<u>S. (2013), §4.1.2</u>] [<u>S. (2014), §3.2, IHP</u>] [Riley, Finster & Licata (2021)].

For traditional quantum information theory this faithfully subsumes the fragment of complex vector bundles over finite sets.



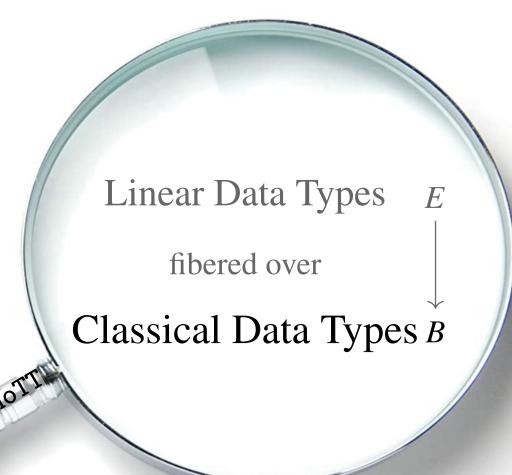
Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, $\S2.4$, anticipated in S. (2014), $\S3.2$] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

More technically:

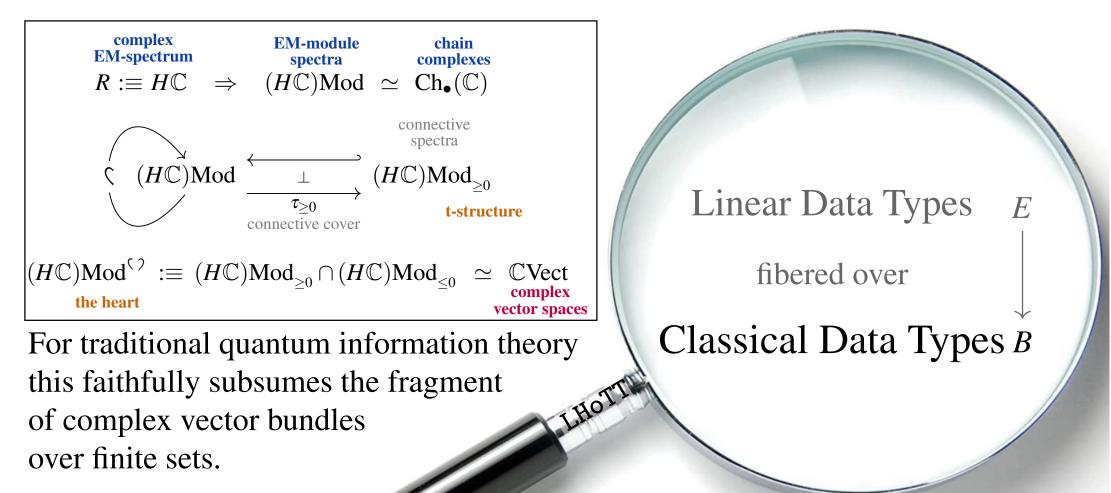
The categorical semantics of LHoTT is in *"infinitesimally cohesive"* ∞ -toposes of module spectra parameterized over classical homotopy types. [S. (2013), §4.1.2] [S. (2014), §3.2, IHP] [Riley, Finster & Licata (2021)].

For traditional quantum information theory this faithfully subsumes the fragment of complex vector bundles over finite sets.



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]



Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2]

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in <u>S. (2014)</u>, §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

Theorem [CQTS (2022)]: Motivic Yoga induces a system of monadic computational effects constituting linear modalities of actuality and potentiality

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects constituting linear modalities of actuality and potentiality which happen to know all about quantum information theory:

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

Theorem [CQTS (2022)]: Motivic Yoga induces a system of monadic computational effects constituting linear modalities of actuality and potentiality which happen to know all about quantum information theory:

quantum measurement

is handling of linear indefiniteness effects

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:

Motivic Yoga induces a system of monadic computational effects

constituting

linear modalities of actuality and potentiality

which happen to

know all about quantum information theory:

quantum measurementishandling of linear indefiniteness effectsquantum state preparationishandling of linear randomness co-effects

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]: \exists classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:

Motivic Yoga induces a system of monadic computational effects constituting

İS

is

linear modalities of actuality and potentiality

which happen to

know all about quantum information theory:

quantum measurement quantum state preparation quantum+classical circuits

handling of linear indefiniteness effects handling of linear randomness co-effects the effectful string diagrams are

Theorem [M. Riley (2022), <u>doi:10.14418/wes01.3.139</u>]: ∃ classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à *la* Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:

Motivic Yoga induces a system of monadic computational effects constituting

İS

is

is

linear modalities of actuality and potentiality

which happen to

know all about quantum information theory:

quantum measurement quantum state preparation quantum+classical circuits quantum dynamic lifting

- handling of linear indefiniteness effects handling of linear randomness co-effects
- are the effectful string diagrams
 - comparison functor of monadicity theorem

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]: \exists classical & linear dependent type theory conservative over classical *Homotopy Type Theory* (HoTT) and

verifying axiom scheme "Motivic Yoga" [Riley, §2.4, anticipated in S. (2014), §3.2] (i.e. Grothendieck's six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:

Motivic Yoga induces a system of monadic computational effects constituting

İS

is

is

linear modalities of actuality and potentiality

which happen to

know all about quantum information theory:

quantum measurement quantum state preparation quantum+classical circuits quantum dynamic lifting

- handling of linear indefiniteness effects
- handling of linear randomness co-effects the effectful string diagrams are
 - comparison functor of monadicity theorem

→ full-blown Quantum Systems language emerges embedded in LHoTT

\rightsquigarrow full-blown Quantum Systems language emerges embedded in LHoTT

Linear Homotopy Type Theory (LHoTT) for universal algorithmic quantum computation

\rightsquigarrow full-blown Quantum Systems language emerges embedded in LHoTT

Linear Homotopy Type Theory (LHoTT) for universal algorithmic quantum computation

Quantum Systems Language (QS) for quantum logic circuits

discussed in the following

↔ full-blown Quantum Systems language emerges embedded in LHoTT

Linear Homotopy Type Theory (LHoTT) for universal algorithmic quantum computation

Homotopy Type Theory (HoTT) for topological logic gates

Quantum Systems Language (QS) for quantum logic circuits

discussed in the following

\rightsquigarrow full-blown Quantum Systems language emerges embedded in LHoTT

Linear Homotopy Type Theory (LHoTT) for universal algorithmic quantum computation

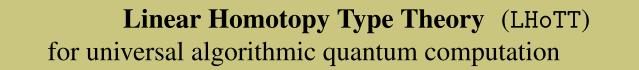
Homotopy Type Theory (HoTT) for topological logic gates

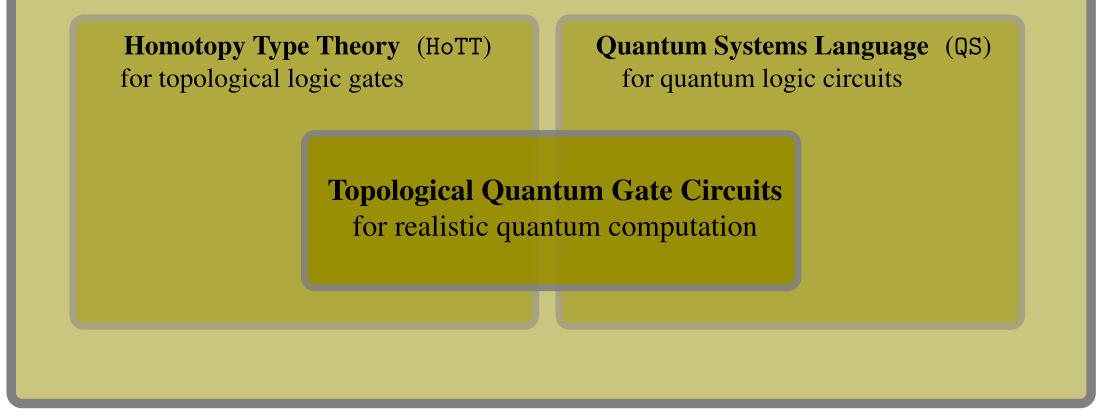
discussed elsewhere **Quantum Systems Language** (QS) for quantum logic circuits

Topological Quantum Gate Circuits for realistic quantum computation

discussed in the following

↔ full-blown Quantum Systems language emerges embedded in LHoTT





ambient LHoTT ambient HoTT ambient dTT

verifies provides provides classically dependent quantum linear types specification of topological quantum gates full verified classical control

Quantum Data Types

Linear/Quantum Data Types

Characteristic Property			
Symbol			
Formula (for <i>B</i> : FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	
Symbol		
Formula (for <i>B</i> : FinType)		
AlgTop Jargon		
Linear Logic		
Physics Meaning		

Linear/Quantum Data Types

Characteristic Property	1. their cartesian product blends into the co-product:	
Symbol	⊕ direct sum	
Formula (for <i>B</i> : FinType)		
AlgTop Jargon		
Linear Logic		
Physics Meaning		

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	
Symbol	⊕ direct sum		
Formula (for <i>B</i> : FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	
Symbol		\otimes tensor product	
Formula (for <i>B</i> : FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	
Formula (for <i>B</i> : FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)			
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	- linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum		
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
AlgTop Jargon			
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	 a tensor product appears distributes over direct sum 	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	- linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$(\mathcal{V} \otimes \mathcal{H}) \multimap \mathcal{K} \ \simeq \mathcal{V} \multimap (\mathcal{H} \multimap \mathcal{K})$
AlgTop Jargon	biproduct, stability, ambidexterity	Frobenius reciprocity	mapping spectrum
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	 a tensor product appears distributes over direct sum 	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
	AlgTop Jargon stability, ambidexterity	Frobenius reciprocity	mapping spectrum
Aig top Jargon		Grothendieck's Motivic Yoga of	6 oper. (Wirthmüller form)
Linear Logic			
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	 a tensor product appears & distributes over direct sum 	3. a linear function type appears adjoint to tensor
Symbol	direct sum	\otimes tensor product	- linear function type
Formula (for <i>B</i> : FinType)	$\begin{array}{cc} \text{cart. product} & \text{co-product} \\ \prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b \\ \text{direct sum} \end{array}$	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
AlgTop Jargon biproduct, stability, ambidex	L ·	Frobenius reciprocity	mapping spectrum
	stability, ambidexterity	Grothendieck's Motivic Yoga of	6 oper. (Wirthmüller form)
Linear Logic	additive disjunction	multiplicative conjunction	linear implication
Physics Meaning			

Characteristic Property	1. their cartesian product blends into the co-product:	 a tensor product appears & distributes over direct sum 	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	- linear function type
Formula (for <i>B</i> : FinType)	$\begin{array}{cc} \text{cart. product} & \text{co-product} \\ \prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b \\ \text{direct sum} \end{array}$	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
AlgTon Jongon	biproduct,	Frobenius reciprocity	mapping spectrum
	stability, ambidexterity	Grothendieck's Motivic Yoga of	6 oper. (Wirthmüller form)
Linear Logic	additive disjunction	multiplicative conjunction	linear implication
Physics Meaning	superselection sectors / quantum parallelism	compound quantum systems / quantum entanglement	QRAM systems

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	- linear function type
Formula (for <i>B</i> : FinType)	$\begin{array}{cc} \text{cart. product} & \text{co-product} \\ \prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b \\ \text{direct sum} \end{array}$	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
	AlgTop Jargonbiproduct, stability, ambidexterity	Frobenius reciprocity	mapping spectrum
Algrop Jargon		Grothendieck's Motivic Yoga of 6 oper. (Wirthmüller form)	
Linear Logic	additive disjunction	multiplicative conjunction	linear implication
Physics Meaning	superselection sectors / quantum parallelism	compound quantum systems / quantum entanglement	<u>QRAM</u> systems

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B = p_B$	reference context → *	
classical type sy dependent on co		CIType classical type system	

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—○ linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B = p_B$	reference context → *	
classical type sy dependent on co		tension	

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B = p_B$	reference context → *	
classical type sy dependent on co			

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B = p_B$	reference context → *	
classical type sy dependent on co		$\begin{array}{c} \text{uct} \\ & \longrightarrow \\ & \longrightarrow \end{array} \\ \end{array} \begin{array}{c} \text{classical} \\ \text{type system} \\ & \longrightarrow \end{array}$	

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—○ linear function type
Formula (for <i>B</i> : FinType)	cart. product co-product $\prod_{B} \mathcal{H}_{b} \simeq \bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
classical type sy dependent on co	$\begin{array}{c} \text{co-prod} \\ \hline \\ \hline \\ \text{stem} \end{array} \qquad \begin{array}{c} \Box b: B \\ \downarrow \\ & \downarrow \\ & *P \\ \end{array}$	$ \xrightarrow{\text{uct}} \\ \longrightarrow \\ \hline \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	classical base change / classical quantification

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	$-\circ$ linear function type
Formula (for <i>B</i> : FinType)	$\begin{array}{ll} \textbf{cart. product} & \textbf{co-product} \\ \prod_{B} \mathcal{H}_{b} \simeq \bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b} \\ \textbf{direct sum} \end{array}$	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
classical type sy dependent on co	$\begin{array}{c} \text{co-prod} \\ \hline \\ \hline \\ \text{stem} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} \xrightarrow{\text{uct}} & & \\ & \longrightarrow \end{array} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$	classical base change / classical quantification

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol		\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
$\begin{array}{c} classical type system \\ dependent on context \end{array} \qquad \begin{array}{c} co-product \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \hline \\ \hline \hline & & \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$			classical base change / classical quantification
linear type sys in classical con		$(LType, \bigotimes)^{tensor}$ linear type system	

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
classical type sy dependent on co	classical base change / classical quantification		
linear type sys in classical con		$\stackrel{\text{tension}}{\longrightarrow} \left(LType, \bigotimes^{\text{tensor}} \right) \begin{array}{c} \text{linear} \\ \text{type system} \end{array}$	

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
classical type sy dependent on co	classical base change / classical quantification		
linear type sys in classical con	$\operatorname{text} \left(\operatorname{Liype}_{B}, \otimes_{B} \right) _{\mathbb{L}} \operatorname{Hos}_{B}$		

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. product co-product $\prod_{B} \mathcal{H}_{b} \simeq \bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
classical type sy dependent on co	classical base change / classical quantification		
linear type sys in classical con	tem tem tem text $(LType_B, \otimes_B) \stackrel{\text{terrsor}}{\leftarrow} \stackrel{\perp}{\mathbb{1}}_{B \otimes B}$	$g \longrightarrow (LType, \bigotimes)^{\text{terms of}} \lim_{\text{type system}} $	quantum base change / Motivic Yoga

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. product co-product $\prod_{B} \mathcal{H}_{b} \simeq \bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$egin{aligned} & (\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\ \simeq & \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig) \end{aligned}$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	reference context → *	
classical type sy dependent on co	classical base change / classical quantification		
linear type sys in classical con	tem $(LType_B, \bigotimes_B) \overset{\text{tensor}}{\leftarrow} \overset{\perp}{\mathbb{1}_B \otimes} \overset{\perp}{\longrightarrow} \overset{\perp}{\oplus}_{b:B}$	$g \longrightarrow (LType, \otimes)^{\text{terfsor}} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $	quantum base change / Motivic Yoga

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor	
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type	
Formula (for <i>B</i> : FinType)	cart. product co-product $\prod_{B} \mathcal{H}_{b} \simeq \bigoplus_{B} \mathcal{H}_{b} \simeq \coprod_{B} \mathcal{H}_{b}$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$(\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\\simeq \mathcal{V}\multimapig(\mathcal{H}\multimap\mathcal{K}ig)$	
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	$\xrightarrow{\text{reference context}} *$	ll availabi	
Dependent linear Type Formersfinite classical context (variables, parameters,) p_B reference context $all availablein LHoTTBp_B**availableavailableclassical type systemdependent on contextCIType_B \leftarrow \stackrel{i}{\leftarrow} \stackrel{k}{\leftarrow} \stackrel{k}{\leftarrow} \stackrel{k}{\leftarrow} \stackrel{m}{\leftarrow} \stackrel{L}{\leftarrow} \stackrel{classical}{\leftarrow} clas$				
linear type sys in classical con		$g \longrightarrow (LType, \otimes)^{tersor}$ linear type system	quantum base change / Motivic Yoga	

Characteristic Property	1. their cartesian product blends into the co-product:	2. a tensor product appears& distributes over direct sum	3. a linear function type appears adjoint to tensor
Symbol	⊕ direct sum	\otimes tensor product	—• linear function type
Formula (for <i>B</i> : FinType)	cart. productco-product $\prod_B \mathcal{H}_b \simeq \bigoplus_B \mathcal{H}_b \simeq \coprod_B \mathcal{H}_b$ direct sum	$\mathcal{V} \otimes ig(igoplus_{b:B} \mathcal{H}_b ig) \simeq igoplus_{b:B} ig(\mathcal{V} \otimes \mathcal{H}_b ig)$	$(\mathcal{V}\otimes\mathcal{H})\multimap\mathcal{K}\\simeq \mathcal{V}\multimap(\mathcal{H}\multimap\mathcal{K})$
Dependent linear Type Formers	finite classical context (variables, parameters,) $B - p_B$	$\xrightarrow{\text{reference context}} *$	ll _{available} n LHoTT
classical type sy dependent on co		UCES Type classical type system	classical base change / classical quantification
$\begin{array}{c} \underset{in \ classical \ context}{\overset{\text{direct sum}}{\text{in classical context}}} & \left(\text{LType}_{B}, \overset{\otimes}{\otimes}_{B} \right) \xrightarrow{\downarrow} \\ & \stackrel{\bot}{\longrightarrow} \\ & \stackrel{\downarrow}{\longrightarrow} \\ \\ & \stackrel{\downarrow}{\longrightarrow} \\ & \stackrel{\downarrow}{\longrightarrow} \\ \\ & \stackrel{\downarrow}{\longrightarrow} \\ & \stackrel{\downarrow}{\longrightarrow} \\ \\ &$			

Quantum Effects

effectful program

$$D_1 \xrightarrow{\operatorname{prog}_{12}} \mathscr{E}(D_2)$$

output data of nominal type D_2 causing effects of type $\mathscr{E}(-)$

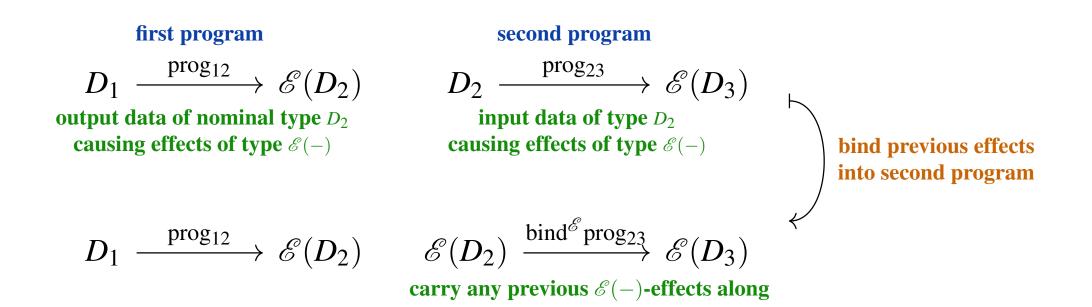
first program

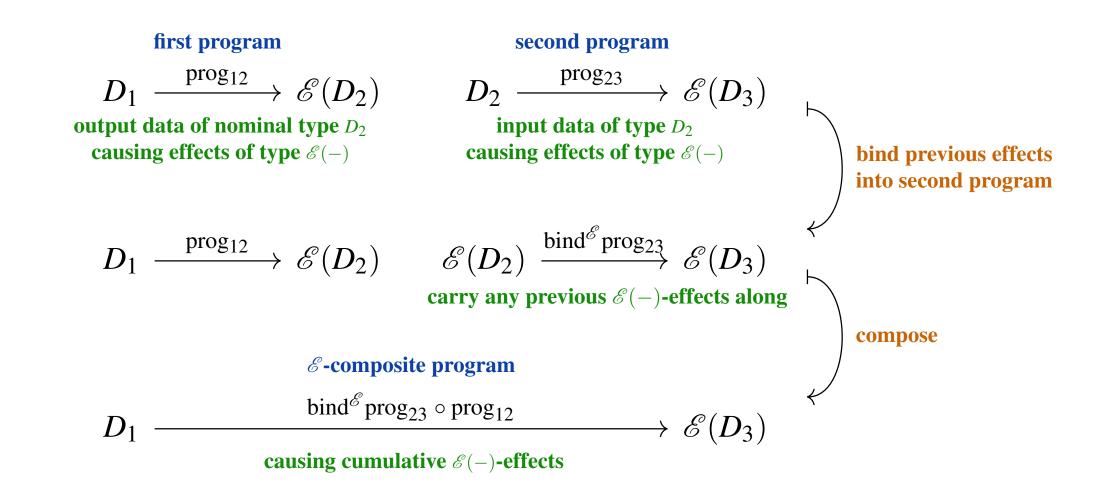
 $D_1 \xrightarrow{\operatorname{prog}_{12}} \mathscr{E}(D_2)$

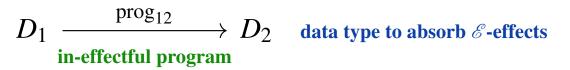
output data of nominal type D_2 causing effects of type $\mathscr{E}(-)$ second program

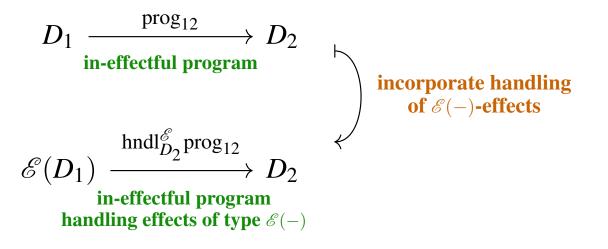
$$D_2 \xrightarrow{\operatorname{prog}_{23}} \mathscr{E}(D_3)$$

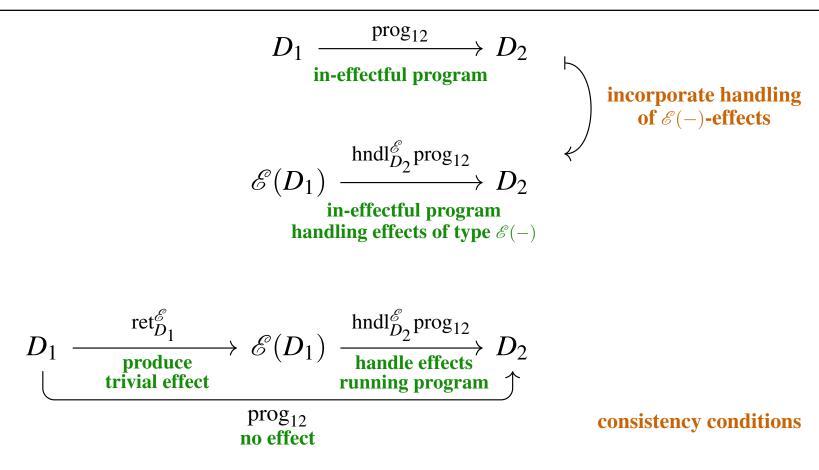
input data of type D_2 causing effects of type $\mathscr{E}(-)$

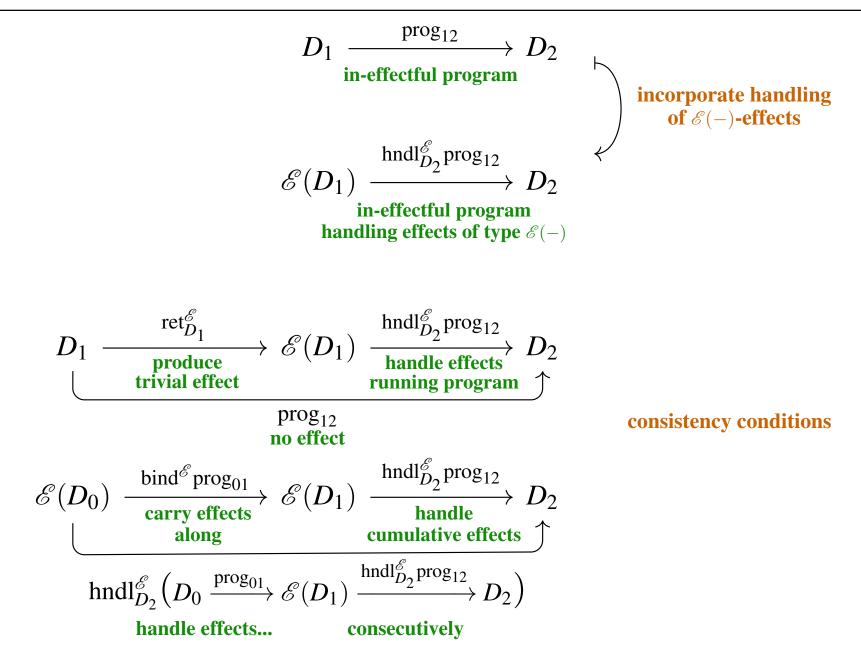




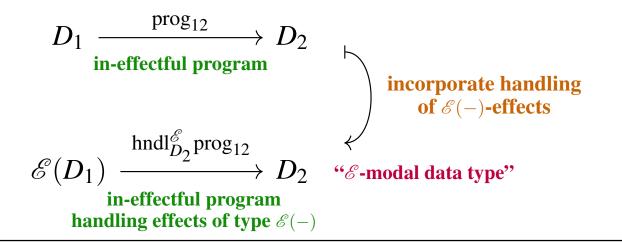








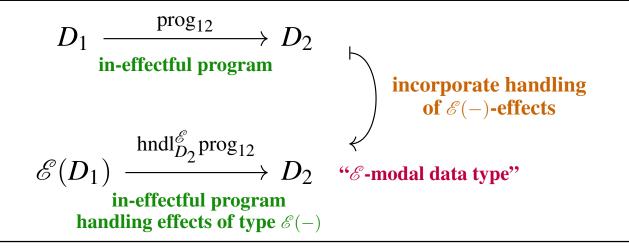
Recall: Data type system of Monadic effect handlers.



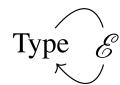
Monadicity:

&-modales in Type Type^ℰ ("EM-category")

Recall: Data type system of Monadic effect handlers.

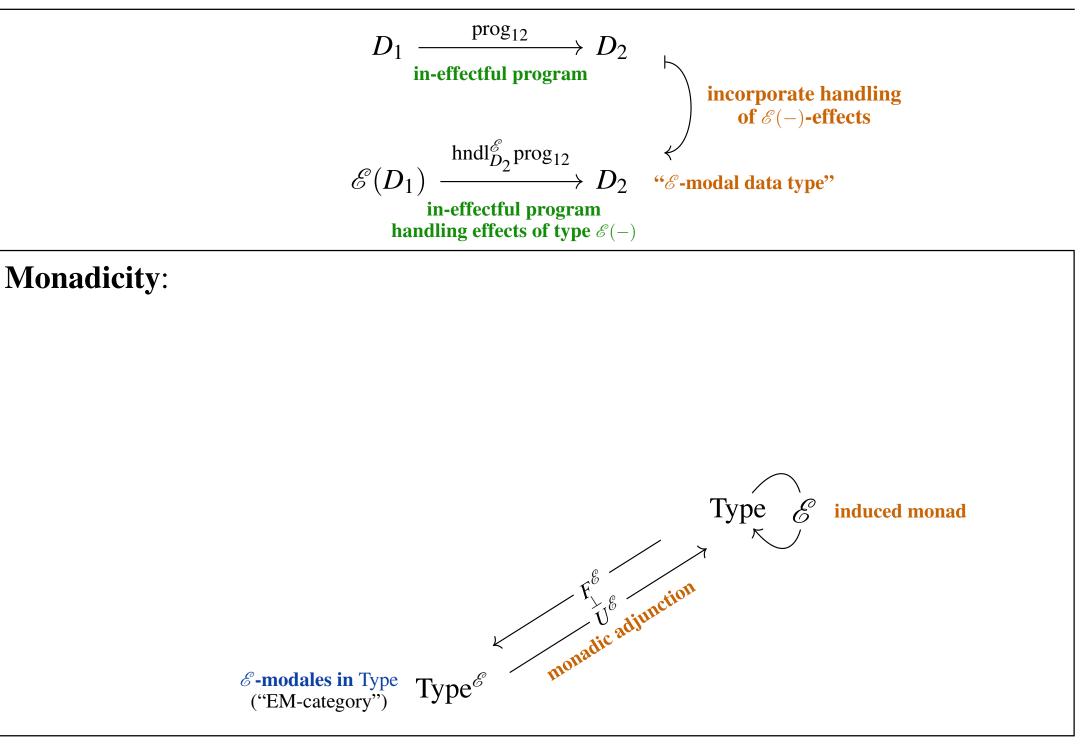


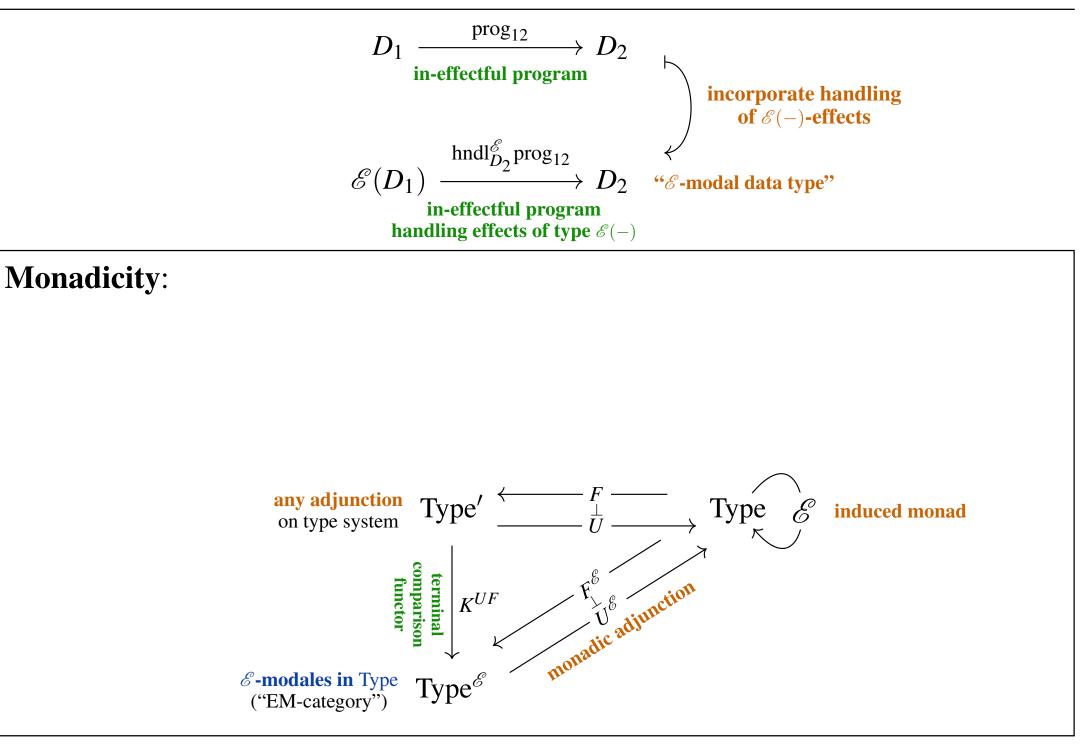
Monadicity:

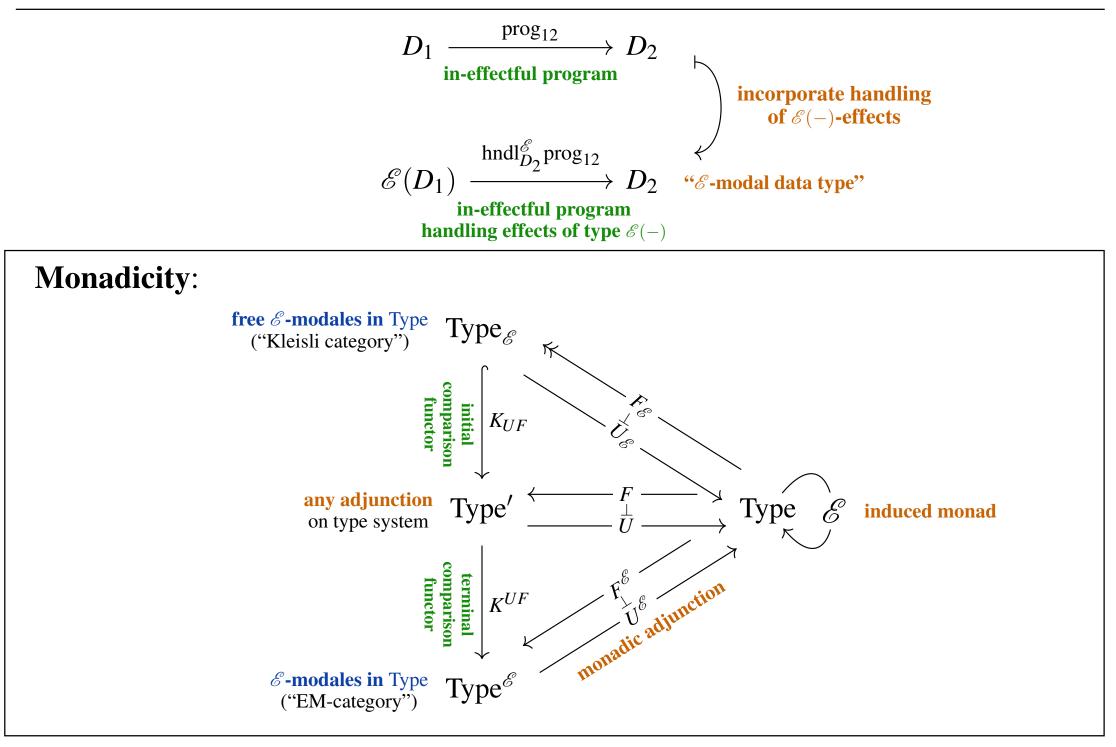


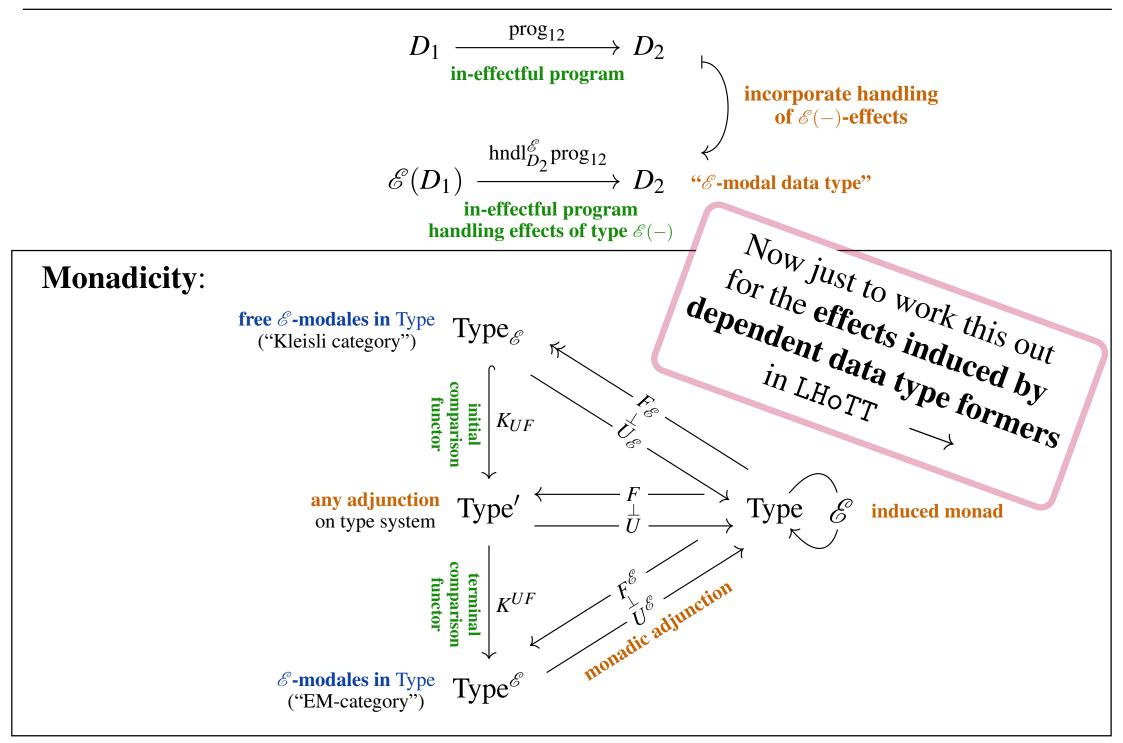
monad

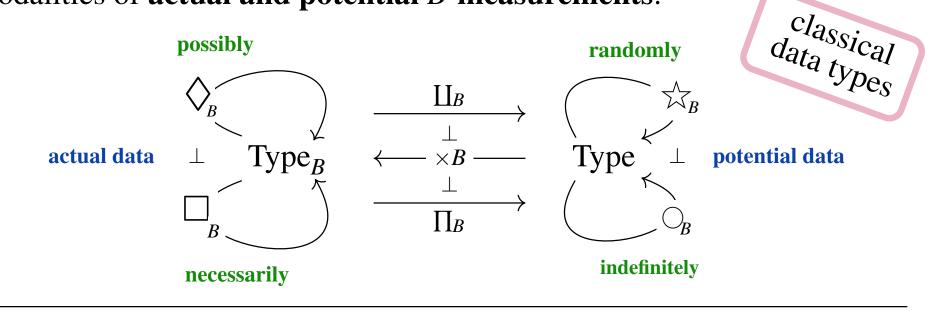
&-modales in Type Type[&] ("EM-category")

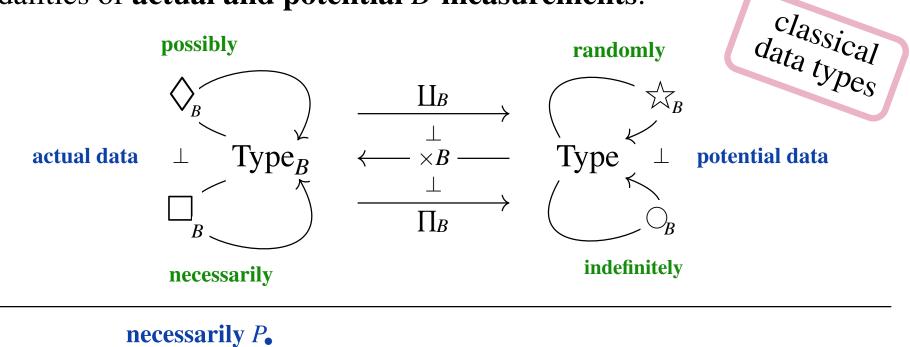






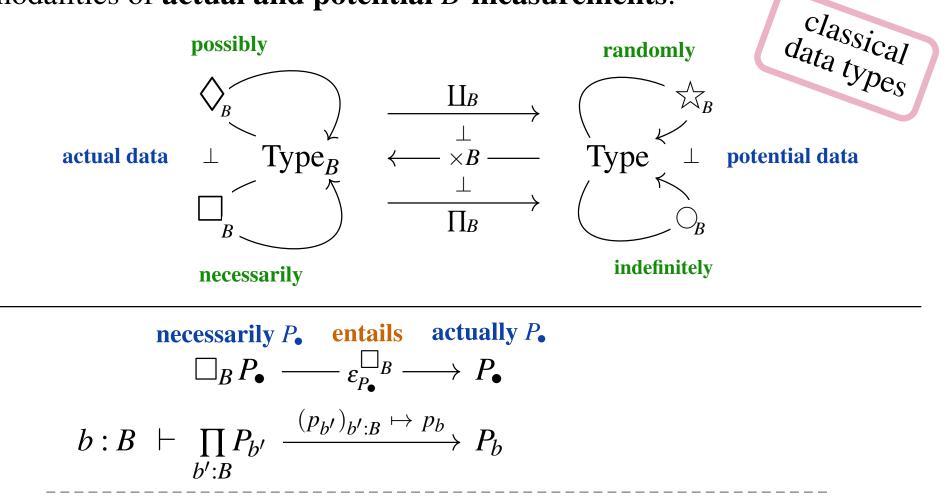


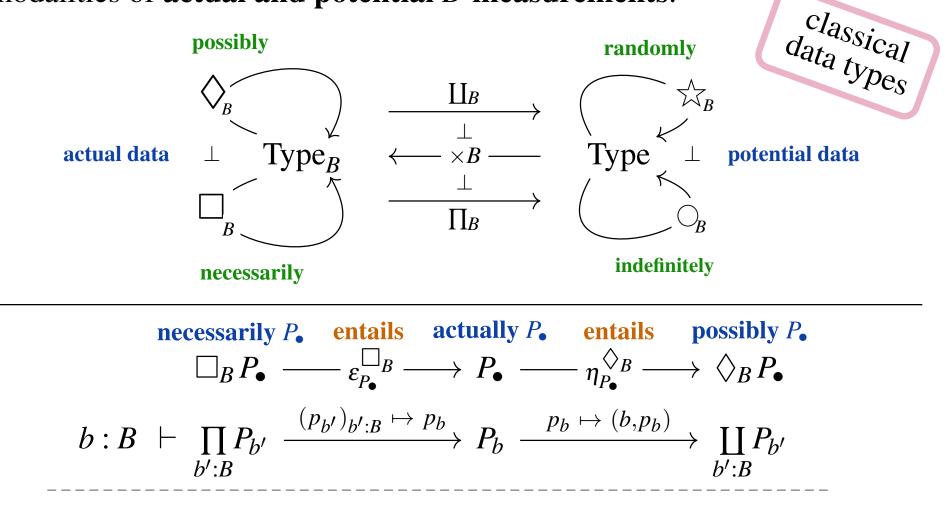


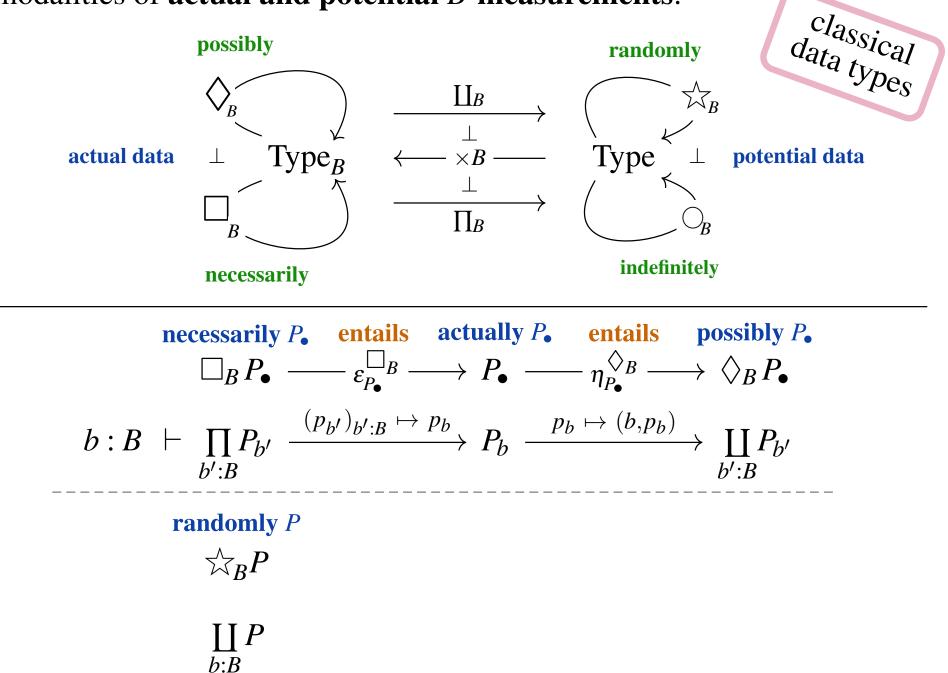


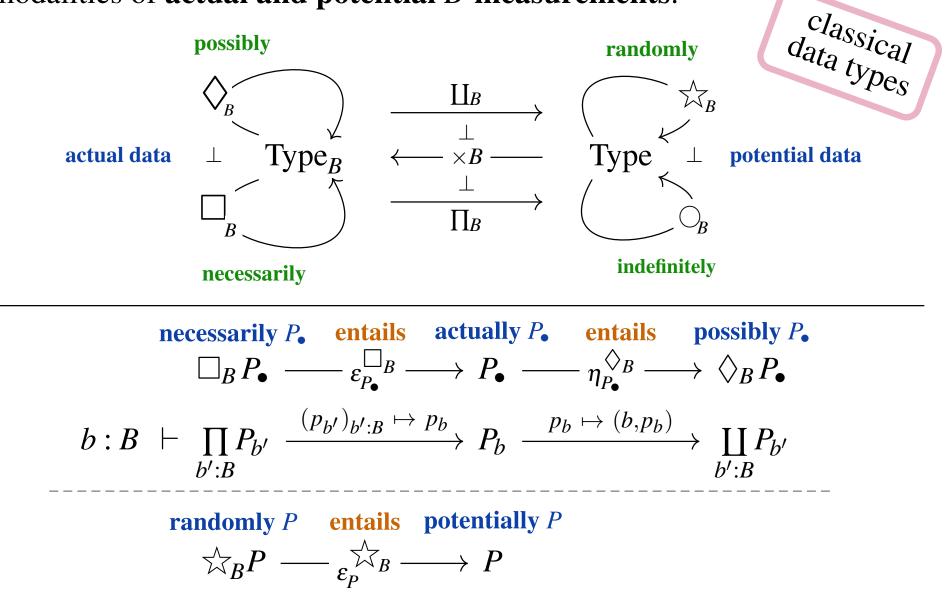
necessarily P_{\bullet} $\Box_B P_{\bullet}$

 $b: B \vdash \prod_{b':B} P_{b'}$

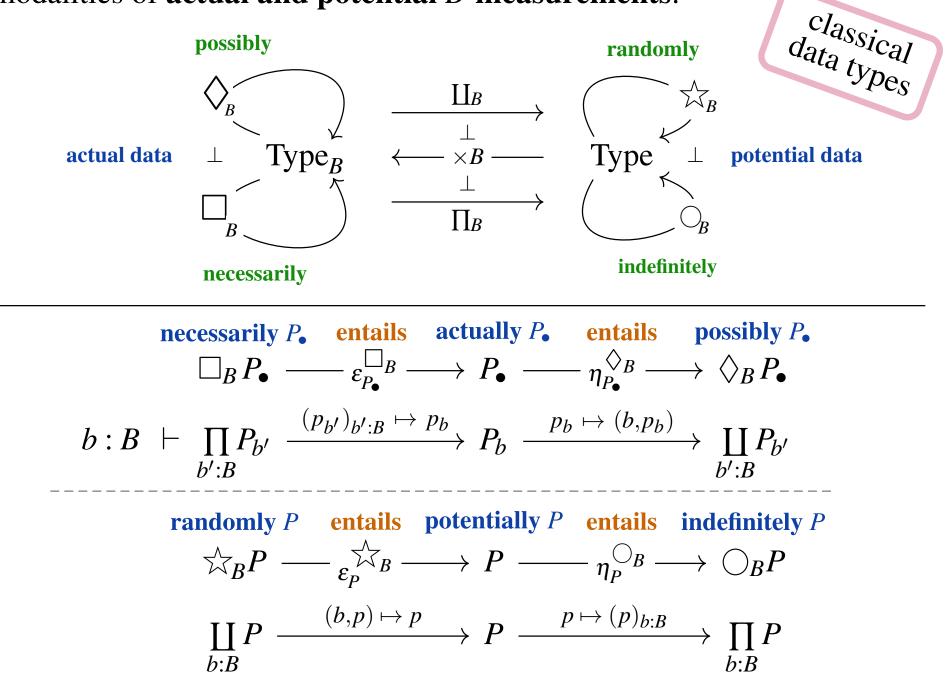


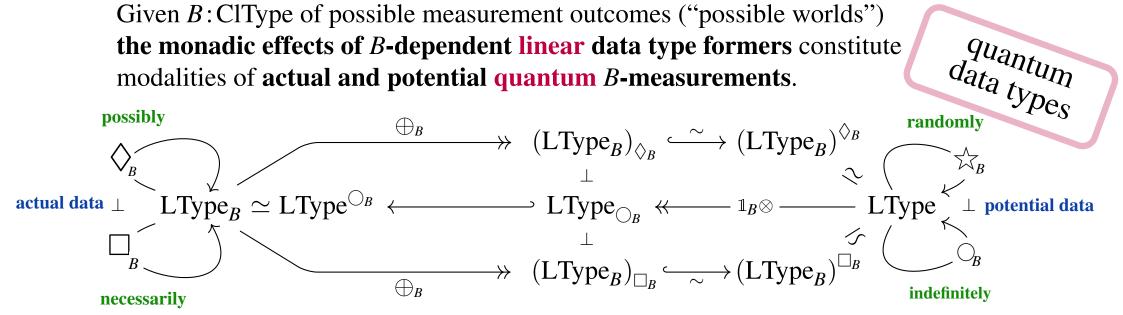


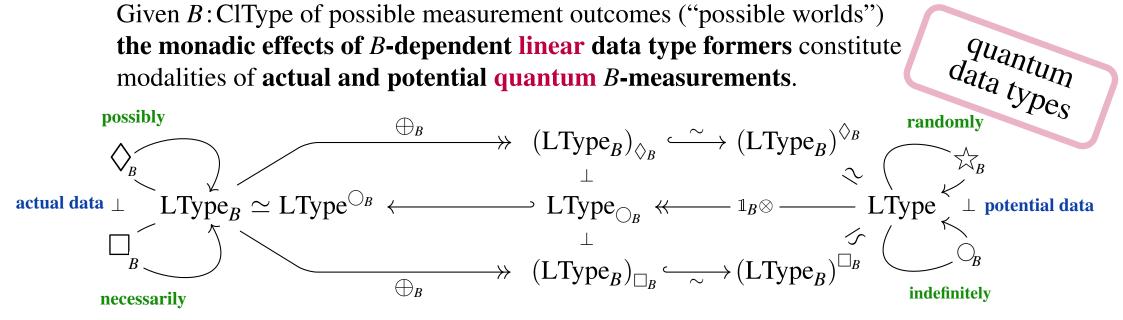




$$\coprod_{b:B} P \xrightarrow{(b,p)\mapsto p} P$$

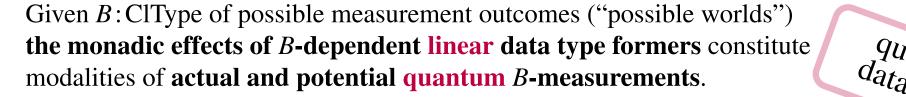


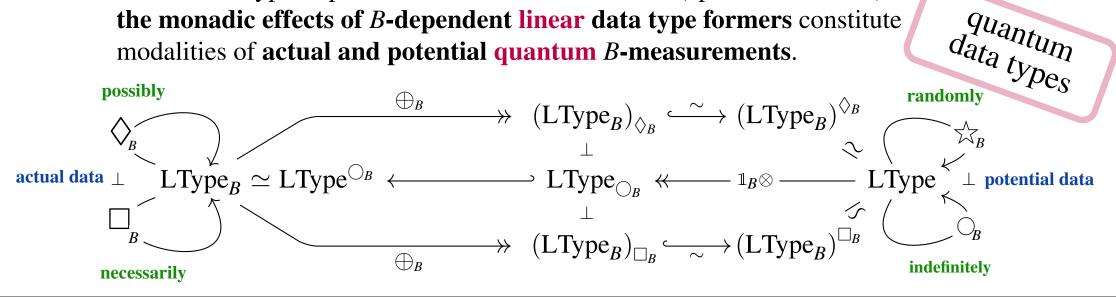


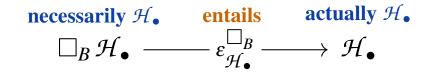


necessarily \mathcal{H}_{\bullet} $\Box_{B} \mathcal{H}_{\bullet}$

 $\begin{array}{lll} \textbf{Given...} & \textbf{obtain...} \\ b: B & \vdash & \mathcal{H} \\ \textbf{measurement} \\ \textbf{result} \end{array} \qquad \text{where } \mathcal{H} := \bigoplus_{b': B} \mathcal{H}_{b'} \\ \end{array}$





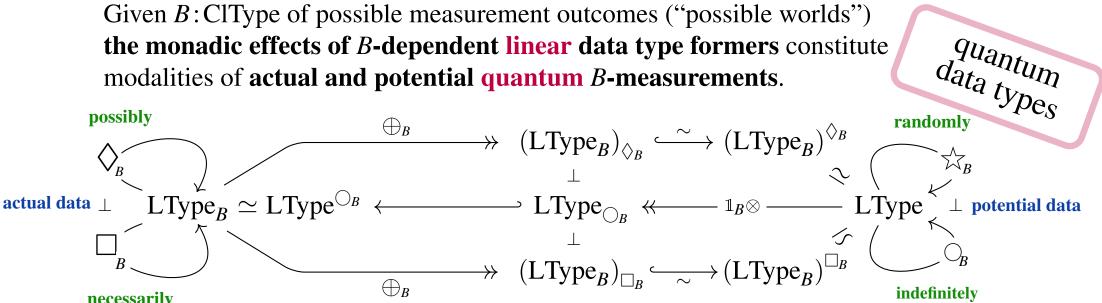


obtain... Given... b: B

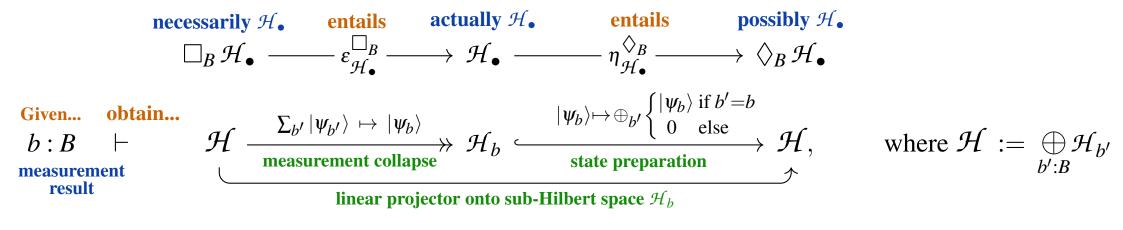
measurement result

 $\mathcal{H} \xrightarrow{\Sigma_{b'} \ket{\psi_{b'}} \mapsto \ket{\psi_b}} \mathcal{H}_b$

where $\mathcal{H} := \bigoplus_{b':B} \mathcal{H}_{b'}$



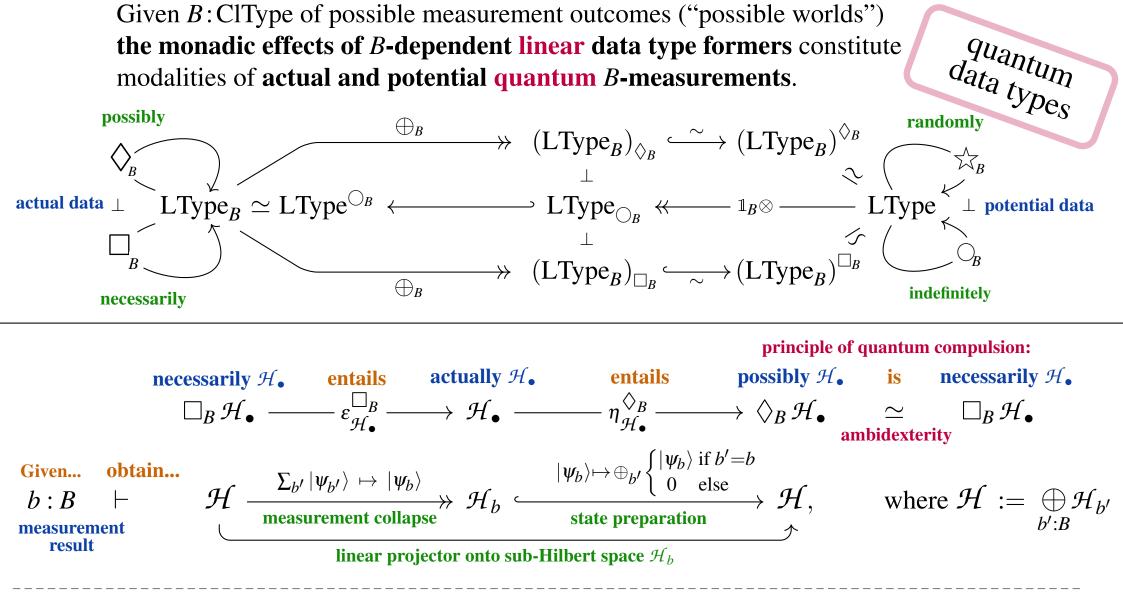
indefinitely



 \bigoplus_{B}

necessarily

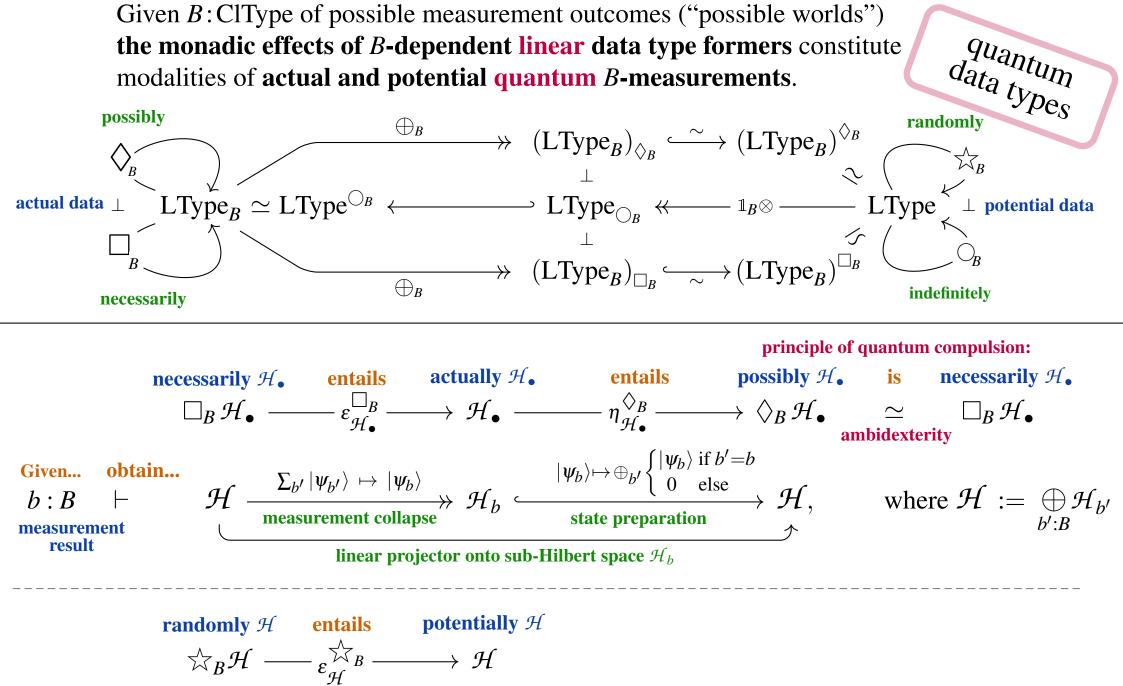




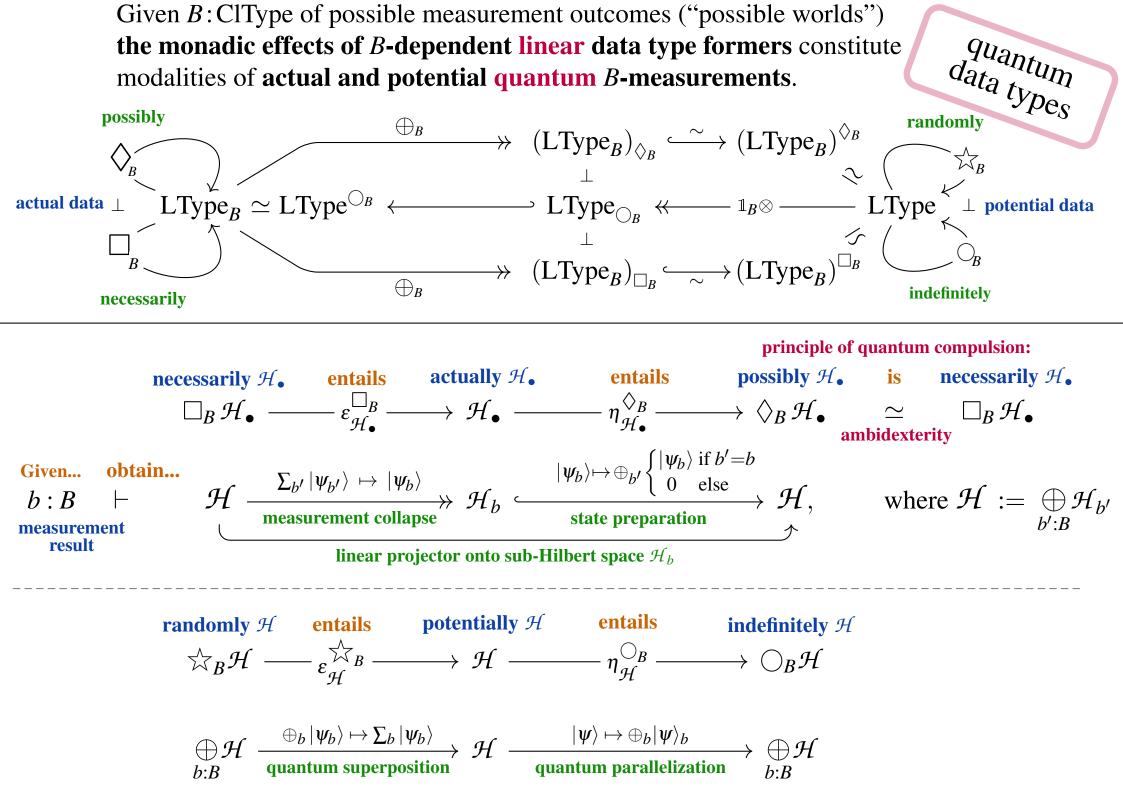
randomly \mathcal{H}

$$\mathcal{A}_B \mathcal{F}$$

 $\bigoplus_{b:B} \mathcal{H}$



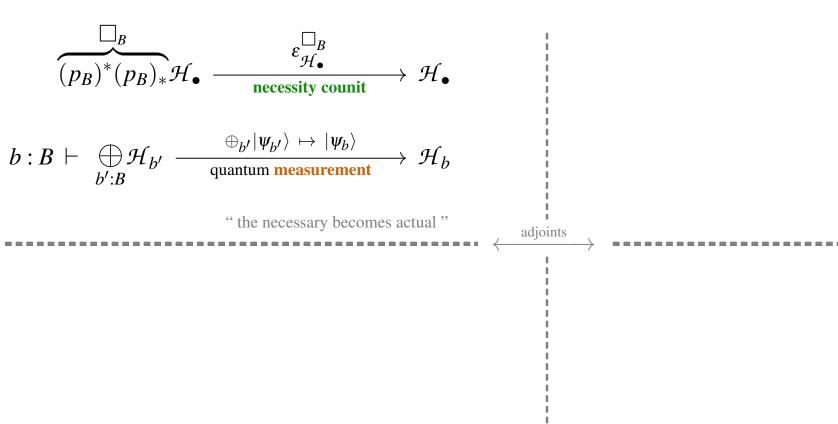
 $\bigoplus_{b:B} \mathcal{H} \xrightarrow{\bigoplus_{b} |\psi_{b}\rangle \mapsto \sum_{b} |\psi_{b}\rangle} \mathcal{H}$



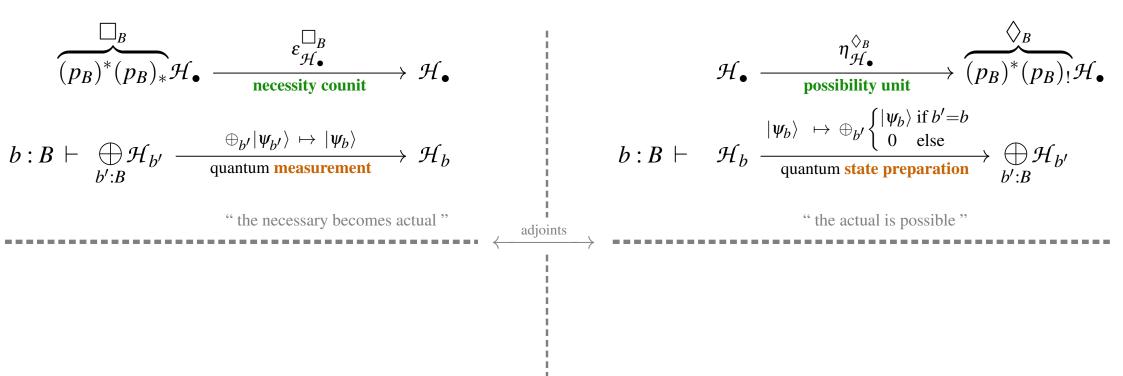
adjoints

are remarkable in their sheer quantum information-theoretic content.

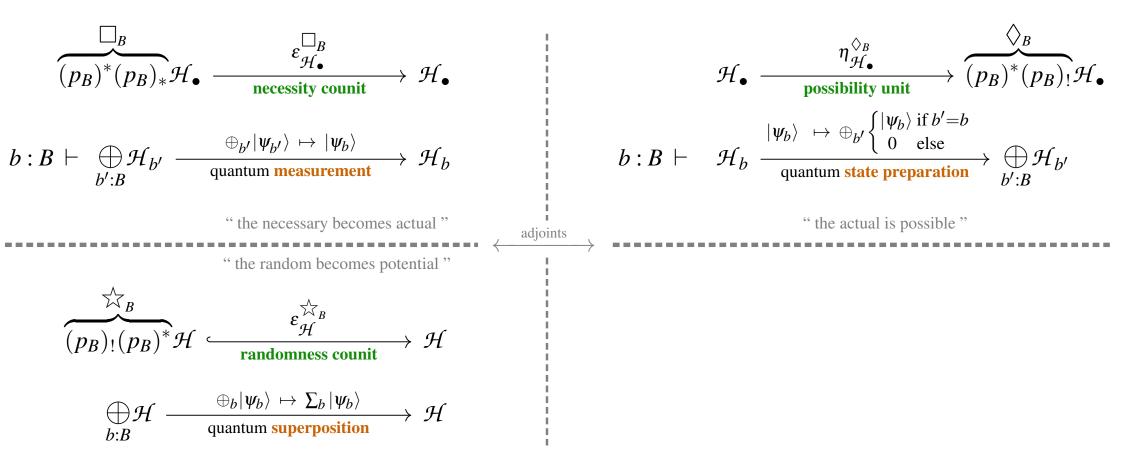
are remarkable in their sheer quantum information-theoretic content.



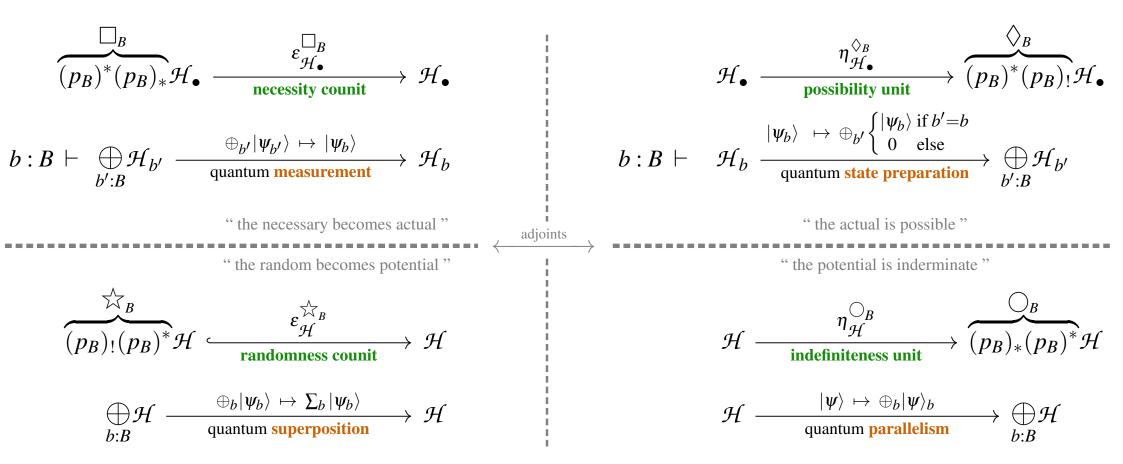
are remarkable in their sheer quantum information-theoretic content.

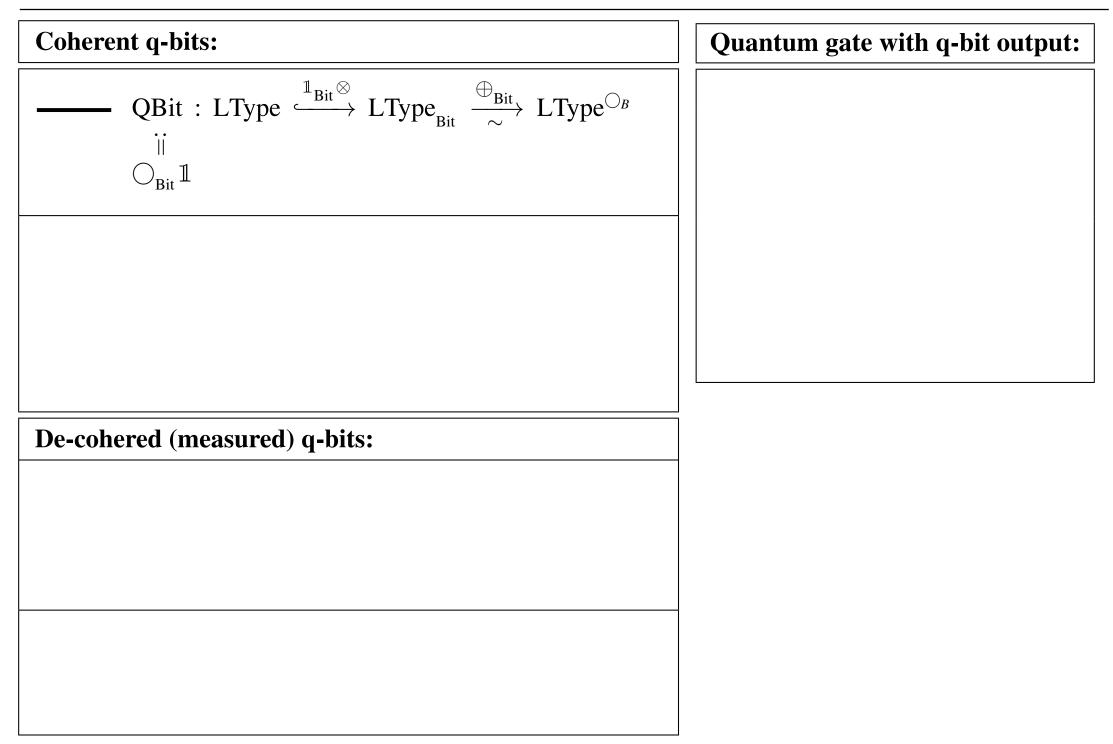


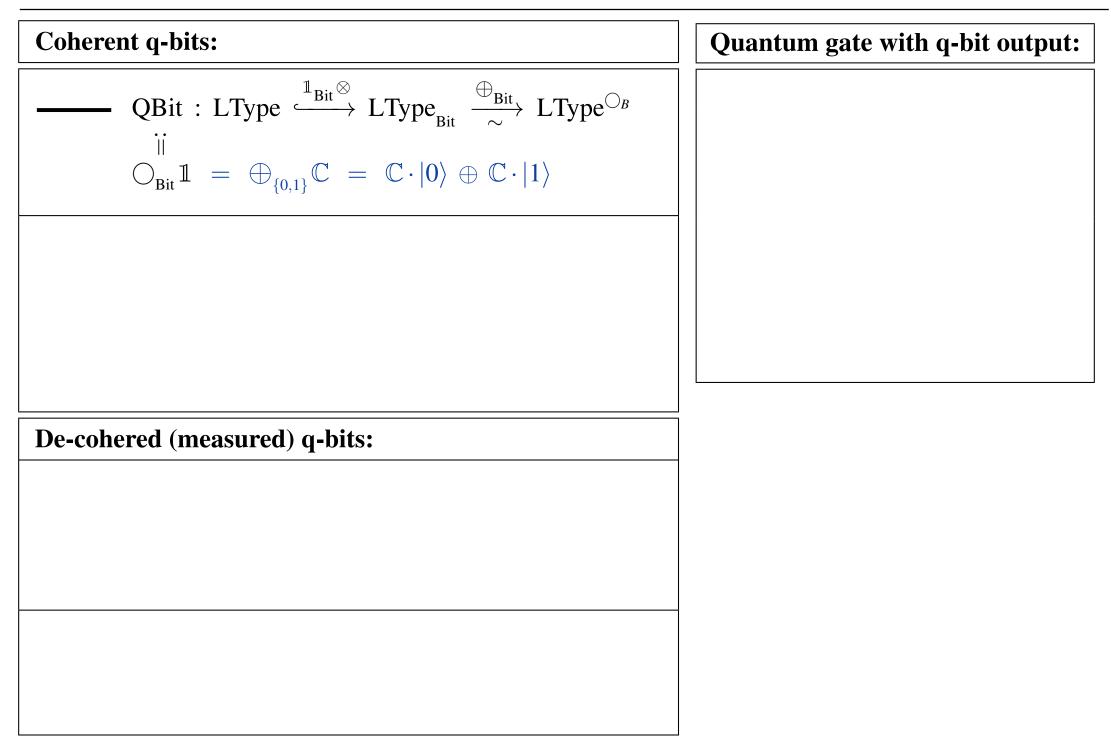
are remarkable in their sheer quantum information-theoretic content.

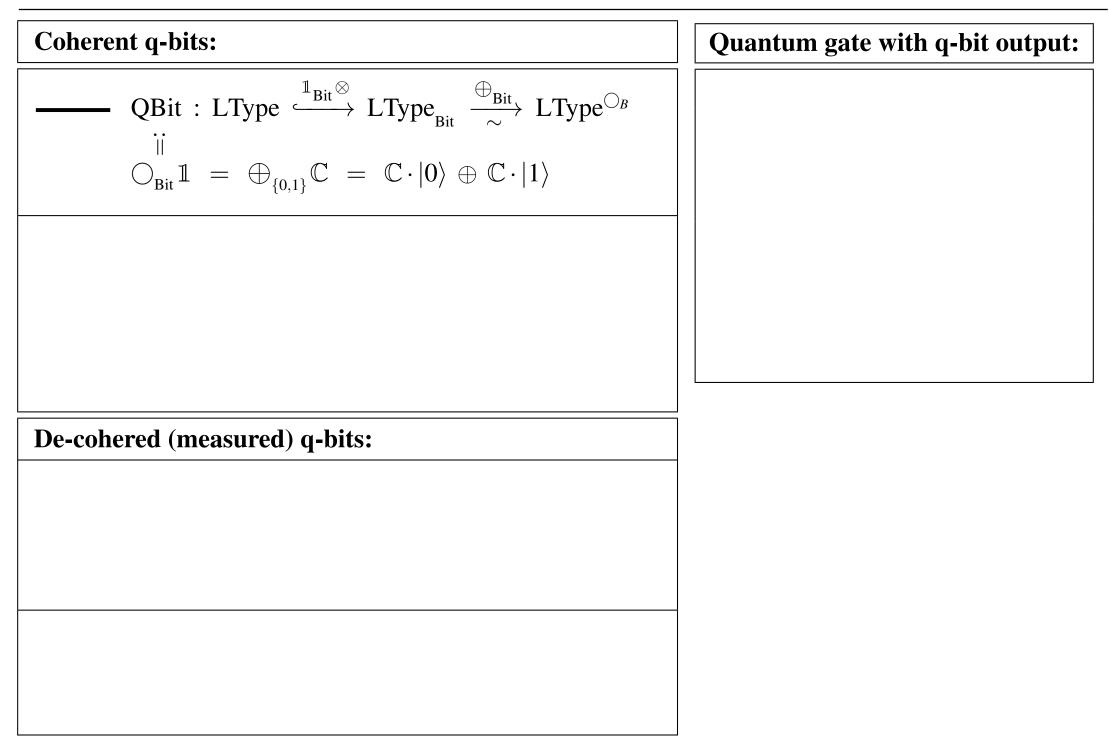


are remarkable in their sheer quantum information-theoretic content.









Coherent q-bits: Quantum gate with q-bit output: QBit : LType $\stackrel{\mathbb{1}_{Bit}\otimes}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{Bit}}{\sim}$ LType^{OB} $\stackrel{\mathbb{1}_{Bit}\otimes}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{Bit}}{\sim}$ LType^{OB} $\stackrel{\mathbb{1}_{Bit}}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{Bit}}{\sim}$ LType Quantum gate with q-bit output: $\stackrel{\mathbb{1}_{Bit}}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{Bit}}{\sim}$ LType $\stackrel{\mathbb{1}_{Bit}}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{Bit}}{\sim}$ LType $\stackrel{\mathbb{1}_{Bit}}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{Bit}}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{Bit}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{Bit}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{Bit}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{C}}{\bigcirc}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{O_{Bit}}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{C}}{\odot}$ LType $\stackrel{\mathbb{1}_{O_{Bit}}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{O_{Dit}}}{\odot}$ LType $\stackrel{\mathbb{1}_{O_{Dit}}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{O_{Dit}} \oplus$ LType $\stackrel{\mathbb{1}_{Oit}}{\odot}$ LType $\stackrel{\mathbb{1}_{Oit}}{\longrightarrow}$ LType $\stackrel{\mathbb{1}_{Oit} \odot$ LType $\stackrel{\mathbb{1}_{Oit} \odot$ LType $\stackrel{\mathbb{1}_{Oit} \odot$ LType $\stackrel{\mathbb{1}_{Oit} \odot$ LType $\stackrel{\mathbb{1}_{Oit} \odot$ LType

De-cohered (measured) q-bits:

Coherent q-bits: Quantum gate with q-bit output: QBit : LType $\stackrel{\mathbb{I}_{Bit}\otimes}{\longrightarrow}$ LType $\stackrel{\mathbb{G}_{Bit}}{\sim}$ LType $\stackrel{\mathbb{G}_{Bit}}{\longrightarrow}$ LType It Lipe Lipe Lipe Lipe Lipe Lipe Lipe Lipe Lipe Lipe Lipe Lipe

De-cohered (measured) q-bits:

$$= 1_{Bit} : LType_{Bit} \xrightarrow{\bigoplus_{Bit}} LType^{\bigcirc_{Bit}}$$
$$b : Bit \vdash \mathbb{C} \cdot |b\rangle : LType$$

Coherent q-bits: Quantum gate with q-bit output: QBit : LType $\stackrel{\mathbb{1}_{Bit}\otimes}{\longrightarrow}$ LType $\stackrel{\mathbb{O}_{Bit}}{\longrightarrow}$ LType Is the type LType
De-cohered (measured) q-bits:

$$= 1_{Bit} : LType_{Bit} \xrightarrow{\bigoplus_{Bit}} LType_{^{O}Bit}$$
$$b : Bit \vdash \mathbb{C} \cdot |b\rangle : LType$$
$$= 1_{Bit}$$
$$\otimes b : Bit \vdash \mathcal{H} \otimes |b\rangle : LType$$
$$\mathcal{H}$$

Coherent q-bits:

$$\begin{array}{c} \overbrace{\qquad} & \operatorname{QBit} : \operatorname{LType} \xrightarrow{\mathbb{1}_{\operatorname{Bit}} \otimes} \operatorname{LType}_{\operatorname{Bit}} \xrightarrow{\oplus_{\operatorname{Bit}}} \operatorname{LType}_{\mathbb{O}_{B}} \\ & & & & \\ & & & \\ &$$

De-cohered (measured) q-bits:

$$= 1_{Bit} : LType_{Bit} \xrightarrow{\bigoplus_{Bit}} LType_{Bit}$$
$$b : Bit \vdash \mathbb{C} \cdot |b\rangle : LType$$
$$= 1_{Bit}$$
$$\otimes b : Bit \vdash \mathcal{H} \otimes |b\rangle : LType$$
$$= \mathcal{H}$$

Quantum gate with q-bit output:

A quantum gate which may handle \bigcirc_{Bit} -effects is one with a QBit-output:

$$\mathcal{H} \xrightarrow{\phi} QBit \\ \mathcal{H} \xrightarrow{\phi} QBit \otimes \mathcal{K} \simeq \bigcirc_{Bit} \mathcal{K}$$

Coherent q-bits:

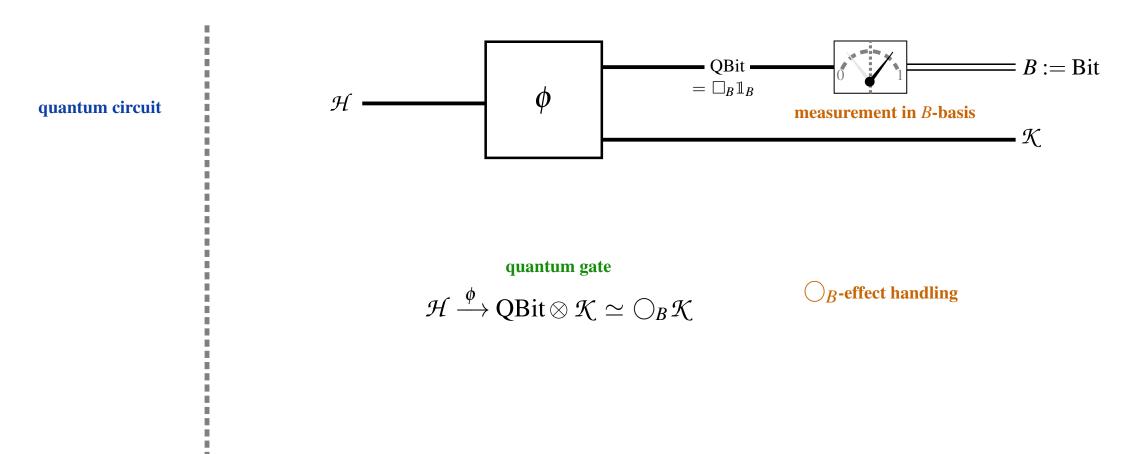
De-cohered (measured) q-bits:

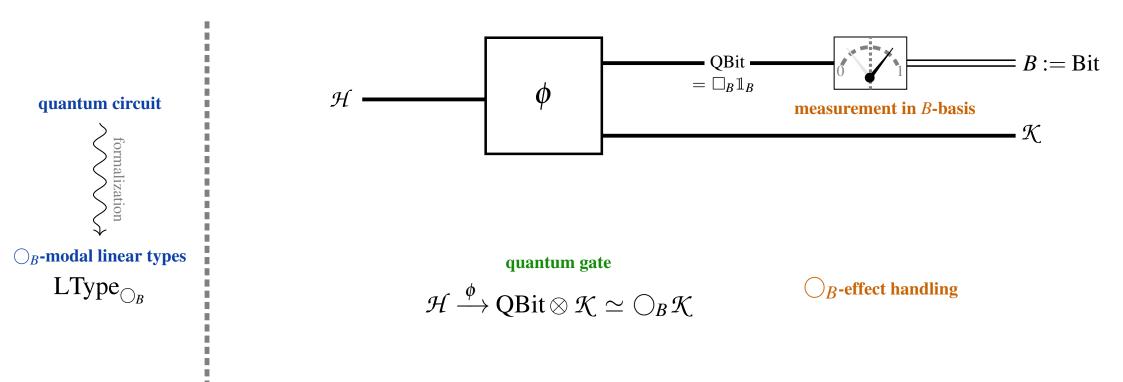
$$= 1_{\text{Bit}} : \text{LType}_{\text{Bit}} \xrightarrow{\bigoplus_{\text{Bit}}} \text{LType}_{\text{Bit}}$$
$$b : \text{Bit} \vdash \mathbb{C} \cdot |b\rangle : \text{LType}$$
$$= 1_{\text{Bit}}$$
$$\otimes b : \text{Bit} \vdash \mathcal{H} \otimes |b\rangle : \text{LType}$$
$$= \mathcal{H}$$

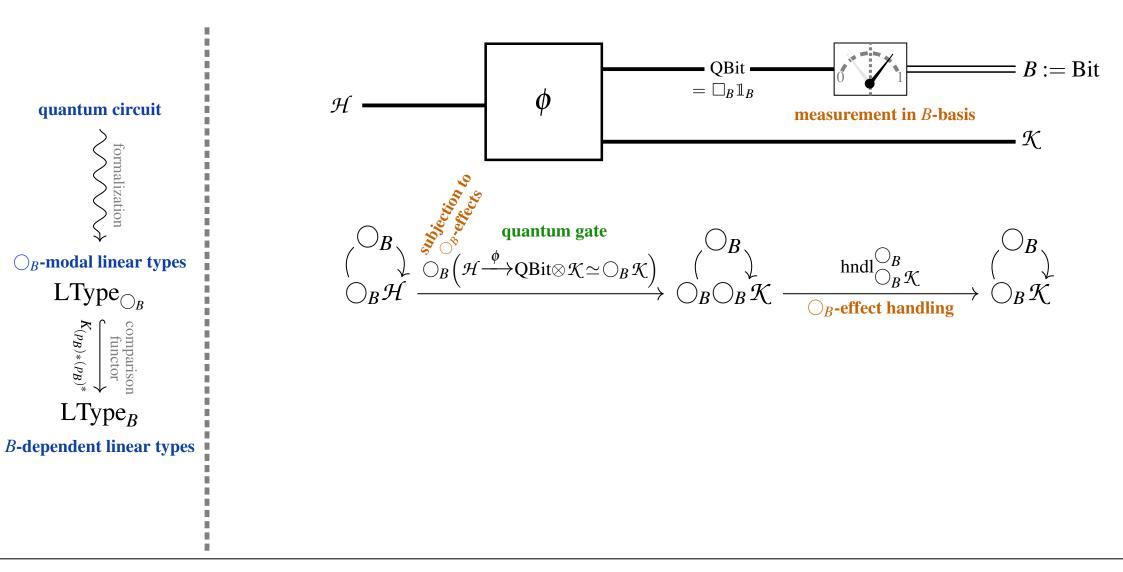
Quantum gate with q-bit output:

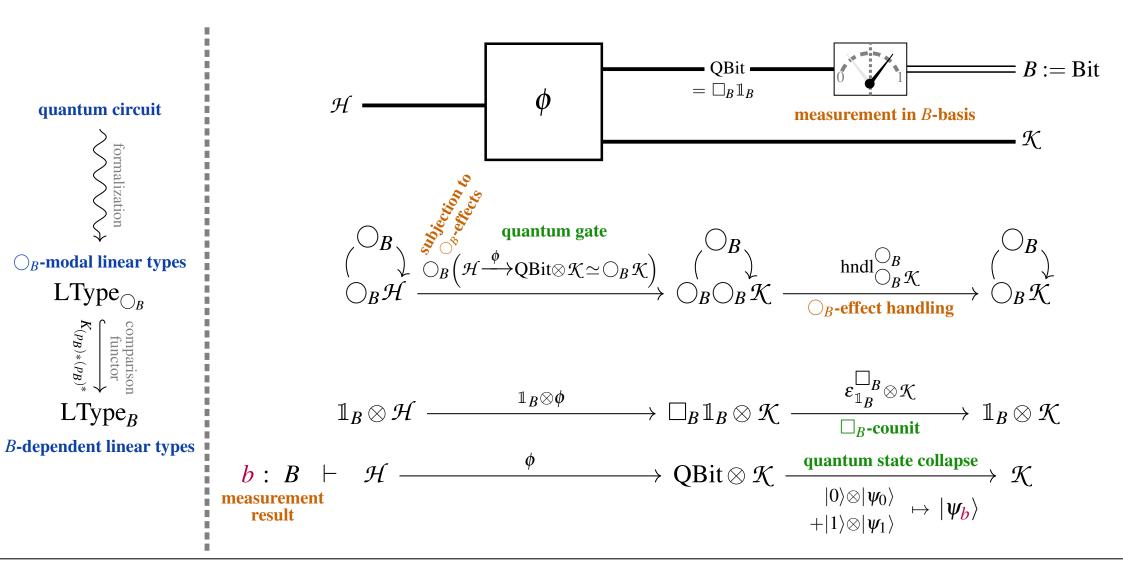
A quantum gate which may handle \bigcirc_{Bit} -effects is one with a QBit-output:

$$\mathcal{H} \xrightarrow{\phi} QBit \\ \mathcal{K} \\ \mathcal{H} \xrightarrow{\phi} QBit \otimes \mathcal{K} \simeq \bigcirc_{Bit} \mathcal{K}$$

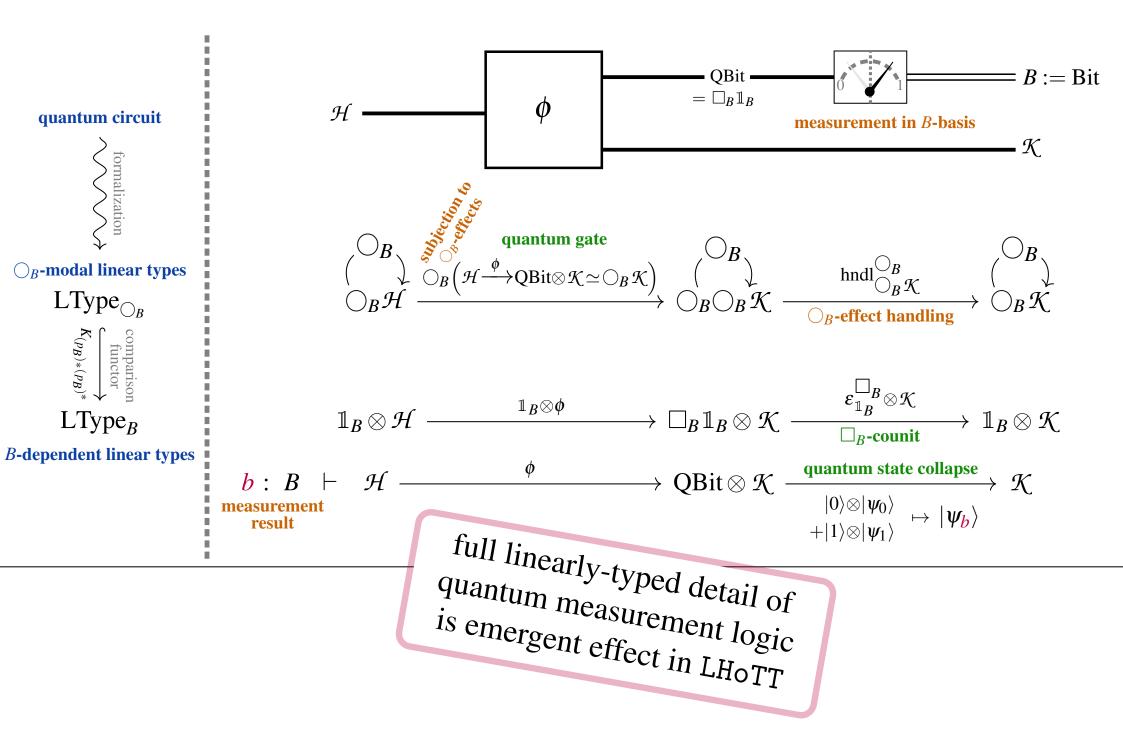




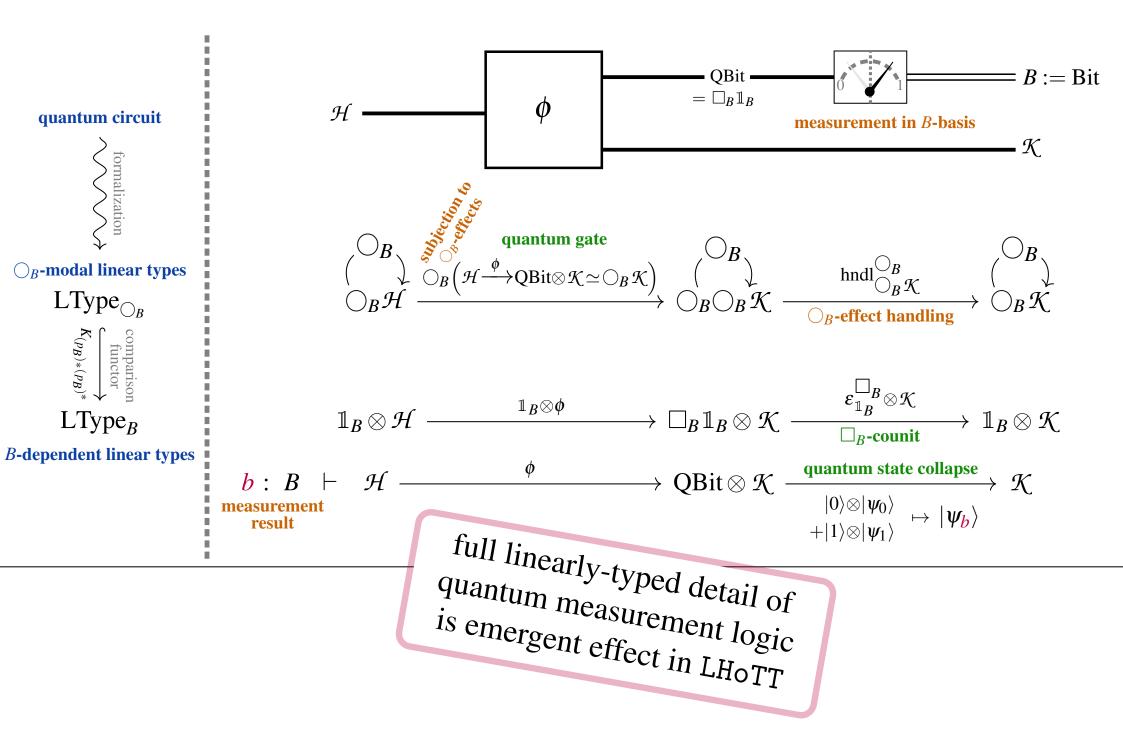




Quantum measurement is Linear indefiniteness-effect handling.



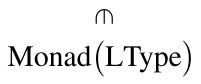
Quantum measurement is Linear indefiniteness-effect handling.



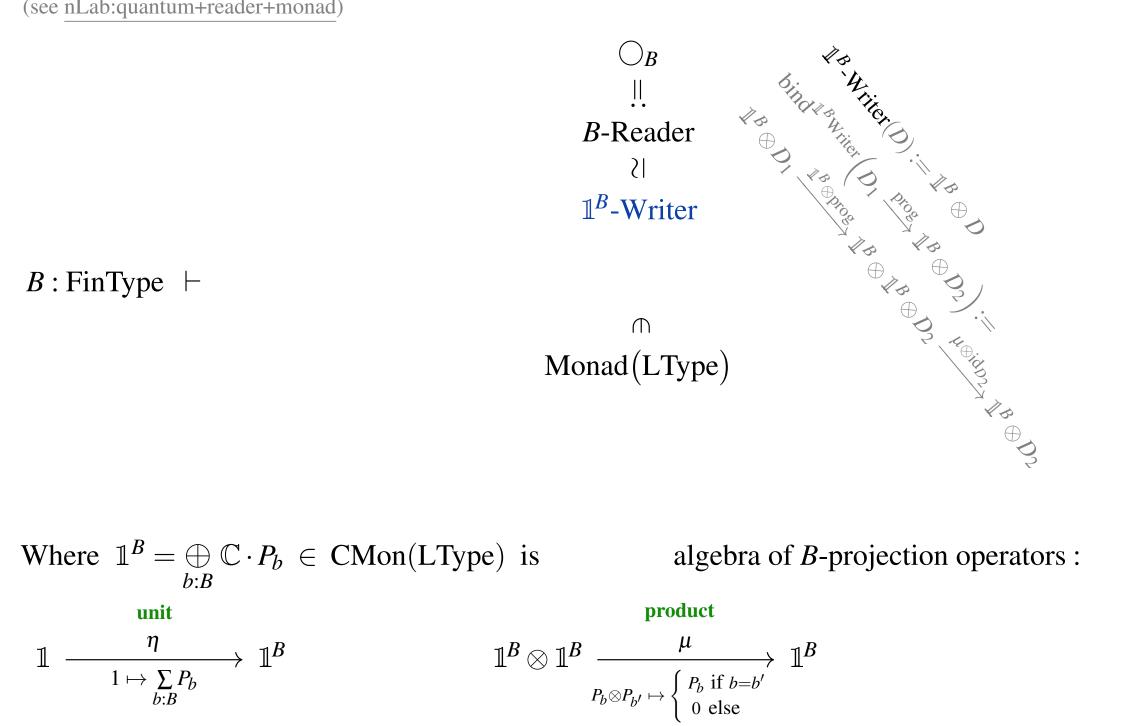
(see nLab:quantum+reader+monad)

$\bigcirc \\ Monad(LType)$

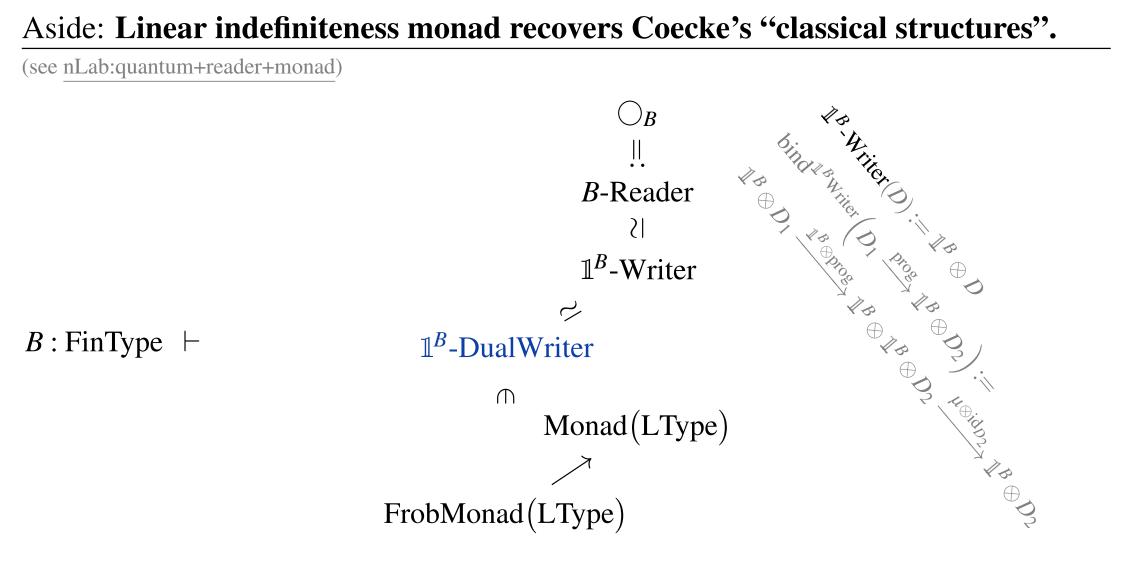
(see nLab:quantum+reader+monad)

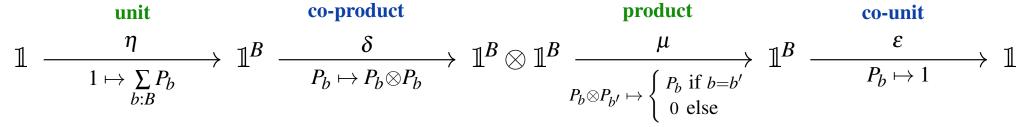


(see nLab:quantum+reader+monad)

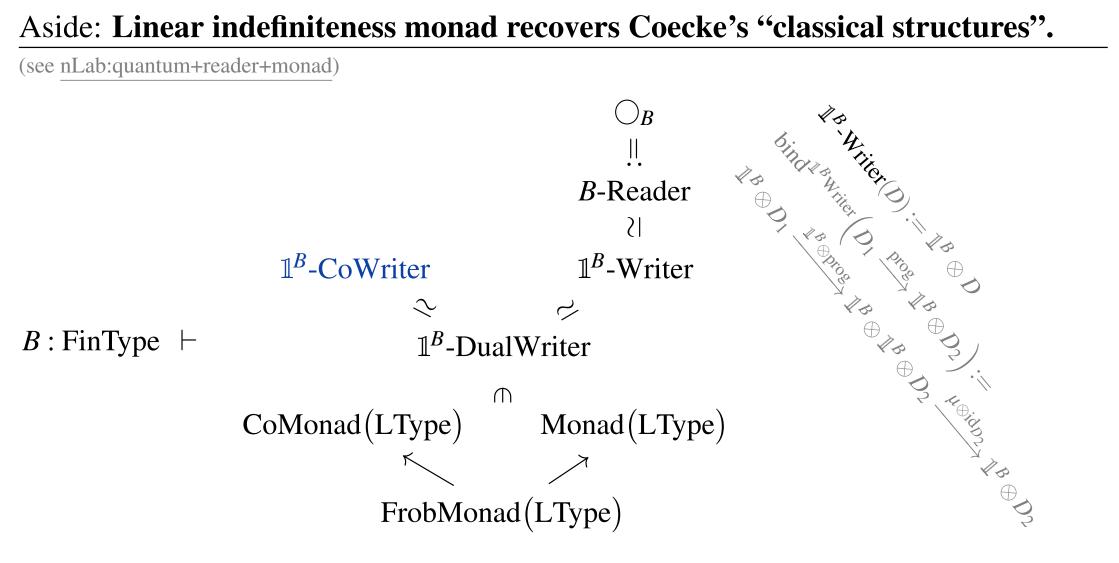


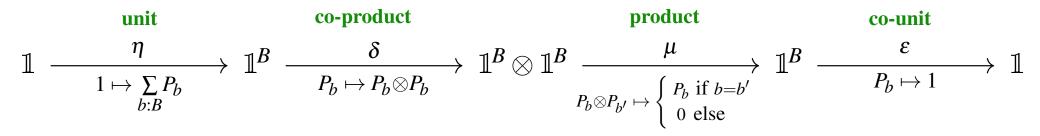
(see nLab:quantum+reader+monad)



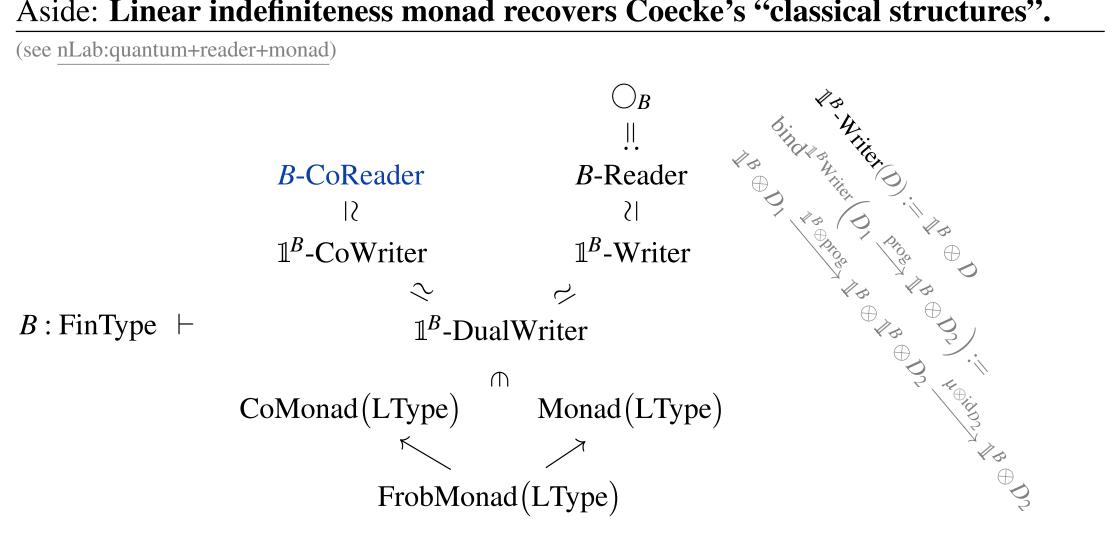


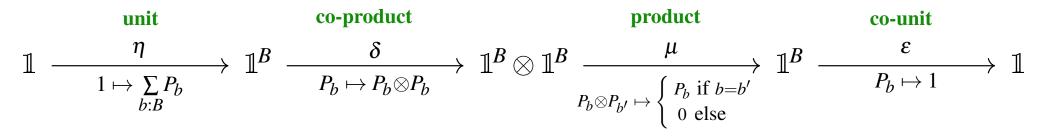
(see nLab:quantum+reader+monad)



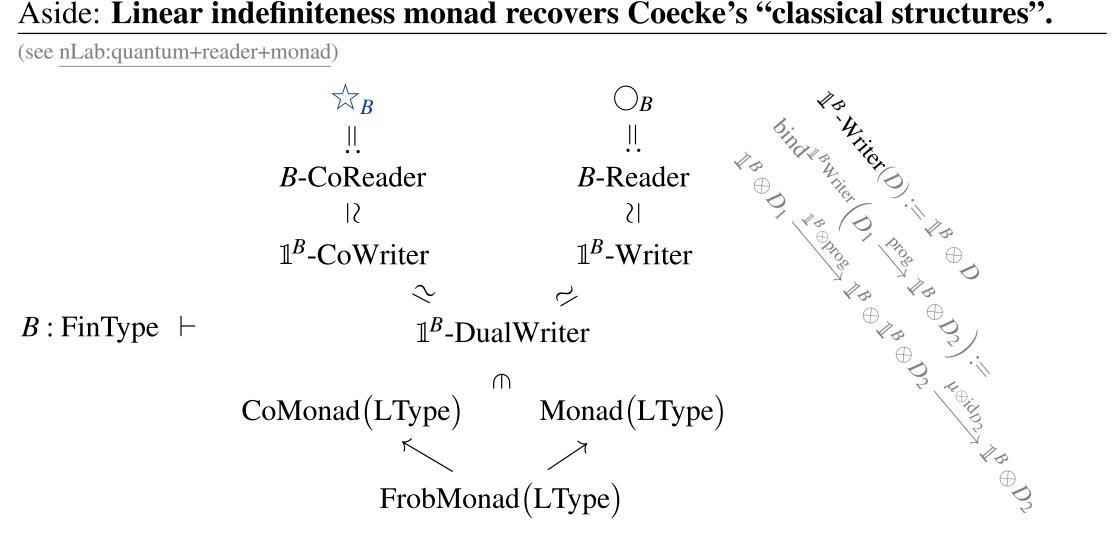


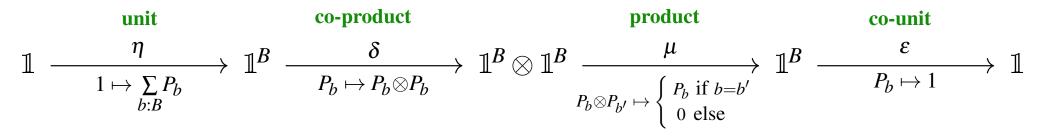
(see nLab:quantum+reader+monad)



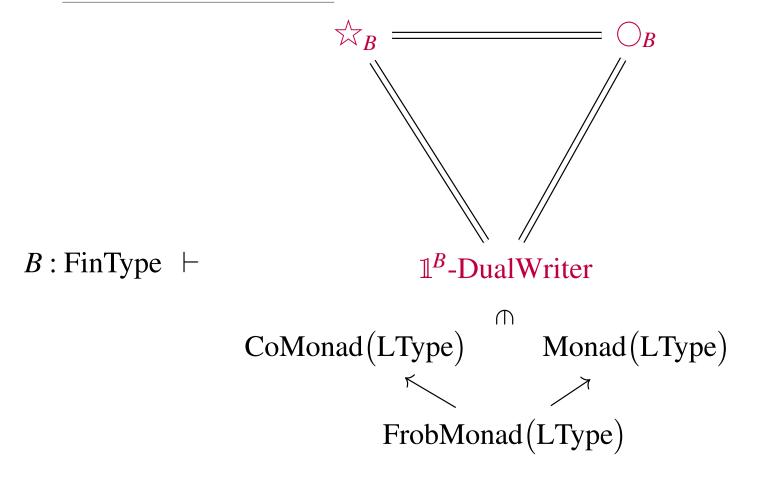


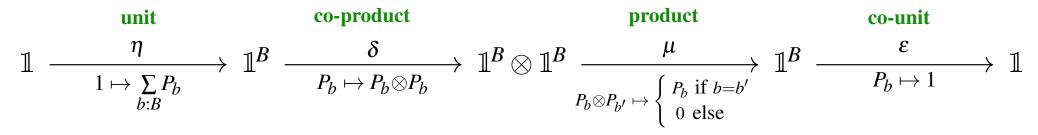
(see nLab:quantum+reader+monad)



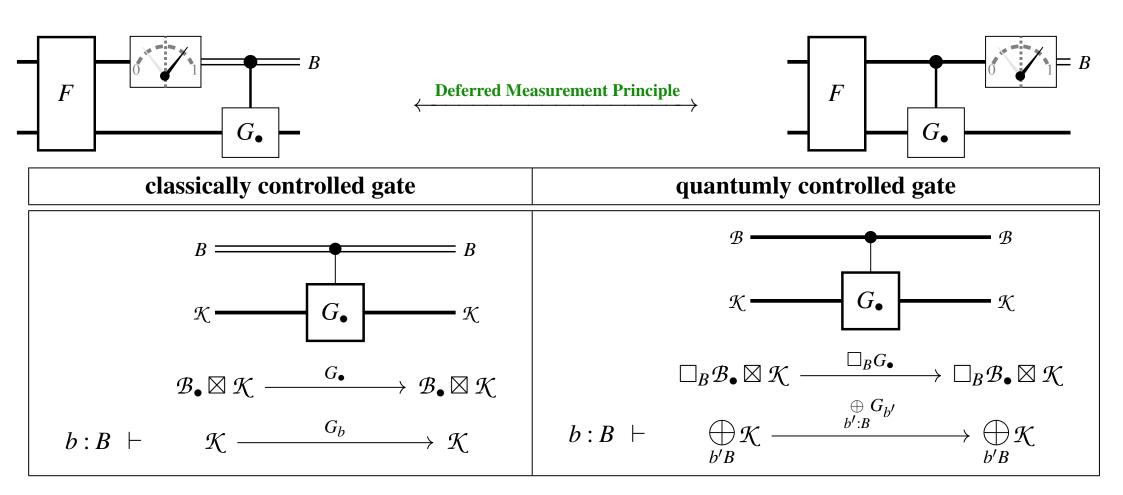


(see nLab:quantum+reader+monad)

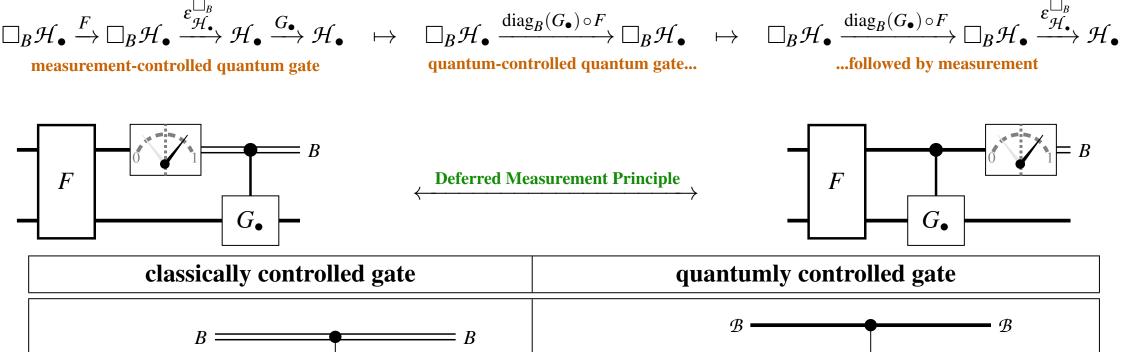


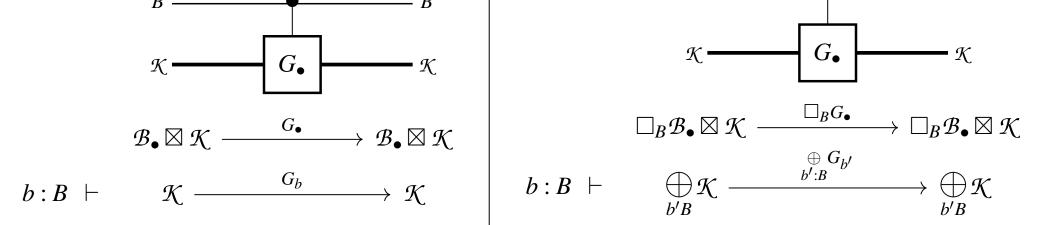


Exmp: Deferred measurement principle – Proven by monadic effect logic.

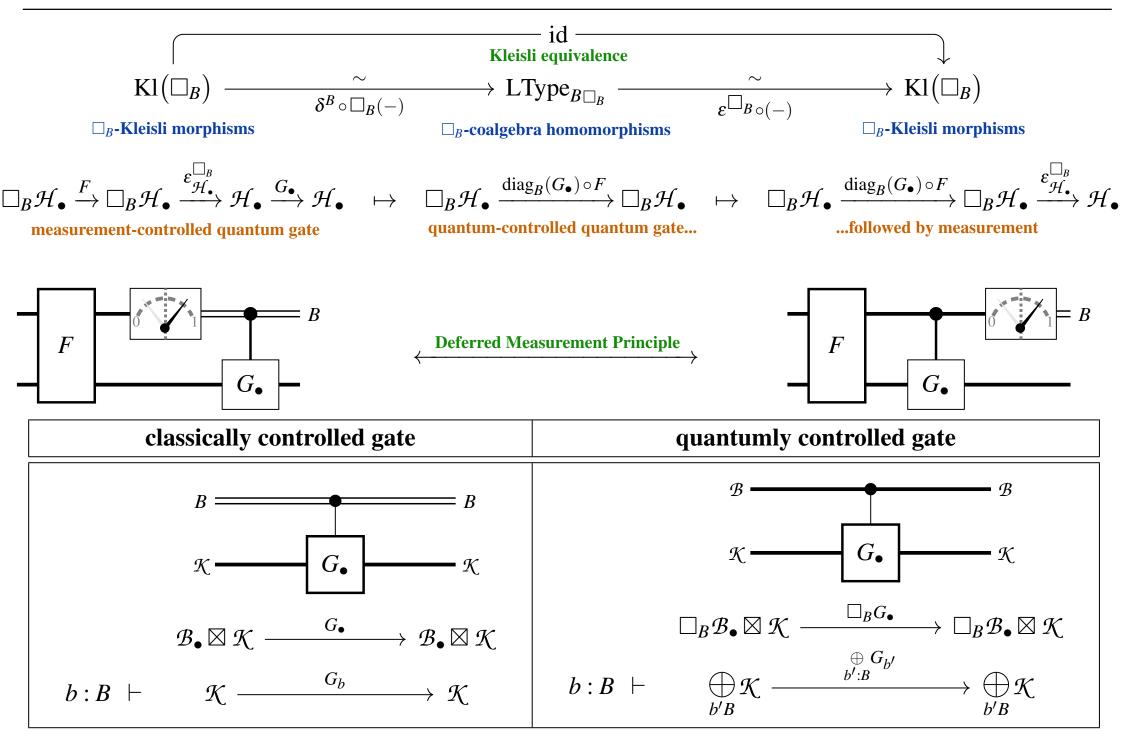


Exmp: Deferred measurement principle – Proven by monadic effect logic.





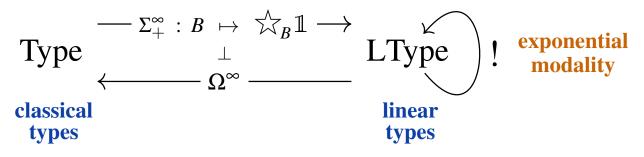
Exmp: Deferred measurement principle – Proven by monadic effect logic.



Also the *exponential modality* traditionally postulated in linear logic is an emergent effect in LHoTT,

linear randomization

aka: stabilization/motivization

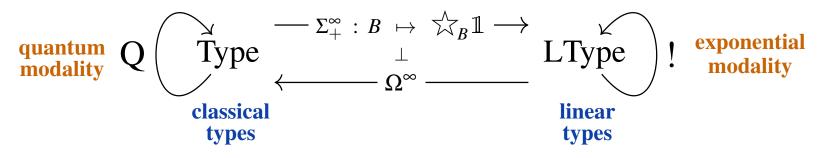


Also the *exponential modality* traditionally postulated in linear logic is an emergent effect in LHoTT,

as is the crucial *Quantum Modality*, not considered before:

linear randomization

aka: stabilization/motivization



Also the *exponential modality* traditionally postulated in linear logic is an emergent effect in LHoTT,

as is the crucial *Quantum Modality*, not considered before:

$\begin{array}{c} \begin{array}{c} \text{linear randomization} \\ \text{aka: stabilization/motivization} \\ \end{array} \\ \begin{array}{c} \text{quantum} \\ \text{modality} \end{array} Q \left(\begin{array}{c} \searrow \\ \Upsilon \\ \text{Type} \end{array} \right) \xrightarrow{\Sigma_{+}^{\infty}} : B \\ \longrightarrow \\ \square \\ \square \\ \square \\ \Omega^{\infty} \end{array} \right) \xrightarrow{L} \\ \begin{array}{c} L \\ \Pi \\ \square \\ L \\ \Pi \\ \text{Type} \end{array} \right) \xrightarrow{L} \\ \begin{array}{c} \text{exponential} \\ \text{modality} \\ \text{modality} \\ \end{array} \\ \begin{array}{c} \text{linear} \\ \text{types} \end{array} \right) \xrightarrow{L} \\ \end{array}$

The Q-monad plays a crucial role in the full formulation of the QS-language. It is the secret actor behind QBit = Q(Bit)...

Also the *exponential modality* traditionally postulated in linear logic is an emergent effect in LHoTT,

as is the crucial *Quantum Modality*, not considered before:

The Q-monad plays a crucial role in the full formulation of the QS-language. It is the secret actor behind QBit = Q(Bit)...

Quantum Circuits

Quantum effects are compatible with tensor product.

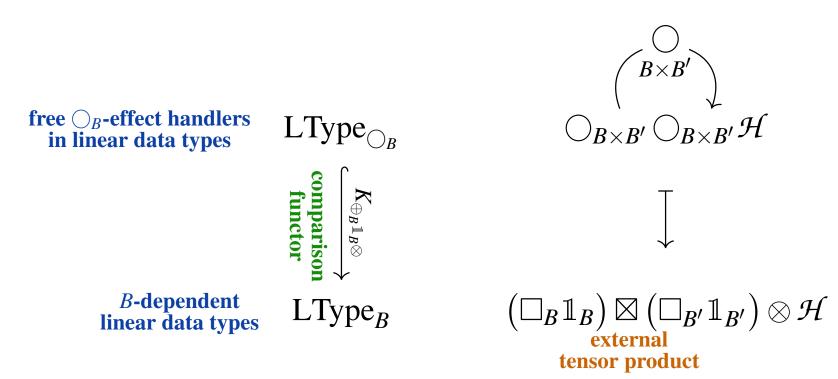
Linear Randomness and Indefiniteness are "very strong" effects, in that:

 $\bigcirc_B (D \otimes D') \simeq (\bigcirc_B D) \otimes D', \quad \And_B (D \otimes D') \simeq (\And_B D) \otimes D'$

There is a whole system of them:

$$\bigcirc_B \bigcirc_{B'} \simeq \bigcirc_{B \times B'}, \quad \text{NB: } \bigcirc_B \bigcirc_B' \simeq \bigcirc_B \mathbb{1} \otimes \bigcirc_B'$$

which under dynamic lifting (monadicity comparison functor) gives the external tensor product of dependent linear types:

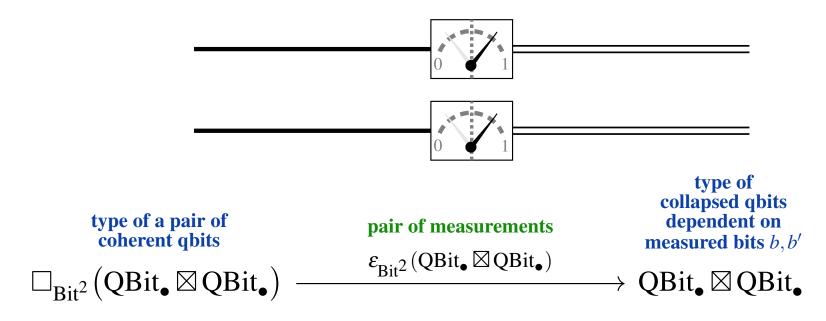


Quantum circuits with classical control & effects

are the effectful string diagrams in the linear type system

E.g.

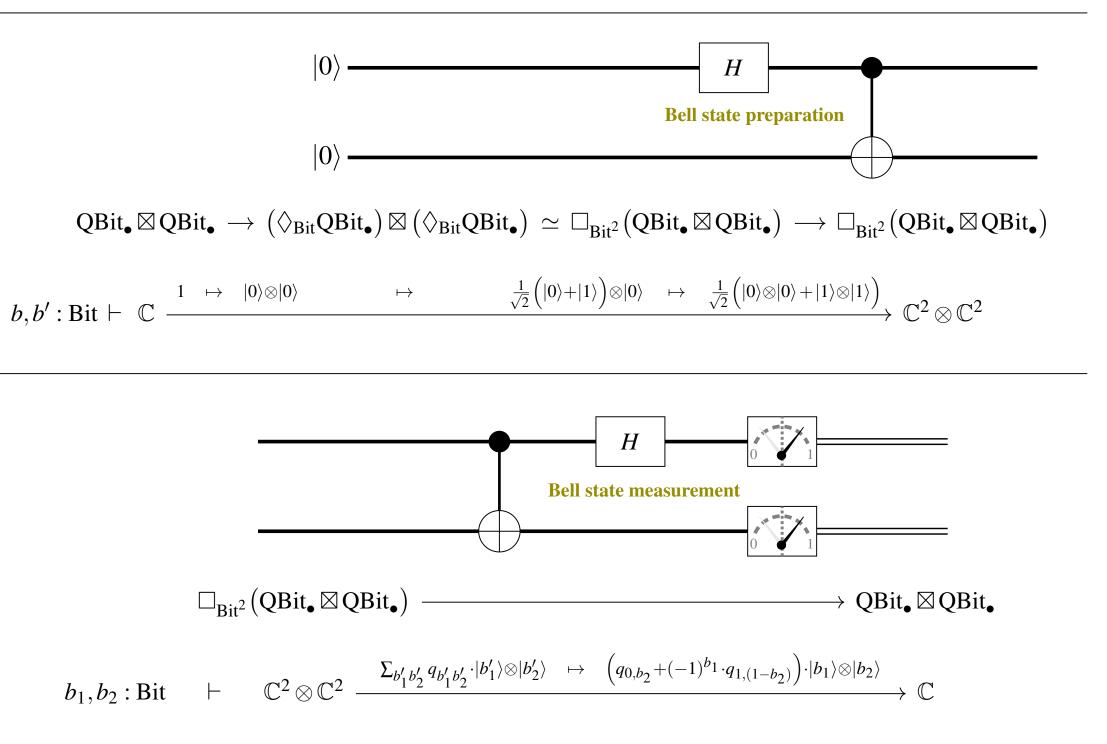
The dependent linear type of a measurement on a pair of qbits:



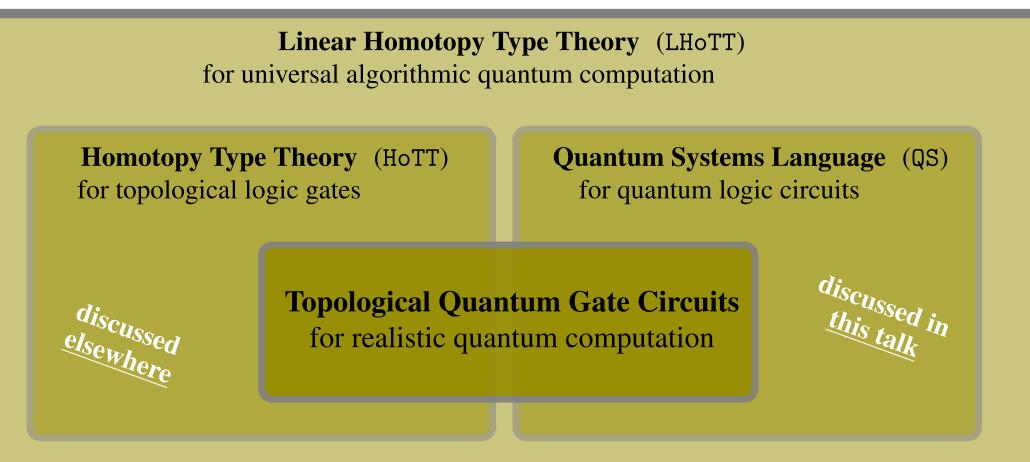
measured bits

$$(b,b'): \operatorname{Bit}^2 \vdash \Box_{\operatorname{Bit}^2} (\operatorname{QBit}_{\bullet} \boxtimes \operatorname{QBit}_{\bullet})_{(b,b')} \simeq \mathbb{C}^2 \otimes \mathbb{C}^2 \xrightarrow{\sum_{d,d'} q_{dd'} |d\rangle \otimes |d'\rangle \mapsto q_{bb'} |b\rangle \otimes |b'\rangle}{\operatorname{collapse of the quantum state}} \mathbb{C}.$$

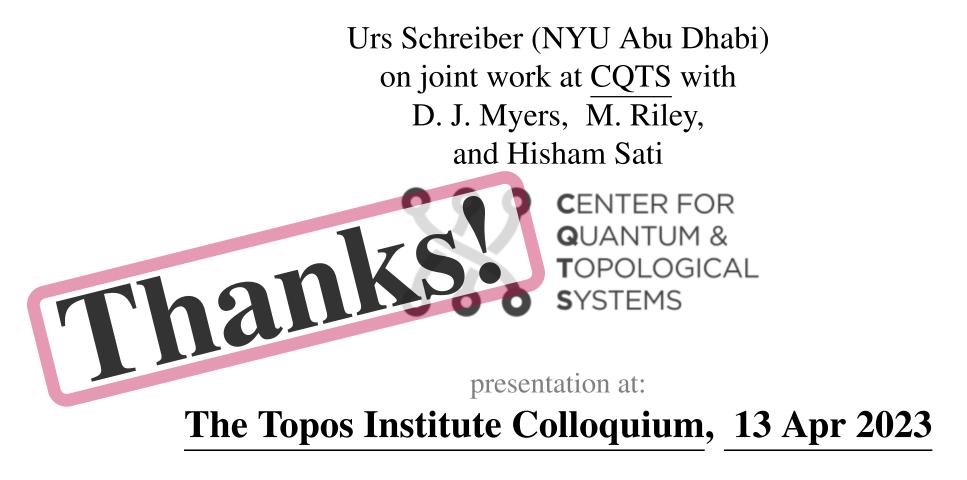
Example: Bell states of q-bits are typed as follows (regarded in LType_{Bit×Bit}):



 \rightsquigarrow full-blown Quantum Systems language emerges embedded in LHoTT



Effective Quantum Certification via Linear Homotopy Types



slides and further pointers at: ncatlab.org/Quantum+Certification+via+Linear+Homotopy+Types#TI2023