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1 Introduction

In [Euclid 300BC] it was shown that geometry could be formulated synthetically in first-order logic with
a collection of axioms added that characterize points and lines. While this works well for the incidence
geometry of the plane, Euclid’s axioms are felt not to be useful for modern research-level geometry and
physics.

In [Lawvere 67, Lawvere 97] it was suggested that differential geometry and the theory of differential
equations, specifically those of relevance in continuum physics, could be formulated synthetically in the
internal logic, in fact the internal type theory, of toposes that validate an extra axiom scheme, the Kock-
Lawvere axioms. Relevant such toposes were eventually found [Dubuc 79] and basic differential geometry of
manifolds was formulated in their internal logic [Kock 99, Kock 09]. While this works well as far as it goes,
it remained unclear how modern research-level geometry and physics would benefit.

In [Lawvere 91, Lawvere 07] a rather different set of extra axioms on toposes was suggested to be relevant
for the purpose of doing geometry formulated in their internal language: axiomatic cohesion. While the
relation to the Kock-Lawvere axioms, or to any differential geometry, seems to have been left open, from the
perspective of the logic it is noteworthy that cohesion on a topos is equivalent to the presence of a geometric
modal operator [Goldblatt 81] acting on its internal intuitionistic type theory, such that this has two further
(co-)modal operators left adjoint to it.

Might it be possible to lay useful foundations for modern geometry and physics in the internal intuitionistic
type theory of toposes with nothing but a system of modal operators added?

Taken at face value this runs into the problem that intuitionistic type theory has, besides the problem of
interpreting its identity types in categorical logic, no means to characterize its type universe as being that
of a topos.

In [S 13, S 15] it was shown that implementing cohesion not on toposes but on ∞-toposes drastically
increases the expressive power of the axiomatics and its relevance to modern geometry and physics. Moreover,
the presence of synthetic infinitesimals otherwise encoded by the Kock-Lawvere axioms was shown to be
captured by a second adjoint triple of modal operators, suitably compatible with the first: differential
cohesion.

At the same time, while it might naively seem that passing from toposes to∞-toposes makes the situation
more complicated, the advent of homotopy type theory [UFP 13] showed that the opposite may be true: it
is conjectured that homotopy type theory is accurately the internal language of (elementary) ∞-toposes:

Theorem 1.1.

• HoTT has semantics in locally presentable locally Cartesian closed ∞-categories [Shulman 12];

• HoTT+UVstrict has semantics in the ∞-topos ∞Grpd [Kapulkin-Lumsdaine-Voevodsky 12];

• HoTT+UVstrict has semantics in a few infinite classes of∞-presheaf∞-toposes [Shulman 13, Shulman 15a];

Remark 1.2.

• HoTT+UVweak is argued to have semantics in all ∞-toposes [Shulman 14];

• HoTT+UV+Cohesion is developed in [S-Shulman 14, Licata-Shulman 15, Shulman 15b, Rijke-Shulman-Spitters 15].

synthetic geometry

since add axioms to
with semantics

in a
to obtain

formalization of:

BC 300 Euclid first-order logic hyperdoctrine incidence geometry
1967 Lawvere intuitionistic type theory topos differential geometry
1991 Lawvere intuitionistic type theory topos ∼ differential topology

2014 Shulman-S homotopy type theory ∞-topos
differential cohomology,
differential geometry,

PDE theory
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The aim of the present note is to present motivation for the further development of modal homotopy
type theory by surveying some statements in modern research-level geometry and physics that may neatly
be obtained formally from just the structure of differentially cohesive ∞-toposes, hence that ought to be
formalizable fairly directly within HoTT+UV+DifferentialCohesion.

Hence this note is not a note in type theory. It is instead the statement of an exercise for ambitious
homotopy type theorists:

Exercise: Formalize this!

It should be within reach. For instance

• theorem 3.6 (existence of frame bundles) should be formalizable and provable with just one modality
as taken from [UFP 13, section 7.7],

• theorem 6.8 (Stokes theorem) needs an adjoint pair of modalities and needs at least something close
to the concept of stable objects;

• theorem 7.1 (Noether’s theorem ) involves all modalities of differential cohesion as well as the tower of
truncation modalities [UFP 13, section 6.9].

but otherwise, the proofs of these theorems are simple (besides being elementary) and hence should lend
themselves to formalization. For reference, below we spell out the proof of theorem 3.6 “informally”, i.e. in
the pseudocode formerly known as mathematics.

(Notice that the issue of interpreting HoTT in∞-toposes is, while of general interest, not strictly relevant
for the purpose of the above exercise: the comparison to the semantics of ∞-toposes is just what helps to
suggest that these theorems should indeed be provable in HoTT+UV+DifferentialCohesion.)

If anything on the semantics side is unclear, ask me. If you need help on the syntactic side, ask Mike
Shulman.
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2 A standard model

To get a quick feeling for the axioms of differential cohesion, it is helpful to first consider a standard model,
and then abstract from it later.

Definition 2.1. Let
FormalSmoothCartSp ↪→ CAlgop

R

be the full subcategory of formal duals of commutative R-algebras, on those that are tensor products of the
form

C∞(Rn × D) := C∞(Rn)⊗R (R⊕ V ) ,

for n ∈ N, where C∞(Rn) is the smooth functions in n variables, and V is finite dimensional and nilpotent.
Regard this as a site by equipping it with the coverage whose covers are of the form

{Ui × R (φi,id)−→ X × D}

for

{Ui
φi−→ X}

an open cover of smooth manifolds.

Definition 2.2. Write
H0 := Sh(FormalSmoothMfd)

for the sheaf topos over this site.

The topos H0 is a model for the Kock-Lawvere axioms of synthetic differential geometry. It was considered
as such in [Dubuc 79] and has since been known as the Cahiers topos. This topos is moreover a well-adapted
model, meaning that the ordinary category of smooth manifolds is a full subcategory

SmoothMfd ↪→ H0

such that the embedding preserves transversal pullbacks.
The idea of synthetic differential geometry was to place oneself inside a topos, assume that the Kock-

Lawvere-axioms hold, and then (re-)do all of differential geometry using the internal logic of that topos
[Lawvere 97, Kock 99, Kock 09]. In this respect it is noteworthy that the Cahiers topos also has the following
abstract property:

Theorem 2.3 ([S 13]). The topos H0 of def. 2.1 carries a system of idempotent (co-)-monads of the form

id

∨

a id

∨ ∨

< a =
∨

a &

∨ ∨

π0 a [

∨

a ]
∨ ∨

∅ a ∗

such that both adjoint triples are induced from adjoint quadruples to the base topos, where

1. [ := ∆ ◦ Γ is the comonad induced from the unique global section geometric morphism by which the
Cahiers topos sits over the base topos;
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2. π0 sends manifolds to their set of connected components;

3. the quasi-topos of ]-separated objects (X
η]X
↪→ ]X) is that of concrete sheaves, which here are the diffeo-

logical spaces;

4. < sends formal smooth manifolds to their reduction, <(D) ' ∗;

5. = := locD is localization at the maps of the form D→ ∗;

and where

1. L a R means that L is left adjoint to R;

2. ©1 <©2 means that (©1X ' X)⇒ (©2X ' X).

Definition 2.4 ([S 13]). Say that a topos which carries a system of idempotent (co-)modalities as in theorem
2.3 is differentially cohesive.

3 Manifolds and PDEs

A good bit of modern differential geometry is neatly formalized using axiomatic differential cohesion of def.
2.4. We now highlight two concepts: manifolds and partial differential equations.

Definition 3.1. Say that a morphism f : X −→ Y in H0 is formally étale if the naturality square of its
=-unit is a pullback:

X

(pb)et

��

η=X // =X

=f
��

Y
η=X

// =Y

.

Say that f is formally smooth if the comparison map X → Y ×
=Y
=X is an epimorphism, and that f is fomally

unramified if the comparison map is a monomorphism.

Proposition 3.2. For X,Y ∈ SmoothMfd ↪→ H0 , then f : X → Y is formally étale/smooth/unramified
in the abstract sense of def. 3.1 precisely if it is a local diffeomorphism/submersion/immersion of smooth
manifolds, respectively, in the traditional sense.

Definition 3.3. For V ∈ H0 a group object, say that an object X ∈ H0 is a V -manifold if it admits a
V -cover, namely an object U ∈ H0 and a diagram of the form

U

et

��
et
    

V X

(both morphisms are formally étale, def. 3.1, the right one is in addition an epimorphism).

Definition 3.4. For Σ ∈ H0 any object, consider the base change adjoint triple along its =-unit:

(H0)/Σ

∑
η=
Σ //

oo (η=Σ )∗∏
η=
Σ

//
(H0)/=Σ .
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Write

(T∞Σ a J∞Σ ) := (♦η=Σ a �η=Σ ) :=

(η=Σ)∗ ◦
∑
η=Σ

a (η=Σ) ◦
∏
η=Σ


for the induced adjoint pair of (co-)monads on (H0)/Σ.

Proposition 3.5. 1. For Σ ∈ SmoothMfd ↪→ H0, then T∞Σ Σ → Σ is the formal disk bundle over Σ,
whose fiber over any point σ ∈ Σ is the formal neighbourhood Dσ of that point.

2. For E → Σ a bundle of manifolds, then J∞Σ E → Σ is the jet bundle of E.


J∞Σ E

��
∗

==

σ // Σ

 '


E

��
Dσ

>>

� � // Σ


Theorem 3.6 ([S 15]). For V ∈ H0 a group object in a differentially cohesive topos, then

1. the formal disk bundle T∞V V ' V × DV is trivialized by left translation (“every group is canonically
framed”);

2. for X a V -manifold, def. 3.3, then T∞X X is a DV -fiber bundle which is associated to a GL(V ) :=
Aut(DV )-principal bundle Fr(X) (the jet frame bundle).

Proof. For the first statement, first observe that since =, being left and right adjoint, preserves group
structure, so that the defining homotopy pullback of the infinitesimal disk bundle of V

T∞V V

(pb)

��

// V

��
V // =V

is a homotopy fiber product over a group object. This implies that a Mayer-Vietoris argument applies by
which there is equivalently a pasting composite of homotopy pullbacks of the form

T∞V V

(pb)

��

// DVe
(pb)

��

// ∗

��
V × V

(−)·(−)−1

// V // =V

.

Inspection of the left square (http://ncatlab.org/nlab/show/Mayer-Vietoris+sequence#HTTArgumentForPullback)
reveals the triviality of the formal disk bundle

T∞V V ' V × DVe .

Now to see how this impacts on the formal disk bundle of V -manifolds, first observe that for ι : U et // X
a formally étale morphism, then pullback along it preserves formal disk bundles:

ι∗T∞X X ' T∞U U .

This follows by the naturality of the =-unit and using the pasting law to see that there is an equivalence of
homotopy pullback diagrams of the following form:

ι∗T∞X X

(pb)

��

// T∞X X

(pb)

��

// X

��
U // X // =X

'

T∞U U

(pb)

��

// U

(pb)

��

// X

��
U // =U // =X

.
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Together with the previous statement this implies that the formal disk bundle of a V -manifold trivializes
when pulled back to any V -cover V oo et U et // // X .

To conclude it is now sufficient to observe that every locally trivial F -fiber bundle is associated to an
Aut(F )-principal bundle, this is prop. 5.7 below.

Remark 3.7. The axiomatization of frame bundles in theorem 3.6 opens the door to axiomatization of
all kinds of flavors of geometry: complex, symplectic, Riemannian, conformal, etc. All these are naturally
encoded via reduction of the structure group of the frame bundle.

Proposition 3.8. The Eilenberg-Moore category of J∞Σ -coalgebras is equivalent to the slice topos (H0)/=Σ.
The subcategory of those coalgebra objects whose underlying object is a smooth bundle of manifolds is equiv-
alent to the category PDEΣ, whose objects are partial differential equations on sections of bundles over Σ,
and whose morphisms are differential operators preserving solutions of PDEs:

SmoothMfd/Σ� _

��

oo U

F
// PDEΣ� _

��
(H0)/Σ

U //

F
// EM(J∞Σ ) =:

'
��

PDEΣ(H)

(H0)/Σ
oo (η=Σ )∗

∏
η=
Σ

// (H0)/=Σ

Axiomatizing ordinary differential equations and in particular equations of motion in physics via the
internal language of toposes has been one of the motivations [Lawvere 97] for the Kock-Lawvere-axioms of
synthetic differential geometry. We saw so far that with the alternative axioms of differential cohesion one
gets the state-of-the-art formulation of partial differential equations.

We next see that we also get the state-of-the-art formulation of equations of motion in physical field
theory, after passing to ∞-toposes.

4 More on the standard model

Definition 4.1. Write
H := Sh∞(FormalSmoothMfd)

for the ∞-topos, according to [L-Topos], over the site from def. 2.1.

(The topological localization of Sh∞(FormalSmoothMfd) is already hypercomplete, hence we don’t have
to make a distinction.)

The analog of theorem 2.3 remains true:

Theorem 4.2 ([S 13]). The ∞-topos H carries a system of idempotent ∞-(co-)-monads of the form

id

∨

a id

∨ ∨

< a =
∨

a &

∨ ∨

π∞ a [

∨

a ]
∨ ∨

∅ a ∗
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whose nature is verbatim as in theorem 2.3, only that π0 is promoted to

π∞ ' locR1

which acts as follows:

1. For X ∈ H a smooth manifold, then π∞X is its fundamental ∞-groupoid whose objects are the points
of X, morphisms are the smooth paths in X, 2-morphisms are the smooth paths-of-paths, etc.

2. more generally for X• ∈ H a simplicial smooth manifold, then π∞X• is the homotopy type of the fat
geometric realization of X•.

Definition 4.3 ([S 13]). Call an ∞-topos with the properties as in theorem 4.2 differentially cohesive.

Example 4.4. Write
S1 ∈ SmoothMfd ↪→ H

for the circle in its incarnation as a smooth manifold, and write

BZ ∈ ∞Grpd ↪→ H

for the circle in its incarnation as a homotopy type. Then

π∞S
1 ' BZ .

5 Groups, actions, fiber bundles

Theorem 5.1 ([L-Alg]). For H an ∞-topos, then forming loop space objects constitutes an equivalence
between the ∞-categories of pointed connected objects and of group objects:

Grp(H)
oo Ω

B

' // H
∗/
≥1

Example 5.2. For H from def. 4.1, let G ∈ Grp(SmoothMfd) ↪→ Grp(H) a Lie group, write BG,K(G, 1) ∈
∞Grpd ↪→ H for the homotopy types that go by these symbols in algebraic topology, the classifying space
BG of G, and the Eilenberg-MacLane space K(G, 1) with fundamental group the discrete group underlying
G. Then

π∞(BG) ' BG
[(BG) ' K(G, 1)

.

Theorem 5.3 ([Nikolaus-S-Stevenson 14],[S 15]). Let H be an ∞-sheaf ∞-topos. For G ∈ Grp(H), the
G-principal bundles over any X are equivalent to maps X → BG, via the construction that sends such a
map to its homotopy fiber.

More generally, the ∞-category of G-actions is equivalent to the slice over BG

GAct(H) ' H/BG .

Given a G-action ρ on an object V here, then∏
BG

ρ ' HGrp(G, ρ)

is the group cohomology of G with coefficients in ρ and∑
BG

ρ ' V/G

is the homotopy quotient. More generally for f : BG −→ BH a group homomorphism, then
∑
f and

∏
f are

the constructions and induced and coinduced representations, respectively.
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Remark 5.4. Theorems 5.1 and 5.3 imply in particular that in ∞-toposes the concepts of ∞-groups,
∞-actions, ∞-fiber bundles, ∞-group cohomology and ∞-representation theory all have an elementary ax-
iomatization.

Example 5.5. For any F ∈ H, Aut(F ) is the looping of the 1-image factorization of the morphism into
the type universe that classifies F :

∗

`F

44// // BAut(F ) �
� // Type .

The canonical action of Aut(F ) on F is exhibited, via theorem 5.3, by the pullback of the universal type
fibration along the monomorphism on the right:

F

pb

��

// F/Aut(F ) //

(pb)

��

T̃ype

��
∗

`F

44// // BAut(F )
� � // Type

.

Definition 5.6. For F,X ∈ H two objects, then an F -fiber bundle over X is a morphism E → X such that
there is a 1-epimorphism U → X pulled back along which it trivializes:

U × F

(pb)

��

// E

��
U // // X

.

Proposition 5.7. Every F -fiber bundle, def. 5.6, is associated to a unique, up to equivalence Aut(F )-
principal bundle.

Proof. E and its local trivialization are classified by maps to the type universe as shown by the solid arrows
the following diagram

∗

����
U

::

//

����

BAut(F )� _

��
X

::

`E
// Type

,

where on the right we show the 1-image factorization of example 5.5. By the (1-epi, 1-mono) factorization,
this implies a unique, up to equivalence, dashed lift as show.

6 Differential cohomology, differential forms

Theorem 6.1. For G ∈ Grp(SmoothMfd) ↪→ Grp(H), and for P → X a G-principal bundle, then a flat
connection on P is equivalently a lift ∇ of the classifying map through the [-counit:

[BG

ε[BG
��

X

∇
<<

// BG
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Hence [BG classifies flat G-principal connections, whence the notation.
Recall the following classical fact:

Theorem 6.2 (Brown representability theorem). A generalized cohomology theory is equivalently a stable
object in the base ∞-topos ∞Grpd.

We consider now a differential refinement of this state,ent.

Definition 6.3. For © an ∞−(co-)monad, write © for the homotopy (co-)fiber of its (co-)unit.

Theorem 6.4 ([Bunke-Nikolaus-Völkl 13]). For A a stable object in a cohesive ∞-topos, then the canonical
hexagon

π∞A

  

d // [A

##
π∞[A

;;

##

A

>>

!!

π∞[A

[A

==

// π∞A

;;

is exact, in that, in addition to the diagonals being homotopy fiber sequences,

1. both squares are homotopy Cartesian;

2. the outer sequences are long homotopy fiber sequences.

Remark 6.5. The proof of theorem 6.4 is elementary, both in the technical as well as in the ordinary sense:
use that homotopy pullbacks of stable objects may be detected on homotopy fibers and use the idempotency
of π∞ and [.

Remark 6.6 (exegesis of theorem 6.4). By theorem 6.2, π∞A is a generalized cohomology theory. Hence
A is a geometric enrichment of that. By theorem 6.1, the object [A classifies flat A-connections, and hence
by exactness and stability, the map A → [A is the universal obstruction to flatness, hence [A classifies the
curvature differential forms for A-connections. Similarly, by exactness π∞A → A is the inclusion of those
A-connections whose underlying bundle is trivial, hence these are the globally defined connection forms.
Accordingly, the top morphism sends connection forms to their curvature, and hence plays the role of the
de Rham differential.

differential forms de Rham differential //

regard as

''

curvature forms

de Rham theorem
''

closed
differential forms

regard as

66

regard as

''

connections

curvature

77

topol. class

&&

rationalized
class

flat connections

regard as

88

// integral
class

Chern character

88

It was long known that every generalized differential cohomology theory sits in such a hexagon (see e.g.
[Bunke 12]). In [Simons-Sullivan 07] it was observed that exactness of the hexagon already characterizes
ordinary differential cohomology and it was suggested that this may be true more generally. Theorem 6.4
resolves this:

Just as a generalized cohomology theory is equivalently a spectrum object in an∞-topos, so a generalized
differential cohomology theory is a spectrum object in a cohesive ∞-topos.
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Example 6.7. In H from def. 4.1 there is a hexagon as in theorem 6.4

Ω•≤p+1

((

ddR // Ωp+2
cl

$$
[Bp+1R

88

&&

Bp+1(R/~Z)conn

''

77

[Bp+2R

[Bp+1(R/~Z)

66

// Bp+2Z

::

whose

• top sequence exhibits the filtration on the [BkRs induced by the Poincaré lemma;

• the bottom sequence is part of the long homotopy fiber sequence induced by the exponential sequence

Z �
� 2π~ // R // // R/~Z

A morphism
∇ : X −→ Bp+1(R/~Z)conn

to the object at the heart of this hexagon is equivalently known as

• a p-gerbe with connection and band (R/~Z);

• a Bp(R/~)-principal connection;

• a Deligne cocycle of degree (p+ 2).

Theorem 6.8 (∞-Stokes’ theorem [Bunke-Nikolaus-Völkl 13]). If H is a cohesive ∞-topos such that there
is an object (0, 1) : ∗

∐
∗ → R with π∞ ' locR, then there is canonically an integration map∫ 1

0

: [R, [A] −→ π∞A

such that ∫ 1

0

◦ d ' 1∗ − 0∗ .

Moreover, applied to example 6.7 this reproduces the traditional fiber integration of differential forms.

Remark 6.9. The proof of the first part of theorem 6.8 is elementary, in the technical sense. It consists
entirely of forming suitable pasting composites of canonically given squares filled by homotopies.

7 Field theory and equations of motion

The following is discussed in [Khavkine-S].

Write

(−)Σ : H
Σ∗−→ H/Σ

F−→ PDEΣ(H)

for the context-extension of type in H to types in H/=Σ.

For E ∈ SmoothMfd/Σ
F−→ PDEΣ(H), the joint coimage of

[E, (Ω•≤p+1)Σ]
φ∗−→ [Σ, (Ω•≤p+1)Σ]

11



over all φ : Σ→ E is representable by an object Ω•≤p+1
H . This induces a projection map

H : (Bp+1(R/~Z)conn)Σ −→ Bp+1
H (R/~Z)conn

via the induced morphism in the (−)Σ-image of the hexagon in example 6.7:

(Ω•≤p+1)Σ
ddR //

**

{{ %%

(Ωp+2
cl )Σ

))

##

Ω•≤p+1
H

δV //

%% %%

Ωp+1,1
S

""

([Bp+1R)Σ

##

(Bp+1(R/~Z)conn)Σ

curv

99

%%

H
**

([Bp+2R)Σ

([Bp+1R)Σ

99

%%

Bp+1
H (R/~Z)conn

curv

;;

$$

([Bp+1R)Σ

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

;;

([Bp+1(R/~Z))Σ
βΣ

//

99

(Bp+2Z)Σ

<<

For E ∈ H/Σ
F−→ PDEΣ(H) this formalizes the principle of extremal action in field theory/variational

calculus:

Euler−Lagrange
equation

E � _

ker(EL)

��

Bp+1
H (R/~Z)conn

δV

variational
differential &&

spacetime/
worldvolume Σ

solution

77

φ

field configuration
// E

L

local
Lagrangian

77

EL
// Ωp+1,1

S

Theorem 7.1 (Noether’s theorem [Fiorenza-Rogers-S 13a, Sati-S 15, Khavkine-S]). There is homotopy fiber
sequence of group stacks like so:

E

L

��

L

��
Bp+1
H (R/~Z)conn

topological
current
}�


−→



E

L

""

'
symmetry // E

L

||
Bp+1
H (R/~Z)conn

Noether current

z�


−→

{
E 'variational

symmetry
// E

}

��

B



E

L

��

L

��
Bp+1
H (R/~Z)conn

topological
current
}�
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