12.4 The rank of $R_{K}(G)$

We return now to the case of an arbitrary field K of characteristic zero. We shall determine the rank of $R_K(G)$, or equivalently, the number of irreducible representations of G over K.

Choose an integer *m* which is a multiple of the orders of the elements of G (for example, their least common multiple or the order *g* of G), and let L be the field obtained by adjoining to K the *m*th roots of unity. We know (cf. for example Bourbaki, Alg. V, §11) that the extension L/K is Galois and that its Galois group Gal(L/K) is a subgroup of the multiplicative group $(\mathbb{Z}/m\mathbb{Z})^*$ of invertible elements of $\mathbb{Z}/m\mathbb{Z}$. More precisely, if $\sigma \in \text{Gal}(L/K)$, there exists a unique element $t \in (\mathbb{Z}/m\mathbb{Z})^*$ such that

$$\sigma(\omega) = \omega^t$$
 if $\omega^m = 1$.

We denote by Γ_{K} the image of $\operatorname{Gal}(L/K)$ in $(\mathbb{Z}/m\mathbb{Z})^{*}$, and if $t \in \Gamma_{K}$, we let σ_{t} denote the corresponding element of $\operatorname{Gal}(L/K)$. The case considered in the preceding section was that where $\Gamma_{K} = \{1\}$.

Let $s \in G$, and let *n* be an integer. Then the element s^n of G depends only on the class of *n* modulo the order of *s*, and so *a fortiori* modulo *m*; in particular s^t is defined for each $t \in \Gamma_K$. The group Γ_K acts as a *permutation* group on the underlying set of G. We will say that two elements *s*, *s'* of G are Γ_K -conjugate if there exists $t \in \Gamma_K$ such that *s'* and *s'* are conjugate by an element of G. The relation thus defined is an equivalence relation and does not depend upon the choice of *m*; its classes are called the Γ_K -classes (or the K-classes) of G.

Theorem 25. In order that a class function f on G, with values in L, belong to $K \otimes_{\mathbb{Z}} R(G)$, it is necessary and sufficient that

(*)
$$\sigma_t(f(s)) = f(s^t)$$
 for all $s \in G$ and all $t \in \Gamma_K$.

(In other words, we must have $\sigma_t(f) = \Psi^t(f)$ for all $t \in \Gamma_K$, cf. 11.2.)

Let ρ be a representation of G with character χ . For $s \in G$, the eigenvalues ω_i of $\rho(s)$ are *m*th roots of unity, and the eigenvalues of $\rho(s^t)$ are the ω_i^t . Thus we have

$$\sigma_t(\chi(s)) = \sigma(\sum \omega_i) = \sum \omega_i^t = \chi(s^t),$$

which shows that χ satisfies the condition (*). By linearity, the same is true for all the elements of $K \otimes R(G)$.

Conversely, suppose f is a class function on G satisfying condition (*). Then

$$f = \sum c_{\chi} \chi$$
, with $c_{\chi} = \langle f, \chi \rangle$,

where χ runs over the set of irreducible characters of G. We have to show that the c_{χ} belong to K, which, according to Galois theory, is equivalent to showing that they are invariant under the σ_{p} $t \in \Gamma_{K}$. But, if φ and χ are two class functions on G, then we have

$$\langle \Psi^t \varphi, \Psi^t \chi \rangle = \langle \varphi, \chi \rangle,$$

as can be easily verified. Whence

$$c_{\chi} = \langle f, \chi \rangle = \langle \Psi^{t} f, \Psi^{t} \chi \rangle = \langle \sigma_{t}(f), \sigma_{t}(\chi) \rangle = \sigma_{t}(\langle f, \chi \rangle) = \sigma_{t}(c_{\chi}),$$

which finishes the proof.

Corollary 1. In order that a class function f on G with values in K belong to $K \otimes R_K(G)$, it is necessary and sufficient that it be constant on the Γ_{K} -classes of G.

If $f \in K \otimes R_K(G)$, then $f(s) \in K$ for all $s \in G$, and formula (*) shows that $f(s) = f(s^t)$ for all $t \in \Gamma_K$. Hence f is constant on the Γ_K -classes of G.

Conversely, suppose that f has values in K, and is constant on the Γ_{K} -classes of G. Then condition (*) is satisfied, and we can write

$$f = \sum \langle f, \chi \rangle \chi$$
, with $\langle f, \chi \rangle \in K$

as above. Moreover, the fact that f is invariant under the σ_t , $t \in \Gamma_K$, shows that $\langle f, \chi \rangle = \langle f, \sigma_t(\chi) \rangle$, so the coefficients of the two conjugate characters χ and $\sigma_t(\chi)$ are the same. Collecting characters in the same conjugacy class, we can write f as a linear combination of characters of the form $\operatorname{Tr}_{L/K}(\chi)$. Since the latter belong to $\operatorname{R}_K(G)$, cf. 12.1, this proves the corollary.

[Alternately: Let Γ_{K} act on $K \otimes R(G)$ by $f \mapsto \sigma_{t}(f) = \Psi^{t}(f)$, and observe that the set of fixed points is $K \otimes R_{K}(G)$.]

Corollary 2. Let χ_i be the characters of the distinct irreducible representations of G over K. Then the χ_i form a basis for the space of functions on G which are constant on $\Gamma_{\rm K}$ -classes, and their number is equal to the number of $\Gamma_{\rm K}$ classes.

This follows from cor. 1.

Remark. In cor. 1, we can replace $R_K(G)$ by $\overline{R}_K(G)$. Indeed prop. 34 shows that

$$\mathbf{Q} \otimes \mathbf{R}_{\mathbf{K}}(\mathbf{G}) = \mathbf{Q} \otimes \overline{\mathbf{R}}_{\mathbf{K}}(\mathbf{G}), \text{ whence } \mathbf{K} \otimes \mathbf{R}_{\mathbf{K}}(\mathbf{G}) = \mathbf{K} \otimes \overline{\mathbf{R}}_{\mathbf{K}}(\mathbf{G}).$$

12.5 Generalization of Artin's theorem

If H is a subgroup of G, it is clear that

 Res_{H} : $R(G) \to R(H)$ and Ind_{H} : $R(H) \to R(G)$

П