The formalization of the difference between singular	Type of brane	$\Leftrightarrow \qquad \textbf{Domain of flux density} (37)$	
and solitonic branes is via choices of <i>domains</i> on which the flux densities are actually	Singular brane	complement of brane Σ inside spacetime X , removing the singular locus from spacetime	$X \setminus \Sigma$
defined (following [SS23-HpH2, §2.1]).	Solitonic brane	Alexandroff-compactification of transverse space Σ^{\perp} , adjoining a "transverse point at infinity" to spacetime	$\Sigma_{\cup\{\infty\}}^{\perp}$

This is most transparent for the special case of "flat" branes in flat Minkowski spacetime:

- singular branes have spacetime singularities which are removed from spacetime: the field flux sourced by the singularity is that through spheres in the normal bundle around these loci and would diverge at the singular brane locus (cf. (13) below): singular

solitonic branes are witnessed by non-singular "local bumps" in the flux densities: Their flux vanishes at infinity, which means that it is measured on the 1-point compactification of their transverse space, which is again a sphere:

Towards flux quantization. The laws of flux discussed so far are laws of "classical physics": By themselves, they do not explain, for instance, why the flux carried by Abrikosov vortices (p. 7) is *quantized* to appear in integer multiples of a unit flux, or why, as argued long ago by Dirac, magnetic monopoles would be quantized to appear in integer multiples of unit charged monopoles. Apparently the electromagnetic flux density $F_2 =$ $\Omega^2_{dB}(X)$ is just one aspect of the true nature of the electromagnetic field.

In modern mathematical language, the argument underlying Dirac charge quantization says that an electromagnetic field configuration on a spacetime X also involves a "charge map" $c: X \to BU(1)$ to the classifying space of the circle group. This may be understood as the infinite complex projective space $BU(1) \simeq \mathbb{C}P^{\infty}$, but crucially it is a *classifying space* for ordinary integral cohomology in degree 2, meaning that homotopy classes of such maps are in natural bijection with $H^2(X;\mathbb{Z})$.

Formalizing generalized flux quantization is the topic of $\S1.2$.

