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Abstract.

Following a proposal by H. Sati, we have recently stated a hypothesis about the mathematical
home of the quantum charges in M-theory. This “Hypothesis H” refines the traditional proposal
for quantization of D-brane charge from K-theory to the non-abelian cohomology theory known as
4-Cohomotopy, whose classifying space is the 4-sphere.

Besides its motivation from homotopy-theoretic re-analysis of 11d supergravity and of the old brane
scan, Hypothesis H is justified by its rigorous implication of a list of long-conjectured M-theoretic
consistency conditions on C-field flux and M-brane charges — such as shifted C-field flux quantiza-
tion, dual Page charge quantization and M2/MS5-brane tadpole cancellation.

But if Hypothesis H is a correct assumption about the nature of M-theory, this suggests that quantum
states of full M-theory should be reflected in the positive cohomology of the moduli space of Co-
homotopy cocycles, much like quantum states of non-perturbative Chern-Simons theory are in the
Dolbeault cohomology of moduli spaces of (flat) connections.

In this talk I discuss how, in the topological sector of D6 | D8-brane intersections, such quan-
tum states according to Hypothesis H are identified with weight systems on horizontal chord dia-
grams, and how these do reflect a range of phenomena expected from the traditional approaches to
understanding these brane intersections, such as non-abelian DBI-theory, the BMN matrix model,
Rozansky-Witten theory and Hanany-Witten theory.

Specifically, we have proven that the fundamental gl,(C)-weight system satisfies the positivity con-
dition that characterizes physical (i.e. non-ghost) quantum states. Under the above identification,
this quantum state corresponds to an elementary squashed fuzzy funnel configuration & to the ele-
mentary M5-brane state in the BMN matrix model — both as expected for D6/D8-brane intersections.

Besides possible implications for the elusive formulation of M-theory, this result may provide a
unifying explanation for the plethora of unexpected appearances that chord diagrams are recently
making in fundamental high energy physics, notably in discussion of holographic entanglement
entropy.

Based on arXiv:1912.10425 & arXiv:2105.02871.
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This talk surveys what this means for
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- 2) Quantum states of D6 | D8-branes (in topol. sector).
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String theory at its finest is, or should be, a new branch of geometry
... developed in the 21st century ... that fell by chance into the 20th century ...

1o elucidate the proper generalization of geometry
[is] the central problem of string theory.

E. Witten (1988)
as quoted on p. 95, 102 in:

P C W Davis and J Brown (eds.)
Superstrings: A theory of everything?
Camb Univ Press 1988, 1991: Canto 1992
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Ex.: 3d CS theory with cpt gauge group:
[Hit90] [APWO1]

2 = surface
2/ = moduli stack of (flat) connections

FAII;OS = hol. sections of prequ. line bdl.
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Ex.: 3d CS theory with cpt gauge group: Ex.: D6 1 D8-branes via Hypothesis H
[Hit90] [APWOI91] [SS19-Quant][CSS21-Quant]
2 = surface 2 = transverse cptfd. space to branes
</ = moduli stack of (flat) connections </ = moduli stack of diff. 4-Cohomotopy
H,s = hol. sections of prequ. line bdl. H,s = positive ordinary cohomology



https://ncatlab.org/nlab/show/quantization+of+3d+Chern-Simons+theory#Hitchin90
https://ncatlab.org/nlab/show/quantization+of+3d+Chern-Simons+theory#AxelrodPietraWitten91

The Higher Geometry of Physics. [JSSW18-HigStrc][FSS19-RatM][SS20-OrbCoh]
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The key point:
stringy geometry < higher homotopy

[FSS13-Bougq, §3]

p-brane charges Tyl (42/ ) € Grp(Hp) [HSS18-ADE, §2]
[FSS19-RatM, §7]

p1 L po-intersections higher k-invariants
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\ S
&\640 @‘q}
Q NS
&5& qug
Q
eSS, 2 €H
N>
<% G
N o

The idea: ¢ .
Just as an emergent target space £ seen via probes by worldvolumes X,

so an co-stack 2 is a space bootstrapped by its gauged system of X-plots:

trajectory

7\

moduli space of .

&
Y-model fields rg % -
S & gauge-of-gauge £ S
o prODe =5 7 g arge
Map(Z, %) — be Y 2% = 2 e
é’ = transformations 20 S
=] = =
mapping co-stack g 5

N Z

trajectory



Cohesive homotopy theory of Smooth co-stacks. [SSS09][Sc13][ScSh14][SS20-OrbCoh]

smooth

Key example: Higher geometry locally modeled on CartSp = {]R” L R }:
H = SmthGrpd,, = Sh.(CartSp) =~ Sh.,(SmthMfd)

faithfully subsumes all differential topology:



Cohesive homotopy theory of Smooth co-stacks. [SSS09][Sc13][ScSh14][SS20-OrbCoh]

Key example: Higher geometry locally modeled on CartSp = {]R” Smooth, e’ }:

H = SmthGrpd,, = She(CartSp) ~ Sh.(SmthMfd)

faithfully subsumes all differential topology:

cartesian closed cart. clsd. & locl. pres.
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but subsumes also moduli for all
higher gauge fields <= differential cohomology [FS$S20-Char, §4.3)

in particular for abelian higher gauge fields:

Spectra(SmthGrp doo) _ { abelian generalized differential } [Sc13] [BNV14],

cohomology theories review in [ADH21]
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Higher symmetry. [INSS12-c0cBund][SS20-OrbCoh]

co-Toposes H know all about higher symmetries — i.e. n-group symmetries for n € NLI{co}):
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Technical side remark. — The correspondence is enacted by homotopy cartesian squares of this form:
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Higher moduli stacks. [SS20-OrbCoh]
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mapping stack into delooping... is moduli stack of:
Map(X, BU(1)) circle bundles
Map (X, B”T1U(1)) bundle p-gerbes
Map (X, BSpin(n)) Spin-bundles

Map((X,¢;), (BSO(n),w7))
~ Map (X, BSpin® (n))

BU(1) Spin¢-bundles




Higher symmetry — Example: GS-mechanism. [SSSO9][FSS12][FSS20-M5Str][SS20-M5GS]

Lie groups diffeological groups smooth co-groups

Under Grp(SmthMfd) —— Grp(DffiSpc) - Orplivs) > Grp(SmthGrpd,,)
mapping stack into delooping... is moduli stack of:
Map(X, BU(1)) circle bundles
Map (X, B”T1U(1)) bundle p-gerbes
Map (X, BSpin(n ) Spin-bundles

Map((X,¢;), (BSO(n),wz))
~ Map (X, BSpin® (n))

Map((X 0), (BSPIH(”)a%Pl))mU( 1)
~ Map (X, BString(n))

u() Spin¢-bundles

String 2-bundles




Higher symmetry — Example: GS-mechanism. [SSSO9][FSS12][FSS20-M5Str][SS20-M5GS]

Lie groups diffeological groups smooth co-groups

Under Grp(SmthMfd) —— Grp(DffiSpc) - Orplivs) > Grp(SmthGrpd,,)
mapping stack into delooping... is moduli stack of:
Map(X, BU(1)) circle bundles
Map (X, B”T1U(1)) bundle p-gerbes
Map (X, BSpin(n ) Spin-bundles

Map((X,¢;), (BSO(”)>W2))
~ Map (X, BSpin® (n))
Map((X,O) (BSpin n)v%pl))]}?’U( 1)
~ Map (X, BString(n))

Map((X7c2)7 (BSpin(n), 2p1))B3U( 1y twisted String 2-bundles
~ Map (X, BString®? (n)) (heterotic Green-Schwarz mech.)

u() Spin¢-bundles

String 2-bundles




Higher symmetry — Example: GS-mechanism. [SSSO9][FSS12][FSS20-M5Str][SS20-M5GS]

Lie groups diffeological groups smooth co-groups

Under Grp(SmthMfd) —— Grp(DffiSpc) - Orplios) > Grp(SmthGrpd,,)
mapping stack into delooping... is moduli stack of:
Map(X, BU(1)) circle bundles
Map (X, B”T1U(1)) bundle p-gerbes
Map (X, BSpin(n ) Spin-bundles

Map((X,¢;), (BSO(”)»WZ))
~ Map (X, BSpin® (n))
Map ((X,0), (BSpin ”)a%Pl))B-“’U( 1)
~ Map(X, BString n))

Map((X7c2)7 (BSpin(n), 2p1)>B3U( 1y twisted String 2-bundles
~ Map (X, BString®2 (n)) (heterotic Green-Schwarz mech.)

u() Spin¢-bundles

String 2-bundles

Rem.: Different smooth co-groups ¢ may have same shape |¢ discrete co-group, e.g:
BPUy, — o/ — B37 « o/ — B2U(1)
4
K(Z,3)



Higher symmetry — Example: Cohomotopy. Exs. 2.10, 2.16, 4.16 in [FSS20-Char]

Recall that every connected space 1s the classifying space of its loop co-group.

E.g., the 4-sphere encodes a rich co-higher symmetry

st ~ B(QSY) e Grpd,,, QS$* € Grp(Grpd,,).



Higher symmetry — Example: Cohomotopy. Exs. 2.10, 2.16, 4.16 in [FSS20-Char]

Recall that every connected space 1s the classifying space of its loop eo-group.

E.g., the 4-sphere encodes a rich co-higher symmetry

S* ~ B(QS*) € Grpd,, QS* € Grp(Grpd.,).

The corresponding moduli are classified by unstable/non-abelian Cohomotopy:

zt(X) = mMap(X,S*) =~ mMap(X, B(QS*")) ~ H'(X;Qs*)
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Higher symmetry — Example: Cohomotopy. Exs. 2.10, 2.16, 4.16 in [FSS20-Char]

Recall that every connected space 1s the classifying space of its loop co-group.

E.g., the 4-sphere encodes a rich co-higher symmetry

S* ~ B(QS*) € Grpd,, QS* € Grp(Grpd.,).

The corresponding moduli are classified by unstable/non-abelian Cohomotopy:

zt(X) = mMap(X,S*) =~ mMap(X, B(QS*")) ~ H'(X;Qs*)
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Incidentally, on 10-manifolds X!°, 4-Cohomotopy is stably equivalent to tmf* (cf below):

Boardman homomorphism

s >y QOYest = Q°S? > Q°tmf*
stabilization/ <10
abelianization

nt (RO1 x X19) > SHRO x X19) —=— gmf* (RO x X19)
ngﬁi‘;}gn 4-Cohomotopy abse:?;)lige q 4-Cohomotopy elliptic 4-cohomology
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Higher symmetry — Example: Cohomotopy. Exs. 2.10, 2.16, 4.16 in [FSS20-Char]

Recall that every connected space 1s the classifying space of its loop co-group.

E.g., the 4-sphere encodes a rich co-higher symmetry

S* ~ B(QS*) € Grpd,, QS* € Grp(Grpd.,).

The corresponding moduli are classified by unstable/non-abelian Cohomotopy:

zt(X) = mMap(X,S*) =~ mMap(X, B(QS*")) ~ H'(X;Qs*)

O
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¥ » & > 0
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b(

- continue with more details on cohesive homotopy theory

- skip ahead to Quantum Charge of M-branes via Hypothesis H
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Cohesive homotopy theory of Super c-stacks. [KhSc17], §3.1.2-3 in [SS20-OrbCoh]

Higher geometry locally modeled on

smooth

SupCartSp = {R™4 x D 2L R7l4 1’}

Shp InfShp
Grpd,, | | SmthGrpd, | 3 SupSmthGrpd,, := She(SupCartSp)
—— :
Dsc InfDsc super smooth co-groupoids
shape formally étale

lifts all fundamentals of differential geometry to higher geometry of super co-stacks, e.g.:


https://ncatlab.org/schreiber/show/Synthetic+geometry+of+differential+equations

Cohesive homotopy theory of Super co-stacks. [KhSc17], §3.1.2-3 in [SS20-OrbCoh]

Higher geometry locally modeled on

smooth

SupCartSp = {R™4 x D XL R4 /)

Shp InfShp
Grpd,, | | SmthGrpd, | 3 SupSmthGrpd,, := She(SupCartSp)
— :
Dsc InfDsc super smooth co-groupoids
shape formally étale

lifts all fundamentals of differential geometry to higher geometry of super oo-stacks, e.g.:

g
A morphism of super co-stacks is a x 1 3x
local diffeomorphism or formally étale Fla o» lg f
if its 3-unit is homotopy cartesian: n3
Y —— 3Y
The infinitesimal neighbourhood DX — *
around point x 1n a super oo-stack X J/ (ob) J/S X
is the x-fiber of the J-unit: 7S
X — 3X



https://ncatlab.org/schreiber/show/Synthetic+geometry+of+differential+equations

¢-Structured super étale oo-stacks. §4.2 in [SS20-OrbCoh]

For V € Grp(SupSmthGrpd,,) a super group stack such as super-Minkowski V = RN,

V-atlas V-fold

Def.: A V-fold is an étale co-stack locally diffeomorphic to V «—=—U =% X .

(This cohesive higher Cartan geometry is formalized in Modal Homotopy Type Theory:
[Sc15, §3][Cherubini (né Wellen) 17].)
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¢-Structured super étale oo-stacks. §4.2 in [SS20-OrbCoh]

For V € Grp(SupSmthGrpd,,) a super group stack such as super-Minkowski V = RN,

V-atlas V-fold

Def.: A V-fold is an étale co-stack locally diffeomorphic to V «—=—U =% X .

FFr(X)

Thm.: A V-fold X naturally has a frame co-bundle X > BAut(DV) .

(This cohesive higher Cartan geometry is formalized in Modal Homotopy Type Theory:
[Sc15, §3][Cherubini (né Wellen) 17].)
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¢-Structured super étale oo-stacks. §4.2 in [SS20-OrbCoh]

For V € Grp(SupSmthGrpd,,) a super group stack such as super-Minkowski V = RN,

V-atlas V-fold

Def.: A V-fold is an étale co-stack locally diffeomorphic to V «—=—U =% X .

FFr(X)
Thm.: A V-fold X naturally has a frame co-bundle X > BAut(DV) .
Def.: For str: ¢ — Aut(D.V) we have ( . )
moduli of ¥-structures on V-folds X: X "";;/‘"* BY

A <l
Map (X Bg)BAut(]DeV) = ’3@ < & '
\ BAut(D.V)
/

(This cohesive higher Cartan geometry is formalized in Modal Homotopy Type Theory:
[Sc15, §3][Cherubini (né Wellen) 17].)
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¢-Structured super étale oo-stacks.

§4.2 in [SS20-OrbCoh]

For V € Grp(SupSmthGrpd,,) a super group stack such as super-Minkowski V = R4 1IN,

Def.: A V-fold is an étale -stack locally diffeomorphic to V «*— U =% X .

V -atlas V -fold

Thm.: A V-fold X naturally has a frame c-bundle X

Fr(X)

> BAut(D.V) .

Def.: For str: 4 — Aut(D.V) we have
moduli of ¢ -structures on V-folds X:

Map (X, BSpin(d))

BGL(d,1|N) —

Ma )(7 Bg — < G Q >
p( )BAut(ID)eV) ) S
BAut(D.V) }
So for X a R41N_fold we have \
moduli of super-vielbein fields: = | & 77 » BSpin(d)

N\

Y& /
f‘/ g
=)

~~

BGL(d|N)

7

(This cohesive higher Cartan geometry is formalized in Modal Homotopy Type Theory:

[Sc135, §3][Cherubini (né Wellen) 17].)
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Singular-Cohesive Homotopy Theory of orbi-co-stacks. [Rezk14][SS20-OrbCoh]

( group homomorph. )

Higher geometry locally modeled on orbi-singularities:

(18]

2

-

Snglrt = < G| Gfin. group; with Map( &, &) = {
r yor

Y
onesnlu
SQ
~\”

H = GloSupSmthGrpd,, = She (SupCartSp x Snglrt) ( group homomorph.

orbi-singular super-co-stacks

faithfully subsumes proper equivariant homotopy theory:
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Singular-Cohesive Homotopy Theory of orbi-co-stacks. [Rezk14][SS20-OrbCoh]

( group homomorph. )

Higher geometry locally modeled on orbi-singularities:

«>

Snglrt = {)§| G fin. group} with Map( ¥, &) =<

T
onegnlu
A

:

H = GloSupSmthGrpd,, := She.(SupCartSp x Snglrt) \  grouphomomorph.

orbi-singular super-co-stacks

faithfully subsumes proper equivariant homotopy theory:

category of co-topos of slice of cohesive «-topos of slice of singular-cohesive «-topos of
topological G-spaces smooth G-co-actions smooth c-groupoids over BG Smth G-orbi-singular c-groupoids GOI‘bSpC
Cdffig (—)/)G A
G Act(kTopSpc) — G Act(SmthGrpd,,) —— SmthGrpd,, /BG y  GloSmthGrpd,,, g U GSmthGrpd,,
—

b_Sf}glt L GOrbSmth o

orbi-singular = v Q2 G-orbi-spatial =

S5 I 12 P 3

~ ~ > GloGrpd > GGrpd

P/ ~Gorbsmm - o Pl

underlying proper G-equivariant homotopy type
sub-co-topos of
proper G-equivariant
homotopy theory

slice of base co-topos of
global equivariant homotopy theory
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Singular-Cohesive Homotopy Theory of orbi-co-stacks. [Rezk14][SS20-OrbCoh]

( group homomorph. )

Higher geometry locally modeled on orbi-singularities:

«>

Snglrt := {)§| G fin. group} with Map( ¥, &) =<

i
onegnlu
NQ

:

H = GloSupSmthGrpd,, = She (SupCartSp x Snglrt) ( group homomorph.

orbi-singular super-co-stacks

faithfully subsumes proper equivariant homotopy theory:

category of co-topos of slice of cohesive «-topos of slice of singular-cohesive «-topos of
topological G-spaces smooth G-co-actions smooth c-groupoids over BG Smth G-orbi-singular c-groupoids GOI‘bSpC
Cdffig (—)/)G A
G Act(kTopSpc) — G Act(SmthGrpd,,) —— SmthGrpd,, /BG y  GloSmthGrpd,,, g U GSmthGrpd,,
—

b_Sf}glt L GOrbSmth o

orbi-singular = v Q2 G-orbi-spatial =

S5 I 12 P S

~ ~ > GloGrpd > GGrpd

P/ ~GoOrbSmth Pl

underlying proper G-equivariant homotopy type
sub-co-topos of
proper G-equivariant
homotopy theory

slice of base co-topos of
global equivariant homotopy theory

Thm. (§4.1 in [SS20-OrbCoh])
Good orbifolds covered by G CX are equivalently »(X/G) € H = GloSmthGrpd.,

and their proper-equivariant homotopy type is:

DscGOrbSpc

[y (X)G) ~ GOrbSpc(f(X(_))) € GGrpd,, H, g
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Equivariant classifying spaces. [SS22-EquBun]

Theorem.
If G (T is a G-equivariant Hausdorff-topological group with [T truncated, then

B = U, ] » BT € H.
D 3 $ oY
gx‘z’&‘o‘ﬁe & g ¥ &
< o %) &
0?\-‘6.& o‘“\ N
£4 %‘5\ G N



Equivariant classifying spaces. [SS22-EquBun]

Theorem.
If G (T is a G-equivariant Hausdorff-topological group with [T truncated, then

B = U, ] » BT € H.
D Q < o
S & &
RV %% . ,%Q %\Q béo
0?\-‘6.& o@\ ¥
Q Gj’\ C)I Q‘

classifies G-equivariant I'-principal bundles on G-orbifolds " ~ »(X/G) € H x

(GEquvI'PrnBdlx) A= To Map( 2~ ,BGF))Q



Equivariant classifying spaces. [SS22-EquBun]

Theorem.
If G (T is a G-equivariant Hausdorff-topological group with [T truncated, then

B = U, ] BT € H
A Q < P2
S SN
RV %% N %\Q 6@\°
S & &
< %‘5\ C)l 0‘

classifies G-equivariant I'-principal bundles on G-orbifolds 2" ~ »(X/G) € H x

(GEquvI'PrnBdlx) A= To Map( 2~ ,BGF))Q

and its equivariant homotopy groups are given by non-abelian group cohomology:

Ip
. . Q (Y "DQ % QQ %
&\W%QQQ Q‘b‘\‘b G}\%Q ‘Oz\\ \0\0% ﬁqo‘o Qeo S
» : D >
S S F ¥ P ¥
& &8 & © S N
& Cl Q¥ 3
N ;> N $



B-fields on orbi-orientifolds. [SS22-EquBun]

Specifically, for
Il > N— G —» Zr — 1

and
Zy CPUG € GAct(Grp(kTopSpc))

the graded projective unitary group acted on by complex conjugation, the G-orbi-space
B;(PU5) € H

classifies type IIA B-fields on G-orbi-orientifolds

~ toMap (3&”, B (PU(%r)> .

™~ gauge Y

type IIA B;-fields on
G-orbi-orientifold 2~

with 7 (B(PUn)) = HE'(H;Z),  teproducing [UrLiil4, Thm. 15.17,




B-fields on orbi-orientifolds. [SS22-EquBun]

Specifically, for
Il > N— G —» Zr — 1

and
Zy CPUG € GAct(Grp(kTopSpc))

the graded projective unitary group acted on by complex conjugation, the G-orbi-space
B;(PU5) € H

classifies type IIA B-fields on G-orbi-orientifolds

~ woMap( 2, Bo(PUS) )

™~ gauge Y

type IIA B;-fields on
G-orbi-orientifold 2~

with 7 (B(PUn)) = H!'(H;Z),  teproducing [UrLiil4, Thm. 15.17,

Philosophical question:
But why coefficients like B;PUy,?  Are there god-given coefficients? AVAVAVAV:



God-given coefficients — Tate spheres. Def. 5.19 in [SS20-OrbCoh]

For any line object A! there are the Tute spheres (e.g. [VRO07, Rem. 2.22])

Sn

Tate

= cof(A"\{0} — A") € H
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God-given coefficients — Tate spheres. Def. 5.19 in [SS20-OrbCoh]

For any line object A! there are the Tute spheres (e.g. [VRO07, Rem. 2.22])

Sn

Tate

= cof(A"\{0} — A") € H

Specifically for Al :=R! € SmthGrpd,, (incidentally | ~ Loc® : H — H)
we have the smooth Tate spheres

Si’l

Tate

= cof(R"\{0} — R") € H.

Their shape is that of the ordinary n-spheres ([SS20-OrbCoh, Ex. 5.21]):

D
[sh ~ §" € Grpd, — H
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God-given coefficients — Tate spheres. Def. 5.19 in [SS20-OrbCoh]

For any line object A! there are the Tute spheres (e.g. [VRO07, Rem. 2.22])

Sn

Tate

= cof(A"\{0} — A") € H

Specifically for Al :=R! € SmthGrpd,, (incidentally | ~ Loc® : H — H)
we have the smooth Tate spheres

n
S Tate

= cof(R"\{0} — R") € H.

Their shape is that of the ordinary n-spheres ([SS20-OrbCoh, Ex. 5.21)):

D
[sh ~ §" € Grpd, — H

More generally, for any
G CV € GAct(VectorSpaces,) — G Act(SmthMfd) — G Act(H)
we have the orbi-smooth V-Tate spheres ([SS20-OrbCoh, Ex. 5.27])

¥ (St /G) € H,g.


https://ncatlab.org/nlab/show/Tate+sphere#VRO07

Example: The ADE-equivariant 4-sphere. §5.1 in [HSS18-ADE]; §3 in [SS19-TadCnc]

The G,pz-equivariant Tate 4-sphere has equivariant homotopy type of
the 4-representation sphere:

(") Dsc GapOrbS
Jr($te/Guwe) =~ S(ROH) € GuuGrpd., —— "% H,q,

stereogr. 3
project.



https://ncatlab.org/nlab/show/finite+rotation+group#ClassificationOfFiniteSubgroupsOfSO3

Example: The ADE-equivariant 4-sphere. §5.1 in [HSS18-ADE]; §3 in [SS19-TadCnc]

Consider the left multiplication action of Sp(1) = S(H) on the quaternions H:

Sp(1) CH ~ SU(2), CC* ~ Spin(3); CR*.

The finite subgroups have a famous ADE-classification:

Label Gine f% SU(2) Order Name
A, Lip i1 n Cyclic
D14 2D, 40 4(n+2) Binary dihedral
K¢ 2T 24 Binary tetrahedral
K7 20 48 Binary octahedral
Eg 21 120 Binary icosahedral

Denote the restricted representation by 4 = G,p; CR* ¢ RO(Gipe) -

The G,pp-equivariant Tate 4-sphere has equivariant homotopy type of
the 4-representation sphere:

() Dsc GapeOrbS
Iy (St /Guwe) =~ S(ROH) € GuuGrpd., —— =% H,q,

stereogr. r
project.
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Example: Super-Minkowski orbifolds. Thm. 4.3 in [HSS18-ADE)]
Theorem. Classification of subgroup actions of Pin™ (10, 1) CR!9:132 which fix > !/sth of 32
such that all non-trivial subgroups have the same bosonic fixed locus:

Black brane Fixed .Type O.f Intersection law
] BPS locus singularity
species in R10.1/32 in R10.1 ~ RL o R o R4 o R!
Elementary brane species Simple singularities
MO9 1/ RY:116 7 = (Z2)aw
A
MOS5 1/ RS1[2'8 Zn C (Z2)r X (Z2)nw
A
MOl 12 R11161 Ly C  — (Zo) < (Zo)r %X (Za)uw
i 6,116 Lint1,2Dp 47, -
MKG6 yo) R 2T.20.21 C SU(2)g
A
M2 1h = 8/ | R2182 Z c — SUR2), x  SUQ) —
A
M2 6/16 | R2162 Lns3 ap— SUR). x SUQ) —
5 2,1]5:2 2Dy, A
M2 /16 | R 2T.20.21 C SU(2), x  SUQ2)g
2D (id,7)
1 — 4 271 |42 n+2s S S
M2 /4 /16 | R 20.21 C SUR2), x  SUQ2)g
SU(2), SU(2)g (Z2)uw

Yy Yy ()

RIO,I ~p Rl’l@ R4 D R4 D R




Example: Super-Minkowski orbifolds. Thm. 4.3 in [HSS18-ADE)]
Theorem. Classification of subgroup actions of Pin™ (10, 1) CR'%132 which fix > 1/4th of 32

such that all non-trivial subgroups have the same bosonic fixed locus:

Black brane Fixed .Type O.f Intersection law
] BPS locus singularity
species in R10.1/32 in R10.1 ~ RL o R4 o R4 o R!
Elementary brane species Simple singularities
MO9 1/ RY:116 Zy = (Z2)nw
A
MOS5 ) RS1128 Ly C (Z2)r X (Z2)nw
A
MOl L2 R11161 Ly C — (Zo)L X (Zp)r X (Zz)uw
A
M2 lh = 8/15 | R2182 Z c — SUR2), x SUQ)g —
A
M2 6/16 | R2162 Lops3 c — SUR). x SUQ)g —
A
M2 5/he | R21S2 2?@2”5251 c — SU(2), x  SU2)& —
(id,7)
M2 s = 4/16 | R2142 22%”22[ GR— SU(2).  x SUQ2)g —
SU22),  SU(Q2)x (Z2)uw yields super-Minkowski orbifolds, e.g.:

CYy () O ZMK6 1 K3

RIO,I ~ Rl’l@ R4 D R4 D R
. = RO!16 x (T4 )74) < H

/2




J-twisted proper orbifold Cohomotopy.

Def. 5.28 in [SS20-OrbCoh]

Let 2 be an R4 !N_orbifold

YT

VA

r.)
&
with Spin(n)-structure &, A&(%
(- 2

» ¥BSpin(n)

/

yBGL(d, 1|N)

Def. ([SS20-OrbCoh, Ex. 5.29]) J-twisted proper orbifold Cohomotopy of (2", 7) is :

tangentially J-twisted
proper orbifold Cohomotopy

77:“"(5{)

proper equivariant homotopy type
of canonical n-sphere

moMap( 2, - (S%,.//Spin(n)

[ ¥BSpin(d)
proper equivariant tangential twi
( coccycle )
X - ’ J\)/(S'rflate//spln(n))
Nz
Ty 4 2/ & >
("’/&(:A? \oc‘z}cee

st



J-twisted proper orbifold Cohomotopy. Def. 5.28 in [SS20-OrbCoh]
Let 2 be an RSN orbifold

rtT .
VA = > YBSpin(n)
with Spin(n)-structure NS
-2)
yBGL(d, 1|N)

Def. ([SS20-OrbCoh, Ex. 5.29]) J-twisted proper orbifold Cohomotopy of (2", 7) is :

proper equivariant homotopy type

tangentially J-twisted of canonical n-sphere

proper orbifold Cohomotopy

Iyt . N n . N
wH(2) = mMap( 2 Ir(Sh/Spin(n)

proper equivariant tangential twist

( )

= Moy %% C %
(9?&(:)\2‘ \ec?}c
[ ¥BSpin(n)
\ /

In the case that £ = X is smooth (i.e. a manifold), this reduces to J-twisted Cohomotopy:
[FSS19-HypH, Def. 2.1][FSS20-Char, Ex. 2.41], see also [Cru03, Lem. 5.2].


https://ncatlab.org/nlab/show/twisted cohomotopy#Cruickshank03

Orbifold Cohomotopy at and away from the singularities. = Thm. 5.16 in [SS20-OrbCoh]

222 [y (SEN /Spin(n))

<
7 ’ /
Key Structure Theorem: 2
In limiting cases this reduces to: I ¥BSpin(n)
(a) equiv Cohomotopy in RO-deg n  tangentially J-twisted
. bifold Coh t
(b) tangent J-twisted Cohomotopy .
e ( %) .,
W 0%
N
(a) @3 N 00"«3('0)
Q
> b\\e @y,
% & 2 e
& ~ N O/Q,

[HSS18-ADE] g v + % [FSS19-HypH]

[SS19-TadCnc] [FSS19-M5WZ]

[BSS19-FrcBrn] il (Td ) T(x [FSS20-M5Sir]

[SS20-M5GS] G 0 [SS20-M5Anom]

equivariant Cohomotopy ) o [FSS20-GSAnom]
in RO-degree n tangecr(l)tlll?)lgo‘:otp“;“ed
d cocycle 1
Y (T9)G) ———-- » r(S"/G) X ---=---3 S" //Spin(n)



0 — Cohesive Homotopy Theory

I - Quantum Charge of M-branes under Hypothesis H

I — Quantum Charge of D6 | D8 under Hypothesis H

III - Quantum States of D6 | D& under Hypothesis H




Future historians may judge the late 20th century as a time when
theorists were like children playing on the seashore, diverting themselves
with the smoother pebbles or prettier shells of superstrings

while the great ocean of M-theory lay undiscovered before them.

M. Duff (1998)
closing sentence in:

M. Duft:
The Theory Formerly Known as Strings
Scient Amer 1998


https://ncatlab.org/nlab/show/Michael+Duff#Quotes
https://ncatlab.org/nlab/show/Michael+Duff
https://ncatlab.org/nlab/files/DuffFormerlyStrings98.pdf
https://ncatlab.org/nlab/files/DuffFormerlyStrings98.pdf

Flux-quantization in non-abelian cohomology theory. [ESS20-Char]

Non-perturbative completion of a theory of charged objects
with flux densities satisfying Bianchi identities

involves choosing a non-abelian cohomology theory A
whose character image enforces these Bianchi identities:



Flux-quantization in non-abelian cohomology theory. [ESS20-Char]

Non-perturbative completion of a theory of charged objects
with flux densities satisfying Bianchi identities

involves choosing a non-abelian cohomology theory A
whose character image enforces these Bianchi identities:

A\
“—‘abe 0\0%s . \ e\)ta
charge “lattice” Y\‘\oa o cono™ - pead Loo-®8
non-abelian cohomology de® Wit
non-abelian character
A(X) -~ > Hyr (X; 1A)
(a) Va } (a) ( (b) )
| \ R

] > {FY € QR 0} 2 ocaimim )| 4P = P ({FY bo<a

quantized flux/charge higher Bianchi identities

field strengths/flux densities

class in A-cohomology Loo-algebra valued diff forms Loo-flatness condition



Flux-quantization in non-abelian cohomology theory. [FESS20-Char]

Non-perturbative completion of a theory of charged objects
with flux densities satisfying Bianchi identities

involves choosing a non-abelian cohomology theory A
whose character image enforces these Bianchi identities:

“on"abe“ NOES _a\%e\)‘fa
charge “lattice” qna co\‘ - ched ad Lo
non-abelian cohomology de Wi
non-abelian character
A(X) » Hyg (X; [A)
ChA
q (Y € Qlp(x)) [dES = P (F e

. [ | { 1<a<dim|m, (A b<a

quantized flux/charge hlgher Bianchi identities

field strengths/ﬂux densities

class in A-cohomology Lo -algebra valued diff forms Loo-flatness condition

The choice of A is a hypothesis about the correct non-perturbative completion.



Flux-quantization in non-abelian cohomology theory. [FSS20-Char]

Non-perturbative completion of a theory of charged objects
with flux densities satisfying Bianchi identities

involves choosing a non-abelian cohomology theory A
whose character image enforces these Bianchi identities:

an
. nov” “‘m\;‘ mol0S g™
charge “lattice” nam © ead Loo
non-abelian cohomology ae® Wwhit
non-abelian character
A(X) » Hr (X; 1A)
ChA
| > | {F € QX)) ({7 bo<a)
Lcﬂ]x/h 7 {{Fr € Qi )} ocdimim(ayr) | 4F7 = P b<a
"
gll;“sl:i:nzi- c Ollll 01:1 0?52; field strengths/flux densities hlgher Bianchi identities

Leo-algebra valued diff forms Loo-flatness condition

The choice of A is a hypothesis about the correct non-perturbative completion.

Given such a choice, the moduli eo-stack of fields is a differential refinement of A:

o/ = A € SmthGrpd,,



Hypothesis H. [Sal3, §2.5][FSS16-RatCoh][FSS19-HypH][SS21-MF]

Fact: The Bianchi identity of the type IIA RR/B-fields
1s that enforced by the Whitehead L..-algebra of twisted KU-theory

il kugmuy) = { (10) eaypo| 45 ZHnPus )

The evident hypothesis here is the proposal by Minasian/Moore/Witten/Bouwknegt/Mathai:

~conc

The type IIA RR/B-field is flux-quantized in twisted K-theory.

It must be flux-quantized in something at least close, such as orbifold KR-theory.



https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory
https://ncatlab.org/nlab/show/orbifold%20K-theory
https://ncatlab.org/nlab/show/KR+cohomology+theory

Hypothesis H. [Sal3, §2.5][FSS16-RatCoh][FSS19-HypH][SS21-MF

Fact: The Bianchi identity of the type IIA RR/B-fields
1s that enforced by the Whitehead L..-algebra of twisted KU-theory

Hgr (X, (KU /BU(1))) = {({IZ’;}k) € QaR(X)| Z% ::(l)%AF%2 }

The evident hypothesis here is the proposal by Minasian/Moore/Witten/Bouwknegt/Mathai:

~conc

The type IIA RR/B-field is flux-quantized in twisted K-theory.

It must be flux-quantized in something at least close, such as orbifold KR-theory.

Fact: The Bianchi identity of the M-theory C-field is
that enforced by the Whitehead L..-algebra of 4-Cohomotopy:

G . dG: = —LGsNG
HdR(Xa [S4) ~ {(GZL) E'Q‘dR(X)‘ dGZ :()2 4 4 }

The evident hypothesis here [Sal3, §2.5] we called Hypothesis H:

~conc

The M-theory C-field is flux-quantized in 4-Cohomotopy.

It must be charge-quantized in something at least close, such as J-twisted orbifold Cohomotopy.



https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory
https://ncatlab.org/nlab/show/orbifold%20K-theory
https://ncatlab.org/nlab/show/KR+cohomology+theory
https://ncatlab.org/schreiber/show/Hypothesis+H

Cohomotopy unifies M5/M2-brane charge. |[HSS18-ADE, p. 17][FSS19-HypH, §2.3]

Cohomotopy is dual to Homotopy: n (Sk) ~ T (54)

4-co-homotopy group homotopy groups
of spheres of 4-sphere



Cohomotopy unifies M5/M2-brane charge. |[HSS18-ADE, p. 17][FSS19-HypH, §2.3]

Cohomotopy is dual to Homotopy: r (Sk ) ~ T (54)
4-co-homotopy group homotopy groups
of spheres of 4-sphere

Homotopy groups of the 4-sphere:

k= || 1234 5| 6 | 7 8 |9

all torsion

m(SH |00 |0|Z |2 | 2o | ZOZyy | 73 | T°0



https://ncatlab.org/nlab/show/4-sphere#HomotopyGroups
https://ncatlab.org/nlab/show/Serre+finiteness+theorem#InHomotopyTheory

Cohomotopy unifies M5/M2-brane charge. |[HSS18-ADE, p. 17][FSS19-HypH, §2.3]

Cohomotopy is dual to Homotopy: r (Sk ) ~ T (54)
4-co-homotopy group homotopy groups
of spheres of 4-sphere

Homotopy groups of the 4-sphere:

k= || 1234 5| 6 | 7 8 |9

all torsion

m(SH |0 0|0 Z |2 | 2o | ZOZyy | 73 | 00

—
4-Cohomotopy measures integer charges exactly around black BPS M2/M5-branes:

(RS xst) = wl(s) = m(sh) = zZ
black MS5-brane
near horizon spacetime
n* (A/d§4 X S7) ~ 7t (S7) ~ T (S4) ~ /. & torsion
black M2-brane

near horizon spacetime


https://ncatlab.org/nlab/show/4-sphere#HomotopyGroups
https://ncatlab.org/nlab/show/Serre+finiteness+theorem#InHomotopyTheory

Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy 7-54 (R4 ) un-stable/
around an orbi-singularity G cpt non-linear!

equivariant generalized equivariant generalized representation
cohomologies in RO-degree 4 cohomologies of the point rings


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint

Approximating Cohomotopy by K-theory.

[BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy 71-4 (R4 ) un-stable/
around an orbi-singularity G cpt non-linear!

stabilization/ | .,
linearization

equivariant 84 ( S4>
stable Cohomotopy G

equivariant generalized
cohomologies in RO-degree 4

equivariant generalized
cohomologies of the point rings

representation


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint

Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy 7-54 (R4 ) un-stable/
around an orbi-singularity G cpt non-linear!

stabilization/ |
linearization

BP72][Se74 Se71][tD79 Burnside
equivariant 84 S4 SO L 115¢74] R G [Se71][tD79] A i
G G K G ring
stable Cohomotopy [De06][Gui06] 1
equivariant generalized equivariant generalized representation

cohomologies in RO-degree 4 cohomologies of the point rings


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint

Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy 7-54 (R4 ) un-stable/
around an orbi-singularity G cpt non-linear!

stabilization/ | .,
linearization

R [Se71][tD79] Burnside
equivariant 4 ( 4 ) 0 .
stable Cohomotopy SG S SG [De06][Gui06] RF 1 ( G) A G "

Hurewicz-Boardman ®
homomorphism 0%
J/ P p Fy

[BP72][Se74]

(initiality of S)

equivariant Ko‘é ( S4) KO(C); R]R (G )

orth. K-theory

equivariant generalized equivariant generalized representation
cohomologies in RO-degree 4 cohomologies of the point rings


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint

Approximating Cohomotopy by K-theory.

[BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy
around an orbi-singularity

stabilization/ |
linearization

g (RE

) un-stable/
cpt

non-linear!

equivariant

56 (5%)

stable Cohomotopy

Hurewicz-Boardman
homomorphism
(initiality of S)
equivariant 4 ( 4)
orth. K-theory KOG S
further
extension of scalars
equivariant 4 ( 4)
complex K-theory KUG S

equivariant generalized
cohomologies in RO-degree 4

Burnside
0 [BP72][Se74] R G [Se71][tD79] '
ring
G De06][Gui06] Iy (G) G
0
KOg Rg(G)
J,®RC l@)RC
0
KU? Rc(G)
equivariant generalized representation
cohomologies of the point rings


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint

Approximating Cohomotopy by K-theory.

[BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

un-stable/
non-linear!

J-twisted orbifold Cohomotopy
around an orbi-singularity

stabilization/ | .,
linearization

g (RE)

cpt

equivariant

56 (5%)

\L Hurewicz-Boardman

stable Cohomotopy

homomorphism
(initiality of S)

equivariant
orth. K-theory

KOA (5*)

further
extension of scalars

KU (5"

equivariant generalized
cohomologies in RO-degree 4

equivariant
complex K-theory

0 [BP72][Se74] [Se71][tD79] Burnside
G R, (G) G rine
[De06][Gui06]

& L

s S
p R R S

oS
>
0 S
KOG RR(G) e&‘i@
&9
» &
®C C ¢ F
R ®R J %@&
L&
0 “‘AQ&Q
-V s
KUG R¢ (G) — S
§FE
equivariant generalized representation @‘
cohomologies of the point rings


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint

Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy 754 (R4 ) un-stable/
around an orbi-singularity G cpt non-linear!

stabilization/ | .,
linearization

BP72][Se74 Se71][tD7 Burnside
equivariant 84 ( S4> SO ) 15e74 R (G) [Se711ID79] A ring
stable Cohomotopy G G [De06][Gui06] IFl G
Hurewicz-Boardman Qq? g?
homomorphism [3 ®IE‘ R 9“?*9@
(initiality of S) 1 >
ivariant 4 (4 OO _\e&%eo
equivarian ( ) &
orth. K-theory KOG (S ) K G R]R G &‘é‘vé‘é
further ®. C ®. C o° S
\l/ extension of scalars R R ¢‘§ Q?z&
&L
equivariant KU4 ( S4) KUO Rc ( G) 5 §’\Qﬁ
complex K-theory G G ) Qe? &
¥ .8
equivariant generalized equivariant generalized representation @‘\
cohomologies in RO-degree 4 cohomologies of the point rings

Rem. [FSS20-Char, (353)].
The Boardman homomorphism exhibits exactly the identification G4 — Fy4 of [DMWOO]:

X" 4 P ., KU KU

\

T S
ch stabilization / linearization Boardman homomorphism Bott per.
; (G4 ,G7 ) — Gy — Iy

C-field flux RR-field flux



https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint
https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory#DMW00

Approximating Cohomotopy by K-theory.

[BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

J-twisted orbifold Cohomotopy 71-4 (R‘I- ) un-stable/
around an orbi-singularity G cpt non-linear!
stabilization/ | .,
linearization
equivariant 84 ( S4)
stable Cohomotopy G
Hurewicz-Boardman
homomorphism
(initiality of S)
equivariant 4 ( 4)
orth. K-theory KOG S
further
extension of scalars
equivariant 4 ( 4)
complex K-theory KUG S

equivariant generalized
cohomologies in RO-degree 4

Rem. [FSS20-Char, (353)].

0 [BP72][Se74] [Se71][tD79] Burnside
s? Ry, (G) Ag  rine
[De06][Guil6]
&L
S S
B ®p R S
| & \Q
>
0 S
X
&9
e &
SR
®R(c ®]R(C &Q @é’
S &
0 N
& ¢
KUg R¢ (G) — &
S
equivariant generalized representation @A
cohomologies of the point rings

The Boardman homomorphism exhibits exactly the identification G4 — Fy4 of [DMWOO]:

4 3 4 B 4
T — — KU KU
ch stabilization / linearization Boardman homomorphism Bott per.
; (G4,Gr) — G4 — Fy
C-field flux RR-field flux

However, 8 (and [DMWO00]) misses the double dimensional reductions G4 — H3 and G7 — F;
these do appear from Cohomotopy via cyclification ([FSS16-RatCoh][FSS16-TDual][BSS19-RatSt]).


https://ncatlab.org/nlab/show/stable+cohomotopy#AsAlgebraicKTheoryOverTheFieldWithOneElement
https://ncatlab.org/nlab/show/stable+cohomotopy#Deitmar06
https://ncatlab.org/nlab/show/Burnside+ring#AsTheEquivariantStableCohomotopyOfThePoint
https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory#DMW00
https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory#DMW00

Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

These two approximations...

cyclification &
stabilization &
Boardman homom.

M-Brane charge D-Brane charge

in Cohomotopy 5 > in K-Theory
(Hypothesis H) (trad. hypothesis)
cohomotopical ch
FSS character &
Fluxes in

Rational Cohomotopy
[Sal3, §2.5]




Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

These two approximations are compatible with each other:

cyclification &
stabilization &
Boardman homom.

M-Brane charge D-Brane charge

in Cohomotopy 5 > in K-Theory
(Hypothesis H) (trad. hypothesis)
cohomotopical ch h Chern
FSS character & ¢ character
Fluxes in clyifllélai:;t;i);lfz Fluxes in
Rational Cohomotopy > | Rational Cohomology
[Sal3, §2.5] (classical)




Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

small coupling limit Tvoe T'/IIA
M-Theory > P
String Theory
cyclification &
M-Brane charge stabilization & D-Brane charge
) Boardman homom. .
in Cohomotopy 5 ; in K-Theory
(Hypothesis H) (trad. hypothesis)
E 2
@ cohomotopical ch - Chern %
S FSS character d ¢ character %
o p—
% ~ . . ~ 5
Fluxes in cly.dlﬁc:‘l tion & Fluxes in
) Inearization )
Rational Cohomotopy > | Rational Cohomology
[Sal3, §2.5] (classical)
11d KK-compactification Type I'/1IA

~

Supergravity Supergravity




Approximating Cohomotopy by K-theory. [BSS19-FrcBrn][SS19-TadCnc][SS21-MF]

image(B) = liftable to M-theory

: Type I'/TIA
M-Theory | ——  cokernel(B) = not liftable to M-theory —— }.,p
: String Theory
kernel(f) = MNew effects in M-theory
cyclification &
M-Brane charge stabilization & D-Brane charge S
) Boardman homom. . ~ o =
in Cohomotopy 5 > in K-Theory g g 3
: : 0q
(Hypothesis H) (trad. hypothesis) % % Z
= s 5 =
.é —" —
biﬁ cohomotopical ch " Chern [T
g FSS character d ¢ character
O @« -
B N 2\ =, 2 o
= cyclification & o 5 2.
Fluxes in ly . Fluxes in £ 22
) inearization ) o 5.8
Rational Cohomotopy > | Rational Cohomology = 2 0
[Sal3, §2.5] (classical) %
11d KK-compactification Type I'/IIA

v

Supergravity Supergravity




Background: The black M5 in 11d SuGra.

Fact. [AFFH99, 5.2] [dMFF12, §8.3]:
All BPS black M5-brane solutions of 11D supergravity are !/2BPS of this form:

black M5
. | (1/2 BPS)
with % = § (]R e H ) nealiillll;)il;lzon far-horizon as in the
as above limit above Thm.
ro < Up1 v/Nuss <r
AdS7 x $* /Gy R xR x R/ Gope
throat geometry intersecting flat orbifold

orbifold ADE-singularity with ADE-singularity



https://ncatlab.org/nlab/show/near-horizon+geometry#AFFHS98
https://arxiv.org/pdf/hep-th/9808014.pdf#page=22
https://ncatlab.org/nlab/show/M5-brane#MFF12
https://arxiv.org/pdf/1007.4761.pdf#page=41

Background: The black M5 in 11d SuGra.

Fact. [AFFH99, 5.2] [dMFF12, §8.3]:
All BPS black M5-brane solutions of 11D supergravity are ! /2BPS of this form:

black M5
. (12 BPS)
ol ? ] near horizon . )
with S = § (]R e H ) limit far-horizon as in the
as above limit above Thm.
ro S p1 v/ Nuis <r
4 5,1 1 4
AdS7 X S //GADE R X R X R //GADE
throat geometry intersecting flat orbifold
orbifold ADE-singularity with ADE-singularity

Consequence 1: Black BPS M5-branes are always domain walls inside an MK6-singularity:

ADE

A
|

|

. Mk @ Mre @) MKe ®
| M5 M5 M5
N

E.g.: [ZHTV14, §3.1] [Fal7, §3.3.1]


https://ncatlab.org/nlab/show/near-horizon+geometry#AFFHS98
https://arxiv.org/pdf/hep-th/9808014.pdf#page=22
https://ncatlab.org/nlab/show/M5-brane#MFF12
https://arxiv.org/pdf/1007.4761.pdf#page=41
https://ncatlab.org/nlab/show/M5-brane#ZHTV14
https://arxiv.org/pdf/1407.6359.pdf#page=9
https://ncatlab.org/nlab/show/NS5-brane#Fazzi17
https://arxiv.org/ftp/arxiv/papers/1712/1712.04447.pdf

Background: The black M5 in 11d SuGra.

Fact. [AFFH99, 5.2] [dMFF12, §8.3]:
All BPS black M5-brane solutions of 11D supergravity are ! /2BPS of this form:

black M5
. (12 BPS)
ol ? ! near horizon . )
with S = § (]R e H ) limit far-horizon as in the
as above limit above Thm.
rosS pi \/3 Nyis <L r
AdS7 x $* /Gy R xR x R/ Gupe
throat geometry intersecting flat orbifold
orbifold ADE-singularity with ADE-singularity
Consequence 2:
. . o
Individual M5-branes Nys ~ ¢(1)3 have Planck scale thickness r ~ fp; &
. . &
hence their near geometry make no sense as solutions of M-theory LA L

due to infinite + unknown tower of higher curvature quantum corrections ~ (61231 - R ) :

Conversely:

The M-meaningful far geometry yields flat super-orbifold spacetimes

where all curvature 1s crammed into orbi-singularities

so that also all quantum effects must be hiding inside orbi-singularities —
plausibly detected as charges measured in a proper orbifold cohomology theory!


https://ncatlab.org/nlab/show/near-horizon+geometry#AFFHS98
https://arxiv.org/pdf/hep-th/9808014.pdf#page=22
https://ncatlab.org/nlab/show/M5-brane#MFF12
https://arxiv.org/pdf/1007.4761.pdf#page=41
https://ncatlab.org/nlab/show/D=11+supergravity#ReferencesOnHigherCurvatureCorrectionsIn11dSupergravity

Background: The black M5 in 11d SuGra.

Fact. [AFFH99, 5.2] [dMFF12, §8.3]:
All BPS black M5-brane solutions of 11D supergravity are ! /2BPS of this form:

black M5
. (12 BPS)
ol ? ! near horizon . )
with S = § (]R e H ) limit far-horizon as in the
as above limit above Thm.
ro S p1 v/ Nuis <r
4 5,1 1 4
AdS7 X S //GADE R X R X R //GADE
throat geometry intersecting flat orbifold
orbifold ADE-singularity with ADE-singularity

Consequence 3: An M5-shaped orbi-singularity must be MK6 L MO9 =: ;MS5:

. ..

MO9

. .
-------

E.g.: [GKSTYOI, §6] [ZHTV14, §6] [GaTol4,§2.3]


https://ncatlab.org/nlab/show/near-horizon+geometry#AFFHS98
https://arxiv.org/pdf/hep-th/9808014.pdf#page=22
https://ncatlab.org/nlab/show/M5-brane#MFF12
https://arxiv.org/pdf/1007.4761.pdf#page=41
https://ncatlab.org/nlab/show/M5-MO9+brane+bound+state
https://ncatlab.org/nlab/show/NS5-brane#GKSTY02
https://arxiv.org/pdf/hep-th/0108135.pdf#page=66
https://ncatlab.org/nlab/show/M5-brane#ZHTV14
https://arxiv.org/pdf/1407.6359.pdf#page=31
https://ncatlab.org/nlab/show/heterotic+M-theory+on+ADE-orbifolds#GaiottoTomasiello14
https://arxiv.org/pdf/1404.0711.pdf#page=10

Quantum M-branes?

Hence, holding a quantum-microscope
over a 1M5 orbi-singularity, should
show quantum M-branes

of this form:

MK6s

spacetime X

ADE singularity

(the corresponding situation D6 — NS5
is shown in [EGKRSO00, Fig. 10]
and [GKSTYOI, (6.1)])



https://ncatlab.org/nlab/show/NS5-brane#EGKRS00
https://arxiv.org/pdf/hep-th/0005052.pdf#page=22
https://ncatlab.org/nlab/show/NS5-brane#GKSTY02
https://arxiv.org/pdf/hep-th/0108135.pdf#page=66

Quantum M-branes! [SS19-TadCnc][SS20-OrbCoh]

Hence, holding a quantum-microscope
over a 1M5 orbi-singularity, does
show quantum M-branes

of this form:

spacetime X

Hypothesis H asserts that:
This quantum-microscope is
J-twisted Cohomotopy theory.

ADE singularity

(the corresponding situation D6 — NS5
is shown in [EGKRSO00, Fig. 10]
and [GKSTYOI, (6.1)])



https://ncatlab.org/nlab/show/NS5-brane#EGKRS00
https://arxiv.org/pdf/hep-th/0005052.pdf#page=22
https://ncatlab.org/nlab/show/NS5-brane#GKSTY02
https://arxiv.org/pdf/hep-th/0108135.pdf#page=66

Cohomotopy charge map. [SS19-TadCnc, §2.1] [SS21-MF, §2.2]

Namely, a small tubular neighbourhood of each MK6 carries

e
. . . . \‘5@ o
directed asymptotic transverse distance from \M5 in MO9 e
o A9
= Cohomotopy charge: Cohomotopy charge v mpdyept . od
py g X directed asymptotic transverse distance ’ (R ) Pt = S
spacetime from MK6 loci in MO9-planes 4-sphere

manifold Cohomotopy coefficient

N\

/7 N\
P ‘ > 7 : codimension n submanifold £ 2
o, :
. . S
7 s = g
v = = regular
<, ’ Los 1
PRV s gg value
S~ _ - - -’ RS = 5
- R A2 s =
~ ¢’ 7 7/ . E
- - i
7 : = —&
7. .
MK6 R 25—
.............. ,//
- . .
\n_—’ 7

constant on oo
away from tubular neighborhood

This construction and its reverse is Pontrjagin’s construction ([Pon38], long before [Thom54]).



https://ncatlab.org/nlab/show/cohomotopy+charge+map
https://ncatlab.org/nlab/show/Pontryagin+theorem#ReferencesPontrjaginConstruction
https://ncatlab.org/nlab/show/Pontryagin+theorem#Pontryagin38a
https://ncatlab.org/nlab/show/Pontryagin+theorem#Thom54

Anti-branes and Cobordism. [SS19-TadCnc, §2.1]1 [SS21-MF, §2.2]

Under the above Pontrjagin construction one finds that:

cobordisms exhibiting ) \ coboundaries in
° ° A\ /4
brane/anti-brane reactions Cohomotopy theory
0= (~1)+ (+1)

0,1 xX s (R™)CPt — qn
[ ’ ] coboundary in Cohomotopy ( ) S
product space n-sphere

of interval with manifold Cohomotopy coefficient

: ,\ positively charged
: submanifold

!

regular 0o
value

cobordism,

o
-
N
here ‘1
M |

|

no submanifold :
|

|

oy

negatively charged
submanifold

{O}I><X



Cohomotopy is framed Cobordism. [SS19-TadCnc, §2.1] [SS21-MF, §2.2]

Pontrjagin’s theorem says that
4-Cohomotopy 1s the conserved charge of these M-brane/anti-brane reactions

in that the Cohomotopy charge map yields a bijection on cobordism classes:



https://ncatlab.org/nlab/show/Pontryagin+theorem

Cohomotopy is framed Cobordism. [SS19-TadCnc, §2.1] [SS21-MF, §2.2]

Pontrjagin’s theorem says that
4-Cohomotopy 1s the conserved charge of these M-brane/anti-brane reactions
in that the Cohomotopy charge map yields a bijection on cobordism classes:

unstable Cohomotopy unstable framed
4-Cohomotopy Echarge normally framed (nmly: 4-Cobordism
n*(X) := Map(X, §* )/htpy ~ ¢ Cohomotopy-charged) » =: Cobf[}r (X)

Pontrjagin
constr.

— | codim-4 submfds of X /Cob

quantized charges
sdueaq-JA wnmuenb



https://ncatlab.org/nlab/show/Pontryagin+theorem

Cohomotopy is framed Cobordism. [SS19-TadCnc, §2.1] [SS21-MF, §2.2]

Pontrjagin’s theorem says that
4-Cohomotopy 1s the conserved charge of these M-brane/anti-brane reactions
in that the Cohomotopy charge map yields a bijection on cobordism classes:

remaining
stabilization

unstable Cohomotopy unstable framed
4-Cohomotopy Echarge normally framed (nmly: 4-C0b40rdism

n* (X) := Map(X, g )/ht ~ Cohomotopy-charged) » =: Cobg.(X) -
$ 24 Pontimnin | codim-4 submfds of X /Cob c
E‘D constr. MS-brane moves g
S 1-step 1-step away from MO9 -
= stabilization stabilization | into HW-bulk c
~ =
=]
& (X xR < > Cobp (X x R') <
2 s
] V)
=] =
= %



https://ncatlab.org/nlab/show/Pontryagin+theorem

Cohomotopy is framed Cobordism. [SS19-TadCnc, §2.1] [SS21-MF, §2.2]

Pontrjagin’s theorem says that
4-Cohomotopy 1s the conserved charge of these M-brane/anti-brane reactions
in that the Cohomotopy charge map yields a bijection on cobordism classes:

unstable Cohomotopy unstable framed
4-C0h0m0t0py ECharge normally framed (nmly : 4-C0b01‘dism
n* (X) := Map(X, g )/ht ~ Cohomotopy-charged) » —: Cob?r (X) -
3 py v | codim-4 submfds of X / =
ontrjagin cob
E‘D constr. MS5-brane moves g
S 1-step 1-step away from MO9 -
'(C-:) stabilization stabilization | into HW-bulk E
I 4+1 I ~ 441 1 2
S T (XXRY) < » Cobs ™ (X xRY) :
~— : : =3
g remaining remaining often equivalence, g
E . stabilization stabilization | e.g. for X~ S’ =1
= e y a
Y, ~ \
S (X) A Pontrjagin-Thom theorem ’ MFI' (X)
stable stable framed

4-Cohomotopy 4-Cobordism



https://ncatlab.org/nlab/show/Pontryagin+theorem

Cohomotopy is framed Cobordism. [SS19-TadCnc, §2.1] [SS21-MF, §2.2]

Pontrjagin’s theorem says that
4-Cohomotopy 1s the conserved charge of these M-brane/anti-brane reactions
in that the Cohomotopy charge map yields a bijection on cobordism classes:

unstable Cohzmotopy unstable framed
charge .
4-C020m0t0py . % (normally framed (nmly: 4'C°b:t’rd‘sm
n7(X) := Map(X, S )/ht ~ Cohomotopy-charged) » =: Cobg.(X) -
% py v | codim-4 submfds of X / =
ontrjagin cob
E'D constr. MS-brane moves g
] 1-step 1-step away from MO9 -
= stabilization stabilization | into HW-bulk o
~ =
=
~ 4+1
g (X xR!) « > Cobp ' (X x RY) <
= : - =)
g remaining remaining often equivalence, g
= . stabilization stabilization | e.g. for X~ S’ =
= v Z Z
4 , ~ y
S (X) A Pontrjagin-Thom theorem ’ MFT (X)
stable stable framed
4-Cohomotopy 4-Cobordism
Rem.:

In particular this means that, in its stable = linearized approximation (cf above),
Hypothesis H says equivalently that M-brane charge 1s quantized in stable framed Cobordism.

This 1s reminiscent of discussion in [McNamara & Vafa 19], see [SS21-MF, §4] for more.


https://ncatlab.org/nlab/show/Pontryagin+theorem
https://ncatlab.org/nlab/show/cobordism+cohomology+theory
https://arxiv.org/abs/1909.10355

0 — Cohesive Homotopy Theory

I - Quantum Charge of M-branes under Hypothesis H

II - Quantum Charge of D6 | D8 under Hypothesis H

III - Quantum States of D6 | D& under Hypothesis H




Clay Millennium Problem:
1o construct confined quantum chromodynamics (QCD.).

D-brane configuration
geometrically engineering

small

large extra dimensions
extra

quantum chromodynamics dimension space time radial e
(Witten-Sakai-Sugimoto model) stox ¥ x RML x RL, x g¢
N.  color branes Dio S
N;  flavor branes D84, =~
CS5¢ = —
meson fields ?
WZ4q, =
Ny  baryon branes D4y
N,,, monopole branes Dbmon |

NS5


https://ncatlab.org/nlab/show/mass+gap#ReferencesMassGapProblem
https://ncatlab.org/nlab/show/AdS-QCD+correspondence#WSSBraneConfiguration

Cohomotopical D6 | D8-Charge. §2 in [SS19-Quant]

The following slides survey how
D6 | D8-brane moduli are seen in Cohomotopy theory.

The argument proceeds along these steps:

1. Reduction of cohom. M-branes to type IIA NS5 /D-branes by cyclification.

2.  Localized branes in flat spacetime via Cohomotopy vanishing-at-infinity.

3. Low codimension (defect-)branes from Cohomotopy in negative degrees.

4.  The cohomotopical D(9 — d)-brane moduli stack is identified with the

configuration space of labelled points in transverse space, by Segal’s theorem.

5. The intersection of these moduli for D6 | D8-branes is equivalent

to the configuration space of ordered points in D6-tranverse space.

(skip over all technicalities to punchline)




Double dimensional reduction of M-brane charge. [FSS16-TDual, §3][BSS19-RatSt, §2.2]

, hofib
Prop.:. 2 e Hand¥ € Grp(H) + H L . H/py giffgg;iiccii(;ln
Map(ga_)//g




Double dimensional reduction of M-brane charge. [FSS16-TDual, §3][BSS19-RatSt, §2.2]

, hofib
Prop.: 2 ¢ Hand¥ ¢ GrpH) + H 1  Hpy

Map(¥, )//%

Ex: ¥ =S F  Zy(—):=Map(S', —)/S! is the cyclic loop space.




Double dimensional reduction of M-brane charge. [FSS16-TDual, §3][BSS19-RatSt, §2.2]

, hofib
Prop.: 2 ¢ Hand¥ ¢ GrpH) + H 1  Hpy

Map(¥, )//54

Ex: ¥ =S F  Zy(—):=Map(S', —)/S! is the cyclic loop space.

So, on an 11d spacetime circle bundle S lcr — 7 /S I we have (see more exposition ):

4 cocycle 4
T (% ) — % > J‘ S charges on 11d spacetime
/ AN
htpy

double dim c 1.

reduction oxidation
cyclified 3
1 cocycle

~ { % // S ? o%yc (I S4) charges on 10d spacetime

2 RES /
N~ S
TN ot htpy
s

Q,
pped fS4 o™


https://ncatlab.org/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes#DoubleDimensionalReduction

Double dimensional reduction of M-brane charge. [FSS16-TDual, §3][BSS19-RatSt, §2.2]

, hofib
Prop.: 2 ¢Hand¥9 ¢ GpH) + H 1  Hpy

Map(¥, )//g

Ex: ¥ =58 F  Zy(—) = Map(S!, —)/S! is the cyclic loop space.

So, on an 11d spacetime circle bundle S ey — 7 /S I we have (see more exposition ):

4 cocycle 4
T (;% ) — 1%' > f S charges on 11d spacetime
/ AN
htpy
double dim c 1.
reduction oxidation
cyclified
1 cocycle 4 e
=~ % // S ? o%yc (I S ) charges on 10d spacetime
0, o~ ~ T) /
pe, 4 o
o I 4 o
HypothesisH_

Dp/NS5-brane charge in 10d:
- in general 1s quantized in cyclified 4-Cohomotopy;
- for vanishing D(< 5)-charge is quantized again in 4-Cohomotopy.


https://ncatlab.org/schreiber/show/Super+Lie+n-algebra+of+Super+p-branes#DoubleDimensionalReduction

Charges vanishing at - are seen by Cohomotopy of pointed spaces. [SS19-Quant, §2.1]

Smash product of Visualization
pointed topological spaces with point at infinity as Penrose diagram
(e o]
Ve * N
////I\\\\
/ 1\ \
/ I : \ 3 R3
/! I AN
cocycles vanish at infinity / // I \\ \
along these directions ,/ P T \\
A~ = 1 | I L | \
3 1 R [ T I T
cht AR, | oo L
~— Lo '| ! : Lo
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AN I 1y, 7
AR12704
[
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|
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RV o
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along these I
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Low codim branes from Cohomotopy charge in negative degree. [SS19-Quant, §2.3]

For transversal d < 3, all Cohomotopy charge vanishing at oo 1s trivial up to gauge:

at(RITIARIS) ~ g*(5959) ~ 7o 5(S%)

cpt

2
x

reflecting the absence of low codimension black p-branes in M-theory.



Low codim branes from Cohomotopy charge in negative degree. [SS19-Quant, §2.3]

For transversal d < 3, all Cohomotopy charge vanishing at o 1s trivial up to gauge:

7r4(R11_d/\IR{§§3) ~ 7t ($95) ~ ;o (St

2
x

reflecting the absence of low codimension black p-branes in M-theory.

But the full moduli space of Cohomotopy cocycles

W (RL) = Map(Re, Is"

of which the manifest Cohomotopy charge 1s only the connected components
witnesses a rich world of higher gauge solitons:



Low codim branes from Cohomotopy charge in negative degree. [SS19-Quant, §2.3]

For transversal d < 3, all Cohomotopy charge vanishing at o 1s trivial up to gauge:

7r4(R11_d/\IR{§§3) ~ 7t ($95) ~ ;o ;(SY)

2
x

reflecting the absence of low codimension black p-branes in M-theory.

But the full moduli space of Cohomotopy cocycles
P (RS) = Map(Rd, Is)

of which the manifest Cohomotopy charge 1s only the connected components
witnesses a rich world of higher gauge solitons:

Thm. ([Segal 1973, Thm. 3])
The Cohomotopy charge map identifies the above Cohomotopy moduli space
with the configuration space of points in R¢ with labels in D*~¢ /bdr:

Conf (Rd 7 D4_d) Cohomotopy charge map . 7[4 (Rd )

~Y Cpt

configuration space of points homotopy equivalence moduli space of

in RY with labels in D4~ Cohomotopy cocycles
disappearing at opA—d


https://ncatlab.org/nlab/show/configuration+space+of+points#Segal73
https://ncatlab.org/nlab/show/configuration+space+of+points#CohomotopyChargeMapIsEquivalenceOnSPhereLabeledConfihgurationSpace

Low codim branes from Cohomotopy charge in negative degree.

o :
point & its projection to R>
in R3xR!

o

NS

®
e

®
N

point
disappeared to
infinity along R!

\
4

R3 >< {00} R3 >< {0}

RO {o)

7

Cohomotopy charge map .

TV
4—
Conf(R?, D*2)
configuration space of points
in R3 with labels in D43
disappearing at opA—3

Y

homotopy equivalence

> 1 (R2)

cpt
moduli space of
Cohomotopy cocycles

[SS19-Quant, §2.3]



Configuration spaces are a form of differential Cohomotopy. [SS19-Quant, §2.3]

But the configuration space carries the geometric structure of a smooth 0-stack:

Conf(RY, D* ) € DffiSpc — SmthGrpd,, .

while the plain Cohomotopy cocycle space 1s geometrically discrete:

'’ (Rd ) c Grpd,, LD, SmthGrpd,, .

cpt

Therefore, Segal’s theorem says that the

configuration spaces constitute a differential refinement of Cohomotopy theory,
d
(on R s):

cpt

a form of differential Cohomotopy

3 ) . ( 3 4_3) Cohomotopy charge map . ( 3 )
e (R3,) == Conf(R?, D f > T (RY,
configuration space of points n ) moduli space of
in R3 with labels in D43 shape unit Cohomotopy cocycles

disappearing at opA—3



Cohomotopical D6 | D8-Charge. [SS19-Quant, Prop. 2.4, 2.11]

o (REAR] URIARL)

cpt cpt

Therefore we now obtain
Cohomotopy charge of intersecting codim 3/1-branes



Cohomotopical D6 | D8-Charge. [SS19-Quant, Prop. 2.4, 2.11]

i (R ARL U RIARY) i (Row ARY) N a0 (R AR

cpt cpt cpt cpt

Therefore we now obtain
Cohomotopy charge of intersecting codim 3/1-branes as
the fiber product of their separate differential Cohomotopy charge.

AVAVAVAV:,



Cohomotopical D6 | D8-Charge. [SS19-Quant, Prop. 2.4, 2.11]

i (R AR, URIARY) i (Row ARY) N a0 (R AR

cpt cpt cpt cpt

~ Conf(R?,D!) N Conf(R!, D?)

Segal’s theorem



Cohomotopical D6 | D8-Charge.

[SS19-Quant, Prop. 2.4, 2.11]

3 1 3 1 _ 3 1 3 1
T (Row ARy URIARG) = G (RGAR,) N wge(RIAR,)
3 1 1 3 ~ 3 rder
~ Conf (R , D ) M Conf (R , D ) ~ | Conf (R ) confisuration space
nEN {17"' ,I’l}
rojection to R3
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inR3xR! | ;
| .
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to R! I
- b J
* : — |
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: | I in R3 |
|
l : g | 4 4 !
l | | L !
! | ! L !
| | | L !
! | ! I Sa—
! | ! L ! |
! | ! I ! !
{O}XRI ...... ,/I\, .............. A A /\ ........................ ,/I\./\ ...........
induced ordering ——— =
R3 >-<{0}



Cohomotopical D6 | D8-Charge. [SS19-Quant, Prop. 2.4, 2.11]
T (R, AR URIARL) = w5 (R, ARY) N ag (R AR,

cpt cpt cpt cpt

3 1 1 3 3 ordered
~ Conf(R’,D') N Conf(R',D°) =~ U Conf(R’) |
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0 — Cohesive Homotopy Theory

I - Quantum Charge of M-branes under Hypothesis H

I — Quantum Charge of D6 | D8 under Hypothesis H

III - Quantum States of D6 | D8 under Hypothesis H



D6 | D8-states as pos. weight systems on hor. chord diagrams. [SS19-Quant, §2.5,3.5]

. . 3 1 -
Given the moduli stack of nﬁ’ff Rep ARGY noduti stach of
_ _ 1 3 1 D6 | D8-branes
D6 J_ D8 branes acC U R + A\ cht by Hypothesis H

-cording to above discussion
we turn to describing its
quant. states & observables.



https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams. [SS19-Quant, §2.5,3.5]

cov. phase space (topol. sect.)

3 1
The covariant phase space 0o ot R ARG
of any physical theory is the | nen™ ~ it | Ri AR
space of its field histories.
Topologically these are

loops of field configurations.

cpt



https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams.

[SS19-Quant, §2.5,3.5]

But by the above theorem
this are equivalently
loops of configurations
of ordered points in the
D6-transverse space.

cov. phase space (topol. sect.)

3 1
U Q o AR
N “*diff 3 1
NeN U RIAR

\LZ [SS19-Quant, §2.4], as above

§ Q(Conf(R3))
NeN {1,.-N}

conf. space of points

cpt


https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams.

[SS19-Quant, §2.5,3.5]

Higher topol. observables

on this phase space are its
compactly supp. cohomology
hence its homology

(with complex coefficients).

NeN

cov. phase space (topol. sect.)
3 1
L] Q 7[4 cht /\ IR—I—
N “Vdiff 3 1
NeN U RIAR

\LZ [SS19-Quant, §2.4], as above

§ Q(Conf(R3))
NeN {1,-N}

conf. space of points

cpt

o\°®

v@

{17"'N}

observables H, ( L Q (Conf(R3)))


https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams.

[SS19-Quant, §2.5,3.5]

Higher topol. observables

on this phase space are its
compactly supp. cohomology
hence its homology

(with complex coefficients).

observables H, (

NeN {1,--N}

NeN

§ Q(Conf(R3)

cov. phase space (topol. sect.)

3 1

Lo R AR,
N “*diff 3 1
U RIAR

cpt
\LZ [SS19-Quant, §2.4], as above
U Q(Conf(R%))
NeN {1,-N}
conf. space of points

%,
:50/

)
> )

{1,--:N}

) A e (N NQ Conf R3)))


https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams.

[SS19-Quant, §2.5,3.5]

This homology algebra i1s
that of hor. chord diagrams
and 1ts linear dual is that

of weight systems

(both explained in a moment)

observables H,
NeN

hor. chord diagrams
NeN

{L,--N}

e (Conf(R3)) )

D oy

cov. phase space (topol. sect.)

R> AR!
L QNﬂ“?hff 3Pt 1
NeN U RIAR

cpt

\LZ [SS19-Quant, §2.4], as above

§ Q(Conf(R3))
NeN {1,-N}

conf. space of points
ﬁ; \
0/060

%H’(I_IQ

[FaHu 01] [Kohno 02] [SS19-Quant, Prop. 2.18] | |
[

(=) NeN

. > D (dy

Conf(R’ )) )

)

weight systems


https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams.

[SS19-Quant, §2.5,3.5]

Since algebra of observables
1s canonically a star-algebra
the quantum states on it

are the pos. dual elmts. (—):
i.e. such that (0*0) > 0.

Ll Q

observables H,
NeN

(Gont(a) ) < o

cov. phase space (topol. sect.)

R> AR!

cpt

U RPAR!

cpt

NléN QN nﬁlff

\LZ [SS19-Quant, §2.4], as above

3 Q(Conf(R3))
NeN {1,-N}

conf. space of points
ﬁ; \
0/
%

[FaHu 01] [Kohno 02] [SS19-Quant, Prop. 2.18] | |
[

b b

hor. chord diagrams & 52715 < . ? & (JZf]f,
NeN (=) NeN TE

pb

D (o

(2 (conte)
’

weight systems

[SS19-Quant, §3.5]

S quantum states


https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

D6 | D8-states as pos. weight systems on hor. chord diagrams. [SS19-Quant, §2.5,3.5]

cov. phase space (topol. sect.)

3 1
We proved that at least the R AR
P - QN nﬁlff y

fund. gl,(C) weight syst. NeN U Ri A Rclpt
1s a non-ghost quantum state.
Will explain below how these

are sensible D6 | D8§-states. Ll Q (Conf (R3 ))
NeN {1,---N}

\LZ [SS19-Quant, §2.4], as above

conf. space of points

\°Q§ \
0/
%

observables H, ( L Q(Conf(R3 ))) % H'( Q(Conf(R3 )))
NeN {1,-N} I NeN {1,.-N}

| | [FaHu 01] [Kohno 02] [SS19-Quant, Prop. 2.18] | |
[

pb pb\ *
hor. chord diagrams & JZ%N < . ? & (‘Q%N ) weight systems
NeN (=) NeN 4.
T@ [SS19-Quant, §3.5]
pb\ *
& (le ) quantum states
N Jpos
NeN
[CSS21-Quant, Thm. 1.2] ) fund. gl,(C) weight system /

elementary fuzzy funnel/

W(g[Z (C) 72) 2- M5-brane state


https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#FadellHusseini01
https://ncatlab.org/nlab/show/weight+systems+are+cohomology+of+loop+space+of+configuration+space#Kohno02

Horizontal chord diagrams. §3.1 in [SS19-Quant]

strand

chord
A typical horizontal chord diagram,
here with Ny = 3 strands
and degree = 6 chords:
a= 1 2 3 4 5

uonejuaLIo



Horizontal chord diagrams — monoid structure. §3.1 in [SS19-Quant]

The set of horizontal chord diagrams is a monoid under concatenation of strands:

i J k
_ i J k _
O =
B i j k i




Horizontal chord diagrams — algebra structure. §3.1 in [SS19-Quant]

From this the algebra of hor. chord diagrams is obtained by dividing out relations:

JZ%AIZ =

/ ) Horizontal chord diagrams . \modulo( T relations \

r—-Aa r—Aa
Span| < R / 4 ~ S
J e B i J k [ _ B i J k [ |
\\ 1 2 Ny ) ) \ )
/ and 4T relations \
/ + . +




Horizontal chord diagrams — skew-algebra.

Denote skew-symmetric ele-
ments in the algebra of chord
diagrams by attaching a green
node as follows:

e.g.

|

§4.10 in [SS19-Quant]

1 .




Horizontal chord diagrams — skew-algebra.

§4.10 in [SS19-Quant]

On skew chord diagrams, the 4T relation says the following:

|




Horizontal chord diagrams — skew-algebra.

§4.10 in [SS19-Quant]

|

On skew chord diagrams, the 4T relation says the following:

|

|

Hence skew-symmetric hor. chord diagrams look like Dp | D(p + 2)-branes according to the

Hanany-Witten rules:

puexs

D(p+2)

hor.
chord




Round chord diagrams — from hor. chord diagrams. §3.2 in [SS19-Quant]

Closing a horizontal chord diagram up to cyclic permutation of its strands
yields a round chord diagram:

close
/
________________________ 7 \
/ \
— e g e o e e e e e g e emm mmm m mm m mm m —— \
/ '
permutation \
of strands — \
/ ‘
| 3
1
1
1
1
|
|
|
|
horizontal I .
chord diagram I -
|
]
I
I 1
I
1 2 3 ,'
-_—eem ml - o o o o o o e o P L e e e e e . . -— - —‘ I 2
\ /
_________________________ \ /
\ /



Round chord diagrams — from hor. chord diagrams. §3.2 in [SS19-Quant]
For example:

Horizontal
chord diagrams

Close to round
chord diagrams




Round chord diagrams — from hor. chord diagrams. §3.2 in [SS19-Quant]

Thus, the 4T relation on hor. chord diagrams become the following relation on round diagr.:

\




Round chord diagrams and Jacobi diagrams. §3.2 in [SS19-Quant]

These round 4T relations may be captured by introducing a vertex:

Prop. [BNa95]: The span of round chord diagrams modulo the above 4T relations
is equivalently the span of Jacobi diagrams

internal

vertex
external

vertex

modulo the STU-relations:



https://ncatlab.org/nlab/show/chord+diagrams+modulo+4T+are+Jacobi+diagrams+modulo+STU

Round chord diagrams and Lie algebras. §3.3 1in [SS19-Quant]

But this STU-relation is just the Jacobi identity / Lie action property
in Penrose diagram notation for internal Lie theory:

*
.
.

\IZI//\ a “ / a g /
p(f(x,3).2) -~ p(v.p(x,2)) — p(x.p(3.2))
in a tensor category % €  TensorCat
with a Lie action p gV =V
on a Lie module Vv € €
by a Lie algebra g € €
with Lie bracket f gxRg—g.


https://ncatlab.org/nlab/show/string+diagram
https://ncatlab.org/nlab/show/Lie+algebra+object#Definition

Round chord diagrams and Lie algebras.

§3.3 in [SS19-Quant]

Data of
metric Lie Category notation Penrose notation Index notation
representation
g®g gl |9
Lie bracket f LD] fab©
a g
Da® id®f—feid 2
Jacobi iu 424 . B . faedfbce - fbedface
identity (idef) l lf /] = fecdfabe
grg 7 g
gV g| v
Lie action p Pd’ j
V V
idop—f@id
Co gRgeV =gV . .
Lie action 013 ] . Pa’i P.E:-'ri - Pb";fPaI:‘
property ; dé’“l lf-’ B - o — fupei
gV V




a®g 1 g
b
Metric 8 ’ |g“ > m 8ab » &°
1 g®g g
VeV 1 V
k k_] 5 [\ k”- 5 ku
1 VRV V
id@g™
g——+g®1——+g®g®g g g
®id
Metric . 1 l;gg | = 8ac g Sb
property id =
g
1
vV =ovel1 Y vevev Vv V

5
10009 — 2 —>g®g
Metricity of ., .
Lie bracket f’«?ﬁ'idl lg - Jab® &dec = Joc® Gad
109 ¢
=
VRV —F ~V eV
Metricity of I !
Lie action P gidl lk = Pa ikij = Pa jkii
Vav =V




Lie algebra weight systems. §3.3 in [SS19-Quant]

This means that every metric Lie algebra module yields a weight system on chord diagrams,
namely a linear dual respecting the 4T relations:

Horizontal chord diagram evaluates to endomorphism € End(V®”):

Vv Vv

v
P P
p

- )
f
a= | J k 1% 1%
Chord/Jacobi diagram evaluates to element of ground field X = End(1):




Lie algebra weight systems — Fuzzy 2-sphere states. §4.2 in [SS19-Quant]

Ex.: The weight system given by

the Lie module N of the Lie algebra g = su(2)
equipped with its Killing form metric

yields the radius observables of

the N-bit fuzzy 2-sphere/fuzzy funnel.
[Papageorgakis, Ramgoolam, Spence, McNamara 04-035]

Xb X



https://ncatlab.org/nlab/show/chord+diagram#ReferencesWeightSystemsInDpDp2BraneIntersections

Lie algebra weight systems — BMN S-brane states. §4.9 in [SS19-Quant]

Hence if we fix the Lie algebra to g = su(2) then



Lie algebra weight systems — BMN 5-brane states. §4.9 in [SS19-Quant]
Hence if we fix the Lie algebra to g = su(2) then

Lie algebra weight systems are labelled by iso classes of su(2)-modules
hence by i-indexed sums of Ni(MZ) € N, many copies of the irrep NEMS) € su(2)Mod.



Lie algebra weight systems — BMN 5S-brane states. §4.9 in [SS19-Quant]
Hence if we fix the Lie algebra to g = su(2) then

Lie algebra weight systems are labelled by iso classes of su(2)-modules
hence by i-indexed sums of Ni(MZ) € N, many copies of the irrep NEMS) € su(2)Mod.

Moreover, in the linear space of weight systems we may form limits of sequences of such states.



Lie algebra weight systems — BMN 5-brane states. §4.9 1n [SS19-Quant]
Hence if we fix the Lie algebra to g = su(2) then

Lie algebra weight systems are labelled by iso classes of s1(2)-modules
hence by i-indexed sums of Ni(MZ) € N many copies of the irrep NgMS) € su(2)Mod.

Moreover, in the linear space of weight systems we may form limits of sequences of such states.

Just this kind of data is thought to describe S
I. y [1— -
. . v)@' o
fuzzy funnel Dp | D(p + 2)-intersections %, .
D(p+2)-brane
: N coincident
V - Dp-branes
% -
%,
%,



https://ncatlab.org/nlab/show/fuzzy+funnel#Idea

Lie algebra weight systems — BMN 5S-brane states. §4.9 in [SS19-Quant]
Hence if we fix the Lie algebra to g = su(2) then

Lie algebra weight systems are labelled by iso classes of su(2)-modules
hence by i-indexed sums of Ni(MZ) € N, many copies of the irrep NEMS) € su(2)Mod.

Moreover, in the linear space of weight systems we may form limits of sequences of such states.

Just this kind of data i1s thought to describe

1 M?2/MS5-brane charge up to ith stack
) . . (ith irrep with multiplicity)
fuzzy funnel Dp 1 D(p + 2)-intersections >

Vi=@®," N;") € su(2)cMod,.
2. i
M2/M5-brane bound states in the BMN matrix model:

Stacks of macroscopic

M?2-branes | M5-branes

(M) (M2)

If foralli: N, " — o | N.  — o (therelevant large N limit)

l l
(M2) (M5)

with fixed N N.

l l

and fixed Nl-(Mz)/Ntot N;Ms)/Ntot (the charge/LLC-momentum carried up to the ith stack)

(the number of coincident branes up to the ith stack)

[MSJVRO2, Fig. 2][AIST17 (1.2)-(1.4)]


https://ncatlab.org/nlab/show/fuzzy+funnel#Idea
https://ncatlab.org/nlab/show/BMN+matrix+model#M2M5BraneBoundStatesInTheBMNMatrixModel
https://ncatlab.org/nlab/show/BMN+matrix+model#M2M5BraneBoundStatesInTheBMNMatrixModel

Lie algebra weight systems — from su(2) to gl(2). (67) in [SS19-Quant]

In fact, the fuzzy funnel Dp | D(p + 2)-states involve, in addition to the transverse X € su(2),
afield A, € C, commuting with X [GWOS, §3.1.1], whence the appropriate Lie algebra is gl(2):



https://ncatlab.org/nlab/show/fuzzy+funnel#ParallelCPField
https://arxiv.org/pdf/0804.2902.pdf#page=33

Lie algebra weight systems — from su(2) to gl(2). (67) in [SS19-Quant]

In fact, the fuzzy funnel Dp 1 D(p + 2)-states involve, in addition to the transverse X € su(2),
afield A, € C, commuting with X [GWOS, §3.1.1], whence the appropriate Lie algebra is gl(2):

1=(id,0)

51(2,C) ~ su(2)¢ € su(2)c®C ~ gl(2,C)
scalar fields gauge field
on Dp on Dp
<X1 ,Xz ,X3 > 0 Ay <A)’>
— L ~ =
su(2)cMetMod (su(2)c® C )MetMod
values of;alar fields A y;:l values of scalar:r& gauge field

at DpLD(p+2) at Dp_LD(p+2)


https://ncatlab.org/nlab/show/fuzzy+funnel#ParallelCPField
https://arxiv.org/pdf/0804.2902.pdf#page=33

Lie algebra weight systems — from su(2) to gl(2). (67) in [SS19-Quant]

In fact, the fuzzy funnel Dp 1 D(p + 2)-states involve, in addition to the transverse X € su(2),
afield A, € C, commuting with X [GWOS, §3.1.1], whence the appropriate Lie algebra is gl(2):

1=(id,0)

51(2,C) ~ su(2)c € su(2)c®C ~ gl(2,C)
scalar fields gauge field
on Dp on Dp
<X1 ,Xz ,X3 > 0 Ay <A}’>
— L ~ =
su(2)cMetMod (su(2)c® C )MetMod
values sz;ﬂar fields Ay:zl values of scalar:r& gauge field
atDp1D(p+2) atDpLD(p+2)

A theorem of [BNa96] shows that all weight systems are spanned by the fundamental
gl(n)-weight system n via permutations and resolving of stacks of coincident strands,

) -

L

e.g.: A2:2)



https://ncatlab.org/nlab/show/fuzzy+funnel#ParallelCPField
https://arxiv.org/pdf/0804.2902.pdf#page=33
https://ncatlab.org/nlab/show/all+horizontal+weight+systems+are+partitioned+Lie+algebra+weight+systems

Lie algebra weight systems — ’t Hooft double lines.

§4.6 in [SS19-Quant]

Metric Metric contraction of fundamental action tensors In ma ny
Lie algebra 1% 1% ) -
. ok e Lie weight systems,
22 virtual gluon line
g i |_Ji] : di] = chords evaluate to
=¥ double strands:
1% 1%
quark line 4 4 v
su(N) — %
1% 1% 1% 1%
1% 1% 1% 4
L s /.! Killing metric
s0(N) — x g(x,y) = tr(adx o) ady)
1% 1% 1% 1%
1% 4 1% 4
p(N) + X
1% 1% 1% 1%
1% :
14 fundamental metric
(N / g(x,y) = tr(xoy)
gl(N) /

<
<

(squashed 2-sphere)




Lie algebra weight systems — ’t Hooft double lines. §4.6 1n [SS19-Quant]

Ex.: For g = so(n):

T




Lie algebra weight systems — ’t Hooft double lines. §4.6 in [SS19-Quant]

Ex.: For g = so(n):




Lie algebra weight systems — ’t Hooft double lines.

§4.6 in [SS19-Quant]

Ex.: For g = gl(n) ((BNa96]):

=
e
u®

__________________________

I’l3 'W(g [(n),n) (7)
_
fundamental
gl(n)-weight
system

__________________________

4 \
7 \
1 \
\
\
\
1
\
1
1
1
1
1
1
|
1
1
1
]
1
I
1
1
1
1
1
- 1
\ /
= n2


https://ncatlab.org/nlab/show/horizontal+chord+diagram#BarNatan96

Lie algebra weight systems — Summary.

§4.6 in [SS19-Quant]

- K" S _&_ - N Y Sullivan chord diagram
/\ //\\ \

]
1
1
1
: permuted
l : |

trace
—

horizontal
chord diagram

1 /
1
1
1
1

’t Hooft construction
weight system

= Tr, (Pa-pa-P*) Tty (P - pc- p? - p" - p©)

string worldsheet / 2d cobordism
multi-trace observable



Horizontal chord diagrams as observables. [CSS21-Quant], §3.5 in [SS19-Quant]

The algebra of horizontal chord diagrams 1s canonically a star-algebra
under reversal of strands ( <= reversal of loops 1n configuration space):

e.g.:



https://ncatlab.org/nlab/show/star-algebra

Weight systems as quantum states. [CSS21-Quant], §3.5 in [SS19-Quant]

Def. (e.g. [Mey95, §1.1.1][Lan17, Def. 2.4]):

Given a star-algebra (<7, (—)*), a quantum state is a complex-linear function

p: o —C

which satisfies:

(1) (positivity): P (A*A) >0ecRCC forallA e «;

(2) (normalization): p(1)=1 for 1 € &7 the algebra unit.


https://ncatlab.org/nlab/show/state+on+a+star-algebra#StateOnAStarAlgebra

Weight systems as quantum states. [CSS21-Quant], §3.5 in [SS19-Quant]

Def. (e.g. [Mey95, §I.1.1][Lanl17, Def. 2.4]):

Given a star-algebra (<7, (—)*), a quantum state is a complex-linear function

p: o —C
which satisfies:
(1) (positivity): P (A*A) >0ecRCC forallA e «;
(2) (normalization): p(1)=1 for 1 € &7 the algebra unit.

Thm. [CSS21-Quant, §Thm. 1.2]:

The fundamental gl(n)-weight systems, for all n € N,
are quantum states on the star-algebra of horizontal chord diagrams,
hence so are all their convex combinations.



https://ncatlab.org/nlab/show/state+on+a+star-algebra#StateOnAStarAlgebra

Weight systems as quantum states. [CSS21-Quant], §3.5 in [SS19-Quant]

Def. (e.g. [Mey95, §I.1.1][Lanl17, Def. 2.4]):

Given a star-algebra (<7, (—)*), a quantum state is a complex-linear function

p: o —C
which satisfies:
(1) (positivity): p (A*A) >0cRCC forallA e o
(2) (normalization): p(1)=1 for 1 € o the algebra unit.

Thm. [CSS21-Quant, §Thm. 1.2]:

The fundamental gl(n)-weight systems, for all n € N,
are quantum states on the star-algebra of horizontal chord diagrams,
hence so are all their convex combinations.

Rem. 1:

There should be many more quantum states on hor. chord diagrams

but this is the first class rigorously identified so far.

Moreover, this class 1s suggestively singled out by Bar-Natan’s theorem.



https://ncatlab.org/nlab/show/state+on+a+star-algebra#StateOnAStarAlgebra

Weight systems as quantum states. [CSS21-Quant], §3.5 in [SS19-Quant]

Def. (e.g. [Mey95, §I.1.1][Lanl17, Def. 2.4]):

Given a star-algebra (<7, (—)*), a quantum state is a complex-linear function

p: o —C
which satisfies:
(1) (positivity): p (A*A) >0cRCC forallA e o
(2) (normalization): p(1)=1 for 1 € o the algebra unit.

Thm. [CSS21-Quant, §Thm. 1.2]:

The fundamental gl(n)-weight systems, for all n € N,
are quantum states on the star-algebra of horizontal chord diagrams,
hence so are all their convex combinations.

Rem. 2:

Under the above 1dentifications, the quantum state which 1s

the fundamental gl(2) ~ su(2)c @& C-weight system

corresponds to the elementary M2/M5-brane state in the BMN matrix model.



https://ncatlab.org/nlab/show/state+on+a+star-algebra#StateOnAStarAlgebra

Aside — Chord diagrams controlling holographic entanglement entropy.

log 2
S 4 = (# dimers between A and A%) x % .

Curiously,
round chord diagrams also capture the
RT formula for holographic entanglement entropy
by reducing tensor networks like the HaPPY code to
Majorana dimer codes with chords geodesics in AdS;

Figure 9: The {5,4} HaPPY code in terms of Majorana dimers for a local 0 input on all tiles, shown for

the uncontracted states on each pentagon (left) and the full contraction (right). The full contraction contains FIG. 1. Universal picture of holographic toy models: bit-

only paired dimers, an example pair and its constituent dimer parts in the contracted system are highlighted. threads distributed evenly on the hyperbolic lattice. In the

continuous case it is bit-threads distributed homogeneously
and isotropically in AdS space. The bit-threads connecting
boundary subregion A and its complement A° are highlighted

([Jahn, Gluza, Pastaw Ski and Eisert 19] [Yan 20]) in orange. Their number is proportional to the length of cov-

ering geodesic y4, which yields the Ryu-Takayanagi formula

(Eq. (1))


https://ncatlab.org/nlab/show/holographic+entanglement+entropy#RyuTakayanagiFormula
https://ncatlab.org/nlab/show/holographic+entanglement+entropy#TensorNetworkModels
https://ncatlab.org/nlab/show/holographic+entanglement+entropy#ChordDiagramRepresentation
https://arxiv.org/pdf/2102.02619.pdf#page=28
https://ncatlab.org/nlab/show/holographic+entanglement+entropy#JGPE19
https://ncatlab.org/nlab/show/holographic+entanglement+entropy#Yan20
https://arxiv.org/pdf/1905.03268.pdf#page=9
https://arxiv.org/pdf/1911.01007.pdf#page=2

Outlook — Further predictions.

This concludes my survey of one prediction of Hypothesis H on flat spacetimes.



Outlook — Further predictions.

This concludes my survey of one prediction of Hypothesis H on flat spacetimes.

Among the predictions in the other limit, of smooth but curved spacetimes X,
stands out the shifted 4-flux quantization [FSS19-HypH, Prop. 3.13][FSS20-Char, §5.3]:

G, dG7 = —3G4 NGy + -
ﬂ:T(X) ch 7 GQ.<X) 7 2 4 4
Gy dGy = 0, [G4—|—}Lp1((0)] S H4 X, 7Z)

/ ~~conc

(where 7 is Sp(2) x Sp(1)-structure on X and @ is a compatible connection/field of gravity).

That this shifted flux quantization should hold in M-theory 1s a famous proposal [W196a, 96b]
& general. cohomology to capture this one condition has been purpose-built: [HSOS][DFMO7].



https://ncatlab.org/nlab/show/RR+field#BDS00
https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory#BDHKMMS01
https://arxiv.org/pdf/hep-th/0103170.pdf#page=90
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#Witten96a
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#Witten96b
https://ncatlab.org/nlab/show/Quadratic+Functions+in+Geometry,+Topology,+and+M-Theory
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#DiaconescuFreedMoore03

Outlook — Further predictions.

This concludes my survey of one prediction of Hypothesis H on flat spacetimes.

Among the predictions in the other limit, of smooth but curved spacetimes X,
stands out the shifted 4-flux quantization [FSS19-HypH, Prop. 3.13][FSS20-Char, §5.3]:

G, dG7 = —3G4 NGy + -
ﬂ:T(X) ch 7 GQ.<X) 7 2 4 4
Gy dGy = 0, [G4—|—}Lp1((0)] S H4 X, 7Z) /

(where 7 is Sp(2) x Sp(1)-structure on X and @ is a compatible connection/field of gravity).

That this shifted flux quantization should hold in M-theory 1s a famous proposal [W196a, 96b]
& general. cohomology to capture this one condition has been purpose-built: [HSOS5][DFMO07].

But various further consistency conditions on M-flux are expected, e.g.

Page charge quantization of G7. Hypothesis H implies this, too: [FSS19-M5WZ, Thm. 4.8].



https://ncatlab.org/nlab/show/RR+field#BDS00
https://ncatlab.org/nlab/show/D-brane+charge+quantization+in+K-theory#BDHKMMS01
https://arxiv.org/pdf/hep-th/0103170.pdf#page=90
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#Witten96a
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#Witten96b
https://ncatlab.org/nlab/show/Quadratic+Functions+in+Geometry,+Topology,+and+M-Theory
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#DiaconescuFreedMoore03
https://ncatlab.org/schreiber/show/Hypothesis+H#OnCurvedButNonSingularManifolds
https://ncatlab.org/nlab/show/shifted+C-field+flux+quantization#ForElectricG7Flux

these slides and further pointers are available at:

ncatlab.org/schreiber/show/Some+Quantum+States+of+M-Branes+under+Hypothesis+H

S
paceﬁme Motz jns

- e
- -



https://ncatlab.org/schreiber/show/Some+Quantum+States+of+M-Branes+under+Hypothesis+H
https://arxiv.org/pdf/1805.05987.pdf#page=7
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