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Abstract

In the quest for the mathematical formulation of M-theory, we consider three major open problems: a
first-principles construction of the single (abelian) M5-brane Lagrangian density, the origin of the gauge field
in heterotic M-theory, and the supersymmetric enhancement of exceptional M-geometry. By combining tech-
niques from homotopy theory and from supergeometry to what we call super-exceptional geometry within
super-homotopy theory, we present an elegant joint solution to all three problems. This leads to a unified
description of the Nambu-Goto, Perry-Schwarz, and topological Yang-Mills Lagrangians in the topologically
nontrivial setting. After explaining how charge quantization of the C-field in Cohomotopy reveals D’Auria-Fré’s
“hidden supergroup” of 11d supergravity as the super-exceptional target space, in the sense of Bandos, for M5-
brane sigma-models, we prove, in exceptional generalization of the doubly-supersymmetric super-embedding
formalism, that a Perry-Schwarz-type Lagrangian for single (abelian) N = (1,0) M5-branes emerges as the
super-exceptional trivialization of the M5-brane cocycle along the super-exceptional embedding of the “half”
M5-brane locus, super-exceptionally compactified on the Hořava-Witten circle fiber. From inspection of the
resulting 5d super Yang-Mills Lagrangian we find that the extra fermion field appearing in super-exceptional
M-geometry, whose physical interpretation had remained open, is the M-theoretic avatar of the gaugino field.
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1 Introduction

An actual formulation of M-theory remains a fundamental open problem from physical and mathematical points
of view (see [Mo14, Sec. 12][HSS18, Sec. 2]). We had initiated in [FSS13b] a program of attacking this problem,
based on universal constructions in super-homotopy theory (see [FSS19a] for review), and used this to find first-
priniciples derivations of various aspects expected of M-theory (see [FSS16b][FSS19b][FSS19c]). In this paper
we look to carry this further and consider the following three major sub-problems:

1. Provide a systematic construction of M5-brane Lagrangians.

2. Identify M-theory avatar degrees of freedom of the gauge field and gaugino field appearing on MO9-planes.

3. Extend exceptional M-geometry to the supergeometric setting in a natural and constructive manner.

We present a unified approach which leads to an elegant joint solution to all three at once, using the two principles,
super-geometry and super-homotopy theory, explained below.

First open problem: M5-brane Lagrangians. A widely recognized open sub-problem is the identification of the
6d superconformal field theory (see [Mo12]) on coincident M5-branes (see [La19, Sec. 3]), whose dimensional
reduction to four dimensions is expected to elucidate deep aspects of non-perturbative 4-dimensional Yang-Mills
theory; and not only those of theoretical interest such as N = 1 Montonen-Olive duality (see [Wi07]), but also of
profound interest in phenomenology, such as for the prediction of hadron spectra in confined quantum chromody-
namics ([Wi98b, Sec. 4][SS04][SS05], see [Re14][Gu16][Su16]).

• Typically, it is asserted that this is an open problem only for N ≥ 2 coincident M5-branes, while the special
case of a single M5-brane is well-known. Indeed, there is a non-covariant Lagrangian formulation [PS97]
[Sc97][APPS97a] adapted to M5-s wrapped on the M-theory circle fiber, as well as a covariant version at the
cost of introducing an auxiliary field [PST97][BLNPST97]. Both of these involved some ingenuity in their
construction which makes them look somewhat baroque. Indeed, their double dimensional reduction repro-
duces the D4-brane Lagrangian, and hence the 5d super Yang-Mills + topological Yang-Mills Lagrangian,
only up to an intricate field redefinition [APPS97a, Sec. 6][APPS97b, Sec. 6 & App. A].

• Such complications, already in the formulation of the base case of a theory whose expected generalization
remains elusive, may indicate that the natural perspective on the problem has not been identified yet. What
has been missing is a derivation of the M5-brane Lagrangian systematically from first principles of M-theory,
with manifest dimensional reduction to the D4-brane.

Second open problem: Heterotic gauge enhancement. The non-perturbative completion of heterotic string
theory has famously been argued [HW95][HW96] to be given by the M-theoretic completion of 11-dimensional
supergravity KK-compactified on a Z2-orbifolded circle fiber, where the Z2-action on the circle has two fixed
points, hence two fixed planes as an action on spacetime: the MO9-planes.

• With an actual formulation of M-theory lacking, the argument for this is necessarily indirect, and it goes as
follows. Plain 11d supergravity turns out to have a gravitational anomaly when considered on such MO9
boundaries, hence to be inconsistent in itself. Thus, if the putative M-theory completion indeed exists and
hence is consistent, it must somehow introduce a further contribution to the total anomaly such as to cancel
it. The form of that further anomaly contribution inferred this way is the same as that of a would-be field
theory of charged chiral fermions on the MO9-planes, just as found in heterotic string theory.

• This suggests that if M-theory actually exists, it must include avatars of these super gauge field theory degrees
of freedom appearing on MO9-branes. While many consistency checks for this assumption have been found,
it remained open what the M-theoretic avatar of the heterotic gauge field actually is. In [HW95][HW96] the
10d SYM action on the MO9s is just added by hand to that of 11d supergravity.

Third open problem: Super-exceptional M-geometry. The Kaluza-Klein (KK) compactifications of 11d su-
pergravity on n-tori have a rich space of scalar moduli fields invariant under ever larger exceptional Lie groups
as n increases [CJ79], reflecting just the expected duality symmetries acting on the corresponding string theories
[HT95]. This led to the proposal [Hul07] (see also [KNS00][We03][PW08][We11][Ba17]) that M-theory is an
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enhancement of D = 11 supergravity to a theory of “exceptional geometry” with a “generalized tangent bundle” of
the form

TexXn︸ ︷︷ ︸
exceptional tangent bundle

:= T Xn ⊕ ∧2
X T ∗Xn︸ ︷︷ ︸

M2 wrapping modes

⊕ ∧5
X T ∗Xn︸ ︷︷ ︸

M5 wrapping modes

⊕ ·· · (1)

locally encoding wrapping modes of the M2- and the M5-brane already before KK-compactification.
• While the exceptional generalized geometry enhancements of the bosonic sector of 11d supergravity is well

studied (see, e.g., [Fe18] and references therein), the inclusion of fermionic exceptional coordinates, hence
a unification of supergeometry with exceptional generalized geometry to “super-exceptional generalized
geometry”, had remained an open problem [Ce14, p. 39][CEK13, pp. 4, 7]. Arguments were given in
[Va07][Ba17][FSS18][SS18] that the super-exceptional geometry for maximal n = 11 is to be identified
with what was called the “hidden supergroup of 11d supergravity” in [D’AF82][BAIPV04][ADR16], but
open questions remained. In particular, the physical meaning of

(a) the extra fermion field η on super-exceptional spacetime (see Def. 3.3 below),
(b) the parameter s ∈ R\{0} for decompositions of the C-field (see Prop. 3.5 below)

had remained open.
• It may seem that supersymmetrization is but an afterthought once the bosonic sector of exceptional geometry

is understood, (e.g. [BSS18] for n = 7). But most aspects of M-theory are controlled by – and are emergent
from – its local supersymmetry structure (see, e.g., [To97][FSS19a]), with the bosonic sector being implied
by the spin geometry, instead of the other way around. The lift of this supersymmetry first principle to
exceptional generalized geometry had remained open.

The joint solution. In [FSS18, 4.6][SS18] we had already observed that a supersymmetric enhancement of n = 11
exceptional M-geometry is provided by what [D’AF82] called the “hidden supergroup” of 11d supergravity. With
[FSS19b, Prop. 4.31][FSS19c, Prop. 4.4], it follows that this must be the correct target space for M5-brane sigma-
models, as we explain in §3. Accordingly, in §4 we consider super-exceptional 5-brane embeddings and find in
§5 that this induces the Perry-Schwarz Lagrangian (reviewed in §2) and, after super-exceptional equivariantization
along the M-theory circle fiber introduced in §6, the full super-exceptional M5-brane Lagrangian, in §7. The
resulting D4-brane Lagrangian with its 5d SYM+tYM Lagrangian is manifest (Remark 7.5) and identifies the
super-exceptional fermion as the M-theoretic avatar of the heterotic gauge field (Remark 5.4).

Before giving more detail in the Outline of results, we recall the two foundational principles of our development:

Principle 1: Super-geometry. Despite the evident relevance of super-geometry for the foundations of M-theory,
many constructions in the literature start out with the bosonic data (e.g. [APPS97a, Sec. 2]) and relegate super-
geometrization to an afterthought (e.g. [APPS97a, Sec. 3]). Countering this tendency, the “doubly supersym-
metric” approach of [BPSTV95][HS97], reviewed under the name “super-embedding approach” in [So99][So01],
shows that seemingly mysterious, or at least convoluted-looking, aspects of traditional constructions find their
natural meaning and more elegant formulation when strictly everything is systematically internalized into super-
geometry. In particular, the all-important “κ-symmetry” of super p-brane sigma-models, which, following [GS84],
is traditionally imposed by hand onto the action principle, is revealed by the superembedding approach to be
([STV89], see [So99, Sec. 4.3][HS05, Sec. 4.3]) nothing but the super-odd-graded component of the super-
worldvolume super-diffeomorphism symmetry – hence a consequence of the fundamental principle of general
covariance internal to super-geometry.

p-brane
sigma-models

NSR-type

[NS71][R71]

GS-type

[GS84][BST87]

super
embedding
[BPSTV95]

super-exceptional
embedding

§3 §4

bosonic super geometric super-geometric super-exceptionally geometric

spacetime X Xd,1 Xd,1|N Xd,1|N Xd,1|N
exs

worldvolume

sigma-model
field

OO

Σ

OO

Σp,1|N/k

OO

Σp,1

OO

Σp,1|N/k

OO

Σ
p,1|N/k
exs

OO

super-geometric bosonic super geometric super-exceptionally geometric

3



Indeed, all of the following has been systematically obtained from the superembedding approach: The equations
of motion of the superstring [BPSTV95, Sec. 4] of the M2-brane [BPSTV95, Sec. 3] and of the M5-brane [HS97]
[HSW97][So99, 5.2], as well as the Lagrangian density of the superstring and of the M2-brane [BSV95][HS05].
But an analogous derivation of the M5-brane’s Lagrangian density had remained open. Notice that it is the La-
grangian density which gives the crucial instanton contributions for these branes [BBS95][HM99].

Principle 2: Homotopy theory. The gauge principle of physics – read as saying that no two things (e.g. field
configuratons) are ever equal or not, but that we have to ask for gauge transformations between these, and higher
order gauge-of-gauge transformations between those – is mathematically embodied in homotopy theory, these
days increasingly referred to as “higher structures” (see [BSS18, Sec. 2] for a lightning introduction and pointers
to details, and see [JSSW19] for a gentle invitation). Combining this with super-geometry yields super-homotopy
theory where super-geometric ∞-groupoids (super-∞-stacks) unify super moduli spaces for higher super gauge
fields with super-orbifolds appearing as super-spacetimes.

Physics Mathematics
Gauge principle Homotopy theory

& Pauli exclusion principle Super-geometry
= Super-homotopy theory

Homotopy theory, and more so super-homotopy theory, is extremely rich. But if, for the time being, we ig-
nore torsion cohomology groups, homotopy theory simplifies to rational homotopy theory [Qu69][Su77] (see
[Hes06][GM13], and see [FSS19a][BSS18, Sec. 2] for review in our context). The main result here is that
topological spaces, regarded up to rational weak homotopy equivalence, are encoded by their differential graded-
commutative algebra of Sullivan differential forms, regarded up to quasi-isomorphism. If we suppress some tech-
nical fine-print (see [BSS18, (8)] for the precise statement), we may schematically write this as follows:

Spaces/ rational
weak homotopy
equivalence

CE(l−)
'

// dgcAlgebrasop/
quasi-
isomorphism

For super-homotopy theory this yields rational superspaces in rational super-homotopy theory [HSS18, Sec. 2]
(see [FSS19a] for review) The following table shows the notation which we use, exemplified for key examples of
rational super spaces:

Rational
super space

Loop
super L∞-algebra

Chevalley-Eilenberg
super dgc-algebras

(“FDA”s)

General X lX CE
(
lX
)

Super
spacetime

Td,1|N Rd,1|N R
[
{ψα}N

α=1,{ea}d
a=0
]/( d ψα = 0

d ea = ψ Γaψ

)
Eilenberg-MacLane

space

K(R, p+2)

'RBp+1S1 R[p+1] R
[
cp+2

]/(
d cp+2 = 0

)
Odd dimensional

sphere
S2k+1 l(S2k+1) R

[
ω2k+1

]/(
d ω2k+1 = 0

)
Even dimensional

sphere
S2k l(S2k) R

[
ω2k,ω4k−1

]/( d ω2k = 0
d ω4k−1 = −ω2k ∧ω2k

)

M2-extended
super spacetime

T̂10,1|32 m2brane R
[
{ψα}32

α=1,{ea}10
a=0,h3

]/ d ψα= 0
d ea = ψ Γaψ

d h3 = µM2


One finds that a considerable amount of structures expected in M-theory emerge naturally in rational super-

homotopy theory:
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• On super-geometric ∞-groupoids, the Sullivan construction of rational homotopy theory (see, e.g., [Hes06]
[GM13]) unifies with higher super Lie integration [BM18, Sec. 3.1] to exhibit super L∞-algebroids as models
for rational super-homotopy theory. Their Chevalley-Eilenberg algebras are the “FDA”s as known in the
supergravity literature [vN82][D’AF82][CDF91].

• Using super-homotopy theory, we had shown [FSS13b][FSS16a] that the completion of the “old brane scan”
to the full “brane bouquet” emerges from the superpoint R0|1 as the classification of iterated universal invari-
ant higher central extensions.

• This process culminates [FSS19a, p. 12] in the D = 11, N = 1 (hence N = 32) super-Minkowski spacetime,
carrying the super M2-brane cocycle µM2 and, on the corresponding higher extension, the super M5-brane
cocycle [FSS13b] which is the curvature of the M5 Wess-Zumino (WZ) term [BLNPST97, (8)][FSS15] (see
[FSS19a] for review):

extended
super-spacetime T̂10,1|32

2
(super M5-brane cocycle =:dLWZ︷ ︸︸ ︷

1
2 h3 ∧π

∗
µM2 +π

∗
µM5

)
//

π ' hofib(µM2 )

' (µM2 ,2µM5 )
∗((hH)R

)
��

S7
R

(hH)R

��

(
d ψα = 0
d ea = ψ Γaψ

d h3 = µM2

)
oo

h3  [ h3
µM2  [ ω4
µM5  [ ω7

OO
ψα ea

7! 7!

ψα ea
(po)

(
d h3 = ω4
d ω4 = 0
d
(
h3 ∧ω4 +2ω7

)
= 0

)
OO

ω4 ω7

7! 7!

ω4 ω7
� ?

super-spacetime T10,1|32

joint M2/M5-brane cocycle
in rational Cohomotopy

µM2/M5
:= (µM2 ,2µM5 ) //

M2-brane
cocycle µM2

%%

S4
R

||

(
d ψα = 0
d ea = ψ Γaψ

)
oo

=: µM2︷ ︸︸ ︷( i
2 ψ Γa1a2 ψ

)
∧ ea1 ∧ ea2  [ ω4

2 1
5! (ψ Γa1 ···a5 ψ)∧ ea1 ∧·· ·∧ ea5︸ ︷︷ ︸

=: µM5

 [ ω7

(
d ω4 = 0
d ω7 = −ω4 ∧ω4

)
B4R

h3
(pb)u}

(2)

• The M2- and M5-brane cocycles unify [Sa13, 2.5][FSS15] into a single non-abelian cocycle µM2/M5 (2) with
coefficients in the rational 4-sphere, hence in rational Cohomotopy cohomology theory in degree 4.

• The Bredon-equivariant enhancement of the joint µM2/M5 cocycle to rational ADE-equivariant Cohomo-
topy, amounts [HSS18], via Elmendorf’s theorem, to relative trivializations along super-embeddings of
fixed/singular super-spacetimes:

unified M2/M5-brane cocycle
in rational Cohomotopy

super
spacetime

super
ADE/HW-action

��
T10,1|32

µM2/M5 //

GADE/HW




S4
R

GADE/HW

		

super BPS
M-brane spacetime

super
embedding

Td,1|N //
?�

i

OO

Sd<4
R

OO

relative trivialization
along super embedding

%-

(3)

These trivializations relative to 1/2-BPS super-embeddings constitute the corresponding super p-brane Green-
Schwarz-type sigma model Lagrangian, at least for branes without gauge fields on their worldvolume [HSS18,
Prop. 6.10]. We recall how this works in the case of the M2-brane:

The M2-brane in super-homotopy theory. [HSS18, Prop. 6.10] The κ-symmetric Green-Schwarz-type La-
grangian density for the M2-brane [BST87] looks intricate when written out in the traditional component formula-
tion (see [dWHN88, (2.1)][DNP03, (3)]), but attains a highly elegant form in a fully supergeometric formulation.
Indeed, promoting the M2 worldvolume itself to a super-manifold embedded into target super-spacetime, locally
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of the form shown on the left of the following diagram

super
M2-brane cocycle

super
spacetime

super
ADE-action

��
T10,1|32 dLWZ := µM2 //

GADE




B4R

super
M2 spacetime

super
embedding

T2,1|8·2 //
?�

i

OO

∗

OO

LNG:=e0∧e1∧e2
Lagrangian density

#+

⇐⇒ i∗︸︷︷︸
super

embedding

super
M2 cocycle︷ ︸︸ ︷
dLWZ = d

super Nambu-Goto Lagrangian
= Green-Schwarz Lagrangian︷︸︸︷

LNG (4)

the M2-brane’s Lagrangian density LNG arises simply as the super-homotopy theoretic trivialization of the M2-
brane cocycle restricted along the super-embedding. Concretely, this identifies the Lagrangian with the super-
volume form

LNG := svol2+1 := e0∧ e1∧ e2 = 1
3! εa0a1a1ea0 ∧ ea1 ∧ ea2 ∈Ω

•
li
(
R2,1|8·2) ' CE

(
R2,1|8·2) (5)

on the super M2 worldvolume. Here ea := dxa+θΓadθ denotes the vielbein 1-forms which are left-invariant “li”
with respect to the translational supersymmetry action of R2,1|8·2 on itself (see Remark 3.4 below). Consequently,
the super-volume form (5) has as bosonic component the ordinary volume form vol2+1 ∈ Ω3

(
R2,1

)
, to which the

fermionic components are added, ensuring overall supersymmetry-invariance of the super-volume form

LNG :=

super-volume form
svol2+1:=︷ ︸︸ ︷

e0∧ e1∧ e2 =

ordinary volume form
=vol2+1︷ ︸︸ ︷

dx0∧dx1∧dx2 +

fermionic corrections

O(θΓdθ).

These fermionic correction terms, systematically obtained here simply by expanding out the super-volume form in
components, constitute the otherwise intricate-looking components of the Green-Schwarz-type Lagrangian for the
M2-brane, which is thereby revealed simply as the super-Nambu-Goto Lagrangian.

What had been left open in [HSS18] is the analogous result for brane species with gauge fields on their world-
volume, notably the case of the M5-brane, which is a much richer situation (see [FSS13b]). This will be one of the
main topics that we address in this paper.

Outline of results. We establish the following:

(i) In §2 we generalize the bosonic Perry-Schwarz Lagrangian LPS = F ∧ F̃ to a coordinate-invariant expression
applicable to possibly non-trivial worldvolume circle bundles.

(ii) In §3 we recall super-exceptional M-geometry with the super-exceptional M5-brane cocycle and introduce
super-exceptional embedding of M-brane spacetimes.

(iii) In §4 we introduce specifically the super-exceptional embedding of the 1
2 M5 = MK6∩MO9 brane configu-

ration and find the super-exceptional lift of the isometry along the Hořava-Witten-circle S1
HW:

super-exceptional lift of...
isometry

along S1
HW

on 1
2 M5 embedded in M-theory spacetime

vexs
5

!! (R5,1|8×R1
)

exs

� � iexs // R10,1|32
exs

Prop. 4.4 Def. 4.6 Def. 3.3

(iv) In §5 we find a natural super-exceptional lift of the bosonic gauge field strength with KK-modes, the bosonic
Perry-Schwarz Lagrangian as well as of the topological Yang-Mills Lagrangian:
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super-exceptional lift of...

M5-worldvolume
higher gauge flux

M5-brane cocycle
= WZW curvature:

(dual) gauge flux
with KK-modes:

bosonic
Perry-Schwarz

Lagrangian:

topological
Yang-Mills
Lagrangian:

Hexs

s.t. dHexs = (πexs)
∗µM2

(πexs)
∗
µM5 +

1
2 Hexs ∧dHexs︸ ︷︷ ︸

=:dLWZ
exs

Fexs

(
F̃exs

)
− 1

2 Fexs ∧ F̃exs︸ ︷︷ ︸
=:LPS

exs

− 1
2 Fexs ∧Fexs︸ ︷︷ ︸
=:LtYM

exs

Prop. 3.5 Def. 3.8 Def. 5.2 (i) Def. 5.2 (ii) Def. 5.5

In the course of this identification we find that

i) the putative parameter s of the super-exceptional geometry is fixed to s =−3 (Prop. 5.1 ii))

ii) the super-exception fermion η is the M-theory avatar of the heterotic gaugino field (Prop. 5.3, Rem. 5.4).

Then we show (Prop. 5.9) that the super-exceptional Perry-Schwarz Lagrangian arises via a super-exceptional
analog of the super-embedding mechanism as a trivialization of the S1

HW-compactified super-exceptional M5-
brane cocycle after restriction along the super-exceptional embedding of the 1

2 M5.

ι
exs
v5︸︷︷︸

super-exceptional
S1

HW-compactification

(iexs)
∗︸ ︷︷ ︸

super-exceptional
embedding

super-exceptional
M5-brane cocycle︷ ︸︸ ︷

dLWZ
exs

= d

super-exceptional
Perry-Schwarz Lagrangian︷︸︸︷

LPS
exs

.

This is a partial analog for the M5-brane of the super-embedding construction of the M2-brane (4). To get
the full statement we need not just compactify but equivariantize along S1

HW:

(v) In §6 we show that an equivariant enhancement of the super-exceptional M5-cocycle with respect to super-
exceptional ΩS2

HW-action exists, where ΩS2 is the based loop space of the two-sphere. Furthermore, this
unifies it with the super-exceptional Perry-Schwarz and the super-exceptional topological Yang-Mills La-
grangian (Theorem 6.9).

To put this in perspective, we also explain (by Prop. 6.6) how ΩS2
HW! S1

HW refines the naive circle action
by taking the super-cocycle for the little-string in 6d into account. This is a 6d analog to capturing the form
fields in 11d M-theory via the Cohomotopical 4-sphere coefficient [Sa13][FSS15], leading to a description
of type IIA in ten dimensions using a refined variant of the loop space of S4, namely the cyclic loop space
[FSS16a][FSS16b] (see [FSS19a] for overview).

(vi) In §7 we put all the pieces together and establish (Cor 7.4) the full super-exceptional embedding construc-
tion of the M5-brane Lagrangian as a sum of the super-exceptional Nambu-Goto Lagrangian and the super-
exceptional Perry-Schwarz Lagrangian, the analogue of the M2 brane construction (4):

super-exceptional
M5-brane cocycle

super-exceptional
spacetime

super-exceptional
ADE-action

�� (
T9,1|16×R1

)
exs

dLWZ
exs := (πexs )

∗µM5+
1
2 Hexs∧dHexs//

GADE




S7
R

super-exceptional
1
2 M5 spacetime

super-exceptional
embedding (

T5,1|8×T1
)

exs
//

?�

iexs

OO

∗

OO
LNG

exs+LPS
exs∧e5

relative trivialization
along super-exceptional embedding

$,

⇔ (iexs)
∗︸ ︷︷ ︸

super-exceptional
embedding

super-exceptional
M5 cocycle︷ ︸︸ ︷
dLWZ

exs
= d

(super-exceptional
Nambu-Goto Lagrangian︷︸︸︷

LNG
exs

+

super-exceptional
Perry-Schwarz Lagrangian︷︸︸︷

LPS
exs
∧e5
)

(6)

Moreover, we show (Theorem 7.3) that the ΩS2
HW-equivariant enhancement of the super-exceptional M5-

brane cocycle, hence the homotopy-theoretic KK-compactification on the S1
HW-fiber, makes this super-embedding

construction pick up the manifest WZ-term of the D4-brane (Remark 7.5):
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(
(iexs)

∗︸ ︷︷ ︸
super-exceptional

embedding

super-exceptional
M5 cocycle︷ ︸︸ ︷
dLWZ

exs

)
�ΩS2

HW︸ ︷︷ ︸
super-exceptional
ΩS2

HW-equivariant
enhancement

= d
(super-exceptional

Nambu-Goto Lagrangian︷ ︸︸ ︷
vol5+1

exs + e5︸︷︷︸
MC-form along S1

HW

∧

super-exceptional
Perry-Schwarz Lagrangian︷ ︸︸ ︷

1
2 Fexs ∧ F̃exs

)
+ e5∧d

( super-exceptional topological Yang-Mills Lagrangian
D4 WZ Lagrangian︷ ︸︸ ︷

C1︸︷︷︸
graviphoton
RR potential

∧ 1
2 Fexs ∧Fexs

)
+ µ

5d
L1︸︷︷︸

little string
cochain in 5d

∧
︷ ︸︸ ︷
1
2 Fexs ∧Fexs

∈ H7
(

super-exceptional
1
2 M5-spacetime︷ ︸︸ ︷(

R5,1|8×R1)
exs

�ΩS2
HW︸ ︷︷ ︸

super-exceptional homotopy-reduction
on M-theory circle fiber

)

Finally, we observe (Remark 7.6) that there are two extensions of the compactified super-exceptional 1
2 M5-

spacetime on which the D4 WZ-term becomes exact already before dimensional reduction: one of these
implements the heterotic Green-Schwarz mechanism and the WZ-term of the heterotic NS5-brane (Remark
7.8).

With this, we may elegantly sum up the whole picture in the following homotopy diagram:

super-exceptional
M5-brane cocycle

(Def. 3.8)

super-exceptional
heterotic M-theory

spacetime
(Def. 4.7)

super-exceptional
ADE-action

(Lemma 3.10)
�� (

T9,1|16×R1
)

exs

dLWZ
exs := (πexs )

∗µM5+
1
2 Hexs∧dHexs //

GADE




S7
R

super-exceptional
1
2 M5 spacetime

(Def. 4.6)

super-exceptional
embedding

(Lemma 4.8)

super-exceptional
KK-compactification

(96)

(
T5,1|8×T1

)
exs

?�

iexs

OO

q
ΩS2

HW

��
super-exceptional

heterotic 1
2 M5 spacetime

compactified on S1
HW

(Def. 6.8, Rem. 7.8)

((
T5,1|8×T1

)het
exs

)
�ΩS2

HW

ΩS2-equivariant
super-exceptional
M5-brane cocycle

(Theorem 6.9)

(iexs )
∗dLWZ

exs−ω2∧LPS
exs−ω3∧LtYM

exs

66

// ∗

OO

super-exceptional
M5-brane Lagrangian

(Theorem 7.3)

LNG
exs +LPS

exs∧e5− 1
2 µL1∧HNS

exs

��

(7)
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2 Perry-Schwarz Lagrangian for M5 on S1

For ease of reference and in order to introduce notation needed in later sections, we review here the bosonic part
of the Perry-Schwarz-Lagrangian from [PS97], re-cast in coordinate-independent Cartan calculus and generalized
to possibly non-trivial circle fibrations. We try to bring out the logic that motivated the construction in [PS97],
but below in §6 and §7 we re-derive the Perry-Schwarz Lagrangian systematically from first principles. Readers
familiar with this material may want to skip this section and just follow pointers to it from the main text when
needed.

The formulation of a manifestly covariant Lagrangian for the self-dual higher gauge field without further
auxiliary fields in 6 dimensions (and generally in 4k+ 2-dimensions), an hence in particular for the single M5-
brane sigma-model, is famously subtle, at best (see e.g. [Mo12][HR18]). But if one considers breaking manifest
Lorentz invariance to 5 dimensions, as befits KK compactification of the theory on a circle fiber, such as for
double dimensional reduction of the M5 brane to the D4-brane, then there is a Lagrangian formulation due to
Perry-Schwarz [PS97][Sc97][APPS97a], following [HT88].

This “non-covariant” formulation of self-dual higher gauge theory and specifically of the M5-brane sigma-
model may be covariantized by introducing an auxiliary scalar field [PST96] (whose gradient plays the role of
the spacetime direction which gets singled out, thus promoting this choice to a dynamical field) which yields
the covariant formulation of the M5-brane sigma-model [PST97][BLNPST97]. This comes with a corresponding
auxiliary gauge symmetry that admits a gauge fixing which recovers the non-covariant formulation, rendering the
two formulations equivalent, with each “about as complicated” as the other [APPS97a, p. 3].

Worldvolume and self-duality. Let (Σ6,g) be a Lorentzian manifold of signature (−,+,+,+,+,+), to be called
(the bosonic body of) the worldvolume of an M5-brane. In this dimension and with this signature, corresponding
to the metric g, the Hodge star operator on differential forms ∗ : Ω•(Σ6)! Ω6−•(Σ6) squares to +1. This allows
for considering on a differential 3-form

H ∈ Ω
3(

Σ
6) (8)

the condition that it be self-dual
H = ∗H . (9)

We will assume that H is exact and pick a trivializing 2-form

B ∈ Ω
2(

Σ
6) such that H = dB . (10)

Compactification on S1. Consider then on the worldvolume Σ6 the structure of an S1 =U(1)-principal bundle

S1 // Σ6

��
Σ5

(11)

We write v5 ∈ Γ(T Σ6) for the vector field which encodes the infinitesimal S1-action, hence the derivative of the
circle action U(1)×Σ6 ρ

−! Σ6 at the neutral element, along a chosen basis element t ∈ Te(U(1))' u(1)' R:

v5 : Σ6 ' {(e, t)}×Σ6 � � // T S1⊕Σ6 T Σ6 ' T
(
S1×Σ6

) dρ // T Σ6. (12)

Accordingly, we write
Lv5 :=

[
d, ιv5

]︸ ︷︷ ︸
d◦ιv5+ιv5◦d

: Ω
•(

Σ
6)−!Ω

•(
Σ

6) (13)

for the Lie derivative of differential forms along the vector field (12), where d denotes the de Rham differential
and where under the brace we are using Cartan’s magic formula.
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Next, consider an Ehresmann connection on the S1-bundle (11), hence a differential 1-form which satisfies the
Ehresmann conditions in that it is normalized and invariant:

θ
5 ∈ Ω

1(
Σ

6) such that ιv5θ
5 = 1 and Lv5θ

5 = 0 . (14)

Here on the left we have the operation of contracting differential forms with vector fields, and on the right we have
the Lie derivative from (13). So, in particular, the composition

θ
5∧◦ιv5 : Ω

•(
Σ

6)−!Ω
•(

Σ
6) (15)

is a projection operator: θ 5 ∧ ιv5 ◦ θ 5 ∧ ιv5 = θ 5 ∧ ιv5 . The complementary projection is that onto horizontal
differential forms with respect to the bundle structure (11):

(−)hor :=
(
id−θ

5∧◦ιv5) : Ω
•(

Σ
6)−!Ω

•(
Σ

6). (16)

Observe that:

Lemma 2.1 (Horizontal vs. vertical differential). If the Ehresmann connection (14) on the S1 bundle is flat, in that

dθ
5 = 0 , (17)

then for any differential form ω ∈Ω•
(
Σ6
)

we have that the vertical component of the differential of its horizontal
component (16) is the vertical component of its full differential:

θ
5∧d

(
ω

hor) = θ
5∧dω . (18)

Proof. By direct computation, we have:

θ
5∧d

(
ω

hor)= θ
5∧d

(
ω−θ

5∧ ιv5ω
)

= θ
5∧dω−θ

5∧d
(
θ

5∧ ιv5ω
)

= θ
5∧dω−θ

5∧
(
dθ

5)∧ ιv5ω︸ ︷︷ ︸
=0

.

Finally, we require the vector field v5 from (12) to be a spacelike isometry. This means that it interacts with the
Hodge star operator as

∗ ◦ ιv5 =−θ
5∧ ◦∗ : Ω

3(
Σ

6)−!Ω
4(

Σ
6) . (19)

Self-duality after S1-compactification. We introduce notation for the contraction of the 3-form H and its Hodge
dual with the vector field v5 (12) as follows (to be called the “compactified fields”, a notation that follows [PS97,
(5), (6)]):

F := ιv5H , H̃ := ιv5 ∗H . (20)

With this, we get the following immediate but crucially important re-formulation of the self-duality condition after
S1-compactification (extending [PS97, (8)]):

Lemma 2.2 (Self-duality after S1-compactification.). Given an S1-bundle structure (11) on the worldvolume Σ6

and any choice of Ehresmann connection (14), the self-duality condition (9) is equivalently expressed in terms of
the compactified fields (20) as:

H = ∗H ⇔ F = H̃ . (21)
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Proof. We have the following chain of equivalences:

H + ∗H ⇐⇒

(
ιv5H = ιv5 ∗H

and θ
5∧H = θ

5∧∗H

)
⇐⇒ ιv5H = ιv5 ∗H

⇐⇒ F = H̃ .

Here the first step is decomposition into horizontal and vertical components (16), the second step uses the isometry
property (19) to conclude that the two resulting component equations are equivalent to each other. The last step
identifies the compactified fields (20).

The gauge field. The contraction of the vector field v5 from (12) with the 2-form potential B from (10) defines the
1-form potential

A := −ιv5B . (22)

Hence we get a decomposition of the 2-form as

B = A∧θ
5 +Bhor , (23)

where on the right we have the horizontal component of B according to (16). We say that the 2-flux density encoded
by B is the horizontal component of the exterior differential of this vector potential

F := (dA)hor. (24)

We will find in a moment that this is the 5d field strength with all higher KK-modes still included, but it is most
convenient here (and in all of the following0 to just call it “F” already in the 6d compactification before passing to
KK zero-modes. With this we have (cf. [PS97, (5)]):

Lemma 2.3 (Shifted 2-flux). The 2-flux density F from (24) equals the compactified field F from (20) up to the
Lie derivative (13) of the horizontal component (16) of the 2-form (10):

F = F −Lv5Bhor. (25)

Proof. We compute as follows:

F := ιv5H

= ιv5dB

=−dιv5B+[ιv5 ,d]B

= dA+Lv5B

= (dA)hor︸ ︷︷ ︸
=F

+θ
5∧ ιv5dA︸ ︷︷ ︸
=θ 5∧Lv5 A

+Lv5Bhor +Lv5θ
5∧ ιv5B︸ ︷︷ ︸

−θ 5∧Lv5 A

= F +Lv5Bhor.

(26)

Here the first step is the definition (20), while the second step is (10). The fourth step uses the definition (22) of the
vector potential and identifies the Lie derivative (13). The fifth step applies vertical/horizontal decomposition (16)
to both summands and uses (24) under the first brace and the expressions (14) and (22) under the third brace; while
under the second brace it uses Cartan’s formula (13), observing that ιv5A = 0 by definition (22) and by nilpotency
of the contraction operation. The last step notices that this makes the second and fourth summands cancel each
other.

11



With Lemma 2.3, the self-duality condition (9) in the equivalent form (21) after S1-compactification says that
the combination H̃−Lv5Bhor is horizontally exact:

H = ∗H ⇔ H̃−Lv5Bhor = (dA)hor︸ ︷︷ ︸
=F

. (27)

Weak self-duality and PS equations of motion. In summary, we have the following implication of self-duality
after S1-compactification (extending [PS97, (16)]):

Proposition 2.4 (Self-duality for flat circle bundles). If the worldvolume Σ6 is equipped with an S1-principal bundle
structure (11) which is flat (17), then the self-duality condition H = ∗H from (9), in its equivalent incarnation on
compactified fields (27) implies the following differential equation:

θ
5∧d

(
H̃−Lv5Bhor) = 0 . (28)

By Lemma 2.1, equation (28) may be understood as expressing “self-duality up to horizontally exact terms”.
The proposal of [PS97] is to regard (28), which is second order as a differential equation for B, as the defining
equation of motion for a self-dual field on Σ6 compactified on S1. Given this, one is led to finding a Lagrangian
density whose Euler-Lagrange equation is the self-duality equation.

The PS Lagrangian density. As in [PS97, (17)], we say:

Definition 2.5 (Bosonic PS Lagrangian). The bosonic Perry-Schwarz-Lagrangian for a 2-form field (10) on a
worldvolume Σ6 compactified on a flat (17) S1-bundle (11) is:

B 7−! LPS∧θ
5 := 1

2

(
Lv5Bhor− H̃

)
∧∗H̃ . (29)

Remark 2.6 (Equivalent descriptions). (i) Equivalently, using the isometry property (19) the bosonic PS La-
grangian (29) reads

LPS∧θ
5 =−1

2

(
H̃−Lv5Bhor)∧H ∧θ

5

=−1
2

(
ιv5 ∗H−Lv5Bhor)∧H ∧θ

5 ,
(30)

where in the second line we inserted the expression for H̃ from (20);

(ii) and if the self-duality condition (9) is imposed, the bosonic PS Lagrangian (30) becomes

LPS∧θ
5 = −1

2

(
ιv5H−Lv5Bhor)∧H ∧θ

5 if H = ∗H . (31)

At this point, as in [PS97, (16)], the bosonic PS Lagrangian of Def. 2.5 is motivated as the evident choice
that makes the following Prop. 2.7 true. Below in §5, we find a deeper origin of the Lagrangian (in the case that
self-duality is imposed).

Proposition 2.7 (EOMs of the bosonic PS Lagrangian). The Euler-Lagrange equation corresponding to the PS
Lagrangian LPS∧θ 5 (29) is the weak self-duality equation (28).

Proof. We may evidently regard the PS Lagrangian as the quadratic part of the following bilinear form on differ-
ential 2-forms with values in differential 6-forms:

(B,B′) 7−! −1
2

(
ιv5 ∗H−Lv5Bhor)∧dB′∧θ

5.

Observe then that this bilinear form is symmetric up to a total differential: the first summand is strictly symmetric,
as it is the standard Hodge pairing, while for the second summand symmetry up to a total derivative is established
by a local integration by parts. Together these imply that the variational Euler-Lagrange derivative of the PS
Lagrangian is twice the result of varying just the second factor of B:

δLPS∧θ
5 =−

(
ιv5 ∗H−Lv5Bhor)∧d(δB)∧θ

5

=−
(

θ
5∧d

(
ιv5 ∗H−Lv5Bhor))∧ (δB) .

Hence the vanishing of the variational derivative is equivalent to (28).
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Reduction to 5d Maxwell theory. Consider finally the special case of Kaluza-Klein compactification/double
dimensional reduction, where

Lv5Bhor = 0 for KK-reduction to D4. (32)

In this case, expression (26) reduces to

ιv5H = F if Lv5Bhor = 0 . (33)

Hence, with self-duality ([PS97, above (16)]), we have

H = F ∧θ
5 +∗5F , (34)

where now ∗5 : Ω•(Σ5)! Ω5−•(Σ5) is the Hodge star operator on the base 5-manifold. Consequently, we have
extension of [PS97, above (16)] to the topologically nontrivial setting:

Proposition 2.8 (5d Abelian Yang-Mills from Perry-Schwarz). The S1-dimensional reduction of the PS Lagrangian
(31) is the Lagrangian of 5d Maxwell theory for the vector potential A from (22):

A 7−! LPS∧θ
5 = −1

2

(
H ∧ ιvH

)
= −1

2

(
F ∧∗5F

)
∧θ

5 if H = ∗H and Lv5Bhor = 0 . (35)

6d self-dual field as (abelian) 5d Yang-Mills with KK-modes. Due to Prop. 2.8, one may regard the general
bosonic Perry-Schwarz Lagrangian (Def. 2.5) for the self-dual field on Σ6 compactified on S1 as that of (abelian)
5d Yang-Mills theory with a tower of KK-modes included, which is a perspective on the M5-brane theory later
advanced in [Do10][LPS10] (see [La19, 3.4.3])). Here for the abelian bosonic sector, this perspective may be fully
brought out by introducing the following notation:

F := ιv5H−Lv5Bhor and F̃ := H−F ∧θ
5, (36)

where on the left we have (25), as before, while on the right we are introducing notation for the remaining summand
in H. With this notation, the bosonic PS Lagrangian, assuming self-duality (9) as in (31), finds the following
suggestive expression:

LPS = −1
2 F ∧ F̃ if H = ∗H , (37)

so that KK-reduction to 5d YM theory, as in Prop. 2.8, is now given syntactically simply by replacing F̃ 7! ∗5F .
We find the form (37) of the PS Lagrangian to be reflected by its super-exceptionalization in Prop. 5.1 below; see
Def. 5.2 and Remark 5.8.

The topological 5d Yang-Mills Lagangian. After dimenional reduction [APPS97a, Sec. 6][APPS97b, Sec. 6
& App. A], the Perry-Schwarz Lagrangian for the M5-brane is accompanied by a multiple of the topological
Yang-Mills Lagrangian [BS88][vB90]

LtYM := F ∧F . (38)

We find this arise from the super-exceptional embedding construction below in Theorem 7.3, see Remark 7.5.

3 Super-exceptional M-geometry

We recall (in Def. 3.3 and Prop. 3.5) the “hidden supergroup of D= 11 supergravity” [D’AF82][BAIPV04][ADR16]
interpreted as super-exceptional M-theory spacetime [FSS18, 4.6][SS18] and explain, in Remark 3.9, how the re-
sults of [FSS19b][FSS19c] identify this as the correct local target for M5-brane sigma-models.

For definiteness, we make explicit our spinor and Clifford algebra convention:
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Definition 3.1 (e.g. [HSS18, Prop. A.3 (v)]). We write 32 for the irreducible real representation of Pin+(10,1),
via a Clifford-algebra representation {ΓaΓaΓa}10

a=0 whose generators satisfy the following relations:

ΓΓΓaΓΓΓb +ΓΓΓbΓΓΓa =+2ηab := 2diag(−1,+1,+1, · · · ,+1)ab ,

(ΓΓΓ0)
2 =−1 , (ΓΓΓa)

2 =+1 ,

(ΓΓΓ0)
† =−ΓΓΓ0 , (ΓΓΓa)

† =+ΓΓΓa , for a ∈ {1, · · · ,10}.
(39)

Remark 3.2 (Gamma matrix conventions). Def. 3.1 relates to an alternative Clifford algebra convention {Γa}10
a=0

used in much of the relevant literature (e.g. [D’AF82][BAIPV04]) via the relation

ΓΓΓa := iΓa

understood inside a complex Dirac representation (see [HSS18, Prop. A.3]). We will use “ Γa” for exhibiting
expressions manifestly compatible with the literature, and “ ΓΓΓa” for emphasizing the actual real Pin+(10,1)-action.

The following, Def. 3.3 and Prop. 3.5, are a formulation in rational super-homotopy theory due to [FSS18,
Sec. 4.5], of the classical supergravity results in [D’AF82, Sec. 6][BAIPV04, Sec. 3] (see also [ADR16]) .
The Definition 3.3 of super-exceptional spacetime involves a parameter s eq. (40), which arises mathematically in
Prop. 3.5 from different possibilities of decomposing the H3-flux on super-exceptional spacetime [BAIPV04]. We
discover the physical meaning of this parameter below in §5.

Definition 3.3 (Super-exceptional M-theory spacetime). For parameter

s ∈ R\{0} (40)

the D = 11, N = 1, n = 11 super-exceptional M-theory spacetime (T10,1|32)exs over ordinary D = 11, N = 1
super Minkowski spacetime T10,1|32 is the rational super space given dually by the following super dgc-algebra:

(
T10,1|32)

exs

πexs

��

R



{
ea}0≤a≤10︸ ︷︷ ︸

deg=(1,even){
ea1a2

}
0≤a1<a2≤10︸ ︷︷ ︸

deg=(1,even){
ea1···a5

}
0≤a1<···<a5≤10︸ ︷︷ ︸

deg=(1,even){
ψ

α
}

0≤α≤32︸ ︷︷ ︸
deg=(1,odd){
η

α
}

0≤α≤32︸ ︷︷ ︸
(1,odd)



/


d ψα = 0,
dea = ψ Γaψ,
d ea1a2 = i

2 ψ Γa1a2ψ,

d ea1···a5=
1
5! ψ Γa1···a5ψ,

d η = (s+1)ea∧ΓΓΓaψ

+ea1a2 ∧ΓΓΓ
a1a2ψ

+(1+ s
6)ea1···a5 ∧ΓΓΓ

a1···a5ψ



OO

ψα ea

7! 7!

ψα ea

T10,1|32 R


{

ea}0≤a≤10︸ ︷︷ ︸
deg=(1,even)

s

{
ψ

α
}

0≤α≤32︸ ︷︷ ︸
deg=(1,odd)

/
(

d ψα= 0,
dea = ψ Γaψ

)

(41)

Here the index α ranges over a linear basis of the real Pin+(10,1)-representation 32 and the Clifford generators Γa

acting on these are as in Def. 3.1; and we use Einstein summation convention with the ea1a2 and ea1···a5 understood
as completely antisymmetrized in their indices.
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Remark 3.4 (Super-exceptional M-theory spacetime as a supermanifold). We may alternatively regard
(
T10,1|32)

exs
from Def. 3.3 as a super-manifold with canonical global coordinate functions

C∞

((
R10,1|32)

exs

)
=
〈

(xa)︸︷︷︸
deg=(0,even)

, (Ba1a2)︸ ︷︷ ︸
deg=(0,even)

, (Ba1···a5)︸ ︷︷ ︸
deg=(0,even)

, (θ α)︸︷︷︸
deg=(0,odd)

, (ρα)︸︷︷︸
deg=(0,odd)

〉
,

hence with bosonic part being the exceptional tangent bundle (1) for maximal n = 11:((
R10,1|32)

exs

)
bos
' TR10,1 ⊕ ∧2T ∗R10,1 ⊕ ∧5T ∗R10,1 ,

and with super-group structure such that the Chevalley-Eilenberg algebra in Def. 3.3 identifies with the super de
Rham dgc-algebra of left-invariant (hence translationally supersymmetric) super-differential forms:

CE
((

T10,1|32)
exs

)
' // Ω•li

((
T10,1|32)

exs

)
� � // Ω•

((
R10,1|32)

exs

)
.

ψα � // dθ α

ηα � // dρα

ea � // dxa +θΓadθ

ea1a2
� // d(Ba1a2)+

i
2 θΓa1a2dθ

ea1···a5
� // 1

α0(s)
d(Ba1···a5)+

1
5! θΓa1···a5dθ .

(42)

Beware the bracketing in the last two lines on the right, in contrast to (dB)a1···a3 etc. The bosonic component of the
generator ea1a2 is the de Rham differential of the bosonic component functions of a 2-form B := Ba1a2dxa∧dxb

d(Ba1a2) = dxµ
∂µBa1a2

(without antisymmetryization over all three indices, at this point), instead of the component functions of the de
Rham differential of a 2-form, which is instead obtained by anti-symmetrizing over all three indices

H :=
(
d(Ba1a2)

)
∧dea1 ∧dee2

as in (48) below. This has a crucial effect in the following discussion; see Lemma 5.1.

Proposition 3.5 (Transgression of M2-cocycle on super-exceptional spacetime). For s ∈ R \ {0}, the fermionic
extension of exceptional tangent superspacetime R10,1|32

exs (Def. 41), regarded as fibered over 11d super-Minkowski
spacetime R10,1|32 carries a transgression element for the M2-brane 4-cocycle µM2 (2):

Hexs ∈ CE
((

R10,1|32)
exs

)
such that dHexs = (πexs)

∗
µM2 (43)

given by
Hexs = α0(s)ea1a2 ∧ ea1 ∧ ea2︸ ︷︷ ︸

=(dBa1a2 )∧ea2∧ea3=:H

−α3(s)εa1···a5b1···b5cea1···a5 ∧ eb1···b5 ∧ ec +Hfib
s (44)

with
(Hfib

s )bos = α1(s)ea1
a2 ∧ ea2

a3 ∧ ea3
a1

+α2(s)eb1a1···a4 ∧ eb1
b2 ∧ eb2a1···a4

+α4(s)εα1···α6b1···b5ea1a2a3
c1c2 ∧ ea4a5a6c1c2 ∧ eb1···b5

(45)

and
(Hfib

s )ferm =−1
2 ηα ∧ψ

β ∧
(

β1(s)(Γa)
α

β ea +β2(s)(Γa1a2)α
β ea1a2 +β3(s)(Γa1···a5)α

β ea1···a5

)
, (46)
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for analytic functions αi,β j of the parameter s ∈ R\{0} with the following zeros

α0(s) 6= 0
α1(s) = 0 ⇔ s =−3
α2(s) = 0 ⇔ s =−6
α3(s) = 0 ⇔ s =−6
α4(s) = 0 ⇔ s =−6
β1(s) = 0 ⇔ s =−3/2
β2(s) = 0 ⇔ s =−3
β3(s) = 0 ⇔ s =−6.

(47)

Example 3.6 (Special parameter-value for super-exceptional geometry). If the parameter s (40) in Def. 3.3 and
Prop. 3.5 takes the value

s =−3

the transgression element in Prop. 3.5 has the property, from (47), that up to terms proportional to the 5-index
tensor eα1···α5 , its only dependence on dBa1a2 := α0(s)ea1a2 is through the leading term H := (dBa2a3)∧dxa2 ∧dxa3 ;
concretely:

Hex(s=−3) = (dBa2a3)∧dxa2 ∧dxa3︸ ︷︷ ︸
H

− 1
2 β1(−3) ·η Γaψ ∧ ea + O

(
{ea1···a5}

)
, (48)

where the last term O
(
{ea1···a5}

)
denotes summands that vanish when the 5-index generators ea1···a5 are set to zero.

We will see below in Prop. 5.1 (ii). that in super-exceptional M-geometry at value s = −3 the bosonic Perry-
Schwarz Lagrangian appears naturally.

The point of the super-exceptional M-theory spacetime from Def. 3.3 is that it is a super-manifold (via Remark
3.4) which approximates the universal super 3-stack T̂10,1|32 classified by the super M2-brane cocycle (2). We
record this phenomenon (which can be traced back to the “hidden supergroup of 11d supergravity” in [D’AF82]):

Lemma 3.7 (Super-exceptional M-spacetime from M2-brane super-2-gerbe [FSS18, 4.6]). We have a commuting
diagram of the form

(
T10,1|32)

exs comp

ψα  [ ψα

ea  [ ea

Hexs  [ h3 //

πexs &&

m2brane

πyy
R10,1|32

(49)

mapping the super-exceptional spacetime from Def. 3.3 to the homotopy fiber of the M2-brane cocycle from (2),
such that the defining degree-3 generator h3 on the right is pulled back to the transgression element Hexs from
Prop. 3.5.

Hence we say:

Definition 3.8 (Super-exceptional M5-brane cocycle). The super-exceptional M5-brane cocycle, to be denoted
dLWZ

exs
, is the pullback of the super M5-brane cocycle (2) to the super-exceptional M-theory spacetime (Def. 3.3)

along the decomposition morphism (49):

dLWZ
exs

:= comp∗
(1

2 h3 ∧
=dh3︷ ︸︸ ︷

π
∗
µM2 +π

∗
µM5

)
= 1

2 Hexs ∧ (πexs)
∗
µM2 +(πexs)

∗
µM5

= 1
2 Hexs ∧ dHexs +

1
5!(ψ Γa1···a5ψ)∧ ea1 ∧·· ·ea5 ∈ CE

((
R10,1|32)

exs

)
.

(50)

We close by commenting on the role and meaning of these constructions:
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Remark 3.9 (Super-exceptional spacetime as target for M5-brane sigma-models).

(i) The super-exceptional spacetime (Def. 3.3), when regarded as a super-group of super-translations along itself,
is what [D’AF82, Sec. 6] called the “hidden supergroup of 11-dimensional supergravity”; motivated there by the
purely algebraic desideratum of finding a super Lie 1-algebra over which the would-be M2-brane cocycle trivializes
(Prop. 3.5), as opposed to the super Lie 3-algebra m2brane [FSS13b] on which it does so universally.

(ii) However, the actual meaning or role of this “hidden supergroup” had remained open; as it was not used for the
re-derivation of D = 11 supergravity in [D’AF82], but discussed as an afterthought. In particular, the meaning or
role of the extra fermion field required by super-exceptional spacetime had remained open [ADR16, p. 3] and the
relation of the bosonic fields to exceptional M-geometry had remained unnoticed except in [Va07] and then more
recently in [Ba17, p. 6][FSS18][SS18].

(iii) But in [FSS19b, Prop. 4.31][FSS19c, Prop. 4.4], we found that the M5-brane sigma model in a given C-field
background is characterized as making the outermost square of the following diagram homotopy-commute, here
now displayed for flat super-spacetimes instead of curved topological spacetimes:

M5 worldvolume
super manifold

super-exceptional spacetime
∼

universal super manifold
classifying M5-brane fields

extended super spacetime
=

universal super 3-stack
classifying M5-brane fields

spherical coefficients
for Cohomotopy theory

Σ

H3∧G4+2G7

))//

--

(
T10,1|32)

exs

Hexs ∧π∗exs µM2+π∗exs 2µM5

++

πexs

((

comp // T̂10,1|32

π

��

h3∧π∗µM2+2π∗µM5
//

(pb)

S7
R

hH

��
T10,1|32

(µM2 ,2µM5 )
// S4

R

h3

qy

Any such outer square factors universally through the homotopy pullback square shown on the right, which exhibits
the M2-brane extended super spacetime T̂10,1|32 (2) as the super moduli 3-stack classifying M5-brane sigma-model
fields [FSS15]. But now with the (extended) worldvolume Σ itself a super manifold, this factorization through
T̂10,1|32 is to be further factorized, as shown by the dashed map, through an actual super-manifold still classifying
these fields. This is the role of the super-exceptional spacetime

(
R10,1|32)

exs
[FSS18, Sec. 4.6]: It is the actual super

manifold which serves as a stand-in for the classifying super space T̂10,1|32 (which is not itself a super-manifold).

(iv) The key consequence of
(
T10,1|32)

exs
being a super-manifold, is that the indecomposable degree-3 generator

h3 on T̂10,1|32 (2), which has trivial contraction with any vector field, pulls back to the decomposable 3-form Hexs

on
(
T10,1|32)

exs
(by Lemma 3.7), which, like any differential form on a super manifold, in general has non-trivial

contraction with vector fields. Below in §5 it is such a non-trivial contraction of Hexs with a vector field on the
super-exceptional spacetime, which makes the Perry-Schwarz Lagrangian appear. The analogous contraction with
h3 on T̂10,1|32 would vanish, which is the reason why the embedding construction of the M5-brane does not work
with ewxtended super-spacetime, but requires passing to super-exceptional spacetime.

Lemma 3.10 ([FSS18, Prop. 4.26]). The canonical Pin+(10,1) action on super-spacetime R10,1|32 lifts to super-
exceptional spacetime

(
R10,1|32)

exs
(Def. 3.3), such that Spin(10,1) ↪! Pin+(10,1) acts in the evident way, while
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reflection ρ along the ar-axis acts dually as follows: 1

ρ
∗ :



ea 7−!

{
−ea | a = ar

ea | otherwise

ea1a2 7−!

{
−ea1a2 | a1,a2 6= ar

ea1a2 | otherwise

ea1···a5 7−!

{
−ea1···a5 | one of the ai = ar

ea1···a5 | otherwise

ψ 7−! ΓΓΓar ψ

η 7−!−ΓΓΓar η

4 Super-exceptional MK6- and 1
2M5-geometry

We now consider the exceptionalization (Def. 4.6 below) of the local super-geometry of M-theory compacti-
fied on H�GADE × S1

�Z2
[KSTY99][CHS19], hence of Hořava-Witten heterotic M-theory on an ADE-orbifold, or,

equivalently, of non-perturbative type I′ string theory with D6-branes intersecting the O8-plane in a 1
2 NS5-brane

[GKST01]. Therefore, following [HSS18, Ex. 2.2.7], we will speak here of the “ 1
2 M5 super-spacetime”, for

emphasis of the full 11-dimensional perspective; details are given in Remark 4.2.

It is traditionally understood that this compactification is one of two possible ways of obtaining classes of
D = 6, N = (1,0) superconformal field theories from M-theory [DHTV14, Sec. 6]. We make this mathematically
concrete with Prop. 4.4 below, whose proof shows that the particular spinor structure of the 1

2 M5-locus (Def.
4.1 below) is what allows a lift of the spacetime isometry along the M-theory circle to a symmetry also of the
exceptionalized super-spacetime, including the exceptionalized 3-flux density on the M5-brane.

We use this to identify in Prop. 5.1 the exceptional pre-image of the bosonic 2-flux density F . Finally, we show
in Prop. 5.3 that this induces the super 2-flux of super Yang-Mills theory thereby, in particular, identifying the extra
fermion field on exceptional super-spacetime with the M-theoretic avatar of the gaugino field in 10d heterotic string
theory.

Definition 4.1 (Spinor projection of 1
2 M5-locus). For 32 the Pin-representation from Def. 3.1, let P8 denote the

linear projection
Pin+(10,1) oo ? _ Pin+(6,1) oo ? _ Pin+(5,1)

32

P8
11

P16 **

'R // 2 ·16

��

'R // 4 ·8
��

16
'R //

**

2 ·8
��
8

onto the joint fixed locus of ΓΓΓ5 and ΓΓΓ6789. Hence this is characterized by the following

MK6 ΓΓΓ 6789(P16ψ) = (P16ψ) O6
1
2 M5 ΓΓΓ 6789(P8ψ) = (P8ψ) I 5

ΓΓΓ5 (P8ψ) = (P8ψ)
ΓΓΓ56789(P8ψ) = (P8ψ)

(51)

1Beware that this is saying that the generator ea1a2 picks up a sign precisely if its indices do not take the value ar.
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Remark 4.2 (The 1
2 M5-locus). The spinor projections in Def. 4.1 correspond to the 1

2 M5 = MK6∩MO9 super
spacetime [GKST01][DHTV14, Sec. 6]; see [HSS18, Ex. 2.2.7] in the present context:

S1
B S1

HW

GHW=〈ΓΓΓ5〉

		 ︷ ︸︸ ︷H

I’ 0 1 2 3 4 5′ 5 6 7

GADE=〈ΓΓΓ6789〉

��

8 9 HET

MO9 — — — — — — — — — —

MK6 — — — — — — — O6

1
2 NS5 — — — — — — I 5

—︸ ︷︷ ︸
M5 worldvolume

— — — — ...

(52)

1. Black branes. The appropriate names of the fixed loci depend on the duality frame: if the circle on which
GA acts is taken for M/IIA duality, then the result is type I’ and the fixed loci are named as shown on the
left (see also e.g. [HZ97, around Fig. 2][HKLTY15]). On the other hand, if the circle on which GHW acts is
taken for M/IIA duality, the result is HET on a GADE-orbifold, and labels as used in [GKST01, p. 8] are as
shown on the right. Moreover, under T-duality along S1

B the I’-perspective turns into a configuration of a IIB
NS5-brane parallel to an O9-plane (see, e.g., [HZ99]).

2. Fundamental (sigma-model) brane. The last line in the above diagram indicates the extension of the
actual M5-brane worldvolume for which we are to construct a Lagrangian density. This is not required to
be fixed by ΓΓΓ5 and hence may stretch along the 5′-5-plane/torus “at an angle”, partially wrapping around the
S1

HW, partially running parallel to it [Wi97, p. 9], corresponding to D4/NS5 bound states in IIA [Wi97, Sec.
2] and (p,q)-5brane webs in IIB [AH97], or rather their further intersection with an O-plane [HZ99] (see
[HKLTY15, around Fig. 10]).

The following definition generalizes the super MK6-spacetime regarded as a Z2-fixed locus inside D = 11,
N = 1 super Minkowski spacetime [FSS18, Prop. 4.7, Ex. 2.2.5] to a Z2-fixed locus inside the super-exceptional
M-theory spacetime:

Definition 4.3 (Super-exceptional MK6-spacetime). For s∈R\{0}, we say that super-exceptional MK6-spacetime(
R6,1|16)

exs
is the fixed locus inside the super-exceptional M-theory spacetime (Def. 3.3) of the Z2 ↪! Pin+(10,1)-

action of Lemma 3.10 generated from the element ΓΓΓ6789 ∈ Pin+(10,1) as in Prop. 4.1. Hence, from the super
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dgc-algebra (41) and Lemma 3.10, this is the rational super space given dually by the following super dgc-algebra:

(
T6,1|16)

exs

πMK6
exs

��

R



{
ea}a∈{0,1,2,3,4,5′,5}︸ ︷︷ ︸

deg=(1,even){
ea1a2

}
ai ∈ {0,1,2,3,4,5′,5,6,7,8,9}
with 0 or 2 of ais in{0,1,2,3,4,5′,5}︸ ︷︷ ︸

deg=(1,even){
ea1···a5

}
ai ∈ {0,1,2,3,4,5′,5,6,7,8,9}
with 1 or 3 of ais in{0,1,2,3,4,5′,5}︸ ︷︷ ︸

deg=(1,even){
(P16ψ)α

}
0≤α≤16︸ ︷︷ ︸

deg=(1,odd){
(P16η)α

}
0≤α≤16︸ ︷︷ ︸

(1,odd)



/


d (P16ψ)α= 0,
d ea = (P16ψ)Γa(P16ψ),
d ea1a2 = i

2(P16ψ)Γa1a2(P16ψ),

d ea1···a5 = 1
5!(P16ψ)Γa1···a5(P16ψ),

d η = (s+1)ea∧ΓΓΓa(P16ψ)
+ea1a2 ∧ΓΓΓ

a1a2(P16ψ)
+(1+ s

6)ea1···a5 ∧ΓΓΓ
a1···a5(P16ψ)



OO

ψα ea

7! 7!
ψα ea

T6,1|16 R


{

ea}a∈{0,1,2,3,4,5′,5}︸ ︷︷ ︸
deg=(1,even){

(P16ψ)α
}

0≤α≤16︸ ︷︷ ︸
deg=(1,odd)


/( d (P16ψ)α = 0,

dea = (P16ψ)Γa(P16ψ)

)

(53)

We now incorporate spacetime isometries.

Proposition 4.4 (Lift of isometries to super-exceptional MK6-spacetime). For all parameters s from (40), distinct
from -6, i.e., for

s ∈ R\{0,−6}, (54)

and for all a ∈ {1,2,3,4,5′,5}, the infinitesimal superspace symmetry va

va ∈ Γ
(
TR6,1|16) , ιva :

{
eb 7! δ a

b
(P16ψ)α 7! 0

, Lva :=
[
d, ιva

]
= 0 (55)

of the super MK6-spacetime lifts to the super-exceptional MK6-spacetime (Def. 4.3) as

vexs
a := va− 1+s

1+ s
6

1
5! v

a6789 +χ
αvη

α ∈ Γ
(
TR5,1|8) , ιvexs

a
:


eb 7! δ a

b
ea1a2 7! 0
ea1···a5 7! − 1+s

1+ s
6
ε

a1···a5
a6789

(Pψ)α 7! 0
(Pη)α 7! (Pχ)α

(56)

for any odd-graded constants
(Pχ)α︸ ︷︷ ︸

deg=(0,odd)

(57)

in that
Lvexs

a
:=
[
dexs , ιvexs

a

]
= 0 on

(
R6,1|16)

exs
. (58)
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Proof. Direct inspection of the defining differential relations in (53) shows that the derivation Lvexs
a

evidently
vanishes on all generators except possibly on η . The action on η is computed as follows:

Lvexs
a
(P16η) = ιvexs

a
d(Pη)+d

=(Pχ)α =const︷ ︸︸ ︷
ιvexs

5
(Pη)︸ ︷︷ ︸

=0

= ιvexs
a

(
(s+1)ea1ΓΓΓa1(Pψ)+ ea1a2ΓΓΓ

a1a2(Pψ)+(1+ s
6)ea1···a5ΓΓΓ

a1···a5(Pψ)
)

= (s+1)ΓΓΓa(P16ψ)− (1+ s
6)

1+s
1+ s

6
ΓΓΓa ΓΓΓ

6789(P16ψ)︸ ︷︷ ︸
=(P16 ψ)

= 0 ,

(59)

where under the brace we used the defining property (51) of the spinor projections of Def. 4.1.

With the super-exceptional lift of the circle isometry given, we have the corresponding super-exceptional ver-
sion of the projection (16) onto horizontal differential forms.

Definition 4.5 (Super-exceptional horizontal projection). We say that projection onto the super-exceptional hori-
zontal component is the operation

(−)horexs := 1
2

(
id− e5∧ ιvexs

5

)
: CE

(
R5,1|8×R1)

exs
// CE

(
R5,1|8×R1)

exs
(60)

on the CE-algebra (FDA) of the super-exceptional 1
2 M5-spacetime (Def. 4.6), where ιexs

v5
is the contraction (56)

from Prop. 4.4

The next Definition 4.6 formalizes the 1
2 M5-locus (as in Remark 4.2) inside the super-exceptional MK6-

spacetime (as formalized by Def. 4.3) without discarding the ambient MK6 spacetime, but breaking its super-
symmetry from D = 7, N = 1, to D = 6, N = (1,0). Hence the generators of the MK6 super dgc-algebra
(“FDA”) are all retained, but all spinors on the right of the differential relations (53) get projected not just by P16

but by P8 (as in Def. 4.1):

Definition 4.6 (Super-exceptional 1
2 M5 spacetime). For s ∈ R\{0,−6}, we say that the super-exceptional 1

2 M5-
spacetime is the rational super space given dually by the same super dgc-algebra (53) as that of the super-
exceptional MK6 of Def. 4.3, but with spinor projections P8 instead of just P16 (Def. 4.1) on the right of the
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differential relations:

(
T5,1|8)

exs

π
1/2M5
exs

��

R



{
ea}a∈{0,1,2,3,4,5′,5}︸ ︷︷ ︸

deg=(1,even){
ea1a2

}
ai ∈ {0,1,2,3,4,5′,5,6,7,8,9}
with 0 or 2 of ais in{0,1,2,3,4,5′,5}︸ ︷︷ ︸

deg=(1,even){
ea1···a5

}
ai ∈ {0,1,2,3,4,5′,5,6,7,8,9}
with 1 or 3 of ais in{0,1,2,3,4,5′,5}︸ ︷︷ ︸

deg=(1,even){
(P16ψ)α

}
0≤α≤16︸ ︷︷ ︸

deg=(1,odd){
(P16η)α

}
0≤α≤16︸ ︷︷ ︸

(1,odd)



/


d (P16ψ)α= 0,
d ea = (P8ψ)Γa(P8ψ),
d ea1a2 = i

2(P8ψ)Γa1a2(P8ψ),

d ea1···a5 = 1
5!(P8ψ)Γa1···a5(P8ψ),

d η = (s+1)ea∧ΓΓΓa(P8ψ)
+ea1a2 ∧ΓΓΓ

a1a2(P8ψ)
+(1+ s

6)ea1···a5 ∧ΓΓΓ
a1···a5(P8ψ)



OO

ψα ea
7! 7!

ψα ea

T5,1|8 R


{

ea}a∈{0,1,2,3,4,5′,5}︸ ︷︷ ︸
deg=(1,even){

(P8ψ)α
}

0≤α≤8︸ ︷︷ ︸
deg=(1,odd)


/(d (P8ψ)α = 0,

dea = (P8ψ)Γa(P8ψ)

)

(61)

Directly analogous to Def. 4.6 we may apply the heterotic spinor projection already on the full super-
exceptional M-theory spacetime:

Definition 4.7 (Super-exceptional heterotic M-theory spacetime). For s ∈ R \ {0}, we say that the n = 11 super-
exceptional heterotic M-theory spacetime

(
T9,1|16×R1

)
exs

� �

(P16 ψ)  [ ψ

η  [ η

ea  [ ea

ea1a2  [ ea1a2
ea1 ···a5  [ ea1 ···a5 //

(
T10,1|32)

exs

is the rational super space given dually by the same super dgc-algebra (41) as that of the n = 11 super-exceptional
M-theory spacetime of Def. 3.3, but with spinor projections P16 (Def. 4.1) on the right of the differential relations.

The following is a direct consequence of the above definitions:

Lemma 4.8 (Super-exceptional embeddings). We have a diagram of consecutive super embeddings covered by
super-exceptional embeddings of

(i) the super-exceptional 1
2 M5-spacetime (Def. 4.6) inside the MK6-spacetime (Def. 4.3) inside the n = 11 super-
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exceptional M-theory spacetime (Def. 3.3) as follows:

oo

ea  [ ea

ea1a2  [ ea1a2
ea1 ···a5  [ ea1 ···a5
(P8 )

α  [ (P16 ψ)α

� oo

ea | if a ∈ {0,1,2,3,4,5′,5}
0 | otherwise

}
 [ ea

ea1a2 | if even num. of ais ∈ {0,1,2,3,4,5′,5}
0 | otherwise

}
 [ ea1a2

ea1 ···a5 | if odd num. of ais ∈ {0,1,2,3,4,5′,5}
0 | otherwise

}
 [ ea1 ···a5

(P16 ψ)α  [ ψα

η  [ η �

super-exceptional
spacetime

(
T5,1|8×T1

)
exs

π
1/2M5
exs

��

� � //
$ �

iexs

,,(
T6,1|16)

exs

πHET
exs

��

� � //
(
T10,1|32)

exs

GADE=〈ΓΓΓ6789〉





πexs

��

breaking supersymmetry
from D = 7, N = 1

to D = 6, N = (1,0)

embedding of
fixed/singular locus

super-
spacetime T5,1|8×T1 �� //

y�

i

22T6,1|16 �� // T10,1|32

GADE=〈ΓΓΓ6789〉

YY

1
2 M5 MK6

(62)

(ii) the super-exceptional 1
2 M5-spacetime (Def. 4.6) inside the super-exceptional heterotic M-theory spacetime

(Def. 4.7) inside the n = 11 super-exceptional M-theory spacetime (Def. 3.3) as follows:

super-exceptional
spacetime

(
T5,1|8×T1

)
exs

π
1/2M5
exs

��

� � //
' �

iexs

))(
T9,1|16×T1

)
exs

GADE=〈ΓΓΓ6789〉





πMK6
exs

��

� � //
(
T10,1|32)

exs

πexs

��

embedding of
fixed/singular locus

breaking supersymmetry
from D = 11, N = 1

to D = 10, N = (1,0)

super-
spacetime T5,1|8×T1 �� //

v�

i

55T9,1|16

GADE=〈ΓΓΓ6789〉

YY
�� // T10,1|32

1
2 M5 HET

(63)

Remark 4.9 (The M5 locus for admissible values of the parameters). Henceforth we declare that the parameter
s from (40) is distinct from -6, i.e. s ∈ R \ {0,−6} as in (54). In this case, Prop. 4.4 applies and we have, in
summary, the situation as shown in the following diagram:

Σ

%%

( f ,H) //
(
R5,1|8×R1

)
exs

Lv̂5





π
1/2M5
exs

��

� � iexs // R10,1|16
exs

πexs

��

Hexs ∧

=dHexs︷ ︸︸ ︷
π
∗
exs

µM2+2i∗exs µM5 // S7
R

hH

��
R5,1|8×R1

Lv5

XX
� � i // R10,1|32

(µM2 ,2µM5 )
// S4

R .

Hexsnv

(64)
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Remark 4.10 (Alternative brane configuration MO1‖MO9). For the case when the parameter value is s =−6 after
all, there is an alternative brane configuration one may consider, namely the configuration of an “M-wave” (see
[HSS18, 2.2.3]) inside an MO9-plane, i.e., with the spinor projection (51) replaced by the following:

MO9 ΓΓΓ9 (Pψ) = (Pψ) ,
MO1 ΓΓΓ01(Pψ) = (Pψ) .

In this case, there is a corresponding alternative to the super-exceptional isometry (56) given by

vexs
9 := δ

a
9 va− (1+ s)1

2 ε
a1a2
01 va1a2 +χ

αvα .

With this alternative brane configuration and alternative super-exceptional isometry, all of the following construc-
tions go through for all of s ∈ R \ {0}, including s = −6; but then there is no value of s for which the leading
term of the super-exceptional Perry-Schwarz Lagrangian equals the original bosonic Perry-Schwarz Lagrangian,
i.e., what fails is item (ii) of Prop. 5.1 below. This does not mean that this alternative case is not of interest, but its
interpretation will need to be discussed elsewhere.

We record the following basic fact:

Lemma 4.11 (Vanishing bilinears on 1
2 M5 spacetime). The following bispinor pairings vanish identically

(P8ψ)Γ5(P8ψ) = 0
(P8ψ)Γa1a2(P8ψ) = 0 for a1,a2 6= 5 ,
(P8ψ)Γa1···a5(P8ψ) = 0 if one ai = 5 .

Proof. Consider the following computation, for any ai ∈ {1,2,3,4,5′,5,6,7,8,9}:

(P8ψ)Γa1···an(P8ψ) = (P8ψ)†
Γ0a1···an(P8ψ)

= (P8ψ)†
Γ0a1···anΓΓΓ5(P8ψ)

=±(P8ψ)†
ΓΓΓ5Γ0a1···an(P8ψ)

= σ · (ΓΓΓ5P8ψ)†
Γ0a1···an(P8ψ)

= σ · (P8ψ)†
Γ0a1···an(P8ψ)

= σ · (P8ψ)Γ0a1···an(P8ψ) .

Here the first line is the definition of the Dirac adjoint, the second line uses that ΓΓΓ5 is the identity on the projected
spinors, by definition. In the third step we commute ΓΓΓ5 = iΓ5 with Γ0a1···an , thereby picking up a sign

σ =

{
+1 | odd number of ais 6= 5
−1 | even number of ais 6= 5

(65)

Finally we use (ΓΓΓ5)
† = ΓΓΓ5 from (39) to absorb the ΓΓΓ5 again, this time into the left spinor factor. Hence the

expression we started with equals its product with σ , and so vanishes when σ = −1, hence when Γa1···an has an
even number of indices differing from 5.

For the M-brane cochains, and in terms of super-exceptional embedding, this means the following:

Lemma 4.12 (Pullback of M-brane cocycles to 1
2 M5). For the M-brane cocycles (2), pulled back along the super-

embedding of 1
2 M5-embedding i in (62), we have

i∗µM2 = e5∧ ιv5 i∗
(
µM2

)
, (66)

i∗µM5 = (id− e5∧ ιv5)i
∗
µM5 , (67)

with ιv5 given in (55). Hence, for the super-exceptional M-brane cocycles (Def. 3.8), we have

(iexs)
∗(πexs)

∗
µM2 = e5∧ ιvexs

5
(iexs)

∗(πexs)
∗
µM2 ,

(iexs)
∗(πexs)

∗
µM5 = (id− e5∧ ιvexs

5
)(iexs)

∗(πexs)
∗
µM5 .
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Proof. By Lemma 4.8, the pullbacks along i and iexs act on the spinors by applying the projection P8 . Hence
Lemma 4.11 applies to the spinor bilinears after restriction and says that all summands in the pullbacks of the
M-brane cochains that do not contain an index = 5 (for the M2-brane cocycle) or do contain an index = 5 (for the
M5-brane cochain) vanish. This is just what is expressed by the projection operators in (66).

Example 4.13 (M-brane cochains pulled back to super-exceptional brane loci). The pullbacks of the super M2-
brane cocycle µM2 and of the super M5-brane cochain µM5 (2) horizontally along the embeddings in (62) are as
follows:

(
T5,1|8×T1

)
exs

π
1/2M5
exs

��

� � //
$ �

iexs

,,(
T6,1|16)

exs

��

//� � //
(
T10,1|32)

exs

πexs

��
T5,1|8×T1 �� //

y�

i

33T6,1|16 �� // T10,1|32

(68)

i
2 ∑

a∈{0,1,2,3,4,5′}
((P8 ψ)Γa5(P8 ψ))∧ ea∧ e5 oo � i

2 ∑
ai∈{0,1,2,3,4,5′ ,5}

((P16 ψ)Γa1a2(P16 ψ))∧ ea1 ∧ ea2 oo � i
2∑

ai∈{0,1,2,3,4,5′ ,5,6,7,8,9}

(ψ Γa1a2 ψ)∧ ea1 ∧ ea2

︸ ︷︷ ︸
=:µM2

1
5! ∑

ai∈{0,1,2,3,4,5′}
((P8 ψ)Γa1···a5(P8 ψ))∧ ea1 ∧·· ·∧ ea5 oo � 1

5! ∑
ai∈{0,1,2,3,4,5′ ,5}

((P16 ψ)Γa1···a5(P16 ψ))∧ ea1 ∧·· ·∧ ea5 oo � 1
5!∑

ai∈{0,1,2,3,4,5′ ,5,6,7,8,9}

(ψ Γa1···a5 ψ)∧ ea1 ∧·· ·∧ ea5

︸ ︷︷ ︸
=:µM5

Here P16 and P8 are the spinor projections from Def. 4.1, and on the far left we used Lemma 4.12 to recognize
that the M2-brane cocycle on the 1

2 M5-locus retains only the summands proportional to e5, while the M5-brane
cochain on the 1

2 M5-locus retains only the summands not proportional to e5. Notice that the vertical pullback is
syntactically the identity, due to (41). This makes manifest that the vertical pullback to the exceptional spacetimes
intertwines the contraction operations for v5 (55) and for vexs

5 (56):

(π
1/2M5
exs )∗ ◦ ιv5 = ι

exs
v5
◦ (π

1/2M5
exs )∗ . (69)

Since we also have
i∗ ◦ ιv5 = ιv5 ◦ i∗,

this implies
(i◦π

1/2M5
exs )∗ ◦ ιv5 = ι

exs
v5
◦ (i◦π

1/2M5
exs )∗ . (70)

5 Super-exceptional Perry-Schwarz & Yang-Mills Lagrangians

In Prop. 5.1 we find a natural super-exceptional pre-image of the bosonic Perry-Schwarz Lagrangian, recorded
as Def. 5.2 below. This allows us to extract the super-components (in Prop. 5.3 below) and identify the super-
exceptional M-theory avatar of the gaugino field (Remark 5.4 below). We also find the super-exceptional lift of
the topological Yang-Mills Lagrangian (Def. 5.5 below) and its relation to the super-exceptional Perry-Schwarz
Lagrangian (Lemma 5.6 below). This plays a crucial role when we unify all this super-exceptional data in §6. Then
we show (Prop. 5.9 below) that the super-exceptional Perry-Schwarz Lagrangian arises as the trivialization of the
super-exceptional M5-brane cocycle restricted along the super-embedding of the 1

2 M5-spacetime and compactified
on the M/HW-theory circle (Def. 5.7 below). This is a key ingredient in the full super-embedding Theorem 7.3
further below in §7

We start with identifying the super-exceptional lift of the PS Lagrangian.
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Proposition 5.1 (Super-exceptional lift of bosonic 2-flux and PS Lagrangian). Consider Σbos := R5,1×R1 and a
section σ of the super-exceptional 1

2 M5-brane spacetime projection (62)

Σbos = R5,1×R1

((

v5

		
σ //

(
R5,1|8×R1

)
exs

,

π
1/2M5
exs

��

Ω•
(
R5,1|8×R1

)
hh oo

dxa  [ ea≤5

1
α0(s)

d(Ba1a2 ) [ ea1a2
0  [ ea>5

0  [ ea1 ···a5

CE
((
R5,1|8×R1

)
exs

)
.

OO

(π
1/2M5
exs )∗

R5,1|8×R1

v5

XX CE
(
R5,1|8×R

)

(i) If σ is such that the normal forms ea>5 and the 5-index forms ea1···a5 pull back to zero, as shown above on the
right, then the pullback of the contraction of the transgression element Hexs (Prop. 3.5) with the lifted vector field
vexs

5 (Prop. 4.4) is the bosonic 2-form flux F (25):

Ω•(Σbos) oo
σ∗ CE

((
R5,1|8×R1

)
exs

)
=F︷︸︸︷
ιv5H−Lv5Bhor︸ ︷︷ ︸

=F

oo �
ιvexs

5
Hexs︸ ︷︷ ︸

=:Fexs

(71)

where on the left H := d(Ba2a2)∧ dxa2 ∧ dxa3 denotes the plain H-flux (44) and F its induced 2-form flux (25)
according to Lemma 2.3; and hence on the right we find a super-exceptional pre-image Fexs of the 2-form flux.

(ii) If, moreover, s =−3 (as in Example 3.6), we have

Ω•(Σbos) oo
σ∗ CE

((
R5,1|8×R1

)
exs

)
−1

2

(
ιv5H−Lv5Bhor)∧H ∧dx5︸ ︷︷ ︸

=LPS∧dx5

oo � −1
2

(
ιvexs

5
Hexs

)
∧Hexs ∧ e5︸ ︷︷ ︸

=:LPS
exs∧e5

(72)

where on the left we have the Perry-Schwarz Lagrangian (31), and hence on the right we find a super-exceptional
pre-image LPS

exs
.

Proof. By the assumption that σ∗ea1···a5 = 0, and since the odd forms σ∗ψ and σ∗η vanish after pullback to the
bosonic space R5,1×R1, we find from (44) by direct computation that

σ
∗(

ιvexs
5

Hexs

)
= α0(s) ·σ∗

(
ιvexs

5
ea2a3 ∧ ea2 ∧ ea3

)
= α0(s) ·σ∗

(
−2e5a3 ∧ e5∧ ea3

)
=−2(dB5a3)∧dx5∧dxa3

=−2(∂va1 B5a3)∧dxa1 ∧dx5∧dxa3

= ιv5

(
∂a1Ba2a3 ∧dxa1 ∧dxa2 ∧dxa3

)
−Lv5 ∑

a2,a3 6=5
Ba2a3 ∧dxa2 ∧dxa3

= ιv5

(
dBa2a3 ∧dxa2 ∧dxa3︸ ︷︷ ︸

=H

)
−Lv5 ∑

a2,a3 6=5
Ba2a3 ∧dxa2 ∧dxa3

= ιv5H−Lv5Bhor.

This proves the first statement. For the second, it is now sufficient to observe with (48) that, by the assumption
s =−3, we have in the present case σ∗Hexs = H. Hence the second claim now follows directly from the first.
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Definition 5.2 (Super-exceptional (dual) 2-flux and PS Lagrangian). On the super-exceptional 1
2 M5 spacetime(

R5,1|8×R1
)

exs
from Def. 4.6 define the following forms in CE

(
(R5,1|8×R1)exs

)
:

(i) The super-exceptional 2-flux and dual super-exceptional 2-flux, respectively:

Fexs := ιvexs
5
(iexs)

∗Hexs , F̃exs := (iexs)
∗Hexs− e5∧Fexs , (73)

where Hexs is from Prop. 3.5 and ιvexs
5

from Prop. 4.4.

(ii) The super-exceptional PS Lagrangian:

LPS
exs

:= −1
2 Fexs ∧ F̃exs . (74)

With the exceptional pre-image of the bosonic 2-form flux identified, we find the induced supersymmetric
completion, keeping in mind the notation deg = (bosonic, fermionic):

Proposition 5.3 (Super 2-flux from super-exceptional 2-flux). For paraneter value s=−3 eq. (40), the exceptional
2-flux density (72) is the sum of the bosonic term plus a fermionic term F(1,1) as follows:

Fexs = F︸︷︷︸
=:F(2,0)

+(ψ Γaχ)∧ ea︸ ︷︷ ︸
=:F(1,1)

+ O
(
{ea1···a5}

)
. (75)

Proof. By Example 3.6 we have Hex−3 = H+(ψ Γaη)∧ea+O({ea1···a5}) . From this the statement follows by the
definition (56) of vexs

5 and using the identities (Pψ)Γ5(Pχ) = 0 and (Pψ)Γ56789(Pχ) = 0 from Lemma 4.11.

Remark 5.4 (Super 2-form gauge field strength and gauginos). The summand

F(1,1) = (ψ Γaχ)∧ ea

in (75) is exactly the supersymmetic enhancement of the gauge curvature in 10d SYM, with χ identified as the
gaugino field ([Wi86][ADR86, (4.14)][BBLPT88, (2.27)]). But by the last line of (56), χ is the component of
the super-exceptional lift vexs

5 of the isometry along S1
HW in the fermionic direction defined by the extra super-

exceptional 1-form η (41)
ιvexs

5
: η 7! χ .

In this way, it is the extra super-exceptional fermionic coordinate η which is the avatar on the super-exceptional
M-theory spacetime of what becomes the gaugino field upon compactification to heterotic M-theory on S1

HW.
Note that an approximate construction of the 11d gravitino in the context of E8 gauge theory as a condensate

of the gauge theory fields is given in [ES03].

From Prop. 5.1 it is clear that we have a super-exceptional lift of the topological Yang-Mills Lagrangian
LtYM =−1

2 F ∧F (38):

Definition 5.5. The super-exceptional topological Yang-Mills Lagrangian is the wedge square of the super-exceptional
2-flux (73) from Def. 5.2:

LtYM
exs

:= −1
2 Fexs ∧Fexs . (76)

Lemma 5.6 (Super-exceptional topological Yang-Mills as compactification of super-exceptional Perry-Schwarz).
The contraction of the super-exceptional Perry-Schwarz Lagrangian (74) with the super-exceptional isometry vexs

5
(56) along S1

HW is the super-exceptional topological Yang-Mills Lagrangian (76):

ιvexs
5

LPS
exs

= LtYM
exs

.
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Proof. We need to show that
ιvexs

5

(
F̃exs ∧Fexs

)
= Fexs ∧Fexs .

But this follows directly from the definitions and the the fact that the contraction is a graded derivation of degree
(−1,even), hence in particular nilpotent. Indeed, we have

ιvexs
5

(
F̃exs ∧Fexs

)
= ιvexs

5

((
Hexs− e5∧ ιvexs

5
Hexs

)
∧ ιvexs

5
Hexs

)
=
(
ιvexs

5
Hexs

)
∧
(
ιvexs

5
Hexs

)
= Fexs ∧Fexs .

In order to see the super-exceptional Perry-Schwarz Lagrangian arise from the super-exceptional M5-brane
cocycle, we now first consider the M5-brane sigma-model wrapped on the S1

HW-fiber (see Remark 4.2) of super-
exceptional M-theory spacetime (Def. 3.3). By the general rules of (double-)dimensional reduction of super
p-brane cocycles [FSS16a, Sec. 3][FSS16b, Sec. 3][BSS18, Sec. 2.2], this means that we are to contract the plain
M5-brane cocycle (2) with the vector field corresponding to the flow along this fiber, hence with v5 (55). The
following definition lifts this situation to super-exceptional spacetime.

Definition 5.7 (Super-exceptional circle compactification of M5 cocycle). The compactification on S1
HW of the

super-exceptional M5-brane cocycle dLWZ
exs

(Def. 3.8) pulled back along the super-exceptional embedding iexs (62)
to the normally thickened super-exceptional 1

2 M5-spacetime (Def. 4.6) is its contraction with the super-exceptional
lift vexs

5 (Prop. 4.4) of the vector field v5 along S1
HW (52):

(
R5,1|8×R1

)
exs

contraction with
super-exceptional

isometry along S1
HW︷︸︸︷

ιvexs
5

(iexs)
∗︸ ︷︷ ︸

restriction to
super-exceptional

1
2 M5

super-exceptional
M5-brane cocycle︷ ︸︸ ︷

dLWZ
exs

// B6R . (77)

Notice that this is indeed still a cocycle, in that it is closed, d
(

ιvexs
5
(iexs)

∗dLWZ
exs

)
= 0, by (58) in Prop. 4.4.

Remark 5.8 (Cocycle for M5/S1 as D4+KK). From the type I′ perspective on the 1
2 M5-locus (as in Remark 4.2)

the compactified M5-cocycle of Def. 5.7 would be that of a D4-brane inside a 1
2 NS5 = NS5∩O8, by the general

rules of dimensional reduction of brane cocycles [FSS16a, Sec. 3][FSS16b, Sec. 3][BSS18, Sec. 2.2]. However,
since we need not consider double dimensional reduction, in that the super-exceptional coordinate functions along
v5 are still present in the normally thickened 1

2 M5 locus
(
R5,1|8×R1

)
exs

(Def. 4.6), fields on this would-be D4
may still depend on the M-theory circle direction, hence have KK-modes along the circle. In this sense, Def. 5.7
exhibits the brane cocycle corresponding to the perspective on the M5-brane as a non-perturbative D4-brane with
KK-modes included, as considered in [Do10][LPS10] (see [La19, 3.4.3]).

We now establish the following super-exceptional analog of the super-embedding mechanism.

Proposition 5.9 (PS Lagrangian trivializes compactified M5-cocycle along super-exceptional embedding). The
compactification of the restriction of the super-exceptional M5-brane cocycle (Def. 5.7) along the embedding of
the super-exceptional 1

2 M5 spacetime (Def. 4.6) is trivialized by the super-exceptional PS Lagrangian (74):

ιvexs
5
(iexs)

∗dLWZ
exs

= d LPS
exs
. (78)

Proof. Unravelling the definitions, we have to show that

ιvexs
5
(iexs)

∗((πexs)
∗
µM5 +

1
2 Hexs ∧dHexs

)
= d
(
− 1

2 Fexs ∧ F̃exs

)
.
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For the first summand on the left, we immediately obtain

ιvexs
5
(iexs)

∗(πexs)
∗
µM5 = (π

1/2M5
exs )∗

(
i∗ιv5 µM5

)︸ ︷︷ ︸
=0

= 0 ,

(79)

by Lemma 4.12; see Example 4.13. For the second summand (or rather twice the second summand, for notational
convenience) we compute as follows:

2 ι
exs
v5

(iexs)
∗
(

1
2 Hexs ∧dHexs

)
= ι

exs
v5

(iexs)
∗
(

Hexs ∧dHexs

)
= ι

exs
v5

((
(iexs)

∗Hexs

)
∧
(
(iexs)

∗dHexs

))
=
(
ι

exs
v5

(iexs)
∗Hexs

)
∧
(
(iexs)

∗dHexs

)
−
(
(iexs)

∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗dHexs

)
=
(
ι

exs
v5

(iexs)
∗Hexs

)
∧
(
(iexs)

∗dHexs

)
+
(
(iexs)

∗Hexs

)
∧
(

d
(
ι

exs
v5

(iexs)
∗Hexs

))
= 2
(
ι

exs
v5

(iexs)
∗Hexs

)
∧
(
(iexs)

∗dHexs

)
−d
((

(iexs)
∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗Hexs

))
= 2
(
ι

exs
v5

(iexs)
∗Hexs

)
∧
(
e5∧ ι

exs
v5

(iexs)
∗dHexs

)
−d
((

(iexs)
∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗Hexs

))
=−2e5∧

(
ι

exs
v5

(iexs)
∗Hexs

)
∧d
(
ι

exs
v5

(iexs)
∗Hexs

)
−d
((

(iexs)
∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗Hexs

))
= d
(

e5∧
(
ι

exs
v5

(iexs)
∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗Hexs

))
−d
((

(iexs)
∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗Hexs

))
= d
(
−
(
(iexs)

∗Hexs− e5∧ ι
exs
v5

(iexs)
∗Hexs

)
∧
(
ι

exs
v5

(iexs)
∗Hexs

))
= d
(
− F̃exs ∧Fexs

)
= 2d

(
− 1

2 F̃exs ∧Fexs

)
.

(80)
Here the first step just collects the factors. The second fact uses that pullback is an algebra homomorphism,
by definition. The third step uses that contraction with vexs

5 is a graded derivation of bi-degree (−1,even). In
the fourth step we commute the differential in the second summand, first with the pullback operation (using that
pullback is in fact a dg-algebra homomorphism, by definition) and then with the contraction operation, using
that the corresponding Lie derivative vanishes, by (58) in Prop. 4.4. In the fifth step we use that the differential
(commutes with pullback, as before, and) is a graded derivation of degree (1,even). In the sixth step we realize the
presence of the projection e5∧ ιexs

v5
according to Lemma 4.12, in view of dHexs = (πexs)

∗µM2 (43). In the seventh
step we again commute the differential with pullback and with contraction, as before. In the eighth step we again
use the derivation property of the differential to collect a total differential, observing that de5 = 0 holds on the
super-exceptional 1

2 M5-spacetime, by Lemma 4.11. In the ninth step we collect terms and identify, in the tenth
step, the super-exceptional 2-flux and its dual, from Def. 5.2. Finally, in the last step we split off the factor of 2
again, just for emphasis.

As a corollary we observe the following:

Proposition 5.10 (Super-exceptional YM-Lagrangian is closed and horizontal). The super-exceptional topological
Yang-Mills Lagrangian (Def. 5.5) is
(i) closed: dLtYM

exs
= 0;

(ii) super-exceptionally horizontal (Def. 4.5): ιvexs
5

LtYM
exs

= 0.
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Proof. For the first statement, we may compute as follows:

dLtYM
exs

= dι
exs
v5

LPS
exs

=−ι
exs
v5

dLPS
exs

= ι
exs
v5

ι
exs
v5︸ ︷︷ ︸

=0

(iexs)
∗dLWZ

exs

= 0 ,

where we used first Lemma 5.6, then (58) from Lemma 4.4 and then Prop. 5.9, and finally, under the brace, we
observe that contraction with elements in degree (1,even) is nilpotent. This nilpotency also directly implies the
second statement, by Lemma 5.6.

6 Super-exceptional equivariance along M-theory circle

We show (Theorem 6.9 below) that the super-exceptional Perry-Schwarz Lagrangian and the super-exceptional
topological Yang-Mills Lagrangian unify with the super-exceptional M5 WZ curvature term into the Borel-equivariant
enhancement of the super-exceptional M5-brane cocycle with respect to the super-exceptional S1

HW isometry left-
induced to an ΩS2

HW-action on the super-exceptional 1
2 M5-spacetime (Def. 6.8). In order to put this in perspective,

we first show (Prop. 6.6 below) that, similarly, the little-string-extended D = 6, N = (1,1), superspacetime carries
an ΩS2-action whose homotopy quotient is the D = 5, N = 2, superspacetime.

To set the scene, we first recall how homotopy quotients are represented in rational cohomology by (Borel-)
equivariant de Rham cohomology. From general homotopy theory we need the following two basic facts (see
[NSS12]). For any kind of higher geometric spaces (here, rational super spaces), we have:

(i) Forming based loop spaces is an equivalence from pointed connected spaces to ∞-groups, whose inverse is
the classifying space construction

∞Groups

ΩX [ X
oo form loop space

'
form classifying space

//

G 7! BG

Spacespointed&
connected

(81)

(ii) For X a space and G an ∞-group, an ∞-action ρ of G on X is equivalently a homotopy fiber sequence of the
following form

X
hofib(pρ ) // X�G

pρ // BG , (82)

which then exhibits the space in the middle as the homotopy quotient of X by the ∞-action ρ .

To prepare for Prop. 6.6 and Theorem 6.9 below, we now consider a sequence of examples of homotopy
quotients of rational super spaces as in (82). In the following diagrams we always show the systems of spaces on
the left with their super dgc-algebra (FDA) models shown on the right. Throughout we use that homotopy pullbacks
of super spaces are modeled by pushouts of semi-free super dgc-algebras (FDAs) as soon as the morphism pushed
out along is a cofibration in that it exhibits iterated addition of generators. For more background see, for instance,
[Hes06][GM13][FSS16a][BSS18].

Example 6.1 (Rational S1-equivariant cohomology and Cartan model). Let X be any rational super-space of finite
type, hence CE

(
lX
)

any finitely generated super-dgc algebra, with differential to be denoted dX , and equipped with
a graded derivation ιv of degree (−1,even) such that the corresponding Lie derivative vanishes identically:

CE(lX)
ιv // CE(lX) Lv :=

[
dX , ιv

]
= 0 . (83)
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The homotopy quotient by the corresponding rational S1-action as in (82) is given by

X
hofib(pρ ) // X �S1

pρ

��

CE(lX) oo
0  [ ω2
α  [ α

CE(lX)[ω2]
/(

d ω2 = 0
d α = dX α +ω2∧ ιvα

)
.

OO
ω2

7!

ω2

� ?

BS1 R[ω2]
/(

d ω2 = 0
)

(84)

This is the algebraic structure of theCartan model for G-equivariant Borel cohomology (see e.g. [MQ86, Sec. 5]
[GuSt99][Me06]), here for G = S1.

Example 6.2 (Complex Hopf fibration). The complex Hopf fibration hC realizes the 2-sphere S2 as the homotopy
quotient of the 3-sphere by an action which is classified by the canonical comparison map from BΩS2 to BS1:

S3

hC

��

(
d ω3 = 0

)
OO

ω2 0

7! 7!

ω2 ω3

S3�S1 ' B
(
ΩS2

)
' S2 c1 // BS1 ,

(
d ω2 = 0
d ω3 = −ω2∧ω2

)
oo ω2 [ ω2 ? _

(
d ω2 = 0

)
.

(85)

Notice that the classifying map c1 here exhibits, by (81), a canonical comparison homomorphism of ∞-groups

ΩS2 Ωc1 // S1 . (86)

This loop ∞-group of the 2-sphere, ΩS2, is an ∞-group very similar to but just slightly richer than the plain circle.

Example 6.3 (Left-induced ΩS2-equivariant cohomology). This means that an ∞-action by S1 as in Example 6.1
left-induces an ∞-action by ΩS2, with its homotopy quotient fiber sequence (82) given by homotopy pullback along
(86), as shown in the following:

X
hofib(p

ΩS2 )

// X�ΩS2

(pb)

//

p
ΩS2

��

X�S1,

pS1

��

CE(lX) oo

0  [ ω2
0  [ ω3
α  [ α

CE(lX)

[
ω2,
ω3

]/d ω2 =0
d ω3 =−ω2∧ω2
d α = dX α +ω2∧ ιvα


OO

ω2 ω3

7! 7!

ω2 ω3

oo

(po)

CE(lX)[ω2]
/(d ω2=0

d α =dX α +ω2∧ ιvα

)
OO

ω2

7!

ω2

B(ΩS2) // BS1 R[ω2,ω3]
/( d ω2 = 0

d ω3 = −ω2∧ω2

)
oo

ω2  [ ω2

? _ R[ω2]
/(

d ω2 = 0
)

(87)

The resulting dgc-algebra, shown in blue, is much like the Cartan model for S1-equivariant cohomology as in
Example 6.1, except that here all even powers of the generator ω2 in bi-degree (2,even), which classifies the circle
action, are trivialized in cohomology, by the new generator ω3 in bi-degree (3,even).

Lemma 6.4 (ΩS2-equivariant cocycles). Rational cocycles on a homotopy quotient X � ΩS2 for an ΩS2-action
that is left-induced according to Example 6.3 from an S1-action as in Example 6.1 are, if they are at most linear in
the generator ω2, precisely given by pairs consisting of a cocycle α on X and a trivialization β of its contraction
with v:

d
(

α − ω2∧β − ω3∧ ιvβ
)
= 0 if dX α = 0 and dX β = ιvα . (88)
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Proof. To see that cocycles of this form are closed, we compute as follows, directly unwinding the definitions,
where the three lines correspond to application of the three summands of the differential d = dX +ω2∧ ιv +d

S2 :

d
(
α − ω2∧β − ω3∧ ιvβ

)
= dX α︸︷︷︸

=0

−ω2∧ dX β︸︷︷︸
=ιvα

−ω3∧ ιvdX β︸ ︷︷ ︸
=ιvιvα=0

+ω2∧ ιvα − ω2∧ω2∧ ιvβ + ω3∧ω2∧ ιvιvβ︸ ︷︷ ︸
=0

+ω2∧ω2∧ ιvβ

= 0 .

Conversely, reading this same equation as a condition for the vanishing of the coefficients of the products of
generators shows that every cocycle of the form on the left of (88) satisfies the conditions shown on the right.

We next observe, in Prop 6.6 below, that an ∞-action by the ∞-group ΩS2 (86) characterizes the D = 6, N =
(1,1), super-spacetime fibered over the D = 5, N = 2, superspacetime and exhibits the little-string cocycle in
D = 6 as coming from a 2-sphere-valued super-cocycle in D = 5 (hence in rational Cohomotopy in degree 2). To
put this in perspective, we first recall the analogous situation in D = 11:

Example 6.5 (Rational sphere-valued cocycles for M-branes in D = 11). We have the situation in (89) below:
(i) [FSS13b, Rem. 4.4, Prop. 4.5]: The D = 11 N = 1 super Minkowski spacetime (as in Def. 3.3) is the

rational S1-extension of the D = 10 N = (1,1) (i.e. type IIA) superspacetime, classified by the D0-brane
cocycle µD0 .

(ii) [Sa13, Sec. 2.5][FSS15][FSS16a, Sec. 2]: On that extension, the super M2/M5-brane cochains (µM2 ,2µM5)
(2) constitute a super rational S4-valued cocycle, i.e., a cocycle in rational Cohomotopy in degree 4.

m5brane //

hofib(µM2 ,2µM5 )

��

(pb)

∗

��


d ψα = 0
d ea = ψ Γaψ

d h3 = µM2

d h6 = µM5 +
1
2 h3∧µM2


a∈{0,1,2,3,4,5′,5,6,7,8,9}

oo

h3  [ h3
h6  [ h6
µM2  [ ω4
2µM5 [ ω7

OO

ψα ea

7! 7!

ψα ea

(po)


d h3 = µM2

d h6 = µM5 +
1
2 h3∧µM2

d ω4 = 0
d ω7 = −ω4∧ω4


OO

ω4 ω7

7! 7!

ω4 ω7

� ?

T10,1|32

hofib(µD0 )

��

(µM2 ,2µM5 )
// S4

R

(
d ψα = 0
d ea = ψ Γaψ

)
a∈{0,1,2,3,4,5′,5,6,7,8,9}

oo
µM2  [ ω4
2µM5  [ ω7

OO

ψα ea

7! 7!

ψα ea

(
d ω4 = 0
d ω7 = −ω4∧ω4

)

T9,1|16+16
µD0=ψ Γ5ψ

// BS1
R

(
d ψα = 0
d ea = ψ Γaψ

)
a∈{0,1,2,3,4,5′,6,7,8,9}

oo
ψ Γ5ψ [ ω2

(
d ω2 = 0

)

~�

(89)
Notice that, when expressed in the canonical super coordinate functions as in (42), the bi-fermionic component of
the potential e5 for the D0-brane cocycle is identified as the super 1-form Ramond-Ramond (RR) potential C1, i.e.,
the graviphoton of KK-reduction on S1

HW (e.g. [APPS97b, below (51)]):

e5 = dx5 + θΓ
5dθ︸ ︷︷ ︸

=:C1

d
7−! (dθ)Γ5dθ = µD0 . (90)
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This is analogous to the following situation:

Proposition 6.6 (Fibration of D = 6, N = (1,1), super-spacetime over D = 5 super-spacetime). The D = 6,
N = (1,1), super-spacetime is a rational circle fibration over the D = 5, N = 2, super-spacetime, which comes
via homotopy pullback from the complex Hopf fibration (Example 6.2). Moreover, the super-cocycle µL1 for the
little string in 6d is induced by a 2-sphere-valued super-cocycle in D = 5

R4,1|8+8
(ψ Γ5ψ, µ5d

L1
)

// S2
R ,

realizing the little-string extended D = 6 superspacetime as a rational ΩS2-fibration over D = 5 super-spacetime:

ltlstring

��

//

(pb)

∗

��

 d ψα = 0
d ea≤5 = ψ Γaψ

d f2 = µL1


OO

ψα ea≤4
7! 7!

ψα ea≤4

oo

e5  [ e
ψ Γ5ψ  [ ω2

4
∑

a=0
(ψ Γaψ)∧ ea  [ ω3

f2  [ f2

(po)

 d e = ω2
d ω2 = 0
d ω3 = −ω2∧ω2
d f2 = ω3 +ω2∧ e


OO

e ω2 ω3

7! 7! 7!

e ω2 ω3

� ?

R5,1|8+8

��

µL1 //

(pb)

S3
R

hC

��

(
d ψα = 0
d ea≤5 = ψ Γaψ

)
OO

ψα ea≤4

7! 7!

ψα ea≤4

oo
e5  [ e

ψ Γ5ψ  [ ω2
4
∑

a=0
(ψ Γaψ)∧ ea [ ω3

(po)

 d e = ω2
d ω2 = 0
d ω3 = −ω2∧ω2


OO

ω2 ω3

7! 7!

ω2 ω3

� ?

R4,1|8+8
(ψΓ5ψ,µ5d

L1
)

// S2
R ' BΩS2

R ,

(
d ψα = 0
d ea≤4 = ψ Γaψ

)
oo

ψ Γ5ψ  [ ω2
4

∑
a=0

(ψ Γaψ)∧ ea

︸ ︷︷ ︸
=:µ5d

L1

s [ ω3

(
d ω2 = 0
d ω3 = −ω2∧ω2

)
.

}�

~�

(91)

Proof. The statement comes down to proving that

dµL1 = −
(
ψ Γ5ψ

)(
ψ Γ5ψ

)
,

hence that
4

∑
a=0

(
ψ Γaψ

)(
ψ Γ

a
ψ
)
= −

(
ψ Γ5ψ

)(
ψ Γ5ψ

)
. (92)

This is indeed a Fierz identity satisfied by spinors in D = 5 (e.g. [CDF91, III.5.50]). Equivalently, from the
perspective of D = 6, it reflects the fact that there is the super-cocycle for the little-string (e.g. [CDF91, III.7.14])

µL1 :=
5

∑
a=0

(
ψ Γaψ

)
∧ ea =

4

∑
a=0

(
ψ Γaψ

)
∧ ea +

(
ψ Γ5ψ

)
∧ e5 (93)
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and that (92) is equivalently its closure condition, written with the 5th spatial coordinate summand separated off:

0 = dµL1

=
5

∑
a=0

(
ψ Γaψ

)
dea

=
5

∑
a=0

(
ψ Γaψ

)(
ψ Γ

a
ψ
)

=
4

∑
a=0

(
ψ Γaψ

)(
ψ Γ

a
ψ
)
+
(
ψ Γ5ψ

)(
ψ Γ

5
ψ
)
.

Remark 6.7 (D = 5 super spacetime as homotopy ΩS2-quotient of D = 6).

(i) Conversely, the total rectangle on the left of (91) exhibits, by (82), the D = 5 super-spacetime R4,1|8+8 as the
homotopy ΩS2-quotient of the little string-extended D = 6, N = 2, super-spacetime:

T4,1|8+8 ' T5,1|8+8�S1 ' ltlstring�ΩS2 .

(ii) To make this explicit as an ΩS2-quotient in the form of (87), we may (co)fibrantly resolve the bottom instead
of the right morphism of the rectangle in (91). This yields the following:

ltlstring

��

//

(pb)

∗

��

 d ψα = 0
d ea≤5 = ψ Γ5ψ

d θ2 = µL1


OO

ψα ea≤5 f2 0 0

7! 7! 7! 7! 7!

ψα ea≤5 f2 ω2 ω3

oo

(po)

ROO

0 0

7! 7!

ω2 ω3

R4,1|8+8 // S2
R ' BΩS2

R ,


d ψα = 0
d ea≤4 = ψ Γaψ

d e5 = ψ Γaψ +ω2
d f2 = µL1 +(ω3 + e∧ω2)
d ω2 = 0
d ω3 = −ω2∧ω2

 oo ω2  [ ω2
ω3  [ ω3

? _

(
d ω2 = 0
d ω3 = −ω2∧ω2

)
.

��

(94)

In conclusion, D = 6, N = (1,1), superspacetime extended by its brane content reduces to D = 5 super-
spacetime by enhancing the ∞-action by S1 to an ∞-action by ΩS2 (86).

This provides the motivation to similarly form the homotopy quotient of the super-exceptional N = (1,0)
spacetime

(
R5,1|8×R1

)
exs

from Def. 4.6 not just by the S1
HW-action of flowing along the M-theory circle fiber

along the super-exceptional isometry vexs
5 from Def. 4.4, but the left-induced ΩS2-action, via Example 6.3 To

indicate this, we will write ΩS2
HW to denote this ∞-group with that ∞-action understood, hence with the comparison

(85) specifically being
ΩS2

HW
// S1

HW . (95)

Hence:

Definition 6.8 (Homotopy ΩS2
HW-quotient of super-exceptional 1

2 M5 along S1
HW). Write

(
R5,1|8×R1

)
exs

�ΩS2
HW

for the homotopy quotient of the super-exceptional 1
2 M5 spacetime (4.6) by the rational ΩS2

HW-action which is left-
induced, via Example 6.3, by the rational S1

HW-action given by the the super-exceptional S1
HW-flow (56). Hence,
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with (87), the defining super dgc-algebra (FDA) is that on the right of the following diagram:

(
R5,1|8×R1

)
exs

q
ΩS2

HW //
(
R5,1|8×R1

)
exs

�ΩS2
HW

CE
(
(R5,1|8×R1)exs

)
oo

0  [ ω2
0  [ ω3
α  [ α

CE
(
(R5,1|8×R1)exs

)
[ω2,ω3]

/ d ω2 = 0
d ω3 = −ω2∧ω2
d α = d1/2M5α +ω2∧ ιvexs

5
α

 ,

(96)

where on the right α ∈ CE
(
(R5,1|8×R1)exs

)
is any element in the CE-algebra of the super-exceptional 1

2 M5-
spacetime (Def. 4.6), ιvexs

5
is contraction with the super-exceptional isometry (56), and d1/2M5 now denotes the

differential on that algebra, in contrast to the new differential d defined above.

Now we may state and prove the main statement of this section:

Theorem 6.9 (Super-exceptional ΩS2
HW-equivariant M5-cocycle). The super-exceptional Perry-Schwarz Lagrangian

LPS
exs

(74) and the super-exceptional topological Yang-Mills Lagrangian LtYM
exs

(76) are the components that enhance
the super-exceptional M5-brane cocycle dLWZ

ex (50) restricted along the embedding iexs of the super-exceptional
1
2 M5 spacetime (62) to an equivariant cocycle with respect to the ΩS2

HW-action (95), hence to a cocycle on the
homotopy ΩS2

HW-quotient (96) of the super-exceptional 1
2 M5-spacetime, as follows:(

(iexs)
∗dLWZ

exs

)
�ΩS2

HW
:=
(
(iexs)

∗dLWZ
exs
− ω2∧LPS

exs
− ω3∧LtYM

exs

)
∈ CE

((
R5,1|8×R1)

exs
�ΩS2

HW

)
(97)

in that
(i) this is indeed a cocycle with respect to the differential d = d1/2M5 +ω2∧ ιvexs

5
+dS2 from (96):

d
((

(iexs)
∗dLWZ

exs

)
�ΩS2

HW

)
= 0 ∈ CE

((
R5,1|8×R1)

exs
�ΩS2

HW

)
; (98)

(ii) it does enhance the super-exceptional M5-brane cocycle, in that it extends it through the homotopy quotient
projection q

ΩS2
HW

(96):(
R5,1|8×R1

)
exs

�ΩS2
HW

(
R5,1|8×R1

)
exs

� � iexs //
q

ΩS2
HWoo

(
R10,1|32)

exs
.(

(iexs)
∗dLWZ

exs

)
�ΩS2

HW
(iexs)

∗dLWZ
exs
oo �//� dLWZ

exs

(99)

Proof. By Lemma 6.4 the first claim equation (98), is equivalent to the two statements
1. dLPS

exs
= ιvexs

5
(iexs)

∗dLWZ
exs

.

2. ιvexs
5

LPS
exs

= LtYM
exs

.

The first of these is the content of Prop. 5.9, while the second is Lemma 5.6.
The second claim (99) is immediate from the nature of the map (96).

Before moving on, we record the following further properties of the compactified super-exceptional 1
2 M5-

spacetime:

Proposition 6.10 (Equivariant closedness of tYM). The super-exceptional topological Yang-Mills Lagrangian
(Def. 5.5) is closed on the homotopy ΩS2

HW-quotient of the super-exceptional 1
2 M5-spacetime (Def. 6.8):

dLtYM
exs

= 0 ∈ CE
(((

R5,1|8×R1)
exs

)
�ΩS2

HW

)
. (100)

Proof. By definition (96) of the equivariant differential, we have

dLtYM
exs

:= d1/2M5LtYM
exs

+ ω2∧ ιvexs
5

LtYM
exs

.

By Prop. 5.10, both summands here already vanish separately.
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Proposition 6.11 (Closedness in the homotopy quotient). On the homotopy ΩS2
HW-quotient of the super-exceptional

1
2 M5-brane spacetime (Def. 6.8), we have

d e5 = ω2 and d
(
e5∧ω2 +ω3

)
= 0 ∈ CE

(((
R5,1|8×R1)

exs

)
�ΩS2

HW

)
. (101)

Proof. For the first statement we compute as follows:

de5 := (d1/2M5 +ω2∧ ιvexs
5
)e5

= d1/2M5e5︸ ︷︷ ︸
=(Pψ)Γ5(Pψ)=0

+ ω2∧ ιvexs
5

e5︸ ︷︷ ︸
=δ 5

5 =1

= ω2 . (102)

Here the first step is the definition of the equivariant differential (96), while the second step uses the definition
of d1/2M5 from (61). Then under the first brace we used Lemma 4.11, and under the second brace we used the
definition (56) in Prop. 4.4. The second statement is directly implied by the first and by the differential relations
dω2 = 0 and dω3 =−ω2∧ω2 from (96).

7 Super-exceptional M5 Lagrangian from super-exceptional embedding

Finally we discuss the super-exceptional embedding construction of the M5-brane Lagrangian. We consider the
super-exceptional Nambu-Goto Lagrangian for the 1

2 M5-brane (Def. 7.1) below and prove (Corollary 7.4 below)
that the sum of super-exceptional Nambu-Goto Lagrangian and the super-exceptional Perry-Schwarz Lagrangian
arise as relative trivialization of the super-exceptional M5-brane cocycle along the super-exceptional embedding
of the 1

2 M5-brane. We go further and and consider the ΩS2
HW-equivariant enhancement of this statement, corre-

sponding to KK-compactification to the D4-brane, and prove (Theorem 7.3 below) that this corrects the relative
trivialization by a summand proportional to the super-exceptional topological Yang-Mills term that constitutes the
D4-brane WZ term (Remark 7.5 below). While a priori this further summand is exact only after compactification
on S1

HW, as befits the nature of the D4 arising form the M5, we observe (Remark 7.6 below) that this D4 term,
too, does become genuinely exact after a natural completion of the ΩS2

HW-action on the super-exceptional 1
2 M5

spacetime.

In direct generalization of the super Nambu-Goto Lagrangian (5), we set:

Definition 7.1. The super-exceptional Nambu-Goto Lagrangian for the 1
2 M5-brane (Remark 4.2) is the super

volume form of the 1
2 M5-locus, hence, with (42), the left-invariant completion of the bosonic volume form under

translational supersymmetry, hence is the element

LNG
exs

:= svol5+1
exs

:= e0∧ e1∧ e2∧ e3∧ e4∧ e5′

= (πexs)
∗(e0∧ e1∧ e2∧ e3∧ e4∧ e5′

)
∈ CE

(
R5,1|8×R1)

exs

(103)

in the CE-algebra of the super-exceptional 1
2 M5-spacetime (Def. 4.6.)

Remark 7.2 (S1
B vs. S1

HW directions). Beware that the last wedge factor in (103) is e5′ and that e5 does not appear
(see Remark 4.2 for discussion of the 5-5′-plane). Mathematically, this comes out from the MO9-projection in the
last step (107) in the proof of Theorem 7.3 below.

Theorem 7.3 (Full M5-Lagrangian from equivariant super-embedding). The super-exceptional ΩS2
HW-equivariant

M5-brane cocycle from Theorem 6.9 is equal to(
(iexs)

∗dLWZ
exs

)
�ΩS2

HW

= d
(
LNG

exs
+LPS

exs
∧ e5)− (e5∧ω2 +ω3)∧LtYM

exs︸ ︷︷ ︸
=e5∧d

(
C1∧LtYM

exs

)
+ω3∧LtYM

exs

, (104)

where under the brace we show an equivalent re-formulation in terms of the element C1 from (90).
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Proof. We may rewrite (97) as follows:(
(iexs)

∗dLWZ
exs

)
�ΩS2

HW

= (iexs)
∗dLWZ

exs
− (de5)︸ ︷︷ ︸

=ω2

∧LPS
exs
−ω3∧LtYM

exs

= (iexs)
∗dLWZ

exs
−d
(
e5∧LPS

exs

)
− e5∧dLPS

exs︸ ︷︷ ︸
= (d1/2M5 +ω2∧ ι

exs
v5

)LPS
exs

= ιvexs
5
(iexs)

∗dLWZ
exs

+ω
2∧LtYM

exs

−ω3∧LtYM
exs

=
(
id− e5∧ ιvexs

5

)︸ ︷︷ ︸
=(−)horexs

(
(iexs)

∗dLWZ
exs

)
+ d

(
LPS

exs
∧ e5)− (ω3 + e5∧ω2)∧LtYM

exs
.

(105)

Here the first line is the definition (97) with the observation (101) inserted, as shown under the brace. Then, in
the first step, we use that the differential is a derivation of bi-degree (1,even) and under the brace we unwind the
definition of the equivariant differential (96) and then used Prop. 5.9 and Lemma 5.6. In the last step we collect
terms and identify under the brace the super-exceptional horizontal projection from Def. 4.5. This means we are
now reduced to showing that the first summand in the last line of (105) is(

(iexs)
∗dLWZ

exs

)horexs = dLNG
exs
. (106)

We compute as follows:(
(iexs)

∗dLWZ
exs

)horexs

=
(
id− e5∧ ιvexs

5

)
(iexs)

∗((πexs)
∗
µM5 +

1
2 Hexs ∧dHexs

)
=
(
id− e5∧ ιvexs

5

)
(iexs)

∗(πexs)
∗
µM5 +

1
2

(
id− e5∧ ιvexs

5

)(
(iexs)

∗Hexs

)
∧
(
(iexs)

∗dHexs

)
= 1

5! ∑
ai∈{0,1,2,3,4,5′}

(
(Pψ)Γa1···a5(Pψ)

)
∧ ea0 ∧·· ·∧ ea5 +

1
2

(
id− e5∧ ιvexs

5

)(
(iexs)

∗Hexs

)
∧
(
e5∧ ι

exs
v5

(iexs)
∗dHexs

)︸ ︷︷ ︸
=0

= d(e0∧ e1∧ e2∧ e3∧ e4∧ e5′) .

(107)

Here the first step is unwinding the definitions. The second step is multiplying out and using, in the second
summand, the fact that pullback is an algebra homomorphism. The third step observes that the first term is just
those summands of µM5 (2) whose indices are along the 1

2 M5-locus, hence in {0,1,2,3,4,5′}, while in the second
term we realize the presence of the projection e5 ∧ ιexs

v5
according to Lemma 4.12, in view of dHexs = (πexs)

∗µM2

from (43). With the projection operator up front, this makes the second term vanish, as shown under the brace.
The last step is [HSS18, Lemma 6.9]. This establishes the first line in (104).

Finally, to see equality to the expression shown in (104) under the brace, observe that

de5 = d(dx5 +C1) = dC1 , (108)

by (90). Using this, the first summand over the brace in (104) becomes

e5∧ω2∧LtYM
exs

= e5∧ (de5)∧LtYM
exs

= e5∧ (dC1)∧LtYM
exs

= e5∧ d
(
C1∧LtYM

exs

)
,

where the first step is (101), the second step is (108) and the third step is (100). This, therefore, establishes also
the identification under the brace in (104).

Corollary 7.4 (M5-Lagrangian is relative trivialization along super-exceptional embedding). The super-exceptional
M5-brane cocycle dLWZ

exs
(Def. 3.8) becomes exact when restricted along the super-exceptional embedding (iexs) of
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the 1
2 M5-brane (Lemma 4.8), trivialized there by the sum of the super-exceptional Nambu-Goto Lagrangian LNG

exs

(Def. 7.1) and the super-exceptional Perry-Schwarz Lagrangian LPS
exs

(Def. 5.2):

(iexs)
∗dLWZ

exs
= d

(
LWZ

exs
+LPS

exs
∧ e5) . (109)

Proof. The statement is the first component (the one independent of the equivariance generators ω2 and ω3) of the
equivariant statement in Theorem 7.3. More formally, equation (109) is the pullback of (13) along the homotopy
quotient homomorphism q

ΩS2
HW

(96).

Remark 7.5 (Dimensional reduction to WZ-term of D4-brane). Upon compactification on S1
HW, the last summand

of (104) manifestly gives the WZ-term
LWZ

D4 = C1∧F ∧F

of the D4-brane ([CvGNSW97, (7.4)][APPS97b, (51)][CAIB00, 6.1]; see [FSS13b, 4.3][FSS16b, 4]). From the
point of view of the Yang-Mills theory on the brane, this identifies C1 with the theta-angle (e.g. [Li19, (3.1)]),
matching the last summand in (113) below.

Remark 7.6 (Exact ΩS2
HW-equivariant super-exceptional M5-Lagrangians). Recall that the first summand in (7.3)

is exact, implying the super-exceptional embedding construction before compactification (Corollary 7.4), while
the second summand in (7.3)(

e5∧ω2 +ω3
)
∧
(
Fexs ∧Fexs

)
∈ CE

(((
R5,1|8×R1)

exs

)
�ΩS2

HW

)
(110)

becomes exact only after dimensional reduction, implying the super-exceptional embedding construction of the
D4 WZ-term (Remark 7.5). It is therefore natural to ask for a pullback of the situation to a richer extended
super-spacetime on which also the second summand (110), and hence the full ΩS2

HW-equivariant super-embedded
super-exceptional M5-brane cocycle from (7.3), become exact, ΩS2

HW-equivariantly. Since (110) is the wedge
product of two equivariantly closed terms, by Prop. 6.10 and Prop. 6.11, there are two canonical possibilities here,
by enforcing trivialization of the first or the second factor. We will now briefly comment on both of these:

d θ2 = e5∧ω2 +ω3
discussed in Remark 7.7

or d HNS
exs

= Fexs ∧Fexs
discussed in Remark 7.8

.

Remark 7.7 (The generator θ2 trivializing the little-string super-cocycle). In the formula (94) for the D = 5,
N = 2, super-spacetime regarded as an ΩS2-quotient of D = 6, N = (1,1), super-spacetime, there appears a
further generator θ2 in degree (2,even), whose differential trivializes the little-string super-cocycle

d θ2 = ω3 + e5∧ω2 = µL1 . (111)

From comparison with the super-cocycles for the ordinary critical string in D = 10 and its D-branes (see [FSS13b,
4.3][FSS16b, 4]), we note that θ2 is the universal gauge field flux 2-form on D-branes for the little-string. How-
ever, there is no analog of the generator θ2 in the formula (96) for the super-exceptional ΩS2

HW-quotient of the
super-exceptional 1

2 M5-locus from Def. 6.8. But if we consider the Cartesian product of the super-exceptional
1
2 M5 spacetime with the classifying space BS1 of a gauge field, then an ΩS2-action on this larger space generally
contains, on top of the part left-induced from an S1-action (Example 6.3), precisely the extra structure of (111):

CE
(
l
((

T5,1×R1)
exs
×BS1

)
�ΩS2

HW

)
= CE

(((
R5,1×R1)

exs

)
�ΩS2

HW

)[
θ2
]/(

d θ2 = e5∧ω2 +ω3
)
. (112)

On this larger space, equation (104) for the trivialization of the M5-brane cocycle completes to an ΩS2
HW-equivariant

trivialization:(
(iexs)

∗dLWZ
exs

)
�ΩS2

HW

= d
(
LNG

exs
+LPS

exs
∧ e5−θ2∧LtYM

exs

)
on
((

T5,1×R1
)

exs
×BS1

)
�ΩS2

HW

. (113)
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Remark 7.8 (The heterotic 5-brane). The heterotic super-exceptional 1/2M5-spacetime
(
T5,1|16×T1

)het
exs

is the
homotopy fiber of the wedge square of the super-exceptional 2-flux (73) on the super-exceptional 1/2M5-spacetime
(Def. 4.6)

(
T5,1|16×T1

)het
exs

hofib(Fexs∧Fexs )

��

CE
((

R5,1|8×R1
)

exs

)[
HNS

exs

]/(
d HNS

exs
= Fexs ∧Fexs

)
OO

� ?(
T5,1|16×T1

)
exs

Fexs∧Fexs // K(R,4) , CE
((

R5,1|8×R1
)

exs

) Fexs∧Fexs [ c4 // (d c4 = 0) .

Then on its super-exceptional ΩS2
HW-compactification as in Def. 6.8 the second summand (110) and with it the full

ΩS2
HW-equivariant super-exceptional M5-brane cocycle (104) becomes exact(

(iexs)
∗dLWZ

exs

)
�ΩS2

HW

= d
(

LNG
exs

+LPS
exs
∧ e5 + 1

2(e
5∧ω2 +ω3)∧HNS

exs︸ ︷︷ ︸
=:LWZ

NS5

)
.

The new term LWZ
NS5 in the Lagrangian that appears this way has the form of the WZ-term for the heterotic NS5-

brane [Le10, (1.5)].

In summary, we thus arrive at the picture shown in (7).

8 Outlook

In closing, we briefly comment on a few interconnections, issues to be addressed in the future, and some loose
ends.

Combining local super-exceptional geometry with global topology. The discussion in this article focuses on the
situation of vanishing bosonic 4-flux, keeping only the super-components of the 4-flux, being the M2-brane cocycle
µM2 (2). We had discussed the opposite case of pure bosonic flux in [FSS19c]. In that case, the subtlety is all in
the global topological structure of the Hopf-Wess-Zumino term controlled by Cohomotopy [FSS19c][FSS19b],
while here the subtlety is all in the local differential structure of the Perry-Schwarz Lagrangian, hence of 5d super
Yang-Mills plus KK-modes:

Single M5-brane sigma-model
Aspect Global topological Local differential

Lagrangian term Hopf-Wess-Zumino
Perry-Schwarz = 5d Yang-Mills + KK

& 5d top. Yang-Mills

Controlled by
twisted

Cohomotopy
ΩS2-equivariant

super-exceptional geometry
Discussed in [FSS19c] §6, §7

In a full picture of the M5-brane sigma-model, both the super-exceptional local geometry and the cohomotopical
global structure are to be combined. This will be discussed elsewhere.

Covariant enhancement. The constructions in this article relate to the non-covariant M5-brane Lagrangian of
[PS97][Sc97][APPS97a], (following [HT88]), but not manifestly to the covariant formulation of [PST96][PST97]
[BLNPST97].
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However, as explained in [HSS18, pp. 6-7], in the vein
of understanding supergravity as super Cartan geometry
[Lo90][EE12], we are to think of the super-exceptional
Minkowski spacetimes considered here, such as the super-
exceptional 1

2 M5-spacetime illustrated in (52), as being the
infinitesimal moving frames on a super-exceptional curved
Cartan geometry. Furthermore, the covariant form of this
geometry is to be obtained systematically by actually mov-
ing the frames, subject only to the condition of vanishing
super-torsion, which, by [CL94][Ho97] (see [CGNT04,
Sec. 2.4]), is equivalently the condition that the equations
of motion of 11d supergravity hold.

Thus super-Cartan geometry provides a systematic and precise mechanism for globalizing/covariantizing all
the local brane constructions given here, as well as the related constructions in [HSS18][BSS18], reviewed in
[FSS19a]. While this provides the algorithm, it still has to be run, the details still have to be worked out elsewhere.

Necessity of the 1
2 M5 configuration? The string theory folklore claims (e.g. [DHTV14]) that there are two

ways of geometrically engineering D = 6 N = (1,0) theories, one of them being the 1
2 M5-brane configuration of

Remark 4.2. Since our rigorous construction confirms this expectation, it would be interesting to precisely classify
this – on a mathematical basis – and possibly determine further available choices for the construction. This needs
further thinking. At this point, we may at least highlight precisely where the spinor projections of Def. 4.1, which
define the 1

2 M5-locus, enter our proofs:

1. The assumption that the spinor 1-forms are fixed under ΓΓΓ6789 is what makes the super-exceptional lift vexs
a

of the isometric flow along the compactification circle exist: it is used in the last line of (59) in the proof of
Prop. 4.4. There is at least one other brane configuration where an analogous construction works, namely
the M-wave inside the MO9 (Remark 4.10). But there could be more possible variants.

2. The assumptions that spinor 1-forms are fixed under ΓΓΓ5 is what implies the technical Lemma 4.12. This
Lemma appears crucially in various of the following proofs leading up to and including the main Theorem
7.3, notably it is used in both (79) and (80) proving Prop. 5.9 and then again in (107) proving Theorem 7.3.

This makes it seem at least unlikely that this assumption could be removed while still retaining the result of
a super-exceptional embedding construction.

DBI corrections in α ′ and Super-exceptional 5-form. In our analysis of the super-exceptional Perry-Schwarz La-
grangian in §5, we have restricted to the special case that the value of the 5-index tensor ea1···a5 on super-exceptional
spacetime vanishes. The formulas (43) and (44) show that, without this assumption, the super-exceptional Perry-
Schwarz Lagrangian picks up further correction terms. At the same time, we have studied here the expected DBI
corrections to the brane Lagrangian starting at quartic order in the field strength F [FT85] (see [Ts00]). It is natural
to conjecture that these two effects are related, but this needs more investigation.

AKSZ sigma-model description. The article [Ar18] discusses the local differential structure of the M5 Hopf-
Wess-Zumino term in view of exceptional geometry from the point of view of AKSZ sigma-models. The develop-
ment seems complementary to ours here, but it would be interesting to see if there is a connection.
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