TED K-Theory of Cohomotopy Moduli Spaces and Anyonic Topological Order

Urs Schreiber on joint work with Hisham Sati

جامعـة نيويورك أبـوظـي NYU ABU DHABI NYU AD Science Division, Program of Mathematics

& Center for Quantum and Topological Systems

New York University, Abu Dhabi

talk at:

Higher Structures and Field Theory @ ESI Vienna, 25 Aug 2022

slides and pointers at: ncatlab.org/schreiber/show/TED-K+of+Cohomotopy+and+Anyons

Introduction

(2) – Interacting enhancement via Hypothesis H

Summary

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

classifies

free topological phases in condensed matter theory stable D-branes in string theory

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

	classifies	
free topological phases n condensed matter theory		stable D-branes in string theory
	and some	
	enhancement to	
interacting phases		non-perturbative effects
	is needed	

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

classifies				
free topological phases in condensed matter theory		stable D-branes in string theory		
	and <i>some</i> enhancement to			
interacting phases	is needed	non-perturbative effects		
topological order		M-branes		

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

	classifies	
free topological phases in condensed matter theory		stable D-branes in string theory
	and <i>some</i>	
	enhancement to	
interacting phases		non-perturbative effects
	is needed	
	to account for	
topological order		M-branes
	harbouring	
anyon statistics		$N \sim 1$ YM theory
for topological quantum gates		for hadrodynamics

Topological K-theory

Twisted & Equivariant & Differential (TED)

classifies

free topological phases in condensed matter theory

interacting phases

topological order

anyon statistics for topological quantum gates and *some* enhancement to

is needed to account for

harbouring

stable D-branes in string theory

non-perturbative effects

M-branes

 $N \sim 1$ YM theory for hadrodynamics

Topological K-theory

Twisted & Equivariant & Differential (TED)

free topological phases in condensed matter theory

interacting phases

topological order

anyon statistics for topological quantum gates

classifies had remained notoriously emisive elusive bative effects stable D-branes and *some* enhancement to is needed to account for **M**-branes harbouring $N \sim 1$ YM theory

for hadrodynamics

Topological K-theory

Twisted & Equivariant & Differential (TED)

(1) Systematic construction of TED K-theory via "cohesive ∞-topos theory".

(2) Precise proposal for interacting enhancement via "Hypothesis H"

> (3) Concrete implementation of topological quantum gates via TED-K in "cohesive homotopy type theory"

(for finite equivariance as befits the "very good" orbifolds appearing in CMT and ST)

[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC]

(for finite equivariance as befits the "very good" orbifolds appearing in CMT and ST)

[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC]

key technicality:

constructing twisted equivariant Chern character as map of equivariant moduli stacks (\Rightarrow flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)

(for finite equivariance as befits the "very good" orbifolds appearing in CMT and ST)

[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC] key technicality:

constructing twisted equivariant Chern character as map of equivariant moduli stacks (\Rightarrow flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)

this is subtle and previously under-developed, because equivariant classifying spaces are generally far from simply-connected/nilpotent

(for finite equivariance as befits the "very good" orbifolds appearing in CMT and ST)

[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC] key technicality:

constructing twisted equivariant Chern character as map of equivariant moduli stacks (\Rightarrow flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)

this is subtle and previously under-developed, because equivariant classifying spaces are generally far from simply-connected/nilpotent

But the Galois-theoretic effect hidden in this technicality is responsible for the appearance of conformal blocks and braid group statistics in TED-K (more <u>below</u>)

(for finite equivariance as befits the "very good" orbifolds appearing in CMT and ST)

[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC] key technicality:

constructing twisted equivariant Chern character as map of equivariant moduli stacks (\Rightarrow flat TED K-theory is homotopy fiber of TE Chern character in equivariant stacks)

this is subtle and previously under-developed, because equivariant classifying spaces are generally far from simply-connected/nilpotent

But the Galois-theoretic effect hidden in this technicality is responsible for the appearance of conformal blocks and braid group statistics in TED-K (more <u>below</u>)

Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself, but on its configuration space of points, and generally: on its Cohomotopy moduli [CMP **377** (2020)] [JMP **62** (2021)] [ATMP **26** 4 (2022)] [RMP **34** 5 (2022)] [arX:2103.01877] (see <u>below</u>)

Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself, but on its configuration space of points, and generally: on its Cohomotopy moduli [CMP **377** (2020)] [JMP **62** (2021)] [ATMP **26** 4 (2022)] [RMP **34** 5 (2022)] [arX:2103.01877]

Conf

The moduli space of flat M3-branes according to *Hypothesis H* is the configuration space of ordered points in their transverse plane.

Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself, but on its configuration space of points, and generally: on its Cohomotopy moduli [CMP **377** (2020)] [JMP **62** (2021)] [ATMP **26** 4 (2022)] [RMP **34** 5 (2022)] [arX:2103.01877]

Claim: The TED K-cohomology of *n*-point configurations in Brillouin torus classifies valence bundle of *n*-electron interacting states [arX:2206.13563]

via TED-K in cohesive homotopy type theory:

[PlanQC **2022** 33] [arX:2206.13563]

via TED-K in cohesive homotopy type theory:

[PlanQC **2022** 33] [arX:2206.13563]

Claim: The TED K-theoretic Chern characters of configuration spaces of points contain the $\mathfrak{su}(2)$ -affine conformal blocks at admissible fractional levels & genus=0 (see <u>below</u>)

via TED-K in cohesive homotopy type theory:

[PlanQC **2022** 33] [arX:2206.13563]

Claim: The TED K-theoretic Chern characters of configuration spaces of points contain the $\mathfrak{su}(2)$ -affine conformal blocks at admissible fractional levels & genus=0 and the Gauss-Manin connection is (see <u>below</u>) the KZ equation for braid monodromy:

via TED-K in cohesive homotopy type theory:

[PlanQC **2022** 33] [arX:2206.13563]

Claim: The TED K-theoretic Chern characters of configuration spaces of points contain the $\mathfrak{su}(2)$ -affine conformal blocks at admissible fractional levels & genus=0 and the Gauss-Manin connection is (see <u>below</u>) the KZ equation for braid monodromy:

via TED-K in cohesive homotopy type theory:

[PlanQC **2022** 33] [arX:2206.13563]

Remarkably, for such constructions in cohesive ∞-topos theory there is developed a programming language: "cohesive HoTT"

[EPTCS **158** (2014)] [arX:1402.7041] (3) Concrete implementation of topological quantum gates via TED-K in cohesive homotopy type theory:

[PlanQC **2022** 33] [arX:2206.13563]

[EPTCS 158 (2014)]

[arX:1402.7041]

Remarkably, for such constructions in cohesive ∞-topos theory there is developed a programming language: "cohesive HoTT"

At our newly launched Research Center we are now putting these pieces together to build a topological quantum simulator

Center for Quantum& Topological Systems

@ NYU Abu Dhabi

(3) Concrete implementation of topological quantum gates via TED-K in cohesive homotopy type theory:

Remarkably, for such constructions in cohesive ∞-topos theory there is developed a programming language: "cohesive HoTT"

At our newly launched Research Center we are now putting these pieces together to build a topological quantum simulator

@ NYU Abu Dhabi

[PlanQC **2022** 33] [arX:2206.13563]

[EPTCS **158** (2014)] [arX:1402.7041] Introduction

(1) – TED K-Theory via Cohesive ∞-Topos Theory

(2) – Interacting enhancement via Hypothesis H

Summary

This part is a quick motivation and exposition of TED K-theory following these articles:

Proper Orbifold Cohomology The twisted non-abelian character map Equivariant Principal ∞-bundles Anyonic Defect Branes in TED-K-Theory The twisted equivariant character map

[arX:2008.01101] [arX:2009.11909] [arX:2112.13654] [arX:2203.11838] [SS22-TEC]

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHO82]). The vacua of the free Dirac quantum field in a classical Coulomb background...

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHO82]). The vacua of the free Dirac quantum field in a classical Coulomb background are characterized by Fredholm operators...

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHO82]). The vacua of the free Dirac field in a classical Coulomb background are characterized by Fredholm operators

on the single-electron/positron Hilbert space:

Quantum symmetries.

On these dressed vacua of electron/positron states the following *CPT-twisted projective group*

group of quantum symmetries

$$C := PT, \quad P \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} U_-, U_+ \end{bmatrix} \cdot P, \qquad T \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} \overline{U}_+, \overline{U}_- \end{bmatrix} \cdot T$$
Quantum symmetries.

On these dressed vacua of electron/positron states the following *CPT-twisted projective group*

group of quantum symmetries

$$C := PT, \quad P \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} U_-, U_+ \end{bmatrix} \cdot P, \quad T \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} \overline{U}_+, \overline{U}_- \end{bmatrix} \cdot T$$

naturally acts by conjugation:

$$\begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{+}^{-1} \circ F \circ U_{-}$$

$$C \cdot \begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{-}^{-1} \circ F^{t} \circ U_{+}$$

$$P \cdot \begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{-}^{-1} \circ F^{*} \circ U_{+}$$

$$T \cdot \begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{+}^{-1} \circ \overline{F} \circ U_{-}$$

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families of such self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-*cohomology*:

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families of such self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-*cohomology*:

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families of such self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-*cohomology*:

Free topological phases of matter.

⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator classified by topological K-theory of Brillouin torus equivariant wrt quantum symmetries [Kitaev 09] [FM12]

Free topological phases of matter.

⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator classified by topological K-theory of Brillouin torus equivariant wrt quantum symmetries [Kitaev 09] [FM12]

CPT Quantum symmetries.

$$\mathbf{B}(\{e,T\}) \xrightarrow[]{T \longmapsto \widehat{T}} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{T \longmapsto \widehat{T}} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \\
 \mathbf{B}(\{e,P\} \times \{e,T\}) \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \rtimes \{e,T\})} \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \twoheadrightarrow \{e,T\})} \xrightarrow{\mathbf{D} \longrightarrow \mathbf{B}(\mathbf{B}U(1) \amalg \{e,T\}, e,T\}}$$

Let's use the previous machinery to compute the possible quantum T-symmetries...

CPT Quantum symmetries.

 \mapsto

CPT Quantum symmetries.

So $\overline{c} = c$ and hence there are two choices for quantum T-symmetry, up to homotopy: $\widehat{T}^2 = \pm 1$ and similarly $\widehat{C}^2 = \pm 1$.

Example – Orientifold KR-theory

Let *I* be *I*nversion action on 2-torus $\widehat{\mathbb{T}}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2$ and trivial action on observables

If *T* acts as *I* on \mathbb{T}^2 , then $KR^{\hat{T}^2 = +1}$ is *Atiyah's Real K-theory* aka *orienti-fold* K-theory:

Example – Orientifold KR-theory

Let *I* be *I*nversion action on 2-torus $\widehat{\mathbb{T}}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2$ and trivial action on observables

If *T* acts as *I* on \mathbb{T}^2 , then $KR^{\hat{T}^2 = +1}$ is *Atiyah's Real K-theory* aka *orienti-fold* K-theory:

But what happens on *I*-fixed loci i.e. on "orientifolds"?

CPT Quantum symmetries – 10 global choices.

(following [FM12, Prop. 6.4])

Equivariance group	<i>G</i> =	{e}	{e, <i>P</i> }	$\{e,T\}$		{e, <i>C</i> }		$\{e,T\} \times \{e,C\}$			
Realization as τ .	$\widehat{T}^2 =$			+1	-1			+1	-1	-1	+1
quantum symmetry	$\widehat{C}^2 =$					+1	-1	+1	+1	-1	-1
	$E_{-3} =$								i <i>TĈβ</i>		
	$E_{-2} =$					iĈβ			iĈβ		
Maximal induced	$E_{-1} =$		$\widehat{P}eta$			$\widehat{C}\beta$		$\widehat{C}oldsymbol{eta}$	Ĉβ		
Clifford action anticommuting with	$E_{+0} =$	β	β	β	$\left(\begin{array}{cc}\beta & 0\\ 0 & -\beta\end{array}\right)$	β	β	β	β	β	β
all <i>G</i> -invariant odd Fredholm operators	$E_{+1} =$				$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		Ĉβ			Ĉβ	Ĉβ
	$E_{+2} =$				$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$		iĈβ			iĈβ	
	$E_{+3} =$				$\begin{pmatrix} 0 & -\widehat{T} \\ \widehat{T} & 0 \end{pmatrix}$					i <i>TĈβ</i>	
	$E_{+4} =$				$\begin{pmatrix} 0 & i\widehat{T} \\ i\widehat{T} & 0 \end{pmatrix}$						
τ -twisted <i>G</i> -equivariant KR-theory of fixed loci	$KR^{\tau} =$	KU ⁰	KU ¹	KO ⁰	KO ⁴	KO ²	KO ⁶	KO ¹	KO ³	KO ⁵	KO ⁷

	$\widehat{F}: \mathcal{H}$ $\widehat{F}^* =$ dim(k [Karow	$f^2 \xrightarrow[K-linear]{} F := F + { m ter}(\widehat{F}) < { m ter}(\widehat{F})$	\mathcal{H}^2 - F^* ∞	graded comp $E_i \circ \widehat{F} = -$ Fred ^{<i>p</i>} _K	n. - $\widehat{F} \circ E_i$ / \sim_{htpy}	bounded with (anti-)se Clifford = { KU ^P KO ^P	d oper. elf-adjoint gen. Y(X) = 1 Y(X) = 1	E_{0}, \cdot $(E_{i})^{*}$ $E_{i} \circ I$ KU^{p+2} KO^{p+8}	$ \begin{array}{l} \cdots, E_p: \\ f = \operatorname{sgn}_i \\ E_j + E_j \\ \hline X \end{pmatrix} \\ X \end{pmatrix} \\ \end{array} $	$\mathcal{H}^2 \stackrel{\text{bound}}{\mathbb{K}-\lim}$ $\cdot E_i$ $\circ E_i = 2s$ $\mathbb{K} = \mathbb{C}$ $\mathbb{K} = \mathbb{R}$	$\frac{\text{led}}{\text{ear}} \mathcal{H}^2$ $\text{sgn}_i \cdot \delta_{ij}$	
Maximal induced Clifford action anticommuting with all <i>G</i> -invariant odd Fredholm operators	-	$E_{-3} =$								i <i>TĈβ</i>		
	_	$E_{-2} =$					iĈβ			iĈβ		
	1.	$E_{-1} =$		$\widehat{P}eta$			Ĉβ		$\widehat{C}oldsymbol{eta}$	$\widehat{C}oldsymbol{eta}$		
	th .	$E_{+0} =$	β	β	β	$\left(egin{smallmatrix}eta & 0 \\ 0 & -eta \end{array} ight)$	β	β	β	β	β	β
	d rs	$E_{+1} =$				$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		$\widehat{C}oldsymbol{eta}$			$\widehat{C}eta$	$\widehat{C}oldsymbol{eta}$
		$E_{+2} =$				$\left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)$		iĈβ			iĈβ	
		$E_{+3} =$				$\begin{pmatrix} 0 & -\widehat{T} \\ \widehat{T} & 0 \end{pmatrix}$					i <i>TĈβ</i>	
		$E_{+4} =$				$ \left(\begin{array}{cc} 0 & i\widehat{T} \\ i\widehat{T} & 0 \end{array}\right) $						
τ -twisted <i>G</i> -equivar KR-theory of fixed	iant loci	$KR^{\tau} =$	KU ⁰	KU ¹	KO ⁰	KO ⁴	KO ²	KO ⁶	KO ¹	KO ³	KO ⁵	KO ⁷

Example – TI-equivariant KR-theory is KO⁰-theory.

The combination $T \cdot I$ acts trivially on the domain space and by complex conjugation on observables.

Hence $(T \cdot I)$ -equivariant $(\widehat{T}^2 = +1)$ -twisted KR-theory is KO⁰-theory:

n =	0	1	2	3	4	5	6	7	8	9	
$\mathrm{KO}^{0}(S^{n}_{*}) =$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	•••

Example – *TI*-equivariant KR-theory of punctured torus.

So the *TI*-equivariant $(\hat{T}^2 = +1)$ -twisted KR-theory of the *N*-punctured torus is

$$\begin{split} & \operatorname{KR}^{(\widehat{T}^2 = +1)} \left(\widehat{\mathbb{T}}^2 \setminus \{k_1, \cdots, k_N\} \right) \\ & \simeq \operatorname{KO}^0 \left(\widehat{\mathbb{T}}^2 \setminus \{k_1, \cdots, k_N\} \right) \\ & \simeq \operatorname{KO}^0 \left(\bigvee_{1+N} S^1_* \right) \quad (N \ge 1) \\ & \simeq \bigoplus_{1+N} \mathbb{Z}_2 \end{split}$$

The B-field twist.

Besides these CPT-quantum symmetries,

K-theory generically admits the famous *twisting by a B-field*:

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

$$\mathbf{B}\mathbf{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathbf{U}(\mathcal{H})/\mathbf{U}(1)\big) \xrightarrow{\mathrm{DD}} \mathbf{B}^2\mathbf{U}(1)$$

The B-field twist.

Besides these CPT-quantum symmetries,

K-theory generically admits the famous *twisting by a B-field*:

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

$$\mathbf{B}\mathbf{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathbf{U}(\mathcal{H})/\mathbf{U}(1)\big) \xrightarrow{\mathrm{DD}} \mathbf{B}^2\mathbf{U}(1)$$

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles $\pi_0 \operatorname{Maps}\left(\widehat{X/\!\!/ G}, \mathbf{B}(U(\mathcal{H})/U(1))\right) \xrightarrow{\mathrm{DD}_*} \pi_0 \operatorname{Maps}\left(\widehat{X/\!\!/ G}, \mathbf{B}^2 U(1)\right)$

equivariant bundle gerbes

The B-field twist.

Besides these CPT-quantum symmetries,

K-theory generically admits the famous *twisting by a B-field*:

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

$$\mathbf{B}\mathbf{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathbf{U}(\mathcal{H})/\mathbf{U}(1)\big) \xrightarrow{\mathrm{DD}} \mathbf{B}^2\mathbf{U}(1)$$

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles $\pi_0 \operatorname{Maps}\left(\widehat{X//G}, \mathbf{B}(U(\mathcal{H})/U(1))\right) \xrightarrow{\mathrm{DD}_*} \pi_0 \operatorname{Maps}\left(\widehat{X//G}, \mathbf{B}^2 U(1)\right)$

which has a natural section:

"stable twists"
$$\pi_0 \operatorname{Maps}(\widehat{X/\!\!/ G}, \mathbf{B}^2 \mathrm{U}(1)) \hookrightarrow \pi_0 \operatorname{Maps}\left(\widehat{X/\!\!/ G}, \mathbf{B}\left(\frac{\mathrm{U}(\mathcal{H}) \times \mathrm{U}(\mathcal{H})}{\mathrm{U}(1)} \rtimes \left(\{\mathrm{e}, C\} \times \{\mathrm{e}, P\}\right)\right)\right)$$

equivariant bundle gerbes

full quantum-symmetry twists

The B-field twist – Inner local systems.

On fixed loci (orbi-singularities)

$$X/\!\!/G \simeq X \times */\!\!/G = X \times BG$$

the B-field twist induces *secondary* twists by "inner local systems":

stable twists over fixed locus $Maps(X \times * //G, \mathbf{B}^2 U(1)) \simeq Maps(X \times \mathbf{B}G, \mathbf{B}^2 U(1))$

 $\simeq \operatorname{Maps}(\mathbf{X}, \operatorname{Maps}(\mathbf{B}G, \mathbf{B}^2 \mathbf{U}(1)))$

On fixed loci (orbi-singularities)

$$X/\!\!/G \simeq X \times */\!\!/G = X \times BG$$

the B-field twist induces *secondary* twists by "inner local systems":

stable twists over fixed locus $Maps(X \times * //G, \mathbf{B}^2 U(1)) \simeq Maps(X \times \mathbf{B}G, \mathbf{B}^2 U(1))$ $\simeq Maps(X, Maps(\mathbf{B}G, \mathbf{B}^2 U(1)))$ $\simeq Maps(X, \mathbf{B}G^* \times \mathbf{B}^2 U(1))$

Here we are assuming $G \subset_{\text{fin}} SU(2)$ so that $H^2_{\text{Grp}}(G, U(1)) = 0$. And $G^* := \text{Hom}(G, U(1))$ denotes the Pontrjagin-dual group. On fixed loci (orbi-singularities)

$$X/\!\!/G \simeq X \times */\!\!/G = X \times BG$$

the B-field twist induces *secondary* twists by "inner local systems":

stable twists over fixed locus $Maps(X \times * //G, \mathbf{B}^2 U(1)) \simeq Maps(X \times \mathbf{B}G, \mathbf{B}^2 U(1))$

 $\simeq \operatorname{Maps}(\mathbf{X}, \operatorname{Maps}(\mathbf{B}G, \mathbf{B}^2\mathbf{U}(1)))$

$$\simeq \operatorname{Maps}(\mathbf{X}, \mathbf{B}G^* \times \mathbf{B}^2 \mathbf{U}(1))$$

 $\simeq \operatorname{Maps}(X, BG^*) \times \operatorname{Maps}(X, B^2U(1))$ inner local systems bundle gerbes

Here we are assuming $G \subset_{\text{fin}} SU(2)$ so that $H^2_{\text{Grp}}(G, U(1)) = 0$. And $G^* := \text{Hom}(G, U(1))$ denotes the Pontrjagin-dual group.

Hence the

Hence the

Hence the

Hence the

The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ll} \text{complex K-theory} & & \text{periodic de Rham cohomology} \\ \text{KU}^{0}(\text{X}) & \xrightarrow{\text{Chern character}} & \text{KU}^{0}(\text{X}; \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \left(\Omega^{\bullet}_{dR}(\text{X}; \mathbb{C}), d \right) \end{array}$$

The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ll} \text{complex K-theory} & & \text{periodic de Rham cohomology} \\ \text{KU}^{0}(\text{X}) \xrightarrow[]{\text{Chern character}} & \text{KU}^{0}(\text{X}; \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \left(\Omega^{\bullet}_{dR} \left(\text{X}; \mathbb{C} \right), d \right) \end{array}$$

For twist by B-field \widehat{B}_2 there is a closed differential 3-form H_3 such that:

The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ll} \text{complex K-theory} & & \text{periodic de Rham cohomology} \\ \text{KU}^{0}(\text{X}) & \xrightarrow{\text{Chern character}} & \text{KU}^{0}(\text{X}; \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \left(\Omega^{\bullet}_{dR}(\text{X}; \mathbb{C}), d \right) \end{array}$$

For twist by B-field \widehat{B}_2 there is a closed differential 3-form H_3 such that:

plain B-field
-twisted K-theory

$$KU^{n+\widehat{B}_{2}}(X) \xrightarrow{\text{twisted}} KU^{\widehat{B}_{2}}(X; \mathbb{C}) \simeq \bigoplus_{d \in \mathbb{Z}} H^{n+2d} \left(\Omega^{\bullet}_{dR}(X; \mathbb{C}), d + H_{3} \wedge \right)$$

For twist by inner C_{κ} -local system, there is closed 1-form ω_1 with holon. in $C_{\kappa} \subset U(1)$ such that:

$$\begin{array}{ll} \text{inner local system} \\ \text{-twisted K-theory} & 1\text{-twisted periodic de Rham cohomology} \\ \text{KU}_{C_{\kappa}}^{n+[\omega_{1}]}(\text{X}) \xrightarrow[\text{twisted equivariant}]{\text{twisted equivariant}} & \bigoplus_{\substack{d \in \mathbb{Z} \\ 1 \leq r \leq \kappa}} H^{n+2d}\left(\Omega_{\text{dR}}^{\bullet}(\text{X};\mathbb{C}), d+r \cdot \boldsymbol{\omega}_{1} \wedge \right) \end{array}$$

One aspect of these twistings becomes transparent under the Chern character:

This is the hidden 1-twisting in TED-K – that we will next relate to anyons. \longrightarrow

References

[Karoubi 70] M. Karoubi:

Espaces Classifiants en K-Théorie, Trans. of the Amer. Math. Soc. **147** (1970), 75-115, [doi:10.2307/1995218]

[KS77] M. Klaus and G. Scharf: The regular external field problem in quantum electrodynamics, Helv. Phys. Acta 50 (1977) [doi:10.5169/seals-114890]

[CHO82] A. L. Carey, C. A. Hurst, and D. M. O'Brien: Automorphisms of the canonical anticommutation relations and index theory J. Funct. Anal. 48 (1982) 360-393 [doi:10.1016/0022-1236(82)90092-1]

[FM12] D. S. Freed and G. W. Moore: *Twisted equivariant matter*, Ann. Henri Poincaré 14 (2013), 1927–2023, [doi:10.1007/s00023-013-0236-x] [arXiv:1208.5055]

Introduction

(2) – Interacting enhancement via Hypothesis H

Summary

This part is a lightning indication of the basic idea in these articles:

Framed M-branes and topological invariants ADE-Equivariant Cohomotopy and M-branes The rational higher structure of M-theory Cohomotopy implies M-theory anom. canc. Cohomotopy implies M5-brane WZ term Cohomotopy implies tadpole cancellation *Cohomotopy implies intersecting brane obs.* Cohomotopy implies M5-brane anom. canc. Cohomotopy implies String structure on M5 Cohomotopy implies GS-mechanism Cohomotopy implies GS-mechanism on M5 *M/F-Theory as Mf-theory*

[arX:1310.1060] [arX:1805.05987] [arX:1903.02834] [arX:1904.10207] [arX:1906.07417] [arX:1909.12277] [arX:1912.10425] [arX:2002.07737] [arX:2002.11093] [arX:2008.08544] [arX:2011.06533] [arX:2103.01877] Interacting *n*-electron wavefunctions are functions on the space of *n* points in Bri-torus

Interacting *n*-electron wavefunctions are functions on the space of *n* points in Bri-torus Pauli exclusion \Rightarrow these span vector bundle away from the locus of coinciding points:
Interacting *n*-electron wavefunctions are functions on the space of *n* points in Bri-torus Pauli exclusion \Rightarrow these span vector bundle away from the locus of coinciding points:

Slater-Bloch valence bundle of interacting *n*-electron states

configuration space of *n* "probe" points

Interacting *n*-electron wavefunctions are functions on the space of *n* points in Bri-torus Pauli exclusion \Rightarrow these span vector bundle away from the locus of coinciding points:

Slater-Bloch valence bundle of interacting *n*-electron states

> configuration space of *n* "probe" points

This locus is known as the **configuration space of** *n* **points**.

Interacting *n*-electron wavefunctions are functions on the space of *n* points in Bri-torus Pauli exclusion \Rightarrow these span vector bundle away from the locus of coinciding points:

Slater determinants of Bloch states

Slater-Bloch val interacting *n*-e

$$\underbrace{ \begin{array}{c} \text{er-Bloch valence bundle of}\\ \text{eracting }n\text{-electron states} \end{array}}_{(k^1,\cdots,k^n)} \mathcal{V}_n \subset \underbrace{\prod_{(k^1,\cdots,k^n)} \text{Span} \left\{ \Psi_{i_1,\cdots,i_n} \left((k^1,s^1),\cdots,(k^n,s^n) \right) \right\}_{\substack{(i_1,\cdots,i_n)\\(s^1,\cdots,s^n)}}^{(i_1,\cdots,i_n)} \\ \downarrow \\ \underbrace{ \begin{array}{c} \text{configuration space of}\\ n\text{ "probe" points} \end{array}}_{\{1,\cdots,n\}} \left(\widehat{\mathbb{T}}^d \setminus \{k_1,\cdots,k_N\} \right) = \left\{ (k^1,\cdots,k^n) \in \left(\widehat{\mathbb{T}}^d \right)^n \middle| \begin{array}{c} \forall k^i \neq k^j \\ i \neq j \end{array} \right. \\ \underbrace{ \begin{array}{c} \text{configuration space of}\\ in \text{ complement of } N \text{ "nodal"} \\ points \text{ inside the Brillouin torus} \end{array}} = \left\{ (k^1,\cdots,k^n) \in \left(\widehat{\mathbb{T}}^d \right)^n \middle| \begin{array}{c} \forall k^i \neq k^j \\ i \neq j \end{array} \right. \\ \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{configuration space of}\\ i \neq j \end{array}}_{i \neq j} \underbrace{ \begin{array}{c} \text{$$

This locus is known as the **configuration space of** *n* **points**.

Deep theorems (Hopf, Pontrjagin, Segal → next slides) relate configurations of points to *Cohomotopy* theory – a *non-abelian* generalized cohomology theory:

Interacting *n*-electron wavefunctions are functions on the space of *n* points in Bri-torus Pauli exclusion \Rightarrow these span vector bundle away from the locus of coinciding points:

Slater-Blo interacti

n '

enhere

Slater determinants of Bloch states

This locus is known as the **configuration space of** *n* **points**.

Deep theorems (Hopf, Pontrjagin, Segal \rightarrow next slides) relate configurations of points to *Cohomotopy* theory – a *non-abelian* generalized cohomology theory:

Cohomotopy
$$\pi^{n}(X) = \operatorname{Maps}(X, S^{n})/_{\operatorname{htpy}}$$

 $\downarrow (S^{n} \to K(\mathbb{Z}, n))_{*}$
ordinary
cohomology $H^{n}(X; \mathbb{Z}) = \operatorname{Maps}(X, K(\mathbb{Z}, n))/_{\operatorname{htpy}}$
E.-M.-space

which identifies them with their Cobordism class:

Special case: Hopf degree theorem.

On *n*-manifolds, *n*-Cohomotopy agrees with integral *n*-cohomology

Special case: Hopf degree theorem.

On *n*-manifolds, *n*-Cohomotopy agrees with integral *n*-cohomology and the Pontrjagin construction is the assignment of **instanton charge**:

Special case: Hopf degree theorem.

On *n*-manifolds, *n*-Cohomotopy agrees with integral *n*-cohomology and the Pontrjagin construction is the assignment of **instanton charge**:

configurations of points in \mathbb{R}^p **Cohomotopy moduli space** $\operatorname{Conf}\left(\mathbb{R}^{d},\mathbb{R}^{p-d}_{\operatorname{cpt}}\right)$ $\rightarrow \operatorname{Maps}\left(\mathbb{R}^{d}_{\operatorname{cpt}}, S^{p}\right)$ cohomotopy charge map homotopy equivalence which are distinct in \mathbb{R}^p & may vanish to ∞ along \mathbb{R}^{p-d}

Here an element of $\operatorname{Conf}(\mathbb{R}^d, \mathbb{R}^1_{\operatorname{cpt}})$:

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric, implies a list of subtle topological conditions expected to hold in M-theory.

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric, implies a list of subtle topological conditions expected to hold in M-theory.

Moreover, generalized cohomology *of* intersecting Cohomotopy moduli spaces reflects intersecting brane observables expected from non-abelian DBI action.

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric, implies a list of subtle topological conditions expected to hold in M-theory.

Moreover, generalized cohomology *of* intersecting Cohomotopy moduli spaces reflects intersecting brane observables expected from non-abelian DBI action.

~~ Hypothesis H:

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric, implies a list of subtle topological conditions expected to hold in M-theory.

Moreover, generalized cohomology *of* intersecting Cohomotopy moduli spaces reflects intersecting brane observables expected from non-abelian DBI action.

→ **Hypothesis H**:

Quantum observables on non-perturbative interacting ground states are in generalized cohomology (e.g. TED K-theory) of twisted Cohomotopy moduli.

In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric, implies a list of subtle topological conditions expected to hold in M-theory.

Moreover, generalized cohomology *of* intersecting Cohomotopy moduli spaces reflects intersecting brane observables expected from non-abelian DBI action.

→ **Hypothesis H**:

Quantum observables on non-perturbative interacting ground states are in generalized cohomology (e.g. TED K-theory) of twisted Cohomotopy moduli.

Introduction

(3) – Anyon braiding via Cohesive Homotopy Type Theory

Summary

This part is a brief indication of a few aspects discussed in:

Anyonic Defect Branes in TED-K[arX:2203.11838]Anyonic Topological Order in TED-K[arX:2206.13563]Topological Quantum Programming in TED-K[PlanQC 2022 33]

Solid state physics	K-theory	String theory

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti D-brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/D9-branes

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti D-brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti \overline{D} -brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti D-brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Internal symmetry	Inner local system-twist	Inside of orbi-singularity

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti \overline{D} -brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Internal symmetry	Inner local system-twist	Inside of orbi-singularity
Anyons	Punctures	Defect branes

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

(numerical simulation from arXiv:1901.10739)

In solid state physics anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 D or M3 = M5 \perp M5 branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or M3 = M5 \perp M5 branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or $M3 = M5 \perp M5$ branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

ground state wave functions of $spin=w_I \ \widehat{\mathfrak{su}_2}^k$ -anyons at positions z_I in transverse plane $\left.\begin{array}{c} space \ of "conformal block" \\ \simeq \ ConfBlck" \\ \widehat{\mathfrak{sl}_2}^k (\vec{w}, \vec{z}) \end{array}\right.$

space of "conformal blocks"

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or $M3 = M5 \perp M5$ branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

ground state wave functions of $spin=w_I \ \widehat{\mathfrak{su}_2}^k$ -anyons at positions z_I in transverse plane $space of "conformal block" \cong ConfBlck"_{\widehat{\mathfrak{sl}_2}^k}(\vec{w}, \vec{z})$

space of "conformal blocks"

As the positions z_1 move, these spaces constitute braid group representations.

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or $M3 = M5 \perp M5$ branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

 $\left\{\begin{array}{l} \text{ground state wave functions of} \\ \text{spin}=w_I \ \widehat{\mathfrak{su}_2}^k\text{-anyons at} \\ \text{positions } z_I \text{ in transverse plane} \end{array}\right\} \begin{array}{l} \text{space of "conformal block} \\ \simeq \ \text{ConfBlck}^{\bullet}_{\widehat{\mathfrak{sl}_2}^k}(\vec{w},\vec{z}) \\ \end{array}$

space of "conformal blocks"

As the positions z_1 move, these spaces constitute braid group representations.

Previously **Open Question**: *Is this structure at all reflected in TED-K-Theory?*
Anyons in condensed matter & string theory.

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or $M3 = M5 \perp M5$ branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

 $\left\{\begin{array}{c} \text{ground state wave functions of} \\ \text{spin}=w_I \ \widehat{\mathfrak{su}_2}^k\text{-anyons at} \\ \text{positions } z_I \text{ in transverse plane} \end{array}\right\} \begin{array}{c} \text{space of "conformal block} \\ \simeq \ \text{ConfBlck}^{\bullet}_{\widehat{\mathfrak{sl}_2}^k}(\vec{w},\vec{z}) \\ \end{array}$

space of "conformal blocks"

As the positions z_1 move, these spaces constitute braid group representations.

Previously **Open Question**: *Is this structure at all reflected in TED-K-Theory?*

Yes!

Consider

Consider

Consider

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \bigcup_{i < j} z^i \neq z^j \right\}.$$

with $\boldsymbol{\omega}_1 := \sum_{1 \le i \le n} \sum_I -\frac{\mathbf{w}_I}{\kappa} \frac{\mathrm{d}z}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{\mathrm{d}z}{z^i - z^j} \quad \text{on} \quad \operatorname{Conf}_{\{1,\cdots,n\}}(\mathbb{C} \setminus \{\vec{z}\})$

Then:

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \underset{i < j}{\forall} z^i \neq z^j \right\}.$$

with
$$\omega_1 := \sum_{1 \le i \le n} \sum_I -\frac{w_I}{\kappa} \frac{dz}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{dz}{z^i - z^j}$$
 on $\operatorname{Conf}_{\{1, \cdots, n\}} (\mathbb{C} \setminus \{\vec{z}\})$

Then:

$$\mathfrak{su}(2)\text{-affine deg}=n \text{ conformal blocks}$$

$$\operatorname{CnfBlck}^{n}_{\mathfrak{sl}_{2}^{k}}(\vec{w},\vec{z}) \hookrightarrow H^{n}\left(\Omega^{\bullet}_{\mathrm{dR}}\left(\operatorname{Conf}_{\{1,\cdots,n\}}\left(\mathbb{C}\setminus\{\vec{z}\}\right)\right), \mathrm{d}+\omega_{1}\wedge\right)$$
[FSV94, Cor. 3.4.2]

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \underset{i < j}{\forall} z^i \neq z^j \right\}.$$

with
$$\omega_1 := \sum_{1 \le i \le n} \sum_I -\frac{w_I}{\kappa} \frac{dz}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{dz}{z^i - z^j}$$
 on $\operatorname{Conf}_{\{1, \cdots, n\}} (\mathbb{C} \setminus \{\vec{z}\})$

Then:

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \underset{i < j}{\forall} z^i \neq z^j \right\}.$$

with
$$\omega_1 := \sum_{1 \le i \le n} \sum_I -\frac{w_I}{\kappa} \frac{dz}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{dz}{z^i - z^j}$$
 on $\operatorname{Conf}_{\{1, \cdots, n\}} (\mathbb{C} \setminus \{\vec{z}\})$

Then:

$$\mathfrak{su}(2)-\mathfrak{affine deg=n} \operatorname{conformal blocks} CnfBlck^{n}_{\mathfrak{sl}_{2}^{k}}(\vec{w},\vec{z}) \hookrightarrow H^{n}\left(\Omega^{\bullet}_{dR}\left(\operatorname{Conf}_{\{1,\cdots,n\}}\left(\mathbb{C}\setminus\{\vec{z}\}\right)\right), d+\omega_{1}\wedge\right)$$
 [FSV94, Cor. 3.4.2]
$$\hookrightarrow \operatorname{KU}^{n+\omega_{1}}\left(\left(\operatorname{Conf}_{\{1,\cdots,n\}}\left(\mathbb{C}\setminus\{\vec{z}\}\right)\right)\times */\!\!/C_{\kappa};\mathbb{C}\right)$$
 [SS22, Thm. 2.18]
inner local system-twisted deg=n K-theory
of configurations in $\mathbb{A}_{\kappa-1}$ -singularity

The previous statement is subsumed since $\operatorname{Conf}_{\{1\}}(X) = X$.

The commonly expected $\widehat{\mathfrak{su}_2}^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

The commonly expected $\widehat{\mathfrak{su}}_2^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

This is compatible with traditional brane charge quantization (only) in degree 1

The commonly expected $\widehat{\mathfrak{su}}_2^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

This is compatible with traditional brane charge quantization (only) in degree 1 while in general degree it is compatible under <u>Hypothesis H</u>, which asserts [SS19] that quantum states of branes are in the generalized cohomology of *Cohomotopy* cocycle spaces of spacetime:

The commonly expected $\widehat{\mathfrak{su}_2}^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

This is compatible with traditional brane charge quantization (only) in degree 1 while in general degree it is compatible under <u>Hypothesis H</u>, which asserts [SS19] that quantum states of branes are in the generalized cohomology of *Cohomotopy* cocycle spaces of spacetime:

References

[FSV94] B. Feigin, V. Schechtman, and A. Varchenko: On algebraic equations satisfied by hypergeometric correlators in WZW models, I Comm. Math. Phys. 163 (1994), 173–184, [doi:10.1007/BF02101739]

[SS19] H. Sati and U. Schreiber: Differential Cohomotopy implies intersecting brane observables Adv. Theor. Math. Phys. 26 4 (2022) [arXiv:1912.10425]

[SS22-Bun] H. Sati and U. Schreiber: Equivariant principal ∞-bundles, [arXiv:2112.13654]

[SS22] H. Sati and U. Schreiber: Anyonic defect branes in TED-K-Theory [arXiv:2203.11838]

References

[OV96] H. Ooguri and C. Vafa:

Two-Dimensional Black Hole and Singularities of CY Manifolds, Nucl. Phys. B 463 (1996), 55-72, [doi:10.1016/0550-3213(96)00008-9], [arXiv:hep-th/9511164]

[LLS02] W. Lerche, A. Lütken, and C. Schweigert: *D-Branes on ALE Spaces and the ADE Classification of CFTs*, Nucl. Phys. B **622** (2002), 269-278, [doi:10.1016/S0550-3213(01)00613-7], [arXiv:hep-th/0006247]

[Le00] W. Lerche:

On a Boundary CFT Description of Nonperturbative $\mathcal{N} = 2$ Yang-Mills Theory, [hep-th/0006100].

```
[dBS13] J. de Boer and M. Shigemori:
    Exotic Branes in String Theory,
    Phys. Rep. 532 (2013), 65-118,
    [arXiv:1209.6056] [doi:10.1016/j.physrep.2013.07.003].
```

Introduction

It is largely folklore that:

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

				(11 D 1
free topological phase	2S			stable D-branes
in condensed matter the	ory			in string theory
		and <i>some</i>		
		enhancement to		
interacting phases			no	n-perturbative effects
		is needed		
		to account for		
topological order				M-branes
Topological phases	1	Copological K theory	, 	String/M theory

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

classifies			
free topological phases in condensed matter theory	,		stable D-branes in string theory
interacting phases topological order	and <i>some</i> enhancement to is needed to account for	non	-perturbative effects M-branes
Topological phases	Topological K theo	Y	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus		Single probe D-brane of codimension <i>d</i>

fully Twisted & Equivariant & Differential (TED)

	classifies			
free topological phases in condensed matter theor	y		stable D-branes in string theory	
interacting phases topological order	and some enhancement to is needed to account for	non	-perturbative effects M-branes	
Topological phases	Topological K theor	·у	String/M theory	
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus		Single probe D-brane of codimension d	
Single positron state	Virtual line bundle over Brillouin torus	,	Single anti \overline{D} -brane of codimension d	

	classifies			
free topological phases			stable D-branes	
in condensed matter theo	ry		in string theory	
	and <i>some</i>			
	enhancement to			
interacting phases		non	-perturbative effects	
	is needed			
	to account for			
topological order			M-branes	
Topological phases	Topological K theor	·y	String/M theory	
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus		Single probe D-brane of codimension <i>d</i>	
Single positron state	Virtual line bundle over Brillouin torus	5	Single anti \overline{D} -brane of codimension <i>d</i>	
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -toru	e Is	Unstable (tachyonic) D9/D9-brane state	

in condensed matter the	ory		in string theory	
interacting phases topological order	and some enhancement to is needed to account for	non	-perturbative effects M-branes	
Topological phases	Topological K theor	:y	String/M theory	
Topological phases Single-electron state in <i>d</i> -dim crystal	Topological K theo Line bundle over Brillouin <i>d</i> -torus	. y	String/M theory Single probe D-brane of codimension <i>d</i>	
Topological phases Single-electron state in <i>d</i> -dim crystal Single positron state	Topological K theorLine bundle overBrillouin d-torusVirtual line bundleover Brillouin torus	. y	String/M theory Single probe D-brane of codimension d Single anti D-brane of codimension d	
Topological phases Single-electron state in d-dim crystal Single positron state Bloch-Floquet transform	Topological K theor Line bundle over Brillouin d-torus Virtual line bundle over Brillouin torus Hilbert space bundle over Brillouin d-toru	y 6 e 15	String/M theory Single probe D-brane of codimension d Single anti D-brane of codimension d Unstable (tachyonic) D9/D9-brane state	

interacting phases topological order	enhancement to is needed to account for	n-perturbative effects M-branes
Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension d
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) D9/D9-brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation

topological order	is needed to account for	n-perturbative effects M-branes
Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension d
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) $D9/\overline{D9}$ -brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge

topological order		M-branes
Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension d
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) D9/D9-brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
Symmetry protection	Twisted equivariance	Global symmetries

Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension d
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) D9/ $\overline{D9}$ -brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
Symmetry protection	Twisted equivariance	Global symmetries
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB

Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension <i>d</i>
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) D9/D9-brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
Symmetry protection	Twisted equivariance	Global symmetries
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding

Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension <i>d</i>
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) $D9/\overline{D9}$ -brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
Symmetry protection	Twisted equivary. the state	Sed Global symmetries
CPT symmetry	KR/KU/KO-theory	the art ype I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding

Topological phases	Topological K theory	String/M theory
Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension d
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) $D9/\overline{D9}$ -brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
	What	
Symmetry protection	Twisted equivar. dictiona	Global symmetries
CPT symmetry	KR/KU/KO-theory	entries ve I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding

Single-electron state in <i>d</i> -dim crystal	Line bundle over Brillouin <i>d</i> -torus	Single probe D-brane of codimension <i>d</i>
Single positron state	Virtual line bundle over Brillouin torus	Single anti \overline{D} -brane of codimension <i>d</i>
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) D9/D9-brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge

Symmetry protection	Twisted equivaria	Global symmetries
CPT symmetry	KR/KU/KO-the Cictionar	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	entries actime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity

Single position state	over Brillouin torus	of codimension d
Bloch-Floquet transform	Hilbert space bundle over Brillouin <i>d</i> -torus	Unstable (tachyonic) D9/D9-brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge

Symmetry protection	Twisted equivariance	Global symmetries
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity

Topological order

Twisted differentiality

Gauge symmetries

-	over Brillouin <i>a</i> -torus	D9/D9-brane state
Dressed Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
Symmetry protection	Twisted equivariance	Global symmetries
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity
Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field

vacuum operator	Fredholm operators	
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	stable D-brane state after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
Symmetry protection	Twisted equivariance	Global symmetries
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity
Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field

Differential K-LES

Mass terms

Axio-Dilaton RR-field

е
3
ty
{ - -

Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Symmetry protection	Twisted equivariance	Global symmetries
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity

Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Anyonic defects	TED-K of Configurations	Defect branes
Anyonic defects	IED-K of Configurations	Defect branes

CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity
Topological order	Twisted differentiality	Gauge symmetries

lopological order	I wisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Anyonic defects	TED-K of Configurations	Defect branes
N band nodes	<i>N</i> -punctured Brillouin torus	N defect branes

Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity

Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Anyonic defects	TED-K of Configurations	Defect branes
N band nodes	<i>N</i> -punctured Brillouin torus	N defect branes
Interacting <i>n</i> -electron states around <i>N</i> band nodes	Vector bundle over <i>n</i> -point configuration space in <i>N</i> -punctured Brillouin torus	Interacting <i>n</i> probe branes around <i>N</i> defect branes

Gauged internal symmetry	Inner local system-twist	Inside of orbi-singularity

Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Anyonic defects	TED-K of Configurations	Defect branes
N band nodes	<i>N</i> -punctured Brillouin torus	N defect branes
Interacting <i>n</i> -electron states around <i>N</i> band nodes	Vector bundle over <i>n</i> -point configuration space in <i>N</i> -punctured Brillouin torus	Interacting <i>n</i> probe branes around <i>N</i> defect branes
su ₂ -anyon species	Holonomy of inner local system	$SL(2,\mathbb{Z})$ -charges of defect branes
Topological order	Twisted differentiality	Gauge symmetries
--------------------------	--------------------------------	------------------------
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Anyonic defects	TED-K of Configurations	Defect branes
N band nodes	<i>N</i> -punctured Brillouin torus	N defect branes
Interacting <i>n</i> -electron states around N band nodes	Vector bundle over <i>n</i> -point configuration space in <i>N</i> -punctured Brillouin torus	Interacting <i>n</i> probe branes around <i>N</i> defect branes
\mathfrak{su}_2 -anyon species	Holonomy of inner local system	$SL(2,\mathbb{Z})$ -charges of defect branes
Anyon braiding	TED-K Gauss-Manin connections	Defect brane monodromy

Topological order	Twisted differentiality	Gauge symmetries
Berry connection	Differential K-theory	Chan-Paton gauge field
Mass terms	Differential K-LES	Axio-Dilaton RR-field
Nodal point charge	Flat K-theory	Defect brane charge

Anyonic defects	TED-K of Configurations	Defect branes
N band nodes	<i>N</i> -punctured Brillouin torus	N defect branes
Interacting <i>n</i> -electron states around <i>N</i> band nodes	Vector bundle over <i>n</i> -point configuration space in <i>N</i> -punctured Brillouin torus	Interacting <i>n</i> probe branes around <i>N</i> defect branes
\mathfrak{su}_2 -anyon species	Holonomy of inner local system	$SL(2,\mathbb{Z})$ -charges of defect branes

Anyon braiding

TED-K Gauss-Manin connections

Defect brane monodromy

TED K-Theory of Cohomotopy Moduli Spaces and Anyonic Topological Order

Urs Schreiber on joint work with Hisham Sati

slides and pointers at: ncatlab.org/schreiber/show/TED-K+of+Cohomotopy+and+Anyons