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Introduction

(1) – TED K-Theory
via Cohesive ∞-Topos Theory

(2) – Interacting enhancement
via Hypothesis H

(3) – Anyon braiding
via Cohesive Homotopy Type Theory

Summary
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(1) Systematic construction of TED K-theory using cohesive ∞-topos theory

(for finite equivariance as befits the “very good” orbifolds appearing in CMT and ST)
[arX:2008.01101][arX:2009.11909][arX:2011.06533][arX:2203.11838][SS22-TEC]
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Fred�PU(H )

X×∗�G
orbi-singularity

BPU(H )
universal stacky
Fredholm bundle

τ

equivariant
twist

TE K-cocycle mapping stack
adjunction
 −−!

FredG�G∗ Maps(BG, Fred�PU(H ))stbl

X BG∗ Maps(BG, BPU(H ))stbl

(pb)

inner local system
inside singularity

adjunct

TE K-cocycle

adjunct equivariant twist

non-trivial
equivariant π1
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(2) Precise proposal for interacting enhancement via “Hypothesis H” [JMP 59 (’18)]

Evaluate TED K-cohomology not on Brillouin torus/spacetime-orbifold itself,
but on its configuration space of points, and generally: on its Cohomotopy moduli
[CMP 377 (2020)] [JMP 62 (2021)] [ATMP 26 4 (2022)] [RMP 34 5 (2022)] [arX:2103.01877]

(see below)
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ordered points in the plane

∏
n Conf
{1, · · · ,n}

(C) ≃

3-Cohomotopy cocycle space
for codim=1 branes

Map∗(R+∧Ccpt,S3)≃︷ ︸︸ ︷⋃
n
Confn

(
C; Rcpt

) ×⋃
n Confn

(
∗; (R×C)cpt

)

3-Cohomotopy cocycle space
for codim-2 branes

Map∗(Rcpt∧C+,S3)≃︷ ︸︸ ︷⋃
n
Confn

(
R; Ccpt

)
Fiber product of respective configuration spaces

(of un-ordered points escaping to transverse infinity)
reflecting the brane intersections

e.g.: Conf
{1, · · · ,3}

(C) ≃

 R!

"
C

MK6

x1

M5

z1
M51

M31

x2<

z2

x3<

z3



The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
their transverse plane.
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The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
their transverse plane.

Claim: The TED K-cohomology of n-point configurations in Brillouin torus
classifies valence bundle of n-electron interacting states [arX:2206.13563]
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(3) Concrete implementation of topological quantum gates
via TED-K in cohesive homotopy type theory:

[PlanQC 2022 33]
[arX:2206.13563]
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Brillouin torus

wI/κ

nodal point

time
braiding

T̂2

kI

kI

seen in
TED K:

Some ground state for
fixed defect positions

k1,k2, · · · at time t1

∣∣ψ(t1)
〉 Berry phase unitary transformation

= adiabatic quantum gate

∣∣ψ(t2)
〉

Another ground state for
fixed defect positions

k1,k2, · · · at time t2
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Remarkably, for such constructions in cohesive ∞-topos theory [EPTCS 158 (2014)]
there is developed a programming language: “cohesive HoTT” [arX:1402.7041]
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to build a topological quantum simulator

Programming platform: Library/Module: Hardware platform:

Cohesive Homotopy
Type Theory with

dependent linear types

TED-K-cohomology of
defect configurations in

crystallographic orbifolds

Anyonic quantum states
in topological phases
of quantum materials

Topological quantum
braid gates
and circuits

implements

(1)

topological quantum programming

emulates

(2)

runs (3)
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This part is a
quick motivation and exposition of

TED K-theory
following these articles:

Proper Orbifold Cohomology [arX:2008.01101]
The twisted non-abelian character map [arX:2009.11909]

Equivariant Principal ∞-bundles [arX:2112.13654]
Anyonic Defect Branes in TED-K-Theory [arX:2203.11838]

The twisted equivariant character map [SS22-TEC]
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Vacua of electron/positron field in Coulomb background.
Fact ([KS77][CHO82]). The vacua of the free Dirac quantum field
in a classical Coulomb background...

V
Coulomb
potential

∣∣∣u",v"
u#,v#

〉
single

electron/positron
wavefunction
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Vacua of electron/positron field in Coulomb background.
Fact ([KS77][CHO82]). The vacua of the free Dirac quantum field
in a classical Coulomb background are characterized by Fredholm operators...

finite-dimensional kernel

ker(F) H H
finite-dimensional cokernel

coker(F)︷ ︸︸ ︷
ψ ∈ H

∣∣ ∀φ ⟨φ |F |ψ⟩= 0
︷ ︸︸ ︷
ψ ∈ H | ∀φ ⟨ψ|F |φ⟩ = 0

Fredholm operator

F
bounded linear
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finite-dimensional kernel

ker(F) H H
finite-dimensional cokernel

coker(F)︷ ︸︸ ︷
ψ ∈ H

∣∣ ∀φ ⟨φ |F |ψ⟩= 0
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ψ ∈ H | ∀φ ⟨ψ|F |φ⟩ = 0

Fredholm operator

F
bounded linear

on the single-electron/positron Hilbert space:

electron states in
dressed vacuum ker(F)

single electron
Hilbert space

H H
⊕ ⊕
H

single positron
Hilbert space

H coker(F)
positron states in
dressed vacuum

F∗F

dressed vacuum
Fredholm operator

total charge in
dressed vacuum

ind(F) =

number of electrons in
dressed vacuum state

dim
(
ker(F)

)
−

number of positrons in
dressed vacuum state

dim
(
coker(F)

)
= dim

(
coker(F∗)

)
− dim

(
ker(F∗)

)
35



Quantum symmetries.
On these dressed vacua of electron/positron states
the following CPT-twisted projective group

even projective unitary group

U(H )×U(H )

U(1)
⋊
( grading

involution

Z2︸︷︷︸
{e,P}

×
complex

conjugation

Z2︸︷︷︸
{e,T}

)
group of quantum symmetries

C := PT , P ·
[
U+ ,U−

]
:=

[
U− ,U+

]
·P , T ·

[
U+ ,U−

]
:=

[
U+ ,U−

]
·T
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[
U+ ,U−

]
:=

[
U− ,U+

]
·P , T ·

[
U+ ,U−

]
:=

[
U+ ,U−

]
·T

naturally acts by conjugation:

[U+,U−] : F 7−! U−1
+ ◦F ◦U−

C · [U+,U−] : F 7−! U−1
− ◦F t ◦U+

P · [U+,U−] : F 7−! U−1
− ◦F∗ ◦U+

T · [U+,U−] : F 7−! U−1
+ ◦F ◦U−
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Twisted equivariant KR-theory – As a single diagram of smooth groupoids.
Homotopy classes of quantum-symmetry equivariant families
of such self-adjoint odd Fredholm operators
constitute twisted equivariant KR-cohomology:

KRτ
G(X) :=



space of self-adjoint

odd Fredholm operators

Fred0
C�

group of quantum symmetries(
U(H )×U(H )

U(1) ⋊{e,P}×{e,T}
)

orbi-
orientifold

X�G B
(

U(H )×U(H )
U(1) ⋊{e,P}×{e,T}

)

B
(
{e,C}×{e,T}

)

universal bundle of
self-adjoint odd Fredholm operators

over moduli stack of quantum symmetries

underlying

CPT symmetry

eq
uiva

ria
nt fam

ily
of

Fred
holm

op
era

tor
s

coc
ycl

e in
TE-K

-th
eor

y

twist τtwist τ

C=
PT

/
∼htpy
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Twisted equivariant KR-theory – As a single diagram of smooth groupoids.
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Free topological phases of matter.
⇒ Idea: Single-particle valence bundle of electrons in crystalline insulator

classified by topological K-theory of Brillouin torus
equivariant wrt quantum symmetries [Kitaev 09] [FM12]

Single particle
valence bundle V =

{
k ∈ T̂d , |ψ⟩ ∈ H ⊕ H

∣∣∣ ∣∣⟨ψ|Hk|ψ⟩
∣∣ ≤ µF

}
⊂ B Bundle of all

relativistic
Bloch states

Brillouin torus of
momenta in crystal T̂d ! n-particle story

Conduction band

ever
higher bands

gap

E ∈ R

Chemical potential µF

k ∈ T̂d

Valence band

lowest bands

 bands of
valence bundle metal/conductor semi-conductor insulator

occupied
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CPT Quantum symmetries.

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
B
(
{e, P}×{e, T}

)
pure quantum T-symmetry

T 7−! T̂

Let’s use the previous machinery to compute the possible quantum T-symmetries...
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CPT Quantum symmetries.

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
B
(
{e, P}×{e, T}

)
pure quantum T-symmetry

T 7−! T̂

• •

• •

T

TT e

T

≡

• •

• •

T

e TT

T

• •

• •

T̂

T̂T̂ e

T̂

c

≡

• •

• •

T̂

e T̂T̂

T̂

c

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

≡

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c
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CPT Quantum symmetries.

B
(
{e,T}

)
B
(

U(H )×U(H )

U(1)
⋊{e, T}

)
B
(
BU(1)⋊{e, T}

)
B
(
{e, P}×{e, T}

)
pure quantum T-symmetry

T 7−! T̂

• •

• •

T

TT e

T

≡

• •

• •

T

e TT

T

• •

• •

T̂

T̂T̂ e

T̂

c

≡

• •

• •

T̂

e T̂T̂

T̂

c

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

≡

≡

• •

• •

T̂

T̂T̂

T̂ T̂ T̂

T̂

c

So c = c and hence there are two choices for quantum T-symmetry, up to homotopy:

T̂ 2 =±1 and similarly Ĉ2 =±1 .
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Example – Orientifold KR-theory

Let I be Inversion action on 2-torus T̂2 ≃ R2/Z2 and trivial action on observables

T2 T2

k 7−! −k ,

I Fred0
C Fred0

C

F 7−! F .

I

If T acts as I on T2, then KRT̂ 2 =+1 is Atiyah’s Real K-theory aka orienti-fold K-theory:

KR
(
T̂0,2

)
≃



Fred0
C�

(
U(H )⋊{e,T}

)
T2�{e, I} B

(
U(H )⋊{e,T}

)
B{e,T}

I 7!T

inversionof space

T̂ 2=+1

combined
with

complex conj.

of observables

/
∼htpy

But what happens on I-fixed loci i.e. on “orientifolds” ? −−−−−!
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CPT Quantum symmetries – 10 global choices. (following [FM12, Prop. 6.4])

Equivariance group G = {e} {e,P} {e,T} {e,C} {e,T}×{e,C}

Realization as
quantum symmetry τ :

T̂ 2 = +1 −1 +1 −1 −1 +1

Ĉ2 = +1 −1 +1 +1 −1 −1

Maximal induced
Clifford action

anticommuting with
all G-invariant odd
Fredholm operators

E−3 = iT̂Ĉβ

E−2 = iĈβ iĈβ

E−1 = P̂β Ĉβ Ĉβ Ĉβ

E+0 = β β β

(
β 0
0 −β

)
β β β β β β

E+1 =
(

0 1
1 0

)
Ĉβ Ĉβ Ĉβ

E+2 =
(

0 i
i 0

)
iĈβ iĈβ

E+3 =
(

0 −T̂
T̂ 0

)
iT̂Ĉβ

E+4 =
(

0 iT̂
iT̂ 0

)
τ-twisted G-equivariant
KR-theory of fixed loci KRτ = KU0 KU1 KO0 KO4 KO2 KO6 KO1 KO3 KO5 KO7
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CPT Quantum symmetries – 10 global choices.

Equivariance group G = {e} {e,P} {e,T} {e,C} {e,T}×{e,C}

Realization as
quantum symmetry τ :

T̂ 2 = +1 −1 +1 −1 −1 +1

Ĉ2 = +1 −1 +1 +1 −1 −1

Maximal induced
Clifford action

anticommuting with
all G-invariant odd
Fredholm operators

E−3 = iT̂Ĉβ

E−2 = iĈβ iĈβ

E−1 = P̂β Ĉβ Ĉβ Ĉβ

E+0 = β β β

(
β 0
0 −β

)
β β β β β β

E+1 =
(

0 1
1 0

)
Ĉβ Ĉβ Ĉβ

E+2 =
(

0 i
i 0

)
iĈβ iĈβ

E+3 =
(

0 −T̂
T̂ 0

)
iT̂Ĉβ

E+4 =
(

0 iT̂
iT̂ 0

)
τ-twisted G-equivariant
KR-theory of fixed loci KRτ = KU0 KU1 KO0 KO4 KO2 KO6 KO1 KO3 KO5 KO7


bounded opers. F̂ : H 2 H 2bounded

K−linear

self-adjoint F̂∗ = F̂ := F +F∗

Fredholm dim
(
ker

(
F̂
))

< ∞

∣∣∣∣∣∣∣∣∣
graded comm.

Ei ◦ F̂ =−F̂ ◦Ei
with

bounded oper. E0, · · · ,Ep : H 2 H 2bounded
K−linear

(anti-)self-adjoint (Ei)
∗ = sgni ·Ei

Clifford gen. Ei ◦E j +E j ◦Ei = 2sgni ·δi j


=: Fred−p

C [Karoubi 70]:
{

X −−−!
cnts

Fredp
K
}/

∼htpy
=

{
KUp(X) = KUp+2(X) | K= C
KOp(X) = KOp+8(X) | K= R
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Example – T I-equivariant KR-theory is KO0-theory.

The combination T · I acts trivially on the domain space and
by complex conjugation on observables.

Hence (T · I)-equivariant (T̂ 2 =+1)-twisted KR-theory is KO0-theory:

KO0(X
)

≃



Fred0
C�

(
U(H )⋊{e,T}

)
X ×∗�{e,T I} B

(
U(H )⋊{e,T}

)
B{e,T}

TI 7!T

no actionon space

T̂ 2=+1

combined
with

complex conj.

of observables

/
∼htpy

n = 0 1 2 3 4 5 6 7 8 9 · · ·

KO0(Sn
∗
)
= Z Z2 Z2 0 Z 0 0 0 Z Z2 · · ·
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Example – T I-equivariant KR-theory of punctured torus.

So the T I-equivariant (T̂ 2 =+1)-twisted KR-theory of the N-punctured torus is

KR(T̂ 2 =+1)
(
T̂2 \{k1, · · · ,kN}

)
≃ KO0(T̂2 \{k1, · · · ,kN}

)
≃ KO0(∨

1+N
S1
∗
)

(N ≥ 1)

≃
⊕
1+N

Z2

S1
a

S1
b

T̂2

≃
stbl

S1
a ∨S1

b ∨S2
bulk

k1

T̂2 \{k1}
≃

htpy
S1

a ∨S1
b

k1

k2

T̂2 \{k1,k2}
≃

htpy
S1

a ∨S1
b ∨S1

k1

k3

k2

T̂2 \{k1,k2,k3}
≃

htpy
S1

a ∨S1
b ∨S1 ∨S1

k1

k2

kn

T̂2 \{k1, · · · ,kn}
≃

htpy

∨
1+n S1
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The B-field twist.
Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field:

The homotopy fiber sequence of 2-stacks discussed before

BU(H ) B
(
U(H )/U(1)

)
B2U(1)

universal Dixmier-Douady class

DD
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The B-field twist.
Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field:

The homotopy fiber sequence of 2-stacks discussed before

BU(H ) B
(
U(H )/U(1)

)
B2U(1)

universal Dixmier-Douady class

DD

induces a surjection of equivalence classes of equivariant higher bundles

π0

equivariant projective bundles

Maps
(

X̂�G, B
(
U(H )/U(1)

)) equivariant bundle gerbes

π0 Maps
(

X̂�G, B2U(1)
)

DD∗
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The B-field twist.
Besides these CPT-quantum symmetries,
K-theory generically admits the famous twisting by a B-field:

The homotopy fiber sequence of 2-stacks discussed before

BU(H ) B
(
U(H )/U(1)

)
B2U(1)

universal Dixmier-Douady class

DD

induces a surjection of equivalence classes of equivariant higher bundles

π0

equivariant projective bundles

Maps
(

X̂�G, B
(
U(H )/U(1)

)) equivariant bundle gerbes

π0 Maps
(

X̂�G, B2U(1)
)

DD∗

which has a natural section:

π0Maps
(
X̂�G, B2U(1)

)
equivariant bundle gerbes

π0 Maps
(

X̂�G, B
(

U(H )×U(H )
U(1) ⋊

(
{e,C}×{e,P}

)))
full quantum-symmetry twists

.

“stable twists”
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The B-field twist – Inner local systems.
On fixed loci (orbi-singularities)

X�G ≃ X×∗�G = X×BG

the B-field twist induces secondary twists by “inner local systems”:

stable twists over fixed locus
Maps

(
X×∗�G, B2U(1)

)
≃ Maps

(
X×BG, B2U(1)

)
≃ Maps

(
X, Maps(BG, B2U(1))

)
≃ Maps

(
X, BG∗×B2U(1)

)
≃ Maps

(
X, BG∗)

inner local systems
× Maps

(
X, B2U(1)

)
bundle gerbes
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The B-field twist – Inner local systems.
On fixed loci (orbi-singularities)

X�G ≃ X×∗�G = X×BG

the B-field twist induces secondary twists by “inner local systems”:

stable twists over fixed locus
Maps

(
X×∗�G, B2U(1)

)
≃ Maps

(
X×BG, B2U(1)

)
≃ Maps

(
X, Maps(BG, B2U(1))

)
≃ Maps

(
X, BG∗×B2U(1)

)
≃ Maps

(
X, BG∗)

inner local systems
× Maps

(
X, B2U(1)

)
bundle gerbes

Here we are assuming G ⊂
fin

SU(2) so that H2
Grp

(
G, U(1)

)
= 0.

And G∗ := Hom
(
G,U(1)

)
denotes the Pontrjagin-dual group.
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=



Fredn
C�PU(H )

X ×∗�G BPU(H )
τ

inner local system twist

cocycle

/
∼htpy
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=



Maps
(
BG, Fredn

C�PU(H )
)

X Maps
(
BG, BPU(H )

)
τ̃

adjunct twist

cocycle

/
∼htpy
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=



Maps
(
BG, Fredn

C�PU(H )
)

X BG∗ Maps
(
BG, BPU(H )

)
cocycle

ω1
inner local system automorphisms of

univ. stable equiv. twist

/
∼htpy
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The B-field twist – Inner local systems – The diagrammatics.

Hence the
inner local system-twisted KU-cohomology
of a G-orbi-singularity of shape X
arises as follows:

KUn+[ω1]
G

(
X
)
=



(
Fred0

C
)G�G∗ Maps

(
BG, Fredn

C�PU(H )
)

X BG∗ Maps
(
BG, BPU(H )

)
(pb)coc

ycl
e

ω1
inner local system automorphisms of

univ. stable equiv. twist

/
∼htpy
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The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

BG BPU(H )

•
⊕
[ρi] ∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

7−!

•
⊕
[ρi]∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

stbl0

stbl0

ρ ∈G∗

g

v 7!1ρ⊗v

⊕
[ρi ]

(ρi(g)⊗id) ⊕
[ρi ]

(ρi(g)⊗id)

v 7!1ρ⊗v

ρ(g)(1ρ )
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The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

BG BPU(H )
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⊕
[ρi] ∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

7−!

•
⊕
[ρi]∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

stbl0

stbl0

ρ ∈G∗

g

v 7!1ρ⊗v

⊕
[ρi ]

(ρi(g)⊗id) ⊕
[ρi ]

(ρi(g)⊗id)

v 7!1ρ⊗v

ρ(g)(1ρ )

stable G-representation⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

action of group character on equivariant Fredholm operator
FFredholm operator

v 7!1ρ⊗v

⊕
i ρi⊗ℓ2(C)

[ρ]·F

equivariance of
Fredholm operator

v 7!1ρ⊗v
tensoring with unit of group character

⊕
s ρi(g)⊗id

⊕
s ρi(g)⊗id

F

projective intertwining action
of group character

v 7!1ρ⊗v
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The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character
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The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character

For twist by B-field B̂2 there is a closed differential 3-form H3 such that:

plain B-field
-twisted K-theory

KUn+B̂2(X) KUB̂2(X; C) ≃
3-twisted periodic de Rham cohomology⊕

d∈Z
Hn+2d

(
Ω•

dR
(
X; C

)
,d+H3 ∧

)
twisted

Chern character
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The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
KU0(X) KU0(X; C) ≃

periodic de Rham cohomology⊕
d∈N

H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character

For twist by B-field B̂2 there is a closed differential 3-form H3 such that:

plain B-field
-twisted K-theory

KUn+B̂2(X) KUB̂2(X; C) ≃
3-twisted periodic de Rham cohomology⊕

d∈Z
Hn+2d

(
Ω•

dR
(
X; C

)
,d+H3 ∧

)
twisted

Chern character

For twist by inner Cκ -local system, there is closed 1-form ω1 with holon. in Cκ ⊂ U(1)
such that:

inner local system
-twisted K-theory

KUn+[ω1]
Cκ

(
X
)

of A-type singularity

1-twisted periodic de Rham cohomology⊕
d ∈ Z

1 ≤ r ≤ κ

Hn+2d
(

Ω•
dR
(
X; C

)
,d+ r ·ω1 ∧

)
twisted equivariant

Chern character
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The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

complex K-theory
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H2d
(

Ω•
dR
(
X; C

)
,d
)

Chern character

This is the hidden 1-twisting in TED-K – that we will next relate to anyons. −−−!
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This part is a lightning indication
of the basic idea in these articles:

Framed M-branes and topological invariants [arX:1310.1060]
ADE-Equivariant Cohomotopy and M-branes [arX:1805.05987]
The rational higher structure of M-theory [arX:1903.02834]
Cohomotopy implies M-theory anom. canc. [arX:1904.10207]
Cohomotopy implies M5-brane WZ term [arX:1906.07417]
Cohomotopy implies tadpole cancellation [arX:1909.12277]
Cohomotopy implies intersecting brane obs. [arX:1912.10425]
Cohomotopy implies M5-brane anom. canc. [arX:2002.07737]
Cohomotopy implies String structure on M5 [arX:2002.11093]
Cohomotopy implies GS-mechanism [arX:2008.08544]
Cohomotopy implies GS-mechanism on M5 [arX:2011.06533]
M/F-Theory as Mf -theory [arX:2103.01877]
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Slater-Bloch valence bundle of
interacting n-electron states Vn ⊂ ∏

(k1,··· ,kn)
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{ Slater determinants of Bloch states

Ψi1,··· ,in

((
k1,s1), · · · ,

(
kn,sn

))}
(i1, · · · , in)
(s1, · · · ,sn)

configuration space of
n “probe” points Conf

{1, · · · ,n}

(
T̂d \{k1, · · · ,kN}

in complement of N “nodal”
points inside the Brillouin torus

)
=

{
(k1, · · · ,kn) ∈

(
T̂d

)n
∣∣∣∣ ∀i̸= j

ki ̸= k j

Pauli
exclusion

and ∀
i,I

ki ̸= kI
nodal

singularities

}
.
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This locus is known as the configuration space of n points.
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Deep theorems (Hopf, Pontrjagin, Segal! next slides) relate configurations of points
to Cohomotopy theory – a non-abelian generalized cohomology theory:

75



Interacting n-electron wavefunctions are functions on the space of n points in Bri-torus
Pauli exclusion ⇒ these span vector bundle away from the locus of coinciding points:

Slater-Bloch valence bundle of
interacting n-electron states Vn ⊂ ∏

(k1,··· ,kn)

Span
{ Slater determinants of Bloch states

Ψi1,··· ,in

((
k1,s1), · · · ,

(
kn,sn

))}
(i1, · · · , in)
(s1, · · · ,sn)

configuration space of
n “probe” points Conf

{1, · · · ,n}

(
T̂d \{k1, · · · ,kN}

in complement of N “nodal”
points inside the Brillouin torus

)
=

{
(k1, · · · ,kn) ∈

(
T̂d

)n
∣∣∣∣ ∀i̸= j

ki ̸= k j

Pauli
exclusion

and ∀
i,I

ki ̸= kI
nodal

singularities

}
.

This locus is known as the configuration space of n points.

Deep theorems (Hopf, Pontrjagin, Segal! next slides) relate configurations of points
to Cohomotopy theory – a non-abelian generalized cohomology theory:

Cohomotopy πn
(
X
)

= Maps
(

X ,

sphere︷︸︸︷
Sn

)/
htpy

ordinary
cohomology Hn

(
X ; Z

)
= Maps

(
X , K(Z,n)︸ ︷︷ ︸

E.-M.-space

)/
htpy

(
Sn!K(Z,n)

)
∗
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Pontrjagin’s theorem. Normal. framed submanifolds carry charge in Cohomotopy:
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Pontrjagin’s theorem. Normal. framed submanifolds carry charge in Cohomotopy:

Md (Rn)cpt = Sn
Σd−n

closed submanifold,
normally framed

� � // c

manifold︷ ︸︸ ︷ Cohomotopy classifying space
(n-sphere)︷ ︸︸ ︷

directed asymptotic distance from Σ

≃ cocycle representing Cohomotopy charge of Σ

0
regular
value− ∞

)

)

−ε

+ε

constant on 0 at Σ

di
re

ct
ed

di
st

an
ce

ne
ar

Σ

constant on ∞ far away from Σ

Σ
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which identifies them with their Cobordism class:
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(
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Special case: Hopf degree theorem.
On n-manifolds, n-Cohomotopy agrees with integral n-cohomology
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Special case: Hopf degree theorem.
On n-manifolds, n-Cohomotopy agrees with integral n-cohomology
and the Pontrjagin construction is the assignment of instanton charge:
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Special case: Hopf degree theorem.
On n-manifolds, n-Cohomotopy agrees with integral n-cohomology
and the Pontrjagin construction is the assignment of instanton charge:

flux tube S2

0

∞

higher cells

X := R1,1 ×
(
R2

)cpt ≃ R1,1 ×S2

spacetime seen by fields vanishing at transversal infinity︷ ︸︸ ︷
c

magnetic flux
through transversal plane

// BU(1) = K(Z,2)
classifying space for ordinary cohomology︷ ︸︸ ︷

[c] ∈
{

X −! BU(1)
}/

hmpty
total flux = homotopy class

≃ Z
charge
lattice
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Segal’s theorem generalizes Pontrjagin from Cohomotopy classes to moduli:
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Segal’s theorem generalizes Pontrjagin from Cohomotopy classes to moduli:

configurations of points in Rp

Conf
(
Rd , Rp−d

cpt

)
which are distinct in Rp

& may vanish to ∞ along Rp−d

Cohomotopy moduli space

Maps
(
Rd

cpt, Sp
)

cohomotopy charge map

∼
homotopy equivalence
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Segal’s theorem generalizes Pontrjagin from Cohomotopy classes to moduli:

configurations of points in Rp

Conf
(
Rd , Rp−d

cpt

)
which are distinct in Rp

& may vanish to ∞ along Rp−d

Cohomotopy moduli space

Maps
(
Rd

cpt, Sp
)

cohomotopy charge map

∼
homotopy equivalence

Here an element of Conf
(
Rd ,R1

cpt
)
:

Rd×{0} Rd×{∞}Rd×{∞}

projection to Rd
point

in Rd×R1
point

disappeared
to infinity
along R1
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Curiously, 4-Cohomotopy is a flux quantization law for C-field in 11d super-gravity:

88
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π4
(
X
) Bianchi identity for supergravity C-field{(

G7
G4

)
∈ Ω•

dR(X)

∣∣∣∣ dG7 =− 1
2 G4 ∧G4

dG4 = 0

}/
cncrd

H4
(
X ; Z

) {
G4 ∈ Ω•

dR(X)

∣∣∣∣ dG4 = 0
}/

cncrd

chn
π

gen. character map

(
S4!K(Z,4)

)
∗

G7 7!0
G4 7!G4
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In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric,
implies a list of subtle topological conditions expected to hold in M-theory.
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In fact, tangentially twisted 4-Cohomotopy, coupling this to the spacetime metric,
implies a list of subtle topological conditions expected to hold in M-theory.

Moreover, generalized cohomology of intersecting Cohomotopy moduli spaces
reflects intersecting brane observables expected from non-abelian DBI action.
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⇝ Hypothesis H:
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⇝ Hypothesis H:
Quantum observables on non-perturbative interacting ground states are in
generalized cohomology (e.g. TED K-theory) of twisted Cohomotopy moduli.
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This part is a brief indication
of a few aspects discussed in:

Anyonic Defect Branes in TED-K [arX:2203.11838]
Anyonic Topological Order in TED-K [arX:2206.13563]

Topological Quantum Programming in TED-K [PlanQC 2022 33]
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K-Theory classifies non-perturbative vacua.

Solid state physics K-theory String theory

Single electron state Line bundle Single D-brane

Single positron state Virtual line bundle Single anti D-brane

Bloch-Floquet transform Hilbert space bundle coincident D9/D9-branes

Dressed Bloch-Dirac
vacuum operator

Family of
Fredholm operators Tachyon field

Valence bundle of
electron/positron states

Virtual bundle of their
kernels and cokernels

D-brane Sen vacuum
after tachyon condensation

Topological phase K-theory class Stable D-brane charge

CPT symmetry KR/KU/KO-theory Type I/IIA/IIB

Crystallographic symmetry Equivariance Spacetime orbifolding

Intenral symmetry Inner local system-twist Inside of orbi-singularity

Anyons Punctures Defect branes
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Anyons Punctures Defect branes
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Anyons in condensed matter & string theory.

In solid state physics
anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics is that of
Wilson lines in su(2)-CS theory.

In string theory
exotic branes of codimension=2,
such as D7-branes @ ALE in 9+1 d
or M3 = M5 ⊥ M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]

(numerical simulation from arXiv:1901.10739)
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In solid state physics
anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics is that of
Wilson lines in su(2)-CS theory.

In string theory
exotic branes of codimension=2,
such as D7-branes @ ALE in 9+1 D
or M3 = M5 ⊥ M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]
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tra
nsvers

e

complex
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Σ2 H�Cκ

A κ
−1

-ty
pe

sin
gularity

Aκ−1 {0}
SL(2,Z)-multiplet D7I {zI}

SU(κ)-SYM on D3i {zi} {0}
Σ2

[OV96, p. 10-12]
[LLS02, p. 4s]

[Le00]
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104



Anyons in condensed matter & string theory.

In solid state physics
anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics is that of
Wilson lines in su(2)-CS theory.

In string theory
exotic branes of codimension=2,
such as D7-branes @ ALE in 9+1 d
or M3 = M5 ⊥ M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

105
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In solid state physics
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or M3 = M5 ⊥ M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that: ground state wave functions of
spin=wI ŝu2k-anyons at

positions zI in transverse plane

 ≃
space of “conformal blocks”

ConfBlck•
ŝl2

k
(
w⃗,⃗z

)
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In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that: ground state wave functions of
spin=wI ŝu2k-anyons at

positions zI in transverse plane

 ≃
space of “conformal blocks”

ConfBlck•
ŝl2

k
(
w⃗,⃗z

)
As the positions zI move, these spaces constitute braid group representations.
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As the positions zI move, these spaces constitute braid group representations.

Previously Open Question: Is this structure at all reflected in TED-K-Theory?
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Anyons in condensed matter & string theory.

In solid state physics
anyons are presumed pointlike defects
in gapped topological phases of
effectively 2-dimensional materials
whose adiabatic dynamics is that of
Wilson lines in su(2)-CS theory.

In string theory
exotic branes of codimension=2,
such as D7-branes @ ALE in 9+1 d
or M3 = M5 ⊥ M5 branes in 5+1 dim,
are thought to carry SL(2)-charges
and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that: ground state wave functions of
spin=wI ŝu2k-anyons at

positions zI in transverse plane

 ≃
space of “conformal blocks”

ConfBlck•
ŝl2

k
(
w⃗,⃗z

)
As the positions zI move, these spaces constitute braid group representations.

Previously Open Question: Is this structure at all reflected in TED-K-Theory?
Yes! −−−!
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TED-Cohomological incarnation of Conformal blocks.
Consider

κ := k+2 “level”

wI ∈ {0, · · · ,k} “weights”

zI ∈ {z1, · · · ,zN} “punctures”

ω1 := ∑I −wI
κ

dz
z−zI

transverse plane

ω1

defect brane

Σ2

∞

zI

su(2)-affine deg=1
conformal blocks

CnfBlck1
ŝl2

k (⃗w,⃗z)

natural
inclusion

↪−−−−−−!

1-twisted deg=1
de Rham cohomology

H1
(

Ω•
dR
(
C\ {⃗z}

)
, d+ω1 ∧

)
[FSV94, Cor. 3.4.2]

natural
inclusion

↪−−−−−−! KU1+ω1
((

C\ {⃗z}
)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1 singularity

[SS22, Prop. 2.16]
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(
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(
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, d+ω1 ∧

)
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↪−−−−−−! KU1+ω1
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C\ {⃗z}
)
×∗�Cκ ; C

)
inner local system-twisted deg=1

K-theory of Aκ−1-singularity (as explained above)

[SS22, Prop. 2.16]
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TED-Cohomological incarnation of Conformal blocks.
Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

Conf
{1, · · · ,n}

(
X
)

:=
{

z1, · · · ,zn ∈ X
∣∣ ∀

i< j
zi ̸= z j

}
.

with ω1 := ∑
1≤i≤n

∑
I
−wI

κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ

dz
zi − z j on Conf

{1, · · · ,n}

(
C\ {⃗z}

)
Then:
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TED-Cohomological incarnation of Conformal blocks.
Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

Conf
{1, · · · ,n}

(
X
)

:=
{

z1, · · · ,zn ∈ X
∣∣ ∀

i< j
zi ̸= z j

}
.

with ω1 := ∑
1≤i≤n

∑
I
−wI

κ

dz
z− zI

+ ∑
1≤i< j≤n

2
κ
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{1, · · · ,n}
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C\ {⃗z}

)
Then:

su(2)-affine deg=n
conformal blocks

CnfBlckn
ŝl2

k (⃗w,⃗z) ↪−!

1-twisted deg=n de Rham cohomology
of configuration space of n points

Hn
(

Ω•
dR

(
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
, d+ω1 ∧

)
[FSV94, Cor. 3.4.2]

↪−! KUn+ω1

((
Conf
{1, · · · ,n}

(
C\ {⃗z}

))
×∗�Cκ ; C

)
inner local system-twisted deg=n K-theory

of configurations in Aκ−1-singularity

[SS22, Thm. 2.18]
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The previous statement is subsumed since Conf
{1}

(X) = X .
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Conclusion.

The commonly expected ŝu2k-charges of anyons and defect branes
are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ak+1-orbi-singularities.
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Conclusion.

The commonly expected ŝu2k-charges of anyons and defect branes
are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ak+1-orbi-singularities.

This is compatible with traditional brane charge quantization (only) in degree 1
while in general degree it is compatible under Hypothesis H, which asserts [SS19]
that quantum states of branes are in the generalized cohomology of
Cohomotopy cocycle spaces of spacetime:
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are reflected in the TED-K-theory of configuration spaces of points
in 2-dimensional transverse spaces inside Ak+1-orbi-singularities.

This is compatible with traditional brane charge quantization (only) in degree 1
while in general degree it is compatible under Hypothesis H, which asserts [SS19]
that quantum states of branes are in the generalized cohomology of
Cohomotopy cocycle spaces of spacetime:

Configuration space of
ordered points in the plane

∏
n Conf
{1, · · · ,n}

(C) ≃

3-Cohomotopy cocycle space
for codim=1 branes

Map∗(R+∧Ccpt,S3)≃︷ ︸︸ ︷∏
nConfn

(
C; Rcpt

) ×
∏

n Confn
(
∗; (R×C)cpt

)
3-Cohomotopy cocycle space

for codim-2 branes

Map∗(Rcpt∧C+,S3)≃︷ ︸︸ ︷∏
nConfn

(
R; Ccpt

)
Fiber product of respective configuration spaces

(of un-ordered points escaping to transverse infinity)
reflecting the brane intersections

e.g.: Conf
{1, · · · ,3}

(C) ≃

 R!

"
C

MK6

x1

M5

z1
M51

M31

x2<

z2

x3<

z3



The moduli space of flat M3-branes
according to Hypothesis H is the con-
figuration space of ordered points in
their transverse plane.
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Introduction

(1) – TED K-Theory
via Cohesive ∞-Topos Theory

(2) – Interacting enhancement
via Hypothesis H

(3) – Anyon braiding
via Cohesive Homotopy Type Theory

Summary
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It is largely folklore that:

Topological K-theory

fully Twisted & Equivariant & Differential (TED)

classifies

stable D-branes
in string theory

free topological phases
in condensed matter theory

and some
enhancement to

interacting phases non-perturbative effects
is needed

to account for
M-branestopological order

Topological phases Topological K theory String/M theory

Single-electron state
in d-dim crystal

Line bundle over
Brillouin d-torus

Single probe D-brane
of codimension d

??

Single positron state Virtual line bundle
over Brillouin torus

Single anti D-brane
of codimension d

Bloch-Floquet transform Hilbert space bundle
over Brillouin d-torus

Unstable (tachyonic)
D9/D9-brane state

Dressed Dirac
vacuum operator

Family of
Fredholm operators Tachyon field

Valence bundle of
electron/positron states

Virtual bundle of their
kernels and cokernels

stable D-brane state
after tachyon condensation

Topological phase K-theory class Stable D-brane charge

Symmetry protection Twisted equivariance Global symmetries

CPT symmetry KR/KU/KO-theory Type I/IIA/IIB ??

Crystallographic symmetry Orbifold K-theory Spacetime orbifolding ??

Gauged internal symmetry Inner local system-twist Inside of orbi-singularity ??

Topological order Twisted differentiality Gauge symmetries ??

Berry connection Differential K-theory Chan-Paton gauge field ??

Mass terms Differential K-LES Axio-Dilaton RR-field
??

Nodal point charge Flat K-theory Defect brane charge

Anyonic defects TED-K of Configurations Defect branes ??

N band nodes N-punctured
Brillouin torus N defect branes

Interacting n-electron states
around N band nodes

Vector bundle over
n-point configuration space in
N-punctured Brillouin torus

Interacting n probe branes
around N defect branes

su2-anyon species Holonomy of
inner local system

SL(2,Z)-charges
of defect branes

folklore
novel
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