
2.4 Quantum Gates & Measurement

We explain how controlled quantum gates and quantum measurement gates (Lit. 1.1) are naturally represented in
the quantum modal logic of §2.3 and give (Prop. 2.38) a formal proof of the deferred measurement principle (18).

Data-typing of controlled quantum gates via quantum modal types.

We may observe that, with §2.3,
we now have available the natural
data-typing of classical/quantum
data that is indicated on the right.

Notice how the distinction between
classical and quantum data is re-
flected by the application or not of
the (co)monad ⃝ (2).

Throughout we use monadicity of
⊕

W
(Prop. 2.30) to translate (200)

• epistemic typing
via W -dependent linear types

into
• effective typing
via ⃝W -modal linear types.

Besides the practical utility which
we demonstrate in the following,
the modal logic of this typing
neatly reflects intuition, as shown.
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Here the “epistemic”-typing of controlled quantum gates shown in the middle row is manifest: For classical
control the quantum gate is a W -dependent linear map, while for quantum control it is a genuine linear map
on the W -indexed direct sum. The equivalent (200) “effective” typing in the top line of the bottom row follows
by monadicity of ⊕

W
(see Prop. 2.30). The very last line shows the corresponding Kleisli-triple formulation of

“programs with side effects” (66). On the left this requires assuming that the dependent linear type is constant,
H• = H (which typically is the case in practice, see the example on p. 80) since that makes it correspond to a free
⃝-modale. On the right we see the effectless operation (69).
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Quantum measurement – Copenhagen-style.
Last but not least, we obtain this way a natural typing
of the otherwise subtle case of quantum measurement
gates: These are now given simply by the 2-counit
and, equivalently, by the ⃝-join (cf. Prop. 2.27), as
shown on the right.

Via the language of effectful computation (Lit. 1.17)
and with the “reader-monad” ⃝ modally pronounced
as “indefiniteness” (191), this translates to the pleasant
statement that:

“For effectively-typed quantum data, quantum mea-
surement is nothing but the handling of indefiniteness-
effects” (regarded as modale homorphisms via (93)).

In more detail:
“Before measurement, quantum data is indefinite(-
effectful), while quantum measurement actualizes the
data by handling of its indefiniteness(-effect)”

This way the puzzlement of the “state collapse” (21) is
resolved into an appropriate quantum effect language
equivalent (200) to quantum modal logic.
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Before looking at examples (p. 80), we record a basic structural result immediately implied by this typing, which
may evidently be understood as formalizing the deferred measurement principle (18), thus making this principle
verifiable in LHoTT as [Sta15] envisioned should be the case for any respectable quantum programming language:

Proposition 2.38 (Deferred measurement principle). With respect to the above typing of quantum gates, the

2-Kleisli equivalence (94) is the following transformation of quantum circuits:
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Proof. It just remains to see that the Kleisli equivalence 2
W
(-) ◦ dplc2W

(-) acts in the first step as claimed, hence that

the following diagram commutes:
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But the square commutes since the gate F is independent of the measurement result w : W and hence is a
homomorphism of free 2-coalgebras (by Rem. 2.29), while the triangle commutes by the comonad axioms (71).

79


	Quantum Effects
	Quantum Gates & Measurement


