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Abstract

Fractional quantum Hall (FQH) systems are a main contender for future hardware realizing topologically
protected registers (“topological qbits”) and protected operations on these (“topological quantum gates”), both
plausibly necessary ingredients for future quantum computers at useful scales. But the anyonic braiding “statis-
tics” of FQH quasi-particles that has been experimentally reported is, while necessary and impressive, far from
sufficient: What is needed are externally operable and measurable “defect anyons” whose controlled braiding
would implement the desired protected gates via adiabatic holonomies.

Here we discuss a novel non-Lagrangian effective description of FQH systems, based on previously elusive
proper global quantization of effective topological flux, which directly translates their quantum-observables,
-states, -symmetries, and -measurement channels into purely algebro-topological analysis of local systems over
the flux moduli spaces. Under the hypothesis — for which we provide evidence — that the appropriate effective
flux quantization of FQH systems is in 2-Cohomotopy (a cousin of Hypothesis H in high-energy physics), the
results here are rigorously derived and as such might usefully inform future laboratory searches for topological
quantum hardware. In particular, the theory predicts (i) how defect anyons may arise in FQH systems, (ii)
which operable quantum gates and (iii) which measurement readouts these may implement.
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1 Motivation & Introduction

Need for topological quantum protection. The potential promise of quantum computers [77][47] is enormous
[39][7][80], but their practicability hinges on finding and implementing methods to stabilize quantum registers
and gates against decohering noise. Serious arguments [56][23][65][27][28][52][38][113] and practical experience [82]
suggest that the currently dominant approach of quantum error correction at the software-level (QEC [67][79]) will
need to be supplemented [16] 1 by more fundamental physical mechanisms of quantum error protection already at
the hardware level, in the form of “topological” stabilization of quantum states (“topological qbits”) and operations
(“topological quantum gates”) [58][35][100][99]. While the general idea of topological quantum protection is famous
and widely discussed, its fine details have received less attention and are nowhere nearly as well-understood as those
of QEC — this in odd contrast to its plausible necessity for scalable quantum computing.

Need for better FQH theory. The main practical contender 2 for the required topological quantum hard-
ware currently are (cf. [3][18][11][5][71]) fractional quantum Hall (FQH) systems ([106], review in [43][110]), where
one of the hallmarks of the required topological order ([114], cf. [119, §III][88]) has been experimentally reported
([74][75][76]): namely the “anyon statistics” of FQH quasi-particles (topological solitons). However, a clear theo-
retical concept for how to go from this observation to the implementation of topological quantum gates on FQH
hardware appears to have been lacking.

In particular, even if anyonic quasi-particles are detected to be present in the FQH material, their positions
or other quantum numbers are not externally controllable parameters, while the operation of topological quan-
tum gates, as commonly understood, requires the externally controlled adiabatic movement, and eventually the
measurement, of anyon-like singularities, hence of “defect anyons” instead of “solitonic anyons” (cf. [73, §3]).

Related to this open practical problem is arguably the previous lack of a solid theory/prediction of defect anyons
in FQH systems, let alone the discussion of operating quantum (measurement) gates on these.

The problem with effective CS-theory. Experiment shows abundantly that the fractional quantum Hall effect
is a universal phenomenon in that its characteristic properties are independent of the microscopic nature of the
host material and of impurities or deformations of the sample. This suggests the existence of accurate effective
field theory descriptions whose degrees of freedom reflect not any microscopic host particles but instead the nature
of the universally emergent FQH quasi-particles (much like conformal field theory universally serves as effective
description of critical phenomena in statistical mechanics, cf. [20, §3.2]). Traditionally, this putative effective
FQH theory is sought in the ancient and much-studied realm of Lagrangian quantum field theories (cf. [51][40]),
where one readily argues ([118][114], cf. [115, §2][110, §5][98, p 5]) that the only candidates are variants of abelian
Chern-Simons theory [10][81][68].

However, widely popular as they are, all gauge-field Lagrangians suffer from the deficiency that they are ex-
pressed in terms of only the local degrees of freedom of the gauge field — the gauge potential forms —, and hence by
themselves miss exactly the global degrees of freedom that are relevant for topological systems like FQH. While the
missing global flux quantization laws [1][94] are traditionally tacked onto Lagrangian theories in an afterthought, the
effective CS-Lagrangians proposed for FQH systems have the unnerving deficiency that — in their attempt to model
the all-important fractional quasi-particle current by an effective gauge field —, they appear to be inconsistent with
the integrality demanded by ordinary flux-quantization (cf. [115, p 35][110, p 159][98, p 5]).

This issue is an example of the notorious open problem of finding non-perturbative quantizations of Lagrangian
theories as needed for strongly coupled topological quantum systems [31] (the analog of mass gap problem in solid
state physics of what in mathematical high energy physics has been pronounced a “Millennium Problem” [13]).

Novel effective FQH theory based on flux quantization. In contrast, we have recently developed a non-
Lagrangian theory of topological quantum states in (higher) gauge theories which is compatible with and in fact
all based on consistent flux-quantization (survey in [94][98]): The main insight here is that

(a) flux-quantization laws are encoded in classifying spaces A (and consistency requires that their “rationalization”
reflects the duality-symmetric form of the gauge-field’s Bianchi identities), cf. [94, §3],

1[16]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum
computer that can solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error
correction by using far-more-stable qubits, in an approach called topological quantum computing.”

2Much more press coverage has been give to the alternative candidate topological platform of “Majorana zero modes” in nanowires
[17]; but even if the persistent doubts about their experimental detection can be dispelled in the future, these topological quantum
states would by design be unmovable and hence would not support the hardware-level protected quantum gates that we are concerned
with here.
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(b) the topological quantum observables on flux depend only on the homotopy type of this classifying space A, and
not on any other (local, microscopic) properties of the theory [92].

The key role of algebraic topology. With this understanding, the question for an effective QFT description of
FQH systems is then not answered as traditionally (by choosing a Lagrangian whose EOMs reflect local properties
like the Hall current) but instead by finding a classifying space A whose implied topological quantum observables
match the expected global observables, such as, for FQH systems, on the torus the emblematic commutation relation
WaWb = ζ2WbWa (cf. [110, (5.28)] and (33) below).

This construction of topological quantum states of quantized flux proceeds entirely by the analysis of local
systems on the homotopy type of moduli spaces of flux given by mapping spaces from the spacetime domain
into the classifying space for the flux-quantization law (recalled in §2) and as such is squarely a problem in the
mathematical subject of homotopy theory and algebraic topology (see §A.1 for pointers).

Novel effective flux quantization for FQH systems. Concretely, a candidate classifying space for the effective
magnetic flux through FQH systems (as seen by the effective quasi-particles/holes) turns out [95][93][98] 3 to be
the 2-sphere A ≃ S2, modeling effective FQH flux in a variation of the usual classifying space of plain magnetic
flux (of which it is the “2-skeleton”):

classifying space for
effective FQH flux

S2 ≃ CP 1 ↪−→ CP∞ ≃ BU(1) classifying space for
ordinary magnetic flux

In this article, we work out in detail how this classifying space produces quantum effects in FQH systems, in
particular how it reproduces quantum phenomena of abelian Chern-Simons theory, but as a quick plausibility
check, note that the rationalization of the 2-sphere is encoded by the following differential equations (its “Sullivan
minimal model” cf. [94, §3.2]), which are just those equations that characterize the Chern-Simons 3-form H3 for a
gauge field flux density F2 as it appears in the Lagrangian formulation of Chern-Simons theory:

rational model of
classifying space for
effective FQH flux

CE(lS2) ≃ R
d

[
F2

H3

]/(
dF2 = 0
dH3 = F2F2

)
Bianchi identities characterizing

Chern-Simons 3-form /
Green-Schwarz mechanism

Incidentally it is in this sense that our effective description of the FQH effect is a mild form of higher gauge
theory (cf. [97]), since the Chern-Simons 3-form (traditionally understood as a Lagrangian density) here appears
as higher degree flux density satisfying a Bianchi identity of the form known from Green-Schwarz mechanisms. 4

Aims. With this novel consistent effective description of FQH systems in hand, our ambition here is to provide
previously missing theoretical understanding & prediction of

(i) appearance of defect anyons ⇒ topological qbits,

(ii) operable transformations on these ⇒ topological quantum gates,

(iii) their admissible measurement bases ⇒ topological readout,

in FQH-like systems.

These predictions are solid (we provide rigorous proof) within the effective topological QFT that we use, and
hence we begin by recalling the evidence that our topological quantized flux matches the expected properties of
FQH systems in previously understood sectors.

While the account here is purely theoretical at this point, we highlight that it does suggest potential experimental
pathways to test and eventually implement the above mechanisms (i)-(iii) in FQH systems, notably it predicts that
defect anyons should be realizable as defects in the FQH material where the magnetic field is expelled (as could be
expected to be the case in type I superconducting impurities in the FQH semi-conductor), cf. Fig. F with §4.3

Acknowledgement. We are grateful for useful discussion with Sadok Kallel and Will Sawin.

3 As explained in [95][42], following [96], the 2-sphere here is a relative of the 4-sphere which similarly serves as flux quantization
of the higher gauge field in 11D supergravity [87, §2.5][32][41] (review in [94]), where its choice as such is referred to as Hypothesis H
[32]. While this is where our approach to FQH systems here comes from and is informed by [93] the reader here may entirely ignore
this, as it were, geometric engineering of FQH systems on M5-probes of 11d SuGra (reviewed in [98, §2-3]).

4In the “engineering” of our FQH model on M5-branes referred to in ftn. 3, this 3-form arises as the restriction to an orbi-singularity
of the “self-dual” tensor field carried by these branes, which itself is quantized in a higher (and “twistorial”) form of Cohomotopy.
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2 Flux observables and Classifying spaces

We first recall, from [92], how non-perturbative topological quantum observables on G-Yang-Mills fluxes depend
exclusively on (the homotopy type of) the electric/magnetic classifying space B

(
G ⋉ (g/Λ)

)
(Prop. 2.5 below),

and how for general (effective, higher) gauge theories this space is replaced by a classifying space A for the given
flux-quantization law [94] (Rem. 2.7 below). This is the key observation that allows us (in Def. 2.8 below) to
get directly at the otherwise elusive non-perturbative topological quantum flux observables of an effective gauge
theory, like for FQH systems, from hypothesizing (not an effective Lagrangian density, as done traditionally, but)
an effective flux classifying space.

Definition 2.1 (Spacetime). Throughout, we consider

◦ X1,3 := R1,1 × Σ2 a globally hyperbolic 4D spacetime,

◦ with spatial slices R1 × Σ2, to be thought of as a tubular neighborhood of:

◦ Σ2, a surface (here: a connected, oriented smooth 2D manifold with boundary) which at times is

◦ specialized to Σ2 ≡ Σ2
g,n,b, the unique (up to homeomporphism) surface

– of genus g,

– with b boundary components,

– and n punctures:

Σ2
g

ge
nu
s
, b

bo
un
da
rie
s
, n

pu
nc
tu
re
s

≃
(
Σ2

0,0,0︸ ︷︷ ︸
sphere

connected
sum

# T 2# · · ·#T 2︸ ︷︷ ︸
g connected summands

of tori

) com
ple

me
nt

\
{
D2 ⊔ · · · ⊔D2︸ ︷︷ ︸
b disjoint summands

of open disks

dis
joi
nt

un
ion

⊔ D
2 ⊔ · · · ⊔D

2︸ ︷︷ ︸
n disjoint summands

of closed disks

}
, (1)

understood as modeling an effectively 2-dimensional sample Σ2 of material. 5

We abbreviate Σ2
g,b := Σ2

g,b,0 and Σ2
g := Σ2

g,0 ≡ Σ2
g,0,0.

Example 2.2. We have homoemorphisms as follows:

Σ2
0,0,0 ≃ S2 sphere

Σ2
1,0,0 ≃ T 2 torus

Σ2
0,1,0 ≃ D2 disk

Σ2
0,0,1 ≃ R2 plane

Σ2
0,2,0 ≃ A2 (closed) annulus

Σ2
0,0,2 ≃ R2 \ {0} open annulus.

(2)

Of particular interest to us (in §4.4) is the n-punctured closed annulus, such as

Σ2
0,2,3 ≃ (3)

Definition 2.3 (Gauge group). Consider

– G a Lie group,

– with Lie algebra g,

– among which we choose an Ad-invariant lattice Λ ⊂ g,

– specialized shortly to G ≡ R ,

– and Λ = Z ⊂ R,
corresponding to traditional Dirac charge quantization (see Ex. 2.6 below).

5 Albeit routinely considered in theory, the practicability of direct laboratory realizations of Σ2
g,n,b (1) is limited when g > 0. The

case g = 1 (the torus) is readily realized (only) when considering momentum space (the Brillouin torus of a 2D crystal, cf. [88]) instead
of position space, but, while noteworthy in itself, this is not the case of FQH systems of concern here. Alternatively, it was argued [4]
that suitable defects, called “genons”, in a crystal lattice could make a sample of nominal genus g = 0 effectively behave like of g > 0.

But irrespectively of practicality, the theoretical possibility of g > 0 allows to compare our topological quantum flux observables to
those of abelian Chern-Simons theory in the case Σ2

g>0,0,0, and their agreement in this theoretical case supports the validity of our
observables also in the more practical cases of g = 0, n, b ̸= 0.
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The following theorem 2.4, from [92], is based on well-known ingredients but may have escaped earlier attention
in its deliberate disregard of the gauge potentials in favor of focus on the electric/magnetic flux densities — which is
what brings out how the topological flux quantum observables are all controlled by maps from Σ2 to the classifying
space B

(
G⋉ (g/Λ)

)
, cf. Rem. 2.6 below.

Theorem 2.4 (Yang-Mills G-flux quantum observables [92, Thm 1]). Non-perturbative quantum observables
on the G-Yang-Mills flux-density 6 through a closed surface Σ2 form the group convolution C∗-algebra C[−] of the
Fréchet Lie group of smooth functions C∞(−,−) from Σ2 to the semidirect product of G with the additive group
g/Λ

FlxObsordΣ2 ≃ C
[
C∞(

Σ2, G⋉Ad (g/Λ)
)]

≃ C
[
C∞(

Σ2, G
)︸ ︷︷ ︸

electric flux
observables

⋉Ad C∞(
Σ2, g/Λ

)︸ ︷︷ ︸
magnetic flux
observables

]
. (4)

Accordingly, we have in this situation that:

Proposition 2.5 (Topological G-flux quantum observables [92, §3]). The algebra of topological G-flux quan-
tum observables, hence of the group convolution C∗-algebra on the discrete group of connected components π0(−)
of the flux densities, is equivalently the group algebra of the fundamental group of maps into the classifying space:

TopFlxObsordΣ2 := C
[
π0 C

∞(
Σ2, G⋉Ad (g/Λ)

)]
≃ C

[
π0 C

∞(
Σ2, G

)
⋉Ad π0 C

∞(
Σ2, g/Λ

)]
≃ C

[
π1 Map0

(
Σ2, B

(
G⋉ (g/Λ)

))]
.

(5)

(See §A.1 for our notation concerning mapping spaces.)

Example 2.6 (The case of ordinary electromagnetism). For ordinary electromagnetic flux subject to the
usual Dirac charge quantization law (where the magnetic but not explicitly the total electric flux is quantized in
integral cohomology, cf. [92, (14)]) the relevant choice in (5) is G := R and Λ := Z ↪→ R, whence the homotopy
type of the classifying space is A := B

(
R⋉ (R/Z)

)
≃ BU(1).

In this case, the algebra (5) of observables on topological flux through a closed surface Σg (1) is

TopFluxObsordΣ2
g

≃ C
[
π0 C

∞(
Σ2, U(1)

)]
≃ C

[
π0 Map

(
Σ2, BZ

)]
≃ C

[
H1

(
Σ2

g; Z
)]

≃ C
[
Z2g

]
.

(6)

Interestingly, (6) is not quite the algebra of observables expected for fractional quantum Hall systems, the latter
instead being a non-abelian central extension (see ... below)

Prop. 2.5 is remarkable in how it shows the topological flux quantum observables of ordinary gauge theory to
depend exclusively on the classifying space that encodes the flux-quantization law (cf. Ex. 2.6).

A key observation now is the following:

Remark 2.7 (Proper flux quantization [91][94]). There are different admissible choices for classifying spaces
A of flux-quantization already for ordinary gauge theories and in particular for generalized (higher) gauge theories
– each choice defining a global completion of the local field content of the gauge theory.

While usual (perturbative) machinery of constructing quantum field theories based on Lagrangian densities does
not capture this global information, since Lagrangian densities do not (being functions only of local gauge potentials
but not the global flux-quantized gauge field content), with Prop. 2.5 we have established a direct construction of
topological flux quantum observables from the flux-quantization law determined by a classifying space A. We are
thus led to the following notions:

Definition 2.8 (Topological flux sector of flux-quantized quantum gauge theories). Given a (higher)
gauge theory flux-quantized with classifying space A [94]

• Generic topological flux observables...

The algebra of topological quantum observables on flux through a closed surface Σ2 is, in view of Prop. 2.5:

TopFlxObsAΣ2 = C
[
π1 Map0

(
Σ2, A

)]
. (7)

6For the case of abelian G of interest here, these are observables on the reduced phase space.
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• ...and topological quantum states.

In immediate consequence, the (Hilbert) space HΣ2 of topological quantum states must be a module over this
algebra, which, being a group algebra, means that it must be a linear representation of this fundamental group:

HΣ2 ∈ ModC
(
π1 Map0(Σ

2, A)
)
.

This furnishes previously unavailable access to non-perturbative quantization of exotic (notably: effective) gauge
theories in their topological sector: just by changing the choice of classifying space and applying the formula (7).
Even before choosing the classifying space A and hence the flux-quantization law, we see how to characterize
topological quantum states in incrementally more general situations:

• ... for solitonic flux.

If Σ2 = Σ2
g,b,n (1) is possibly non-compact (n > 0), then the solitonic flux configurations (cf. [94, §2.2][92, §A.2])

are those which are vanishing at infinity and thus classified by pointed maps on the one-point compactification
(−)∪{∞}

H(Σ2
g,b,n)

= ModC

(
π1 Map∗0

(
(Σ2

g,b,n)∪{∞}, A
)︸ ︷︷ ︸

moduli space of
solitonic topological flux

)
. (8)

• If the (higher) gauge theory in question is generally covariant (e.g. in that it is topological, as in the case of
Chern-Simons theory) then pullback along diffeomorphisms of Σ2 are meant to constitute gauge transformations
of flux configurations, so that the moduli space of topological flux is the homotopy quotient by the diffeomorphism
group (see Def. 3.6):

quantum states of
topological flux︷ ︸︸ ︷
H(Σ2

g,b,n)

generally covariantized
and in all charge sectors

∈

local systems of
state spaces on︷ ︸︸ ︷

ModC︸ ︷︷ ︸
reps
of

(
π1︸︷︷︸

fundamental
group of

(

moduli space of topological flux︷ ︸︸ ︷
Map∗0

(
(Σ2

g,b,n)∪{∞}, A
)︸ ︷︷ ︸

plain moduli space
of topological flux

� Diff+,∂(Σ2
g,b,n)︸ ︷︷ ︸

covariantized
under diffeos

)
)
. (9)

Remark 2.9. Representations of fundamental groups π1(M) are equivalently known as local systems or flat
bundles of vector spaces over (the given connected component of) the space M (cf. [73, Lit. 2.22]), and there
is deep relevance [90] in identifying such as quantum state spaces subject to symmetries and classical control (cf.
[89]).
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3 Moduli spaces of Topological Flux

3.1 Plain moduli

(...)

3.2 General covariance

We discuss the action of the diffeomorphism groups on the moduli spaces of solitonic topological flux.

Braid groups and mapping class groups.

Definition 3.1 (Configuration space and Braid group).
(i) For Σ a smooth manifold, possibly with boundary, and n ∈ N, the configuration space of n points in Σ is the
topological space

Confn(Σ) :=
{
(s1, · · · , sn) ∈ Σ×n

∣∣∣ ∀
i ̸=j

si ̸= sj

}/
Symn

(topologized as the quotient space of a subspace of a product space).
(ii) The fundamental group of this space (assuming now without, substantial restriction, that Σ is connected) is the
braid group on n strands in Σ (cf. [30, §9]), which as such comes equipped with a forgetful map to the symmetric
group:

Brn(Σ) := π1Confn(Σ) Symn . (10)

Example 3.2 (Artin presentation of braid groups, cf. [34, §7][73, Lit. 2.20]). For n ≥ 2, the surface braid
group (10) of the disk (the default case of braid groups) has the following finite presentation:

Brn := Brm
(
Σ2

0,1,n

)
≃ F ⟨b1, · · · , bn−1⟩

/(
∀

i+1<j

(
bibj = bjbj

)
, ∀
1≤i<n−1

(
bi bi+1 bi = bi+1 bi bi+1

)
Yang-Baxter relation

)
, (11)

in terms of which its canonical homomorphism to the symmetric group is the quotient map by one further set of
relations:

Brn Symn := Brn
/(

∀
i

(
bibi = e

))
.

The general surface braid group Brn(Σ
2) may be presented by adjoining to these Artin generators bi further

generators (corresponding to moving single strands along cycles in the surface) and further relations. In each case,
there is a projection to the symmetric group by retaining the Artin generators:

Brn(Σ
2) Symn

Example 3.3 (Presentation of spherical braid group [29, p 245,55], cf. [108]). The surface braid group (10)
of the sphere (often: “spherical braid group”) is presented as a quotient of the Artin presentation (11) by one
further relation:

Brn(S
2) ≃ Brn

/(
(b1 · · · bn−1)(bn−1 · · · b1)

)
. (12)

Definition 3.4 (Diffeomorphism Group and Mapping Class Group). For Σ an oriented manifold, possibly
with boundary, we write

Homeo+,∂(Σ) Homeo(Σ) Map(Σ,Σ)

Diff+,∂(Σ) Diff(Σ)

ι ι
(13)

for its topological groups of homeomorphisms and diffeomorphisms, respectively for the further subgroups of maps
preserving the orientation (+) and restricting to the identity on the boundary (∂).

For Σ ≡ Σ2 a surface, the group of connected components of the latter is known as the mapping class group
[54, §1][72, §3][30, p. 45]:

MCG(Σ2) := π0

(
Diff+,∂(Σ2)

)
. (14)

Example 3.5 (Mapping class groups of closed oriented surfaces, cf. [72, §6][30, §6]). The mapping class
group of the torus is

MCG(Σ2
1) ≃ Sp2(Z) ≃ SL2(Z) , (15)

which is generated by the two elements [103, Thm VII.2 p 78][14, Thm 1.1]

S :=

[
0 1
−1 0

]
, T :=

[
1 1
0 1

]
(16)
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and presented subject to the following relations [60, p. 126][9, §2.1]:
SL2(Z) ≃

〈
S, T

∣∣S4 = (TS)3 = e, S2 (TS) = (TS)S2
〉
. (17)

More generally, the mapping class group of Σ2
g (1), for g ∈ N, sits in a short exact sequence

1 Ig MCG(Σ2
g) Sp2(Z) 1 ,

Torelli group symplectic group

(18)

where the action of MCG(Σ1
2) on H2(Σ2

g;Z) ≃ Zg × Zg is through the defining action of the integer symplectic
group Sp2g(Z).

Definition 3.6 (Moduli spaces of solitonic topological fluxes). The underlying homeomorphisms of diffeo-
morphsims (13) of surfaces Σ2

g,b,n (1) extend functorially to the one-point compactification (by Prop. A.1) to make
a topological group homomorphism

Diff(+,∂)
(
Σ2

g,b,n

)
Homeo(+,∂)

(
Σ2

g,b,n

)
AutTop∗

(
(Σ2

g,b,n)∪{∞}
)
.ι (−)∪{∞}

Via the latter’s action (by pre-composition) on pointed mapping spaces (8) we obtain the homotopy quotient (50)
of the pointed mapping space 7

Map∗0
(
(Σ2

g,b,n)∪{∞}, A
)
�Diff+,∂

(
Σ2

g,b,n

)
∈ Top∗ , (19)

identified in (9) as the covariantized moduli space of A-quantized solitonic topological fluxes on Σ2
g,b,n.

Proposition 3.7 (Homotopy type of Diffeomorphism groups).
(i) For closed oriented surfaces Σ2

g,b,0 (1), the homotopy type of their diffeomorphism group (13) is:

SDiff+
(
Σ2

0, 0, 0

)
≃ SSO(3) ⇒ MCG(Σ2

0, 0, 0) ≃ 1 and π1 Diff+
(
Σ2

0, 0, 0

)
≃ Z2

SDiff+
(
Σ2

1, 0, 0

)
≃ SL2(Z)× ST 2 ⇒ MCG(Σ2

1, 0, 0) ≃ SL2(Z) and π1 Diff+
(
Σ2

1, 0, 0

)
≃ Z× Z

SDiff+
(
Σ2

g≥2, 0, 0

)
≃ ∗ ⇒ MCG(Σ2

g≥2, 0, 0) ≃ 1 and π1 Diff+
(
Σ2

g≥2, 0, 0

)
≃ 1

SDiff+,∂
(
Σ2

g, b≥1, 0

)
≃ ∗ ⇒ MCG(Σ2

g, b≥1, 0) ≃ 1 and π1 Diff+,∂
(
Σ2

g, b≥1, 0

)
≃ 1 .

(20)

(ii) For punctured oriented surfaces Σ2
g,b,≥1 except Σ2

0,0,<3, their mapping class group is an extension of that of

Σ2
g,b,0 by the surface’s braid group (10)

1 Brn≥1

(
Σ2

g,b

)
MCGn(Σ

2
g,b,n≥1) MCGn(Σ

2
g,b,0) 1 , (21)

which exhausts the homotopy type of their diffeomorphism groups:

SDiff+,∂
(
Σ2

g,b,n≥1

)
≃ MCG

(
Σ2

g,b,n≥1

)
⇒ π1 Diff+,∂

(
Σ2

g,b,n≥1

)
≃ 1 . (22)

Proof. In (20), the first statement is due to [105], the first three were proven by [24][25][46], and the fourth is [26,
Thm. 1D p 170]. The statement (22) follows with [116][117, Thm. 1.1], 8 which implies the extension (21) by the
Birman exact sequence ([8], cf. [69, Thm. 3.13]) as reviewed in [30, Thm 9.1].

Example 3.8 (Mapping class groups of n-punctured disk and sphere). When the mapping class group of
the disk Σ2

0,1,0 and of the sphere Σ2
0,0,0 are trivial by (20), the exact sequence (21) shows that the mapping class

group of their punctured versions are the braid group (11) and the spherical braid group (12), respectively:

MCG(Σ2
0,1,n) ≃ Brn

MCG(Σ2
0,0,n) ≃ Brn(S

2) .
(23)

Covariant flux monodromy. With all this in hand, we come to the main statement of this section.

7 The connected components of the full mapping space π0(F) ≡ π0

(
Map∗

(
(Σ2

g,b,n)∪{∞}, S
2
))

≃ Z are given by the Hopf degree.

Since diffeomorphisms have unit Hopf degree, their precomposition preserves the connected components of the mapping space.
8The surfaces in [116][117] are assumed without boundary, but equipped with marked closed subcomplexes to be fixed by the

diffeomorphisms. Under this definition, a puncture surrounded by a marked circle behaves just as a boundary for the purpose of
computing the homotopy type of the diffeomorphism group.
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Proposition 3.9 (Extension of mapping class group by flux monodromy). For every Σ2
g,b,n (1) we have a

split short exact sequence of groups

1 π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, A
)︸ ︷︷ ︸

moduli space

)
π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, A
)

� Diff+,∂(Σ2
g,b,n)︸ ︷︷ ︸

covariantized moduli space (19)

)
MCG(Σ2

g,b,n)︸ ︷︷ ︸
mapping class group (14)

1 ,

exhibiting an action of the mapping class group on the fundamental group of the moduli space, and the corresponding
semidirect product:

π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, A
)

� Diff+,∂(Σ2
g,b,n)︸ ︷︷ ︸

covariantized moduli space (19)

)
≃ MCG(Σ2

g,b,n)︸ ︷︷ ︸
mapping class group (14)

⋉ π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, A
)︸ ︷︷ ︸

moduli space

)
. (24)

Proof. For notational convenience, we abbreviate

F := Map∗0
(
(Σ2

g,b,n)∪{∞}, S
2
)

D := Diff+,∂
(
Σ2

g,b,n

)
,

whence the claim to be proven is split exactness of

1 π1(F) π1(F � D) π0(D) 1 . (25)

To this end, the Borel homotopy fiber sequence (52)

F F � D ∗ � D

(split by picking the zero-map) induces a long exact sequence of homotopy groups (49) of this form:
by(51)

π1

(
D
)

π1(F) π1

(
F � D

)
π0

(
D
)

π0(F) π0(F � D) .∼

(26)

Here the last map shown is an isomorphism by (53) (cf. footnote 7), whence the exact sequence truncates to

π1(D) π1(F) π1

(
F � D

)
π0(D) 1 .

If, at this point, we invoke Prop. 3.7 then the claim (25) follows for most surfaces, namely those for which π1(D) ≃ 1.
But in fact, the claim follows generally by observing that the first connecting map in (26) factors through the trivial
group:

π1(D) ≡ π1

(
Diff+(Σ2

g,b,n)
)

π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, A
))

≡ π1(F � F) .

1

Namely, by (52) the map is given by taking a given loop of diffeomorphisms to the loop of maps obtained by
composing these diffeos the constant map Σ2

g,b,n −→ S2 – but that gives the constant loop representing the neutral
element of π1.
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4 2-Cohomotopical flux through surfaces

We now specify the classifying space A (9) to the 2-sphere, A ≡ S2 (so that flux is classified by 2-Cohomotopy)
and work out the resulting covariant topological quantum observables on and quantum states of (according to §2)
2-cohomotopically quantized flux through various surfaces Σ2, using the results of §3.

Remarkably, in the case of Σ2 ≡ S2, T 2 the sphere or the torus, we find reproduced (in §4.1 and §4.2, respectively)
the situation traditionally argued via quantized U(1)-Chern-Simons theory over these surfaces, including fine-print
such as regularization of Wilson-loop observables by framings and modular equivariance.

Then, by instead choosing punctured surfaces, we similarly work out the 2-Cohomotopically quantized flux
through the punctured sphere (§4.3) and the punctured annulus (§4.4).

4.1 Flux through the plane

We recall here (from [93]) how solitonic flux through the plane R2 ≃ Σ2
0,0,1 (2) quantized in 2-cohomotopy

reproduces exactly the Wilson loop observables of anyonic braiding as predicted by abelian Chern-Simons theory
(Rem. 4.6 below). First, we briefy recall the Pontrjagin construction that serves for us to relate cohomotopy to
solitonic flux density.

The Pontrjagin construction. Among generalized non-abelian cohomology theories, (unstable) Cohomotopy
π̃n(−) ≡ π0Map∗

(
−,Rn

∪{∞}
)
stands out in that it accurately characterizes the soliton configurations of given

charge: This may be understood as the content of the original unstable Pontrjagin theorem (which these days is
more famous as the Pontrjagin-Thom theorem pertaining only to the stable case which is of little concern to us
here):

Theorem 4.1 (Pontrjagin theorem – Cohomotopy charge cf. [12, §II.16][62, §IX]). Given a smooth d-
manifold Σd and n ∈ N with n ≤ d, there is a natural bijection between:

1. the reduced n-Cohomotopy of the one-point compactification Σd
∪{∞},

2. the cobordism classes of normally framed submanifolds Qd−n ↪−→ Σd of co-dimension=n

reduced n-Cohomotopy
of 1pt compactification

π̃n
(
Σd

∪{∞}
)

CobnFr
(
Σd

) cobordism classes of
normally framed sub-
manifolds of codim= n

regular pre-image of 0

∼
asymptotitic directed distance

where the Cohomotopy charge [c] ∈ π̃n
(
Σd

)
of a submanifold Qd−n ⊂ Σd with normal framingNQ N × Rn Rnfr

∼
p

is represented for any choice of tubular neighbourhood NQ
ι
↪−→ Σ by the “scanning map”

Σd Rn
∪{∞}

s 7−→
{
p
(
fr(s)

)
| s ∈ ι(NQ)

∞ | otherwise .

c Rd
∪{∞} ≃ Sd

fi
gu

re
ad

ap
ted

from
[12,

F
ig.

II-13
]

NQ

Q

c

Σ

The flux density underlying (sourced by) a given Cohomotopy charge is characterized by the cohomotopical
character map (the cohomotopical analog of the Chern-character map on K-cohomology, [33][94]):

Definition 4.2 (Cohomotopical character map). For n = d the character map on cohomotopy

π̃d
(
Σd

)
Hd

dR

(
Σd

)
cpt

[c] 7−→
[
c∗vlmn

]ch

(27)

takes [c] ∈ π̃n
(
Σd

∪{∞}
)
— for any representative c : Σd

cpt −→ Rd
∪{∞} which is smooth on c−1(Rd), such as the scanning

maps (27) — to the class in compactly supported de Rham cohomology of the pullback of a d-form vlm ∈ Ωn
dR(Rd)

compactly supported on a neighborhood of 0 ∈ Rd and of unit integral.
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Remark 4.3 (Flux density quantized in Cohomotopy).
(i) In combination, this means that Cohomotopy charge [c] ∈ Z ≃ π̃d

(
Σd

∪{∞}
)
≡ π0Map∗

(
Σd

∪{∞}, S
d
)
may be

understood as sourcing a solitonic flux density Fd ∈ Ωd
dR

(
Σd

)
(solitonic in that it vanishes at infinity) which is

supported with unit weight near n+ ∈ N points in Σd (all points outside each other’s supporting neighborhoods)
and with a negative unit weight near n− ∈ N points (anti-solitons) such that [c] = n+ − n−.
(ii) For the case d = 2 of interest here, this is just the kind of magnetic flux distribution concentrated around
solitonic vortex cores as seen in type II superconducting and in fractional quantum Hall semiconducting materials
Σ2, while any punctures in the surface Σ2 (1) behave as loci where flux is expelled from, as for type I superconducting
materials:

Figure F. Via the Pontrja-
gin theorem, 2-cohomotopical
quantization of flux through a
surface exhibits N flux quanta
as a concentration of flux den-
sity supported on the tubular
neighborhoods of N disjoint
points.

field solitons/
quasi-particles/
-holes/vortices:

frmd submanifolds

flux-expelling defects:
punctures in the surface

However, for the quantum flux observables (8), we need not just the connected components but π1 of the moduli
space of Cohomotopical flux.

By the Pontrjagin theorem, one might näıvely expect that Map∗
(
(Σ2

0,0,1)∪{∞}, S
2
)
is the configuration space

of signed points (hence of ± unit charged soliton cores) in the plane, topologized to reflect creation/annihilation
of oppositely charged pairs — but this is not quite correct as it misses the normal framing on the cobordisms. A
correct model [78] is by configurations of intervals with signed endpoints (stringy solitons between unit charged
“quarks”) parallel to one coordinate axis and topologized such as to reflect creation/annihilation of oppositely
charged pairs of endpoints. This has the effect that:

Proposition 4.4 (Vacuum loops of 2-cohomotopical flux through the plane [93]).
(i) Loops of 2-cohomotopical flux moduli on the plane are identified with framed links topologized to reflect link
cobordism, whence their homotopy classes is identified with the framed link’s total crossing number:

ΩMap∗0
(
Σ2

0,0,1, S
2
)

π1 Map∗0
(
Σ2

0,0,1, S
2
)
≃ Z .

L 7−→ #L

framed link total crossing number

[−]

(ii) Moreover, the pure GNS-states on these observables are labeled by |k⟩ and give the expectation values

⟨k|L|k⟩ = e
2πi
k #L .

Figure FL. The strands of a framed link may be understood
as ribbons that, besides braiding/linking each other may also
twist in themselves. If the strands are flattened to always lie in
a fixed plane (“blackboard framing”) then the twists manifest
as self-crossings of strands.

grap
h
ics

from
[61

,
F
ig.

1
0
]

Example 4.5.

−

−
7−→ −2 ,

++

+

7−→ +3 ,

−

−

++

7−→ 0 .

Remark 4.6 (Comparison to anyon vacuum observables of abelian Chern-Simons theory). In abelian
Chern-Simons theory, framed links are exactly the regularized “Wilson loop” observables, and the exponential
e2πi#L/k of the total crossing number (being equal to the linking number plus the framing number) is exactly the
value of these observables in the state of level k.
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4.2 Flux through closed surfaces

While magnetic flux through closed surfaces is not readily realized experimentally (cf. footnote 5), effective field
theories of flux on arbitrary surfaces tend to be characterized by their theoretical predictions for closed surfaces
(for instance in that the dimension of the Hilbert space of states on Σ2

g grows with kg, for k the level of the
theory). Therefore, a major example of the phenomena in §3 is the following derivation of quantum states of
cohomotopically quantized topological flux on closed surfaces, which reproduces the modular data theoretically
expected of topologically quantum materials on such surfaces (see Rem. 4.10 below).

Proposition 4.7 (Monodromy of flux through closed surfaces). For the closed oriented surface Σ2
g (1),

g ∈ N, we have the exact sequence

1 π1

(
Map∗0

(
S2

∪{∞}, S
2
))

π1

(
Map∗0

(
(Σ2

g)∪{∞}, S
2
))

π1

(
Map∗0

(∨
g(S

1
a ∨ S1

b ), S
2
))

1

Z Ẑ2g Z2g ,

∼ ∼ ∼

where

Ẑ2g :=
{
(⃗a, b⃗, n) ∈ Zg × Zg × Z , (⃗a, b⃗, n) · (⃗a′, b⃗′, n′) :=

(
a⃗+ a⃗′, b⃗+ b⃗′, n+ n′ + a⃗ · b⃗′ − a⃗′ · b⃗

)}
(28)

is the integer Heisenberg group (cf. [66, p 232]), the extension of Z2g by Z (here at level=2).

Proof. The short exact sequence and identification of the outer groups is due to [48, Thm 1 & p 6]. The identification
of the resulting group extension as 2 ∈ Z ≃ H2(T 2g;Z) ≃ Ext

(
Z2g; Z

)
is due to [64, Thm. 1], see also [57, Cor.

7.6]. Observing then that the unit extension 1 ∈ Ext(Z2g;Z) is given by either of the group cocycles

(Z2g)× (Z2g) Z(
(⃗a, b⃗), (⃗a′, b⃗′)

)
7−→ a⃗ · b⃗′(

(⃗a, b⃗), (⃗a′, b⃗′)
)

7−→ −a⃗′ · b⃗

(which are readily seen to be cohomologous cocycles and evidently indivisible) the claim (28) follows.

Proposition 4.8 (Diffeo action over torus is canonical modular action). The action (24) of MCG(Σ2
1) ≃

SL2(Z) (15) on π1Map∗0
(
(Σ2

1)∪{∞}, S
2
)
≃ Ẑ2 (28) is the defining action of Sp2(Z) ≃ SL2(Z) on Z2 and trivial on

the center, whence the flux monodromy group (24) over the torus is

MCG(Σ2
1) ⋉ π1

(
Map∗0

(
(Σ2

1)∪{∞}, S
2
))

≃ SL2(Z) ⋉ Ẑ2 . (29)

Proof. By the decomposition of Prop. 4.7.

Proposition 4.9 (Basic 2-Cohomotopical quantum states over the torus).

Representations of Ẑ2 ⋊ SL2(Z) (29) — and hence spaces of quantum states (9) for 2-cohomotopical flux over the

torus — irreducible already in their restriction to Ẑ2, are obtained for all even positive integers

k ∈ 2N>0 with ζ := e
πi
k , (30)

by the following formulas:

HT 2 := Span
(
|0⟩, |1⟩, · · · , |k − 1⟩

)



SL2(Z) ⋉ Ẑ2 GL
(
HT 2

)(
I, (

[
1
0

]
, 0)

)
7−→ Ŵ[

1
0

] :
∣∣n〉 7→ ζ2n

∣∣n〉(
I, (

[
0
1

]
, 0)

)
7−→ Ŵ[

0
1

] :
∣∣n〉 7→

∣∣(n+ 1)mod k
〉

(
I, (

[
0
0

]
, 1)

)
7−→ ζ̂ :

∣∣n〉 7→ ζ
∣∣n〉(

S, (
[
0
0

]
, 0)

)
7−→ Ŝ :

∣∣n〉 7→ 1√
|k|

∑k−1
n̂=0 ζ

2nn̂
∣∣n̂〉(

T, (
[
0
0

]
, 0)

)
7−→ T̂ :

∣∣n〉 7→ e−πi/12 ζ(n
2)
∣∣n〉 .

(31)

Here the representations of general group elements follows from applying the group law to the above generators,
for instance:

ζ−1 Ŵ[
1
0

]Ŵ[
0
1

] = Ŵ[
1
1

] = ζ+1 Ŵ[
0
1

]Ŵ[
1
0

] . (32)
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Proof. (i) The generating group commutators in Ẑ2 (28) are evidently respected,

Ŵ[
1
0

] ◦ Ŵ[
0
1

] = ζ2 Ŵ[
0
1

] ◦ Ŵ[
1
0

] , (33)

and HT 2 is clearly already irreducible as a representation of Ẑ2.
(ii) To see that we also have a representation of SL2(Z) we need to show that the operators Ŝ and T̂ respect the

relations (17). To that end, it is convenient for the moment to abbreviate the phase factor of T̂ as “ck”:

T̂ = 1
ck

e
πi
k n2

with ck := eπi/12 . (34)

First, we find
ŜŜ

∣∣n〉 ≡ Ŝ
(

1√
|k|

∑
n̂ e2πi

n̂ n
k
∣∣n̂〉)

≡
∑̂̂n 1

k

∑
n̂ e

2πi
n̂ (n+̂̂n)

k︸ ︷︷ ︸
δ0

(
n+̂̂nmod k

)
∣∣̂̂n〉

=
∣∣− n

〉
by (55),

which immediately implies that Ŝ4 = id and that, with

T̂ Ŝ
∣∣n〉 = 1

k1/2ck

∑
n̂ e

πi
k (n̂2+2n̂ n)

∣∣n̂〉 ,
also Ŝ2(T̂ Ŝ) = (T̂ Ŝ)Ŝ2. Hence the only remaining relation to check is (T̂ Ŝ)3 = id or equivalently that

T̂−1 ◦ Ŝ−1 ◦ T̂−1 = Ŝ ◦ T̂ ◦ Ŝ .

Unwinding the definitions gives

T̂−1Ŝ−1T̂−1|n⟩ = T̂−1Ŝ−1e−
πi
k n2

|n⟩

= T̂−1 1√
k

∑
n̂ e

πi
k (−n2−2n̂n)|n̂⟩

= 1√
k

∑
n̂ e

πi
k (−n2−2n̂n−n̂2)|n̂⟩

= 1√
k

∑
n̂ e

−πi
k (n̂+n)2 |n̂⟩

and

ŜT̂ Ŝ
∣∣n〉 = ŜT̂ 1√

|k|

∑
n̂ e2πi

n̂ n
k
∣∣n̂〉

= Ŝ 1√
k

∑
n̂ e

πi
k (2n̂ n+n̂2)

∣∣n̂〉
= 1

k

∑
n̂, ̂̂n e

πi
k (2n̂ n+n̂2+2̂̂nn̂)∣∣̂̂n〉

= 1√
k

∑̂̂n 1√
k

∑
n̂ e

πi
k (n̂+(n+̂̂n))2︸ ︷︷ ︸
c3k

e−
πi
k (n+̂̂n)2 ∣∣̂̂n〉 .

(35)

Here the term over the brace is a constant in n and ̂̂n, by the assumption that k is even 9, whence the relation is
satisfied if the normalization factor ck in (34) is chosen as claimed, because the quadratic Gauss sum here evaluates
to

ck =
(

1√
k

∑k−1
n=0 e

πi
k n2

)1/3

=
(59)

(
eπi/4

)1/3
= eπi/12 . (36)

(iii) Finally, we need to see that the semidirect product structure is respected, hence that

Ŵ
M

[
a
b

] M̂ |n⟩ = M̂ Ŵ[
a
b

]|n⟩ ∀


M ∈ SL2(Z)

(a, b) ∈ Z2

|n⟩ ∈ |HT 2 .

It is sufficient to check this on the generators, where explicit computation yields, indeed:

Ŵ
S
[
1
0

] Ŝ∣∣[n]〉 ≡ Ŵ−1[
0
1

] (
1√
|k|

∑
n̂ e2πi

n̂ n
k |n̂⟩

)
= 1√

|k|

∑
n̂ e2πi

(n̂+1)n
k

∣∣n̂〉
= e2πi

n
k Ŝ

∣∣n〉
= Ŝ Ŵ[

1
0

]|n⟩ ,

Ŵ
S
[
0
1

] Ŝ|n⟩ ≡ Ŵ[
1
0

]( 1√
|k|

∑
n̂ e2πi

n̂ n
k |n̂⟩

)
= 1√

|k|

∑
n̂ e2πi

n̂
k e2πi

n̂ n
k |n̂⟩

= 1√
|k|

∑
n̂ e2πi

n̂ (n+1)
k |n̂⟩

= Ŝ Ŵ[
0
1

]|n⟩ ,
and

9 Since the summands in
∑k−1

n=0 e
πi
k

n2

are k-periodic for even k, e
πi
k

(n+k)2 = e
πi
k

n2

eπi(2n+k) =
k even

e
πi
k

n2

, the sum is invariant under

replacing n 7→ n+ a for a ∈ N.
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Ŵ
T
[
1
0

] T̂ |n⟩ ≡ Ŵ[
1
0

] 1
ck
eπi

n2

k |n⟩

= 1
ck
e2πi

n
k eiπ

n2

k |n⟩

= T̂ Ŵ[
1
0

]|n⟩ ,

Ŵ
T
[
0
1

] T̂ |n⟩ ≡ 1
ck
Ŵ[

0
1

] Ŵ[
1
0

] eπi 1k eπi
n2

k |n⟩

= 1
ck
eπi

n2+2n+1
k |n+ 1⟩

= 1
ck
eπi

(n+1)2

k |n+ 1⟩

= T̂ Ŵ[
0
1

]|n⟩ ,
where in the first step of the last case we used (32).

Remark 4.10 (Comparison to modular data of abelian Chern-Simons theory on the torus). The content
of Prop. 4.9 captures a good deal of the modular data (cf. [37]) expected for FQH systems on the torus:

(i) The algebra (33) of the Ŵ[
a
b

] is just that expected [110, (5.28)] of quantum observables for anyonic topological

order on the torus as described [10, (17)][81, (32)] by abelian Chern-Simons theory at level k and equivalently by
U(1)-WZW conformal field theory [112, (4.3-4)].

(ii) Similarly, the operators Ŝ and T̂ according to (31) implement the known modular group representation on
quantum states of abelian Chern-Simons theory [68, p 65] (following [45][36, (5,7)]) and equivalently of conformal
characters of the U(1) 2dCFT [37, Ex. 1]. 10

(iii) The fact of Prop. 4.9 that, jointly, these operators constitute a representation of the semidirect product of
the modular group with the integer Heisenberg group may be regarded as implicit in the literature but does not
appear to be easy to cite.
(iv) In any case, it is remarkable that here this structure arises without unpacking any of the usual constructions
of CS/WZW theories, but instead as the description of topological flux quantized in 2-Cohomotopy.

While this is already remarkable, it is not sufficient for the description of FQH systems, where (what we may
identify as) the anyonic braiding phase ζ (30) may be a more general root of unity and in practice generically is
different from (30).

However, while our effective quantum theory of topological flux quantized in 2-Cohomotopy turns out to be so
similar to Chern-Simons theory (as per Rem. 4.10 above and the following Rem. 4.22) it actually admits these
more general braiding factors:

Lemma 4.11 (More general representations). The representation (31) exists more generally for

(k, q) ∈ N>0 × Z s.t.

 kq ∈ 2Z,∑k−1
n=0 e

πi
q
k n2

̸= 0
with ζ := eπi

q
k . (37)

Proof. Inspection shows readily that the proof of Prop. 4.9 goes through verbatim with all factors of eπi/k now
generalized to ζ (37) — the only step that needs attention is that from (35) to (36): But for the term over the

brace in (35) to be constant in n and ̂̂n it is clearly sufficient that k or q are even, hence that their product kq is
even, in which case the normalization factor ck in (36) can be found unless that term is zero. These are exactly
the two conditions assumed in (37).

Lemma 4.12 (Reducible representation). If k ∈ 2N>0 and k = ord(ζ) then the restriction of the representation

(31) to Ẑ2 is reducible.

Proof. Due to the assumption that k = ord(ζ), the representation has an alternative linear basis of eigenstates of
the original “shift operator”:

|̃j⟩ :=
(∑k−1

n=0 ζ
jn|n⟩

)
, Ŵ[

0
1

] |̃j⟩ = ζ−j |̃j⟩ , for j ∈ {0, 1, · · · , k − 1} .

But on this new basis the original multiplication operator acts non-transitively, skipping every second element:

Ŵ[
1
0

] |̃j⟩ ≡ ζ2n |̃j⟩ = ˜|[j+2]⟩ ,

whence we have a Ẑ2-reduction

HT 2 ≃ C
〈
|̃j⟩

〉
j∈{0,2,··· ,k−2} ⊕ C

〈
|̃j⟩

〉
j∈{1,3,··· ,k−1} .

10The exponentiated “central charge” ck = e2πi/24 appearing in (34) and (36) seems to be missed in the earlier literature (cf. [68, p
65][45][36, (5,7)]) but is now well-known to appear, compare [37, (3.1b)][102, (26)].
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Proposition 4.13 (General 2-Cohomotopical quantum states over the torus). The representation (31)

exists and is irreducible already when restricted to Ẑ2 iff(
k ∈ 2N>0 and q ∈ 2N+ 1

)
or

(
k ∈ 2N+ 1 and q ∈ 2N>0

) and qcd(q, k) = 1 with ζ := eπi
q
k . (38)

Proof. To see that these representations exist as claimed, by Lem. 4.11 it just remains to check that the Gauss
sum does not vanish: Indeed, for k odd and q even we have

k−1∑
n=0

eπi
q
k n2

=

k−1∑
n=0

e
2πi
k (q/2)n2

=
by (57)

(
q/2

∣∣k)︸ ︷︷ ︸
̸= 0 by (58)

∑k−1
n=0 e

2πi
k n2︸ ︷︷ ︸

̸= 0 by (56)

,

while for k even and q odd we have
k−1∑
n=0

eπi
q
k b2 =

by (61)
e±πi

√
k
(
k/2

∣∣ q)︸ ︷︷ ︸
̸= 0 by (58)

.

The only other choice of k, q compatible with Lem. 4.11 is that k and q are both even. Even when this exists

and gcd
(
q/2, k/2

)
= 1, it restricts to an even dimensional Ẑ2-rep of dimension k = 2(k/2) = ord(ζ), which is still

reducible, by Lem. 4.12.
Moreover, its reduction does not consist of new irreps: For the Gauss sum not to vanish we need k ∈ 4N and

hence q/2 odd, whence both summands are isomorphic to the abve irrep for (q/2) odd and (k/2) even.

Remark 4.14 (Comparison to abelian “spin” Chern-Simons theory). Our natural number k identifies
with twice the “level” of Chern-Simons theory: This is apparent from [21, (1.2-3)] which (we are in their special
case N = 1) says that what is denoted M = K there is twice the actual level (denoted “k” there). But since the
ground state degeneracy is [21, p 26]

dim
(
HΣ2

g

)
= Kg , M ∈ 2N>0 ,

comparison with [68, p 40] shows that the “level” k there, which is our k, is also twice the actual level, k = K.
But then with [21] one may allow generalization to odd k in “spin Chern-Simons theory” (corresponding to

half-integral “actual level”), which evidently corresponds to our second sequence of irreps in (38).
We conclude that we are seeing here not just the modular data of plain abelian CS theory, but of its “spin”-

refinement.
This also means that the anyon braid phases we get are “spinorial” in that they are square roots of the naively

expected braid phases of [110, (5.28)], which is also apparent from [112, (4.3)] (where our k is denoted N , see above
(4.1) there).

4.3 Flux through n-punctured surface

Here we derive here the observables on 2-cohomotopically quantized topological flux over n-punctured surfaces,
which in practice will mean: Surfaces of conducting material where magnetic flux is expelled from (the vicinity of)
n defect points (cf. Rem. 4.3). It is clear (cf. Prop. 4.15) that covariantization of these observables reveals an
action of the surface’s n-braid group, but we find that the contribution to the observables from the flux monodromy
(cf. Prop. 3.9) enhances this to the framed (or ribbon) braid group (41) as expected in generality for Chern-Simons
theories (Rem. 4.22). Or rather, we find that what appears is its subgroup of frmamed braids of vanishing total
framing.

Lemma 4.15 (Homotopy type of compactified n-punctured surface). For n ∈ N≥1, the one-point com-
pactification of the n-puncturing of a closed surface Σ2

g,b (1) is homotopy equivalent to the wedge sum (46) of that
surface with (n− 1) circles:

S
((

Σ2
g,b,n

)
∪{∞}

)
≃ S

(
Σ2

g,b ∨
∨

n−1S
1
)
. (39)

Proof. For n = 1 the statement is immediate.
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For n = 2 consider the topological space X obtained by attaching to Σ2
g,b an interval with endpoints glued to two

distinct points s1, s2 ∈ Σ2
g,b (the would-be positions of the punctures), hence consider this pushout of topological

spaces:
S0 Σ2

g,b

D1 X .

(s1,s2)

(po)ιext

Moreover, consider another arc inside Σ2
g,b connecting these two points

D1 Σ2
g,b X .

ιint

Both of these arcs are evidently contractible sub-complexes of X, and so the quotient projections obtained by
identifying either arc with a single point are weak homotopy equivalences (cf. [50, p 11]):

SX

S
(
X/ιext(D

1)
)

S
(
X/ιint(D

1)
)
.

∼ ∼

∼

However, as indicated, the “external” quotient on the left is evidently
homeomorphic to the desired one-point compactification, while the
“internal” quotient on the right is evidently homeomorphic to the
claimed wedge sum. This proves the claim for n = 2.

The graphics on the right illustrates the situation for the case g, b = 0.

The general statement, including the case n > 2, follows analogously
by attaching further arcs in this fashion, cf. Fig. A.

puncture

pu
nc
tu
re

Σ2
0

(Σ2
0,2)∪{∞} =

Σ2
0 ∨ S1 =

∼

∼
∞

ιext

ιint

ιext

ιint

Figure A. There are several ways to attach arcs for n > 2 punctures in the
above proof of Lem. 4.15, all equivalent in the result. But for the analysis that
follows below it is useful to single out one puncture sn and take the n− 1 arcs
to connect this one puncture to each of the n − 1 remaining ones. The case
g, b = 0 and n = 3 is illustrated on the right.

s3

s1 s2

Proposition 4.16 (Monodromy of flux through punctured surface). For g, b,∈ N and n ∈ N>0, we have
an isomorphism

π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, S
2
))

≃ π1

(
Map∗0

(
Σ2

g,b, S
2
))

× Zn−1 . (40)

Proof. We may compute as follows:

π1

(
Map∗0

(
(Σ2

g,b,n)∪{∞}, S
2
))

≃ π1

(
Map∗0

(
Σ2

g,b ∨
∨

n−1 S
1, S2

))
by (39)

= π1

(
Map∗0

(
Σ2

g,bS
2
)
×

∏
n−1 Map∗

(
S1, S2

))
by (47)

= π1

(
Map∗0

(
Σ2

g,bS
2
))

×
∏

n−1 π1

(
Map∗

(
S1, S2

))
= π1

(
Map∗0

(
Σ2

g,bS
2
))

×
∏

n−1 π2(S
2) by (44),

whence the claim follows by π2(S
2) ≃ Z.

Definition 4.17 (Standard representation of symmetric group). For n ∈ N>0 the “standard” C-linear
representation of the symmetric group Symn is the complex irrep classified by the partition (n − 1, 1), hence the
complement of the trivial 1d representation inside the defining permutation representation.

More concretely, with respect to the canonical linear basis

Cn ≃ C⟨v1, v2, · · · , vn
〉

• the defining permutation representation is given, for σ ∈ Symn, by σ(vi) := vσ(i),
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• the trivial 1d irrep inside this is
1 ≃ C

〈
v1 + v2 + · · ·+ vn

〉
↪−→ Cn ,

• and the standard representation is

n−1 ≃ C
〈
e1 := v1 − vn, e2 := v2 − vn, · · · , en−1 := vn−1 − vn

〉
↪−→ Cn .

Hence in the standard representation a transposition among the first n − 1 basis elements vi<n acts as the same
transposition of the corresponding ei<n, while the transposition of any vi<n with vn acts in the standard represen-
tation as sign reversal on ei.

This is clearly the extension of scalars from a Z-linear representation on Zn−1, which we shall hence refer to as
the standard Z-linear representation of Symn.

Proposition 4.18 (Braid group action on flux monodromy over punctured surface). For n ≥ 1, the
action (24) of the Artin generators of the braid group Brn(Σ

2
g,b,n) ↪−→ MCG(Σ2

g,b,n) (21) on the flux monodromy

(40) over an n-punctured surface (1) is via the standard representation (Def. 4.17) of Symn on the Zn−1-factor

Proof. Under the identification of the Zn−1 factor from the proof of Lem. 3.7 and choosing the arc-attachments
used there as in Figure A, we see that the ith Z-factor corresponds to the arc from sn to si. Therefore the Artin
generators (11) bi<n−1 act by transposing the ith with the i + 1st arc and hence are represented by transposing
the corresponding Z-factors, while the Artin generator bn−1 reverses the n − 1st arc and hence is represented by
inversion on the corresponding Z-factor. This is precisely the action in the standard representation of Def. 4.17.

Definition 4.19 (Framed/ribbon braid group [70][59], cf. [61, §3.2]). The framed braid group of ribbon braid
group of a surface is the wreath product of the ordinary surface braid group (10) with the integers, hence its
semidirect product with Zn = Z× · · · × Z via its defining permutation action on the n factors:

FBrn(Σ
2) := Z ≀ Brn(Σ2) ≃ Zn ⋊def Brn(Σ

2) . (41)

A framed braid in (41) may be understood as a braid of ribbons which, besides braiding with each other, may
each twist an integer number of times in themselves, as in Fig. FL: The closure of a framed braid is a framed link.

Similarly, via the integral standard representation of Symn (Def. 4.17) we may also form the variant Zn−1 ⋊st

Brn(Σ
2) of the framed braid group. This is the subgroup on the elements whose total framing number vanishes:

Lemma 4.20 (Framed braids of zero total framing among all framed braids). We have an injective group
homomorphism

framed braids with
vanishing total framing

Zn−1 ⋊st
standard rep

Brn(Σ
2) Zn ⋊def

defining rep
Brn(Σ

2)≡ FBrn(Σ
2) group of all

framed braids(
ei, bj

)
7−→

(
vi − vn, bj

) (42)

Proof. As in Def. 4.17.

Proposition 4.21 (2-Cohomotopical flux monodromy on n-punctured disk). For n ≥ 1, the covariant 2-
Cohomotopical fux monodromy on the n-punctured disk Σ2

0,1,n (1) is the subgroup (42) of framed braids of vanishing
total framing:

π1

(
Map∗0

(
(Σ2

0,1,n)∪{∞}
)

� Diff+,∂
(
Σ2

0,1,n

))
≃ Zn−1 ⋊st Brn FBrn . (43)

Proof. We may compute as follows:

π1

(
Map∗0

(
(Σ2

0,1,n)∪{∞}, S
2
)

� Diff+,∂
(
Σ2

0,1,n, S
2
))

≃ π1

(
Map∗0

(
(Σ2

0,1,n)∪{∞}, S
2
))

⋊MCG(Σ2
0,1,n) by (24)

≃
(
π1

(
Map∗0

(
Σ2

0,1, S
2
))

× Zn−1

)
⋊MCG(Σ2

0,1) by (40)

≃ Zn−1 ⋊MCG(Σ2
0,1) since SΣ2

0,1 ≃ ∗

≃ Zn−1 ⋊ Brn by (23) .

Remark 4.22 (Comparison to Chern-Simons theory on n-punctured surfaces).
(i) The framed braid group FBrn(Σ

2
0,1) (41) of a closed surface Σ2

g,b is the expected braid group acting on the

quantum states of Chern-Simons theory on Σ2
g,b,n as formalized by the Reshetikhin-Turaev construction, cf. [19,
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§3.1][109, §3.2.1][84, p 37][85, p 8] — but the framing is expected to act nontrivially only in the generality of the
rarely discussed “irregular conformal blocks” [53].
(ii) The intermediate case of framed braids of vanishing total framing that we see appear here (43) from 2-
Cohomotopical flux quantization seems not to have been considered elsewhere.

4.4 Flux through n-punctured annulus

The samples Σ2 attainable in realistic experiments are typically not closed but have a boundary, and in fact the
experimental access to the topological quantum properties of the sample are typically only by inspection of effects on
its boundary. Therefore we now turn to identifying the topological flux quantum states on surfaces with boundary,
and pay special attention to the question of which aspects of the topological quantum states should be realistically
measurable via boundary effects.

(...)
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A Background

Here we briefly recall and cite some constructions and facts that are referred to in the main text.

A.1 Some algebraic topology

For general background on the algebraic topology and homotopy theory we use see for instance [107] (...).

Topological spaces. We write

• Top for the category of compactly generated topological spaces

with hom-sets of maps denoted Hom(−,−) and mapping spaces denoted Map(−,−)

• Top∗ for pointed such spaces with pointed maps between them

with hom-sets denoted Hom∗(−,−) and mapping spaces denoted Map∗(−,−)

The mapping spaces are characterized by natural bijections

Hom
(
X × Y, Z

)
≃ Hom

(
X, Map(Y,Z)

)
Hom∗(X ∧ Y, Z

)
≃ Hom∗(X, Map∗(Y,Z)

)
,

where the smash product of pointed spaces is

X ∧ Y :=
X × Y

{∞
Z
}×Y ∪ X×{∞

Y
}
,

for instance
S1 ∧ Sn ≃ Sn+1 , so that πnMap∗(Sm, X) ≃ π0Map∗(Sn+m, X) . (44)

Here for X ∈ Top∗ we generically denote its basepoint by ∞
X

∈ X, also speaking of the “point at infinity”,
and for X ∈ LCHaus we write X∪{∞} ∈ Top∗ for its one-point compactification (cf. [12, p 199]), thinking of it as
adjoining a point at infinity.

If a space is already compact, then the adjoined point-at-infinity is disjoint and pointed maps out of the space
are identified with plain maps:

X ∈ Top

X compact

}
yields X∪{∞} ≃ X ⊔ {∞} and Maps∗

(
X∪{∞}, Y

)
≃ Maps

(
X, Y

)
.

For Y ∈ Top∗ we denote the connected component of the map constant on ∞
Y
by

Map0(−, Y ) ⊂ Map(−, Y ) and Map∗0(−, Y ) ⊂ Map∗(−, Y ) .

Proposition A.1 (One-point compactification functorial on proper maps [55, p 70][15, Prop. 1.6]). The
operation of one-point compactification extends to a functor on the category of locally compact Hausdorff spaces
with proper maps between them

(−)∪{∞} : LCHausPrpMaps CptHaus∗ . (45)

Since homeomorphisms are proper, this implies in particular functoriality on homeomorphisms.

The coproduct of X,Y ∈ Top∗ is the wedge sum

X ∨ Y :=
X

∐
Y

{∞
X
, ∞

Y
}
, (46)

which in particular means that we have a natural bijection

Hom∗(X ∨ Y, Z
)

≃ Hom∗(X, Z
)
×Hom∗(Y, Z)

(47)

Homotopy. We write Grpd∞ for the ∞-category of homotopy types and

S : Top −−→ Grpd∞

for the underlying functor. This means that a weak homotopy equivalence between topological spaces is equivalently
an equivalence under S:

X,Y ∈ Top ⊢ X Y
f

wk hmpt equv
⇔ SX SY

Sf
∼

Given f : Y → Z a map of pointed topological spaces, with homotopy fiber X

X Y Z
hofib(f) f
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the resulting long homotopy fiber sequences

ΩX ΩY ΩZ

X Y X

(48)

pass under π0(−) to long exact sequences of homotopy groups

πn+1(X) πn+1(Y ) πn+1(Z)

πn(X) πn(Y ) πn(Z)

(49)

Homotopy quotients and Borel construction.

Definition A.2. For G ↷X a Hausdorff topological group acting continuously on a topological space X, we write

X X � G := X ×G EG
q

(50)

for its Borel construction, and call its homotopy type the homotopy quotient of the action.

In the special case when X = ∗ we have
∗ � G ≃ BG

whose homotopy groups are those of G shifted up in degree:

πn+1(BG) ≃ πn(G) . (51)

This makes a long homotopy fiber sequence (48)

G X X � G BG .
g 7→ g(x0) q

(52)

Hence if G preserves the connected components of X (such as if X only has one connected component), then the
long exact sequence of homotopy groups (49) implies that

π0(G) ↷ π0(X) is trivial ⇒ π0

(
X
)

π0

(
X � G

)
.

π0(q)

∼ (53)

Surfaces. The homotopy type of the closed oriented surface Σ2
g (1)

S1
∨

g

(
S1
a ∨ S1

b

)
Σ2

g S2
∏

i[ai,bi] δ (54)

sphere

Σ2
0 ≃ S2

torus

a

bΣ2
1 ≃ T2

2-
ho
le
d

to
ru
s

a1

b1

a2

b2

Σ2
2

A.2 Some number theory

Here we briefly compile some facts about Gauss sums used in §4.2, see [6] for more pointers to the literature (see
also [22] but beware of typos in (1.1) there).

First, it may be worth recalling the simple cousin of the Gauss sums:

Proposition A.3 (Discrete Fourier transform of Kronecker delta). For k ∈ N>0 and q ∈ Z we have

k−1∑
n=0

e
2πi
k qn =

 k if q = 0

0 if n ̸= 0 .
(55)

Proof. The statement for q = 0 is immediate. For q ̸= 0 observe that(
1− e

2πi
k q

) k−1∑
n=0

e
2πi
k qn = 1− e2πin = 0 .
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Now:

Proposition A.4 (Classical quadratic Gauss sum evaluation, cf. [63, p 87][83]). For k ∈ N>0 we have

k−1∑
n=0

e
2πi
k n2

=


(1 + i)

√
k | k = 0mod 4

√
k | k = 1mod 4

0 | k = 2mod 4

i
√
k | k = 3mod 4 .

(56)

Proposition A.5 (Quadratic Gauss sum with multiple exponents cf. [63, “QS4” p 86 ]). For odd k ∈ 2N+1
we have more generally, for q ∈ Z,

k−1∑
n=0

e
2πi
k qn2

= (q|k)
k−1∑
n=0

e
2πi
k n2

=


(q|k) (1 + i)

√
k | k = 0mod 4

(q|k)
√
k | k = 1mod 4

0 | k = 2mod 4

(q|k) i
√
k | k = 3mod 4 ,

(57)

where

(q|k) =

 0 if gcd(q, k) ̸= 1

±1 if gcd(q, k) = 1
(58)

is the Jacobi symbol. 11

In §4.2 we are crucially concerned with the variant of the classical quadratic Gauss sum that has half the usual
exponents. In its plain form it is elementary to reduce this to the ordinary quadratic Gauss sum:

Proposition A.6 (Quadratic Gauss sum with halved exponents). For k ∈ 2N>0 we have
k−1∑
n=0

e
πi
k n2

= eπi/4
√
k . (59)

Proof. Setting r := k/2 ∈ N, we may compute as follows:∑k−1
n=0 e

πi
k n2

=
∑2r−1

n=0 e
πi
2r n

2

by def of r

= 1
2

(∑2r−1
n=0 +

∑4r−1
n=2r

)
e
πi
2r n

2

since summands are 2r-periodic, cf. ftn. 9

= 1
2

∑4r−1
n=0 e

2πi
4r n2

= 1
2 (1 + i)

√
4r by (56)

= eπi/4
√
2r

= eπi/4
√
k by def of r.

More generally, there is the following reciprocity relation for the parameters of the quadratic Gauss sum with
halved exponents, which relates it to the ordinary quadratic Gauss sum:

Proposition A.7 (Landsberg-Schaar identity [101], cf. [2][111][49]). For k ∈ 2N>0 and q ∈ N>0 we have
k−1∑
n=0

eπi
q
k n2

= eπi/4

√
q/k

q−1∑
n=0

e
−πi

k
q n2

. (60)

In summary, this implies the evaluation which we use in the main text:

Proposition A.8 (Quadratic Gauss sum with multiple halved exponents). For k ∈ 2N>0 and q ∈ 2N+ 1
we have:

k−1∑
n=1

eπi
q
k n2

=
(60)

eπi/4

√
q/k

q−1∑
n=0

e
−2πi

k/2
q n2

=
(57)

 eπi/4
√
k
(
k/2

∣∣ q) | q = 1mod 4

e−πi/4
√
k
(
k/2

∣∣ q) | q = 3mod 4 .
(61)

11The choice of sign in (58) is non-trivial, but in the main text it is of relevance only whether the Jacobi symbol vanishes or not.
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l’École Normale Sup. 6 1 (1973), 53-66, [doi:10.24033/asens.1242].

[47] E. Grumblin and M. Horowitz (eds.), Quantum Computing: Progress and Prospects, The National Academies
Press (2019), [doi:10.17226/25196], [ISBN:9780309479691].

[48] V. L. Hansen, On the Space of Maps of a Closed Surface into the 2-Sphere, Math. Scand. 35 (1974), 149-158,
[doi:10.7146/math.scand.a-11542], [jstor:24490694].

[49] G. Harcos, The reciprocity of Gauss sums via the residue theorem,
[ncatlab.org/nlab/files/Harcos-ReciprocityOfGaussSums.pdf].

[50] A. Hatcher, Algebraic Topology, Cambridge University Press (2002), [ISBN:9780521795401].

[51] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press (1992),
[doi:10.2307/j.ctv10crg0r].

[52] T. Hoefler, T. Haener, and M. Troyer, Disentangling Hype from Practicality: On Realistically Achieving
Quantum Advantage, Commun. ACM 66 5 (2023), 82-87, [doi:10.1145/3571725], [arXiv:2307.00523].

[53] A. Ikeda, Homological and Monodromy Representations of Framed Braid Groups, Commun. Math. Phys.
359 (2018), 1091–1121, [doi:10.1007/s00220-017-3036-1], [arXiv:1702.03918].

23

https://www.oezratty.net/wordpress/2023/where-are-we-heading-with-nisq
https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society/volume-67/issue-2/On-the-braid-groups-of-E2-and-S2/bams/1183524083.full
https://press.princeton.edu/books/hardcover/9780691147949/a-primer-on-mapping-class-groups
https://www.jstor.org/stable/j.ctt7rkjw
https://doi.org/10.1007/978-3-030-35473-2
https://doi.org/10.1007/s00220-020-03707-2
https://arxiv.org/abs/1904.10207
https://doi.org/10.1142/13422
https://arxiv.org/abs/2009.11909
https://doi.org/10.7146/math.scand.a-10518
https://doi.org/10.1090/S0273-0979-02-00964-3
https://arxiv.org/abs/quant-ph/0101025
https://doi.org/10.1016/0393-0440(94)00050-E
https://doi.org/10.1007/s10801-005-2514-2
https://arxiv.org/abs/math/0103044
https://spectrum.ieee.org/quantum-computing-skeptics
https://arxiv.org/abs/2403.02240
https://doi.org/10.1016/j.geomphys.2025.105462
https://arxiv.org/abs/2312.16301
https://doi.org/10.1007/JHEP07(2024)082
https://arxiv.org/abs/2403.16456
https://doi.org/10.1007/JHEP10(2024)140
https://arxiv.org/abs/2406.11304
https://doi.org/10.1007/3-7643-7393-8_4
https://doi.org/10.1103/PhysRevX.13.011030
https://arxiv.org/abs/2210.01054
https://projecteuclid.org/journals/proceedings-of-the-japan-academy-series-a-mathematical-sciences/volume-66/issue-8/The-topological-invariant-of-three-manifolds-based-on-the-mathrmUleft/10.3792/pjaa.66.237.full
http://dml.mathdoc.fr/item/1195512360
https://doi.org/10.24033/asens.1242
https://doi.org/10.17226/25196
https://nap.nationalacademies.org/catalog/25196/quantum-computing-progress-and-prospects
https://doi.org/10.7146/math.scand.a-11542
https://www.jstor.org/stable/24490694
https://ncatlab.org/nlab/files/Harcos-ReciprocityOfGaussSums.pdf
https://www.cambridge.org/gb/academic/subjects/mathematics/geometry-and-topology/algebraic-topology-1?format=PB&isbn=9780521795401
https://doi.org/10.2307/j.ctv10crg0r
https://doi.org/10.1145/3571725
https://arxiv.org/abs/2307.00523
https://doi.org/10.1007/s00220-017-3036-1
https://arxiv.org/abs/1702.03918


[54] N. V. Ivanov, Mapping class groups, in: Handbook of Geometric Topology, North-Holland (2002), 523-633,
[doi:10.1016/B978-0-444-82432-5.X5000-8].

[55] I. M. James, General Topology and Homotopy Theory, Springer (1984), [doi:10.1007/978-1-4613-8283-6].

[56] S. Kak, Prospects for Quantum Computing, talk at CIFAR Nanotechnology program meeting, Halifax
(November 2008), [arXiv:0902.4884].

[57] S. Kallel, Configuration Spaces and the Topology of Curves in Projective Space, in: Topology, Geometry,
and Algebra: Interactions and new directions, Contemporary Mathematics 279, AMS (2001), 151–175,
[doi:10.1090/conm/279] [arXiv:math-ph/0003010].

[58] A. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. 303 (2003), 2-30,
[doi:10.1016/S0003-4916(02)00018-0], [arXiv:quant-ph/9707021].

[59] K. H. Ko and L. Smolinsky, The framed braid group and 3-manifolds, Proc. Amer. Math. Soc. 115 (1992),
541-551, [doi:10.1090/S0002-9939-1992-1126197-1].

[60] M. Koecher and A. Krieg, Elliptische Funktionen und Modulformen, Springer (2007),
[doi:10.1007/978-3-540-49325-9].

[61] A. Kokkinakis, Framed Braid Equivalences, [arXiv:2503.05342].

[62] A. Kosinski, Differential manifolds, Academic Press (1993), [ISBN:978-0-12-421850-5].

[63] S. Lang, Algebraic number theory, Graduate Texts in Mathematics 110, Springer (1970, 1994),
[doi:10.1007/978-1-4612-0853-2].

[64] L. L. Larmore and E. Thomas, On the Fundamental Group of a Space of Sections, Math. Scand. 47 2 (1980),
232-246, [jstor:24491393].

[65] J. W. Z. Lau, K. H. Lim, H. Shrotriya, and L. C. Kwek, NISQ computing: where are we and where do we
go?, AAPPS Bull. 32 (2022) 27, [doi:10.1007/s43673-022-00058-z].

[66] S. T. Lee and J. A. Packer, The Cohomology of the Integer Heisenberg Groups, J. Algebra 184 1 (1996),
230-250, [doi:10.1006/jabr.1996.0258].

[67] D. A. Lidar and T. A. Brun (eds.), Quantum Error Correction, Cambridge University Press (2013),
[ISBN:9780521897877], [doi:10.1017/CBO9781139034807].

[68] M. Manoliu, Abelian Chern-Simons theory, J. Math. Phys. 39 (1998), 170-206, [arXiv:dg-ga/9610001],
[doi:10.1063/1.532333].

[69] G. Massuyeau, Lectures on Mapping Class Groups, Braid Groups and Formality, lecture notes (2021),
[massuyea.perso.math.cnrs.fr/notes/formality.pdf]

[70] P. Melvin and N. B. Tufillaro, Templates and framed braids, Phys. Rev. A 44 (1991) R3419(R),
[doi:10.1103/PhysRevA.44.R3419].

[71] R. S. K. Mong et al., Universal Topological Quantum Computation from a Superconductor-Abelian Quantum
Hall Heterostructure, Phys. Rev. X 4 (2014) 011036, [doi:10.1103/PhysRevX.4.011036],
[arXiv:1307.4403].

[72] S. Morita, Introduction to mapping class groups of surfaces and related groups, in: Handbook of Teichmüller
theory, Volume I, EMS (2007), 353-386, [doi:10.4171/029-1/8].

[73] D. J. Myers, H. Sati and U. Schreiber, Topological Quantum Gates in Homotopy Type Theory, Comm. Math.
Phys. 405 (2024) 172, [doi;10.1007/s00220-024-05020-8].

[74] J. Nakamura, S. Fallahi, H. Sahasrabudhe, R. Rahman, S. Liang, G. C. Gardner, and M. J. Manfra,
Aharonov–Bohm interference of fractional quantum Hall edge modes, Nature Phys. 15 (2019), 563–569,
[doi:10.1038/s41567-019-0441-8], [arXiv:1901.08452].

[75] J. Nakamura, S. Liang, G. C. Gardner, and M. J. Manfra, Direct observation of anyonic braiding statistics,
Nature Phys. 16 (2020), 931–936, [doi:10.1038/s41567-020-1019-1], [arXiv:2006.14115].

[76] J. Nakamura1, S. Liang, G. C. Gardner, and M. J. Manfra, Fabry-Perot interferometry at the ν = 2/5
fractional quantum Hall state, Phys. Rev. X 13 (2023) 041012, [doi:10.1103/PhysRevX.13.041012],
[arXiv:2304.12415].

[77] M. A. Nielsen, I. L. Chuang, Quantum computation and quantum information, Cambridge University Press
(2000), [doi:10.1017/CBO9780511976667].

[78] S. Okuyama, The space of intervals in a Euclidean space, Algebr. Geom. Topol. 5 (2005), 1555-1572,
[arXiv:math/0511645], [doi:10.2140/agt.2005.5.1555].

[79] J. Preskill, Crossing the Quantum Chasm: From NISQ to Fault Tolerance, talk at Q2B 2023, Silicon Valley
(2023), [ncatlab.org/nlab/files/Preskill-Crossing.pdf].

24

https://doi.org/10.1016/B978-0-444-82432-5.X5000-8
https://doi.org/10.1007/978-1-4613-8283-6
https://arxiv.org/abs/0902.4884
https://doi.org/10.1090/conm/279
https://arxiv.org/abs/math-ph/0003010
https://doi.org/10.1016/S0003-4916(02)00018-0
https://arxiv.org/abs/quant-ph/9707021
https://doi.org/10.1090/S0002-9939-1992-1126197-1
https://doi.org/10.1007/978-3-540-49325-9
https://arxiv.org/abs/2503.05342
https://www.sciencedirect.com/bookseries/pure-and-applied-mathematics/vol/138/suppl/C
https://doi.org/10.1007/978-1-4612-0853-2
https://www.jstor.org/stable/24491393
https://doi.org/10.1007/s43673-022-00058-z
https://doi.org/10.1006/jabr.1996.0258
https://www.cambridge.org/de/universitypress/subjects/physics/quantum-physics-quantum-information-and-quantum-computation/quantum-error-correction?format=HB=9780521897877
https://doi.org/10.1017/CBO9781139034807
https://arxiv.org/abs/dg-ga/9610001
https://doi.org/10.1063/1.532333
https://massuyea.perso.math.cnrs.fr/notes/formality.pdf
https://doi.org/10.1103/PhysRevA.44.R3419
https://doi.org/10.1103/PhysRevX.4.011036
https://arxiv.org/abs/1307.4403
https://doi.org/10.4171/029-1/8
https://doi.org/10.1007/s00220-024-05020-8
https://doi.org/10.1038/s41567-019-0441-8
https://arxiv.org/abs/1901.08452
https://doi.org/10.1038/s41567-020-1019-1
https://arxiv.org/abs/2006.14115
https://doi.org/10.1103/PhysRevX.13.041012
https://arxiv.org/abs/2304.12415
https://doi.org/10.1017/CBO9780511976667
https://arxiv.org/abs/math/0511645
https://doi.org/10.2140/agt.2005.5.1555
https://ncatlab.org/nlab/files/Preskill-Crossing.pdf


[80] J. Preskill, Beyond NISQ: The Megaquop Machine, talk at Q2B 2024 Silicon Valley (Dec. 2024),
[www.preskill.caltech.edu/talks/Preskill-Q2B-2024.pdf].

[81] A. P. Polychronakos, Abelian Chern-Simons theories in 2+1 dimensions, Ann. Phys. 203 2 (1990), 231-254,
[doi:10.1016/0003-4916(90)90171-J].

[82] DARPA, Quantum Benchmarjing Initiative (2024),
[www.darpa.mil/work-with-us/quantum-benchmarking-initiative].

[83] M. Ram Murty and S. Pathak, Evaluation of the quadratic Gauss sum, The Mathematics Student 86 1-2
(2017), 139-150, [ncatlab.org/nlab/files/RamMurtyPathak-GaussSum.pdf]

[84] I. Romaidis, Mapping class group actions and their applications to 3D gravity, PhD thesis, Hamburg (2022),
[ediss:9945].

[85] I. Romaidis and I. Runkel, CFT correlators and mapping class group averages, Commun. Math. Phys. 405
(2024) 247, [doi:10.1007/s00220-024-05111-6], [arXiv:2309.14000].
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