
The basic ideas for how to do this
date back 10 years:

https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://ncatlab.org/schreiber/files/SchreiberParis2014.pdf#page=6
https://arxiv.org/pdf/1310.7930v1.pdf#page=446


0.1 Motivation
We lay out an approach to a joint solution of the following open problems:

(I) The open problem of reliable quantum computing. While the hopes associated with quantum computing (Lit. 1.1)
are hard to overstate, experts are well-aware1 that currently existing hard- and soft-ware paradigms are unlikely to support
the desired heavy-duty quantum computations beyond toy examples. The two fundamental open problems that the field still
faces are both rooted in the single most enigmatic and proverbial phenomenon of quantum physics: the state collapse or
decoherence phenomenon (Lit. 1.2), whereby the peculiar non-classical properties of quantum systems on which rest the
hopes of quantum computing are jeopardized by any measurement-like interaction of the system’s environment. This means
that scalably robust quantum computing requires:

(i) Topological hardware (Lit. 1.3) given by topological quantum materials (Lit. 1.23) whose registry-states are protected
by an “energy gap” from having any interaction with the environment below that range.

(ii) Verified software (Lit. 1.4) with compile-time certificates of correctness — since the traditional run-time debugging
of complex programs is impossible for quantum programs (causing collapse), while all the more needed due to the
complexity and intransparency of gate-level quantum circuits.

Both of these issues have been discussed separately, but the necessary combination has remained essentially untouched
until [TQP]; one will need a quantum programing language (Lit. 1.5) which is

(iii) certifiable and topological-hardware-aware, allowing the programmer to formally verify at compile-time the correct-
ness not (just) of high-level quantum programs, but of quantum circuits consisting of the peculiar topological quantum
gates that the topological quantum hardware actually provides.

For example, to state just the most immediate problem:
Topological quantum circuit compilation problem (Lit. 1.9).
Suppose a topologically ordered quantum material is finally developed which features su2-anyon states at level ℓ,
and given any quantum circuit written in the usual QBit-basis, then the quantum compilation of this circuit onto
the given hardware is the specification of a braid (an element of a braid group) such that the holonomy of the suℓ2
Knizhnik-Zamolodchikov connection along the corresponding path in the configuration space of defect points in
the given quantum material may be conjugated onto the unitary operator to which the quantum circuit evaluates,
within a specified accuracy.

Here the relevant braids are humongous while having no recognizable resemblance to the quantum algorithm which they are
executing; for instance, a single CNOT gate (17) may compile to the following braid [HZBS07, Fig. 15]:

7!

CNOT gate

Hence future quantum programmers will need (classical) computer assistance to compile their quantum programs onto topo-
logical hardware. To make that intricate process fail-safe to reliably run on precious scarce quantum resources, we need this
computer algebra to be “aware” of the system specification and to certify its own correctness relative to this specification.
And this is just for the simplest case of no classical control. The general problem is harder still:

The problem of certifying classical control. Even the most elementary quantum information protocols involve mid-
circuit measurement and classical control, such as in the quantum teleportation protocol (cf. §3.2.2):
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1[Sau17]: “small machines are unlikely to uncover truly macroscopic quantum phenomena, which have no classical analogs. This will likely require
a scalable approach to quantum computation. [...] based on [...] topological quantum computation (TQC) as envisioned by Alexei Kitaev and Michael
Freedman [...] The central idea of TQC is to encode qubits into states of topological phases of matter. Qubits encoded in such states are expected to be
topologically protected, or robust, against the ‘prying eyes’ of the environment, which are believed to be the bane of conventional quantum computation.”

[DS22]: “The qubit systems we have today are a tremendous scientific achievement, but they take us no closer to having a quantum computer that can
solve a problem that anybody cares about. [...] What is missing is the breakthrough [...] bypassing quantum error correction by using far-more-stable qubits,
in an approach called topological quantum computing.”
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More importantly, beyond the currently avail-
able NISQ paradigm (Lit. 1.10), serious quan-
tum computation is expected (Lit. 1.11) to in-
volve a perpetual loop of classical control oper-
ations on the quantum computer (hybrid classi-
cal/quantum computation). These are predomi-
nantly for quantum error correction (§3.2.3) but
also for purposes such as repeat-until-success
gates – where subsequent quantum circuit execu-
tion is classically conditioned on run-time quan-
tum measurement results – also called “dynamic
lifting” (Lit. 1.11, namely of quantum measure-
ment results into the classical data register). This
is schematically indicated on the right.
Last not least, for probabilistic analysis of such
hybrid processes the machine state is to be mod-
eled as a mixed classical/quantum probabilistic
state (Lit. 1.12).
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Hence for reliable heavy-duty quantum computation we need a certification language that knows about classical data types
and about linear/quantum data types and their dependency on classical data. This had been lacking:

The problem of embedded quantum languages. Namely, for
previous lack of a universal quantum programming language,
existing quantum circuit languages are embedded into classical
host languages (Lit. 1.5) which do not have native support for
linear types (cf. Lit. 1.4) nor for classical control of quantum cir-
cuits. For instance, basic protocol schemes such as quantum tele-
portation (§3.2.2), quantum error correction (§3.2.3) or repeat-
until-success gates remain unverifiable with previous technol-
ogy.

Haskell, Coq, ...
Classical Type Theory

for universal classical computation

unverified linear type universe

QML, QIO Quipper, QWIRE, ...
Quantum Circuit Language

for quantum logic cicuits

Solution by Linear Homotopy Type Theory. We argue here, as announced in [Sch22], that the novel type theory LHoTT
(Lit. 1.8) recently developed in [Ri22a] (anticipated in [Sch14a]) in extension of the classical language scheme HoTT (Lit.
1.7) serves as the missing universal quantum programming/certification language.
Our claim in [QS] is that LHoTT:

• Solves the old problem of constructing
combined classical/linear type theories (cf.
Lit. 1.4).
• Provides existing quantum programming

languages like Quipper with a certifica-
tion mechanism [Ri23].
• Natively supports quantum effects such as

dynamic lifting of run-time quantum mea-
surement (§2).
• Natively supports verification of realistic

topological quantum gates [TQP].

LHoTT

Linear Homotopy Type Theory
for universal quantum computation

HoTT

Homotopy Type Theory
for topological logic gates

QS

Quantum Systems Language
for quantum logic circuits

Topological Quantum Language

We argue that this makes LHoTT the first comprehensive paradigm for serious quantum programming beyond the NISQ area.
Here we describe a domain-specific language embeddable into LHoTT to bring this out: Quantum Systems Language (QS, §3),
based on a system of monadic effects which are definable (by admissible inference rules) in LHoTT (§2, surveyed below in
§0.2).
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Concretely, LHoTT enhances the syntactic rules of classical HoTT by further type for-
mations which serve to exhibit every (homotopy) type E of the language as secretly
consisting of an underlying classical (intuitionistic) base type B ≡ ♮E equipped, in
a precise sense, with a microscopic (infinitesimal) halo of linear/quantum data. As
such, LHoTT may neatly be thought of as the formal logical expression of a mi-
croscope that resolves quantum aspects on structures that macroscopically appear
classical. This way LHoTT embeds quantum logic into classical logic in a way rem-
iniscent of Bohr’s famous dictum2that all quantum phenomena must be expressible
in classical language.

Quantum halos. Formally this is achieved by adjoining to classical HoTT an ambidextrous modal operator ♮ [RFL21] (an
infinitesimal cohesive modality [Sch13, Def. 3.4.12, Prop. 4.1.9]), whose modal types (Lit. 1.14) are the purely classical
(ordinary) homotopy types, embedded bi-reflectively (157) among all data types (see §2.1 ):

The presence of the ♮-modality exhibits general types E :
Type as microscopic/infinitesimal halos around their un-
derlying purely classical type ♮E : ClaType. It is a pro-
found fact (146) of ∞-topos theory that models for such
infinitesimal cohesion (see Lit. 1.21) are provided by pa-
rameterized module spectra, in particular by flat ∞-vector
bundles (“∞-local systems”, see [EoS]) which, in their 0-
sector (Rem. 1.22), accommodate quantum circuit seman-
tics (cf. §2.4) in indexed sets of vector spaces (cf. §2.1)
such as known from the Proto-Quipper quantum language
(Lit. 1.5).
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Motivic Yoga. LHoTT witnesses these quantum halos as linear types (24) equipped with a closed tensor product ⊗ and
compatible base change operations which satisfy the rules of Grothendieck’s “motivic yoga of six operations” in Wirthmüller
style (Def. 2.18, cf. [Ri22a, §2.4][EoS, §3.3]). It is this “motivic” structure from which the structure of quantum physics
derives, as originally observed in [Sch14a] and here brought out in §2.1.

Linear/Quantum Data Types

Characteristic
Property

1. Their cartesian product
blends into the co-product:

2. A tensor product appears
& distributes over direct sum

3. A linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for W : ClaTypefin)

cart. product∏
W
Hw ≃ ⊕Hw

direct sum
≃

co-product∐
W
Hw V ⊗ ( ⊕

w:W
Hw ) ≃ ⊕

w:W

(
V ⊗Hw

) (V ⊗H)⊸ K

≃ V ⊸
(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning parallel
quantum systems

compound
quantum systems

qRAM systems

HC-Linear quantum theory. In this scheme, conventional quantum information theory happens in the C-linear form of
linear homotopy theory (details in [EoS]) where parameterized HC-module spectra are equivalent to flat ∞-bundles of chain
complexes, also known as∞-local systems. Here the higher structure of chain complexes serves to capture topological quan-
tum effects [TQP], but in the 0-sector (Rem. 1.22) these are just set-indexed complex vector spaces of the form familiar from
the categorical semantics of the quantum language Quipper, this is what we discuss in detail §2.1 . But since all our quantum
effects are constructed monadically (§2) relying just on the abstract Motivic Yoga, they apply at once to unrestricted (sta-
ble) homotopy types, providing a homotopy-theoretic form of quantum mechanics suitable for the discussion of “topological
quantum effects” as in [TQP].

2[Bohr1949, pp. 209]: “however far the phenomena transcend the scope of classical physical explanation, the account of all evidence must be expressed
in classical terms”. For background and commentary see also [Sche73, p. 24].
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