
2.3 Quantum Epistemic Logic

On the backdrop (§2.2) of classical (intuitionistic) epistemic type theory understood as an equivalent re-interpretation
of classical (intuitionistic) dependent type theory, and in view (§2.1) of the existence of dependent linear type theory
LHoTT, we are led to expect that quantum epistemic type theory ought to analogously be obtained by re-regarding
the base change adjunction (167) of dependent linear type formation
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by passing to the induced (co)monads (??), which we denote by the same symbols as their classical counterparts
(182):
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(194)

A key point now is the ambitexterity (167) of the base change for dependent linear types along a finite classical
type W :
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It is now as elementary to work out the (co)units of these (co)monads (they are the universal maps of the direct
sum construction) as it is interesting – in view of quantum epistemology (Lit. 1.1):
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