
The idea of adiabatic quantum transport. A traditional computing process of the form indicated in Figure P exchanges
energy between the quantum system and its control environment. In fact, common NISQ architectures (Lit. 2.3) are designed
to encode qbit states as energy eigenstates of anharmonic quantum oscillators, so that passing between their energy levels
(the notorious quantum jumps) is what it means to execute computations on these systems in the first place. At the same
time, these energetic interaction channels with their environment is what makes these NISQ machines suffer from noise and
decoherence.

In contrast, a topological quantum process (Lit. 2.4) is, first of all, to take place entirely on the (topologically ordered)
ground states of a topological quantum material (Lit. 2.7), hence on their lowest energy states, without absorbing any energy
from the environment: The notorious energy gap which measures the fidelity of topological phases of matter (Lit. 2.7),
separating their topological ground states from their ordinary excited states, is the room within which the control environment
may shed energy without disturbing the coherent quantum phase.

This state of affairs is neatly captured by one of the classical theorems of mathematical quantum mechanics: The Quantum
Adiabatic Theorem (Lit. 2.6) says (as nicely brought out for quantum computation already in [ZR99]) that in the asymptotic
limit of sufficiently gentle (= “adiabatic”) movement of external classical parameters, the induced quantum system’s evolution
asymptotically preserves gapped energy eigen-states, hence in particular preserves gapped ground states, and hence acts on
the Hilbert space H of gapped ground states by unitary operators Up that vary continuously with the parameter path p.

Figure T. Schematically shown on the
left is the “adiabatic” (Lit. 2.6) trans-
port of quantum states along linear
maps depending on continuous paths in
a classical parameter space.
The diagram on the right indicates our
description of such situations by (lin-
ear) homotopy type families depending
on a base homotopy type, as explained
in §5 below (see (74) and (106) be-
low, noticing that we relegate discus-
sion of linearity of quantum types to
[SS23-QM][SS23-EoS]).
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The idea of quantum annealing. For example, a widely-known implementation of the above Quantum Adiabatic Theorem in
quantum computation is the paradigm of “quantum annealing” [KN98][FGGS00] (review in [RSDC22]). Here one considers a
single-parameter path linearly interpolating between two given Hamiltonians, H0,H1 on a fixed Hilbert space H :≡H 1 =H 2:
If one can arrange for both Hamiltonians to have unique gapped ground
states and for the ground state of the first Hamiltonian to be preparable,
while that of the second Hamiltonian is unknown but identifiable with
the answer to a given computational problem, then the corresponding
adiabatic quantum transport effectively computes that answer.
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Due to its restriction to finding a unique ground state, quantum annealing as such is not a universally programmable form
of computation: It is guaranteed to discover the ground state of H1 and does nothing else. However, in this restrictivity
annealing does foreshadow a key aspect of topological quantum computation in degenerate form (cf. Lit. 2.6): Since the
ground state of H1 is unique, the annealing process does not actually depend on the exact parameter path chosen to arrive
there, it is robust against perturbations of the computational path (cf. [CFP02, p. 2]).

The idea of topological quantum computation. Generally, the profound practical problem with implementing the theoret-
ically straightforward idea of programmable quantum processes (Lit. 2.1) is that real quantum machines are not in idealized
isolation but are coupled to their environment, which necessarily acts like a “thermal bath”: Inevitable noise in the environ-
ment causes perturbations that tend to de-cohere the machine’s quantum state and thus tend to destroy its intended quantum
computation (cf. Lit. 2.5).

Concretely, parameter paths realizable in real laboratories are noisy (cf. Lit. 2.3), hence are drawn randomly from an
ensemble of small perturbations of the intended path. The result of transporting a pure quantum state along such a noisy
ensemble is in general a decohered mixture of pure states which may no longer support the quantum interference effects on
which quantum algorithms crucially rely; unless, that is, one could somehow guarantee that the quantum transport depending
on these paths is actually independent of their small perturbations, really depending only on the global properties of these
paths.

This is the idea of topological quantum computation (Lit. 2.4): to ensure that the quantum adiabatic process depends only
on the topological homotopy classes (Lit. 2.12, 2.13) of the parameter paths (relative to their endpoints).

21



H 1 H 2

p1 p2

Up12

Up′12

7! lift

operationally equal
quantum gates

p12

p′12

homotopy of
parameter paths

Figure H. An adiabatic quantum transport
(Fig. T) is topological (or rather: homotopi-
cal, cf. Lit. 2.12) if it depends on the param-
eter path between fixed endpoints only up to
small continuous deformations, namely up to
homotopy (indicated on the left).
When this is the case, then quantum transport
depends robustly on “global” properties of pa-
rameter paths, such as their winding number
(cf. Lit. 2.13) around “holes” in parameter
space (schematically indicated on the right)
and hence constitutes a form of topological
quantum computation (Lit. 2.4).
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The topological quantum computer scientist is thus led to search for topological quantum materials which are dependent
on classical parameter spaces that have a rich structure of “holes” in them, namely with a rich fundamental group (Lit. 2.13).

The idea of anyon braid grates. There could be several possible choices for such topological quantum systems (cf. [ZR99]),
but the original proposal by Kitaev (Lit. 2.1) may be the most promising and has come to often be treated as synonymous with
topological quantum computation as such. Here one imagines that a quantum material’s gapped and topologically ordered
ground state (Lit. 2.7) depends topologically on tuples (z1, · · · ,zn) of pairwise distinct positions of defect points (“anyons”,
Lit. 2.17) which are effectively constrained to move inside a surface Σ (such as for a crystalline material consisting of a few
monolayers of atoms).

For example, much attention has been focused on the idea that such defects might be realized by quantum vortices in
the surfaces of quantum fluids, such as certain Bose-Einstein condensates (e.g. [MPSS19]). The defect parameters could
also be more abstract, such as being the critical “nodal” values (not of positions but) of momenta of electrons in topological
semimetals (Lit. 2.10). Such nodal momentum values typically vary with fairly easily controllable external parameters such
as external strain exerted on the material’s crystal structure.

In any case, in such a situation the classical parameter space P is effectively the configuration space of points (Lit. 2.18)
in the surface Σ
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A path in such a space is an n-tuple of “worldlines” of defects which may move around each other but never coincide (at any
given instant of time), thus forming the appearance of a “braid” of n strands in 3d space (Lit. 2.20).

This implies that even if Σ is taken to be topologically trivial (e.g. Σ could be the disk through the equator of a Bose-
Einstein condensate) there are still plenty of distinct homotopy classes of paths in Conf

{1, · · · ,N}
(Σ), corresponding to all those braids

which cannot be untied. If a quantum material can be found whose degenerate ground states are transported topologically but
non-trivially along such braidings of defect points, then this would realize topological quantum computation by anyon braid
gates in the original sense of Freedman and Kitaev (Lit. 2.4).

Figure A. If the classical parameter space of a dependent quantum
system (Figure T) is a configuration space (Lit. 2.18) of (anyonic)
defect points (Lit. 2.17) in a plane, then a parameter path is a braid
(Lit. 2.20).
If the (degenerate) ground state of a topological quantum system
depends topologically on the defect poisitions (Lit. 2.7), then their
adiabatic transport along such braid paths realizes quantum gates
that form a linear representation of the braid group.
In the technologically viable situation of su2-anyons, this is the mon-
odromy representation of the canonical flat KZ-connection on the
bundle of conformal block over configuration (Lit. 2.24).
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The idea of certified braid gate types. But none of this intricate internal structure of topological braid quantum gates is
visible to existing quantum programming languages; and any traditional implementation of this information (via conformal
quantum field theory methods) would be formidable to construct and then inefficient to use. Yet, detailed verification (Lit.
2.26) of the operation and compilation of these braid gates will arguably be crucial for practical scalable quantum computation
(Lit. 2.5), and will serve for topological quantum simulation already now.

Our claim here is that this problem finds an elegant solution by regarding it through the novel lens of homotopically-typed
programming languages (Lit. 2.27), where the construction of types certifying braid quantum gate operation magically turns
out to be essentially a native language construct (Thm. 6.8 below). This we explain now.
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