The Fundamental Theorem of dg-Algebraic Rational Homotopy Theory (reviewed as [FSS23-Char, Prop.
5.6]) says that the homotopy theory of rationalization of simply connected spaces with fin-dim rational cohomology
is all encoded by their Whitehead L..-algebra (40) over the rational numbers.
In particular, for X a CW-complex one gets
Map (X, L2A) ~ Homggaig (CE(1%A), 2 qr (X)) (51)
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where on the right we have something called the “piecewise linear de Rham complex” of the topological space X.

Notice that the right-hand side looks close to the definition of [A-valued de Rham cohomology in (32). In order
to actually connect to such smooth differential forms, we need to extend the scalars from the rational to the real
numbers:
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In abelian (ie. Whitehead-generalized) cohomology theories both the rationalization step and the subsequent
extension of scalars to R can be more easily described as forming the smash product of the coefficient spectrum
with HQ or HR, respectively [FSS23-Char, Ex. 5.7]. This is how the Chern-Dold character map over R is tacitly
used in all the literature on Whitehead-generalized differential cohomology theory (e.g. [BN19, Def. 4.2]):
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The point of the non-abelian de Rham theorem (52) from [FSS23-Char] is to generalize the real-ifification
of spectra (53) to non-abelian cohomology, such as to Cohomotopy; and the key result that makes this work is
the fundamental theorem of dg-algebraic homotopy theory (51). This, ultimately, is the ‘reason’ why L..-valued
differential forms connect fluxes to their flux-quantization laws.

The general non-abelian character map is now immediate [FSS23-Char, Def. IV.2]: It is the cohomology
operation induced by R-rationalization of classifying spaces, seen under the non-abelian de Rham theorem (52):
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