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Track Record. In my Habilitation thesis S25, I have initiated a new mathematical approach to the mod-
ern higher (homotopy theoretic, derived) version of differential geometry and its application to geometric
problems in quantum field theory (QFT). I have delivered many lectures on this approach at international
conferences S14–S24, and published a wide range of applications with various collaborators (a review ex-
position is in S7). The research proposed here will advance this new approach to a whole new level. The
following highlights some of my contributions (with various co-authors) in my research areas that are directly
relevant to the proposed project; introduction and background is below in Part II. Specifically,

I.1) I have lifted S25 axiomatic cohesion 39 to higher topos theory 41, found models of practical interest
S13,S8,S23, and showed that this cohesive homotopy theory axiomatizes differential cohomology. This
is the mathematical framework for all aspects of abelian 18 and nonabelian/twisted S14,S13 higher
gauge field theory. This axiomatics has been used 12 to solve a conjecture of Simons–Sullivan (reviewed
in S20) and to clarify the structure of equivariant homotopy theory 51. The axioms are strikingly eleg-
ant, contrasting with the complexity of the theory that they encode. This allowed the construction of
new models of differential K-theory 12 and twisted differential cohomology 11 crucial for mathematical
QFT and string theory 16. It also enabled me S28 to embed the axioms into the new foundations
called homotopy type theory 58, see 6,S19 for more on cohesive homotopy type theory. This gives a
practicable way to apply computer-aided formal proof to all aspects of this proposal; first steps in this
direction were already carried out 8.

I.2) I have established S10 geometric higher principal bundle (higher gerbe) theory and the classification
theorem by higher nonabelian cohomology represented by BG (stacky deloopings). This result was
used to solve the Beilinson–Drinfeld problem in Tate vector bundles via algebraic K-theory 52. It was
also used to generalize the nonabelian Hodge theorem of Simpson to twisted bundles 25.

I.3) I have proved S25 that for G a Lie group then homotopy classes of maps of higher stacks L : BG→
BnA (for A = R, Z, U(1)) correspond to Segal–Brylinski’s refined Lie group cohomology of G with
coefficients in A. Hence, for G a compact Lie group, the homotopy classes of maps L : BG→ BnU(1)
are in bijection with the levels in Chern–Simons (CS) gauge theory. This is a basis for discussion of
fully local CS theory in this proposal. It influenced similar analysis in 59.

I.4) I have shown S9 that the higher Lie integration 30 has a differential refinement that reads in transgress-
ive cocycles of strong-homotopy Lie algebras and Lie-integrates them to homomorphisms of moduli
stacks BGconn → Bn+1U(1)conn of higher principal connections (whence the subscript). This pion-
eered the use of the homotopy theory of simplicial sheaves in higher Chern–Weil theory; complementary
results were later given in 22. All of S1,S4,S6–S8 builds on this construction.

I.5) I have shown S6–S8 that these differential refinements Lconn : BGconn → BnU(1)conn are the de-
transgressed fully local CS Lagrangians i.e. their transgression to moduli stacks of fields on any n-
dimensional closed manifold Σ is the actual CS action. The intermediate transgression to (n − 1)-
dimensional Σ is the CS pre-quantum line bundle—which is the theta line bundle of pivotal interest
in the present proposal—and the transgression to (n− 2)-dimensional Σ is the higher Wess–Zumino–
Witten (WZW) gerbe. This encodes the super p-branes in string theory as higher super-WZW models
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S8, anticipated in S12,35. This also includes the 6d field theory of the M5-brane of concern here.
These towers of (de-)transgressions of higher CS Lagrangians motivate the present proposal.

I.6) I have shown S13 that the homotopy fiber products of the above Lconn yield the higher moduli stacks
of Green–Schwarz anomaly-free heterotic string configurations, and yield S5 a refinement of the 11d
supergravity C-field to higher stacks, necessary for the fully local description of the nonabelian 7d CS
Lagrangian that I constructed in S4. This is a key structure in the present proposal.

I.7) I have shown S1 that differential integration, when applied to any symplectic Lie n-algebroid, yields a
full de-transgression of the Alexandrov–Kontsevich–Schwarz–Zaboronsky (AKSZ) action functionals.
The plain AKSZ functionals have more recently been re-popularized 50. I have shown S2,10 that
applied to Poisson Lie algebroids the resulting 2d Poisson-Chern-Simons theory has as moduli stack
of fields a differential refinement of the symplectic groupoid.

I.8) I have shown S27 that the geometric cohomological boundary quantization of this 2d Poisson–Chern–
Simons theory gives geometric Spinc quantization of compact Poisson manifolds. This is the content
of the theses 10,49 written under my supervision. This is a non-perturbative analog of the celebrated
deformation quantization of Poisson manifolds via the perturbative Poisson sigma-model 14.

I.9) I have shown S2,S3 that these fully localized CS functionals, when viewed as objects in the cohesive
slice homotopy theory over BnU(1)conn, are higher pre-quantum line bundles whose higher automorph-
ism groups are the higher analogs of Kostant–Souriau central extensions including higher Heisenberg
groups and whose strong-homotopy Lie algebras are higher Poisson bracket algebras of local observ-
ables/conserved currents. Further aspects of this have recently been studied 29. Moreover, I have
shown S26,S18 that this provides a comprehensive formalization and pre-quantum refinement of de
Donder–Weyl localized classical Hamilton–Lagrange–Jacobi field theory .

I.10) I have discussed various aspects of a theory of cohomological geometric quantization of such data by
Gysin maps in twisted generalized cohomology theories S27. Related discussion is to appear in 33.

Altogether, these results establish a fully localized/de-transgressed formalization of classical and pre-quantum
higher-dimensional CS-type Lagrangian field theory—geometrically (cohesively) refining the higher-dimen-
sional but geometrically discrete Dijkgraaf–Witten-type theory 23—and of first aspects of cohomological
geometric quantization of such data. This now allows one to study the corresponding higher analog of theta
functions and of higher CS/WZW holography (explained in Part II) with the tools of cohesive homotopy
theory S25 and with the proof of the cobordism hypothesis 42,29.
PART II: DESCRIPTION OF PROPOSED RESEARCH AND ITS CONTEXT

Introduction. Quantum field theory (QFT) and string theory are notorious for involving structures just
outside the reach of available mathematics and hence, for providing deep inspiration for new mathematics
(recent developments are compiled in S11). The special cases of conformal and topological QFTs have
always been more amenable to mathematical investigation 5,54,24, but they are often regarded as mere toy
examples. Progress in recent years, both in mathematics and theoretical physics, has changed this picture:

II.1) The recent development of homotopy theory and the formalization and proof of the cobordism hy-
pothesis 42 (i.e. classifying fully local topological QFT via higher monoidal category theory, see 9)
shows that the axioms for topological QFT originally found by Atiyah & Segal 5,54 are, in their refined
local form, much more deeply rooted in the bedrock of mathematics than previously thought. In a
sense, 42 shows that local topological quantum field theory is the unstabilized generalization of the
J-homomorphism in stable homotopy theory. This gives the axioms a deep mathematical relevance
quite independent of any physics, witnessed by recent developments such as 17.

II.2) The development of the holographic principle 43 in physics highlights, in view of its analysis in 62,28,
that topological QFTs (inside string/supergravity theories) serve to induce actual physical field theories
on their holographic boundaries, and, in fact, that chiral/self-dual higher gauge fields are only definable
this way in the first place 61,46. In terms of actual mathematics, this is nicely exhibited by the
classification result 24 which constructs (modulo the pertinent identification of spaces of conformal
blocks) rational 2d conformal field theories (CFTs) in a holographic fashion from 3d Chern–Simons
(CS) theory, see 37 for review amplifying this perspective. Moreover, 61,64,65 argues that via a chain
of reductions and equivalences, there is a whole cascade of non-topological field theories descending
from a single topological one. Notably, the prime example of all QFTs since the 1950s—4d Yang–Mills
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theory—is supposed to be usefully understood as the compactification of a 6d CFT holographically
defined by 7d CS theory (sitting inside some supergravity completion). The quest for understanding
this 6d theory has recently been attracting much attention 44,21, but the fact that its only actual
definition is via holography involving a 7d CS theory 62,S4 should be kept in mind (see e.g. 45).

On the other hand, while in physics one routinely thinks of QFTs as induced from geometric data—
namely via quantization of Lagrangians—a reflection of this geometric quantization process (a modern review
is in 10) in the refined local axiomatics of the cobordism hypothesis has been missing. But much of the
interesting structure resides precisely here.

A.1. Research Hypothesis and Objectives

Major Aims. The broad goal of the proposed research program is to find, formulate, and study the
refinement of the all-important mathematics of geometric quantization of topological field theory to the
fully local (extended, multi-tiered) setup of the cobordism hypothesis. I have already provided some of
the foundations S25–S27 (following S14 and inspired by a sketch in 23). In these references, I presented a
formulation of local pre-QFT via combining the cohesive homotopy theory which I developed with the proof
of the cobordism hypothesis. Rather recently, aspects of this have been developed further in 29,19,33 but
nevertheless, many open problems remain.

Research Hypothesis. The research hypothesis of the project is proof of a new claim thats was previously
sketched in S25 but waiting to be spelled out. Concretely, this claim states that by means of 42,29, the
local cohesive pre-QFT induced by a fully local higher cohesive CS functional L : BG → BnU(1), as in
Track Record I.5), automatically sends a closed manifold Σ of codimension-one to the pre-quantum/theta
line bundle Θ : LocG(Σ) → BU(1) of the higher CS-type field theory given by the transgression of L
to the higher moduli stack of G-local systems on Σ. As indicated below in Background, this yields a
striking confluence of a number of deep and time-honored phenomena and at the same time provides their
generalization to higher dimensions and to various flavors (super-, derived-, arithmetic-,...) of geometry.

Objectives. Therefore, this hypothesis opens the door to a systematic definition and study of the following
four subjects, lifting their well-known low-dimensional counterparts. Specifically, I will develop and study:

Objective 1 – Higher Modular Functors Objective 2 – Higher Topological Modular Forms
Objective 3 – Higher Langlands correspondence Objective 4 – Higher Equiv Elliptic Cohomology

All four of these closely correspond to aspects of higher-dimensional CS-type field theory and its holograph-
ically related WZW-type field theory. As an important example, the objective is to work out the implications
for the 7d/6d field theory following S4.

B.1. Background

The traditional phenomena whose higher-dimensional generalization I propose to investigate via the new
tool of local cohesive pre-QFT are the following.

Modular Functors. In mathematical geometric quantization (see 10 for a modern review) of topological field
theory, the quantization step is essentially the process of attaching analogs of theta functions (i.e. modular
and automorphic forms 47) and generalized theta functions (conformal blocks) 7 to given geometric data
over a codimension-one manifold Σ (a review is in 57). Schematically, these are assignments (z, τ) 7→ θ(z|τ)
depending on a point z in the phase space of the CS theory—which is a flat connection, hence a local system
on Σ—and on a point τ in the moduli space of polarizing geometric structure (typically: complex structure)
on Σ. From the point of view of CS theory, such a theta function is a quantum wavefunction θ(z|τ) = Ψτ (z)
with respect to the splitting of phase space into canonical coordinates and canonical momenta that is encoded
by the polarization induced by τ 60,61. The space of all theta functions from this point of view is the space
of quantum states of CS theory over Σ. On the other hand, from view point of CFT, the theta function
is the partition function θ(z|τ) = Tr(exp(−τHz)) at the Schwinger parameter τ and for the background
source field z 1. From this perspective, the space of all such functions is called the space of conformal
blocks. The collection of all these generalized theta functions in their dependence on τ is encoded by the
modular functor 54. This is the pivotal structure for all mathematical constructions of 3d CS theory (reviews
include 56) and thus, via holography, of 2d WZW theory 24.
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L 7→


Σ 7→

z 7→
 τ 7→ θ(z|τ)︸ ︷︷ ︸

theta function

∈ Θz,τ︸︷︷︸
theta line


︸ ︷︷ ︸

Jacobi form


︸ ︷︷ ︸

modular functor


︸ ︷︷ ︸

CS theory in codimension 1

L level / CS Lagrangian

Σ manifold of codimension 1

z flat G-connection/local systems on Σ

τ geometric modulus on Σ

In conclusion, theta functions constitute a crossroad where the most delicate phenomena of modern quantum
field and string theory touch deep mathematics in its purest arithmetic form.

Relation with the Langlands Correspondence. Indeed, the Mellin transform of a theta function with
respect to the Schwinger parameter, is its zeta function (L-function) ζz(s) :=

∫∞
0 τ s−1 θ(z|τ) dτ defined as

indicated where the integrand and its integral exist and analytically continued from there to a meromorphic
function on the complex plane. When Σ is a torus, this is what in physics is called the zeta-regularized
one-loop vacuum amplitude 55,13.

This assignment of zeta functions (L-functions) ζz to local systems z in the quantization of topolo-
gical/conformal field theory is curiously reminiscent of the Langlands program in number theory (a good
review is 26): the main conjecture here states that there is a natural (Langlands: functorial) assignment
of L-functions to Galois representations induced via associated automorphic forms. Noticing that Galois
representations are the arithmetic incarnation of local systems and flat connections, they play the role of the
z in the above story. Some aspects of this curious analogy of the Langlands correspondence with structures
in CFT have been highlighted in 20. However, the alternative proposal 38 for a relation of geometric Lang-
lands to physics arguably had the effect of shifting attention away from this analogy. It seems worthwhile
to reconsider the analogy with CFT and to consider it in higher-dimensional generalization following the
cobordism hypothesis. In particular, it is compelling to study the higher incarnation of these phenomena for
the case of 7d CS theory and 6d CFT.

Relation with Topological Modular Forms. When Σ is a marked torus, then a choice of complex structure
makes it a complex elliptic curve. Passing from complex to arithmetic geometry yields the classical moduli
stack of elliptic curves. Passing still further to its homotopy theoretic (derived) refinement 40 yields sheaves
of elliptic spectra which constitute a homotopy theoretic refinement of the classical modular forms 32. In a
stupendous piece of work 3,2, it was shown that these topological modular forms canonically know about
the partition function of the heterotic 2d CFT, namely that their cohomological orientation is a refinement
of the Witten genus. This strongly indicates that any mathematical theory capturing the full depth of
topological/conformal field theory needs to be rooted in geometric homotopy theory.

Relation with Equivariant Elliptic Cohomology. Indeed, organizing these elliptic spectra further into
equivariant elliptic cohomology depending on a choice of gauge group 40 yields a homotopy-theoretic re-
finement of the modular functor assigning spaces of theta functions. This noteworthy fact is explicitly
the content of 40 but has perhaps not found due appreciation yet. Moreover, 40 hints at a 2-equivariant
refinement of equivariant elliptic cohomology, where the higher theta line bundle appears naturally as the
transgression of a fully local CS Lagrangian L to the moduli space of local systems on Σ.

This is directly suggestive of the research proposed here: in the context of higher differential geometry, I
have studied in some detail S6,S2,S7 and then put into the context of the cobordism hypothesis S25 (based
on discussion that recently led to 19) a detailed incarnation of the idea of obtaining the theta line via
transgression of a fully localized CS Lagrangian. Here, the observation is, first (see Track Record I.3)) that
a CS level L may naturally be refined to a higher line bundle (higher gerbe) L on the universal moduli
stack of CS-gauge fields and, second, that this defines a local (in the sense of the cobordism hypothesis)
pre-QFT which automatically sends a closed manifold Σ of codimension-one to the transgression which is
the theta line bundle over the moduli stack of local systems on Σ. Schematically, it means that given a fully
localized CS Lagrangian L in the guise of a higher line bundle on a higher moduli stack, then the proof of
the cobordism hypothesis induces a natural assignment of the form:
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BG

L
��

BnU(1)

7→


Σ 7→


LocG(Σ)

Θ
��

BU(1)︸ ︷︷ ︸
transgression of L to Σ


︸ ︷︷ ︸

the research hypothesis


︸ ︷︷ ︸

local cohesive pre-QFT

L localized higher CS-line bundle

LocG(Σ) higher moduli stack of local systems

Θ theta line bundle

The point is that, on the one hand, for suitable choices of G and L this assignment does reproduce
the traditional modular functor of 3d CS/2d WZW theory, while on the other hand this is a special case
of something exceedingly more general: this naturally yields higher modular functors—as recently also
considered in 19—for higher-dimensional CS theories involving higher gauge fields, and does incarnate in a
range of different flavors of geometry. Indeed, all we need is that L lives in cohesive homotopy theory S25

which includes higher differential geometry S14,S13 but also supergeometry S8 and, crucially, also derived
arithmetic geometry S23. Notably, the 7d CS theories for which I have constructed fully local L in S4 fit
into this construction and induce this way modular functors in dimension 6 which ought to encode partition
functions of the mysterious 6d CFT.

B.2. Research Methodology

Objective 1 – Higher Modular Functors. The traditional modular functor of 2d CFT has different
incarnations depending on how the conformal anomaly cancellation is taken into account 54,31.

Methodology: The proof of the cobordism hypothesis, however, yields a coherent picture of modular functors
for higher-dimensional field theory 19. Combined with the local cohesive construction of higher CS functionals
from Part I, this yields a systematic procedure for constructing and studying higher modular functors, in
particular for the case of 7d CS theory. It is underappreciated that the only actual definition of the 6d
super-CFT is as the holographic dual of a 7d theory, which in a suitable limit is a nonabelian 7d CS-type
theory. In the simple case of an abelian theory this has in fact been established in 61. In S4,S5, the full
nonabelian 7d CS theory has been constructed in the fully local form needed as input for the topological
field theory construction via the cobordism hypothesis.

Milestones, Expected Outcomes, and Time Frame: Milestones include the proof of conjecture 1.4 in 29;
computation via this (proven) conjecture of the homotopy fixed point structure on the local CS Lagrangians
à la 42; relating the resulting structure to the traditional Atiyah 2-framing structure 5 and to the traditional
division-by-half of the Lagrangians on Spin-cobordisms 36; computation of the 6d modular functor induced
this way from the 7d theory of S4; relating this to the physics of the 6d super-CFT.

An expected outcome is a systematic understanding of modularity and anomaly cancellation in higher-
dimenesional CS theory from the fundamental perspective of the proof of the cobordism hypothesis applied
to local cohesive pre-QFT. The expected time frame for the basic mechanisms and examples is two years, a
more in-depth study of the examples will take longer.

Objective 2 – Higher Topological Modular Forms. When Σ is a torus, the classical theta functions on
the moduli of complex structures on Σ famously are examples of modular forms, which are instances of auto-
morphic forms. By 27,40, these modular forms have a homotopy theoretic refinement to topological modular
forms obtained by refining the formal group underlying elliptic curves to complex-oriented ring spectra, a
construction that turns out to reflect deep aspects of 2d CFT 3,2. This has motivated mathematicians
to consider more general topological automorphic forms induced from 1d formal group laws split off from
moduli on higher-dimensional Σ.

Methodology: The physics story of the higher CS/WZW-type duality just reviewed predicts a more accurate
picture: the abelian varieties that matter are the higher (Griffith/Weil-)Jacobians Loc(B2k+1U(1))(Σ) induced
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by (4k + 2)-dimensional Σ (instead of Σ itself) and complex (or, more generally, arithmetic) moduli are
supposed to be induced from the complex/arithmetic structures on Σ, see S20 for review and further pointers.
(This distinction is invisible in low dimension due to the coincidence that for Σ a torus/elliptic curve, then it
so happens to be canonically equivalent to its own Jacobian!) Accordingly the formal group associated with
an elliptic curve, whose identification leads to the concept of topological modular forms, is more properly
thought of as the deformation theory of its moduli of line bundles, and so the proper higher analogs of that
are the formal groups of deformations of higher Jacobians.

These formal groups appeared way back in 4, or, rather 4 considered formal groups of deformations of
(2k+1)-line bundles on Σ and (2k+1)-connections on Σ. An old theorem of Deligne (reviewed in S20) says
that to describe the higher Jacobians properly one needs a case in between these two i.e. (2k + 1)-bundles
with k + 1-form connection. The higher topological modular forms associated with these are to be studied.

Milestones, Expected Outcomes, and Time Frame: The milestones include the identification of the correct
formal groups and computation of their height; construction of associated complex-oriented spectra, hence of
the generalized cohomology theory replacing elliptic cohomology in higher dimension (envisioned as Calabi–
Yau cohomology in 53); and in particular doing this in the special case of 6d Σ.

An expected outcome is a first picture of the correct nature of the cohomological lift of the 6d modular
forms in higher analogy of the elliptic cohomology and topological modular forms in 2d. The expected time
frame for first results is one year, an in-depth study will take longer.

Objective 3 – Higher Langlands Correspondence. While geometric Langlands duality focuses on the
duality aspect of the theory, the number theoretic Langlands correspondence is primarily more directed: Lang-
lands’ crucial Conjecture 3 (e.g. 26) states that to a suitable Galois representation is naturally (Langlands:
functorially) associated a certain zeta function, and that this may be expressed in terms of an automorphic
form in correspondence with the Galois representation. These zeta functions appear as Mellin transforms
of theta functions (just as zeta functions arise as 1-loop vacuum amplitudes in QFT). Keeping in mind
that the geometric interpretation of a Galois representation is a flat connection, this means that Langlands’
Conjecture 3 asserts the natural assignment of a theta function to a flat connection.

Methodology: It is striking that structurally this is precisely what the Research Hypothesis produces, with its
theta functions naturally parametrized over the moduli LocG(Σ) of flat G-connections. But the claim there
states a considerable generalization of this assignment: on the one hand, Σ may be a higher-dimensional
curve but on the other hand the geometric context may be any suitably cohesive context. It remains to be
further seen how this relates to established number theoretic Langlands, the result in S23 already shows that
there is a realization of cohesive homotopy theory (arithmetic cohesion) which does reproduce structures
that are key to number theoretic Langlands.

Milestones, Expected Outcomes, and Time Frame: Milestones include a deeper analysis of arithmetic cohe-

sion S23 and discovery of potential variants; arithmetic realization of the local CS Lagrangians in algebraic
K-theory following 15, construction of the zeta functions obtained via Mellin transform from the canonical
theta bundles as indicated above at Background; relation to zeta-regularized vacuum amplitudes of the
corresponding field theories, notably of the 6d theory.

An expected outcome are results on the structure of a higher analog geometric Langlands correspondence
in higher generalization of the CFT-perspective of 20. The expected time frame for first results is three years,
an in-depth understanding is open-ended.

Objective 4 – Higher Equivariant Elliptic Cohomology. Arguably the most refined cohomological in-
carnation of the traditional theory of the 2d WZW model is given by the 2-equivariant elliptic cohomology
indicated in 40. In outline1 this is just the kind of construction that takes the 3d higher CS bundle to the
theta line bundles that it induces by transgression, as indicated in Background. Of course the key aspect of
40 is to formulate this in derived arithmetic geometry, but this is just the context of Objective 3 above.

Methodology: Conceptually, the sketch of 2-equivariant elliptic cohomology in 40 is strikingly analogous to
my Research Hypothesis . Thus, it seems plausible that the research proposed here leads to higher analogs
of 2-equivariant elliptic cohomology. This is ambitious, but worth thinking about.

Milestones, Expected Outcomes, and Time Frame: Milestones include a formal identification of the trans-

1See http://ncatlab.org/nlab/show/equivariant+elliptic+cohomology

U Schreiber / Case for Support — Page 6 of 8

http://ncatlab.org/nlab/show/equivariant+elliptic+cohomology
http://ncatlab.org/nlab/show/Urs+Schreiber


gression construction described in Background with the kind of higher equivariance in 42; formulating the
higher dimensional analog for the 7d CS Lagrangian of S4. The expected outcome are first insights into the
mechanism of n-equivariance as a systematic phenomenon induced via the proof of the cobordism hypothesis
applied to local cohesive pre-quantum field theory. The expected time frame is one year for first results, an
in-depth understanding is open-ended.
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