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Part 1: Overview of topological
phases and mathematical
preliminaries on K -theory



Overview of topological phases

The meaning of phase depends on the class of physical systems
being studied, e.g. thermodynamic, classical/quantum mechanical,
symmetry-constrained,. . . ., but there are some general features.

There are typically some parameters
specifying a physical state, e.g.
temperature, pressure, time, . . . .

The parameter space (phase
space/moduli space) divides up into
various connected pieces (phases)
separated by phase transitions.
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Overview of topological phases

The relevant phase space is often a rich topological space, and the
topological phases are labelled by topological invariants familiar
from mathematics.

Examples: winding numbers, homotopy/(co)homology groups,
characteristic classes, K -theory, noncommutative
generalisations,. . .

Physicists have been quite creative both in producing models for
actual phenomena which realise such invariants, including exotic
ones that were not known or studied mathematically!
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Overview of topological phases

The role of topological invariants in high-energy physics and string
theory is well-known: Gauge theory, anomalies, D-branes,
topological field theories. . .

Topological phases in condensed matter physics (CMP) have a
somewhat different origin. The underlying principles are
“universal”, and are already being applied in photonics, acoustics,
classical mechanical systems, etc.

Most importantly, there are direct experimental realisations of
many predicted topological phases!

Typical setup: Linear dynamics (Hilbert spaces, vector bundles,
unitary time evolution), Symmetries (representation theory),
Spectral gap condition etc.
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Bulk-boundary correspondence

An important consequence is the bulk-boundary correspondence —
Topological invariants for bulk physical system may be ”invisible”
in a spectral sense (gap condition), but “holographically” detected
as zero modes on a boundary (Index theory).

Here are some “cartoons” that physicists have in mind:

6 / 168



Short history of experimentally found topological phases
At least three Nobel Prizes have been awarded in direct relation to
topological phases in CMP: 2016 (Thouless–Kosterlitz–Haldane),
1985 (von Klitzing), 1998 (Laughlin–Störmer–Tsui).

1970s-80s — Kosterlitz–Thouless transitions

1980 — Integer quantum Hall effect
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Short history of experimentally found topological phases
1982 — Fractional quantum Hall effect
1986 (maybe 1960) — Aharanov–Bohm effect
2008 — Quantum spin Hall effect (?)

D. Hsieh, et al., Nature 452, 970 (2008)

2009 — Z2 3D topological insulator

D. Hsieh et al., Nature 460, 1101 (2009)
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Short history of experimentally found topological phases

2014 — Chern insulator (anomalous quantum Hall effect)
2015 — Weyl semimetals

(L) Xu et al, Science 349 613 (2015); (R) [—] Nature Phys. 11 748 (2015).

Last ten years — Generalisations and analogues of above, e.g. in
photonics
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Kitaev’s Periodic Table

A. Kitaev, arXiv:0901.2686, 2009
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Ryu–Schnyder–Furusaki–Ludwig Periodic Table

RSFL, New J. Phys. 12, 065010 (2010)
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Bott’s Periodic Table
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Plan of lectures

There are many review articles on the physics side, not so much
the mathematical side (especially why K -theory is relevant).

This is an unfortunate gap in the literature, making it hard for
mathematicians to appreciate or enter the field seriously.

Actually, the NCG community had already been using K-theory,
C ∗-algebras, index theory, etc. to study the Quantum Hall effect.

Understanding some basic physical insights lead us to generalise
mathematical results in previously ill-motivated directions.

I will proceed by a series of examples, each motivating the
introduction of certain mathematical ideas.
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Plan of lectures

Su–Schrieffer–Heeger (SSH) model: superalgebra and Toeplitz
index theorem

Chern insulator: Bundle invariants and K -theory, spectral flow

3D topological insulator: “Real” K -theory

CT symmetries and tenfold way: Clifford algebras and Bott
periodicity

Bulk-boundary correspondence: T-duality and extension theory

Quantum Hall effect: C ∗-algebras and noncommutative geometry

Crystallographic and hyperbolic phases: Twisted K -theory,
Baum–Connes isomorphism

Weyl semimetals: Differential topology (if there is time)
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Mathematical preliminaries: K -theory

Abstracly, topological K -theory is a generalised cohomology
functor X 7→ K−n(X ), n ∈ Z on locally compact Hausdorff spaces.

Concretely, elements of K 0(X ) are usually represented by vector
bundles over X .

K -theory is much more useful than just a classification framework
(contrary to impression from physics literature).

Functoriality (right-way maps) guarantees coherent comparison
between classifications over different spaces, and wrong-way maps
(topological index) relate to analysis (spectra of operators)
through index theorems.

Computable through Bott periodicity, Baum–Connes maps (related
to T-duality), Mayer–Vietoris sequences (locality property).
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Mathematical preliminaries: Complex K -theory

For compact Hausdorff X , consider finite-rank complex vector
bundles E over X and their isomorphism classes [E ]. These form a
commutative monoid V(X ) w.r.t. Whitney (direct) sum ⊕. Thus
[E ] + [F ] ≡ [E ⊕ F ] ≡ [F ] + [E ] but there are no inverses.

K 0(X ) is the resulting abelian group obtain by Grothendieck’s
universal completion. Why do this?

Usually the ⊕ structure is physical (combining two subsystems
together). Whenever we want an abelian group-valued topological
invariant f , we can always factor through K 0(X ) uniquely.

V(X )
ι //

f
$$

K 0(X )

∃! g
��
G
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Mathematical preliminaries: Grothendieck construction

Notation: drop [·] (taking isomorphism classes is implied)
Explicitly, we consider pairs V(X )× V(X ), written as a formal
difference bundle E ≡ E+ 	 E−.

Impose the relation

E ∼ F ⇔ ∃G s.t. E+ + F− + G = F+ + E− + G.

K 0(X ) := (V(X )× V(X ))/∼, and we write K -theory classes as
[E] ≡ [E+ 	 E−].

The identity is [0] = [0	 0] and the inverse is −[E] = [E− 	 E+].

Clearly [G 	 G] = 0 is always trivial, and adding such “trivial
differences” to E does not change its K -theory class.
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Mathematical preliminaries: Grothendieck construction

As an example, compute K 0(pt), so E are vector spaces.

Isomorphism classes are just Cm labelled by dimension m ∈ N, thus
V(pt) = (N,+).

Cancellation law holds in N, so the Grothendieck completion is
pairs m+ 	m− ∈ N× N with relation

m+ 	m− ∼ n+ 	 n− ⇔ m+ + n− = n+ + m−

This is just the construction of the integers Z, so K 0(pt) = Z.

Positive integers m↔ [m 	 0] = [m + 1	 1] = [m + 2	 2] = . . .
Negative integers −m↔ [0	m].

16 / 168



Mathematical preliminaries: Grothendieck construction

The “super”, or Z2 = {±} graded, point of view will be useful for
physical applications later, where ± is associated to
positive/negative energy sectors (or particle/antiparticle).

Start with graded vector bundles, denoted E = E+ 	 E−, and take
monoid V(X ) of graded isomorphism classes (i.e. E± ∼= F±).
Addition means E ⊕F = (E+ ⊕F+)	 (E− ⊕F−).

Define the trivial submonoid T (X ) as those T which admit an

odd bundle automorphism I =

(
0 I∓
I± 0

)
, I2 = 1.

E.g. if E+
∼= E− ∼= G, then E = G 	 G is considered trivial (as

before).
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Mathematical preliminaries: Grothendieck construction

Declare E ∼ F if there exists T ,T ′ ∈ T (X ) such that
E ⊕ T ∼= F ⊕ T ′.

Then define K 0(X ) = V(X )/∼.

This is an abelian group, in which −[E] = [Eop] := [E− 	 E+] (the
oppositely-graded bundle).

In this “super” picture, we are encoding the freedom to add or
remove “particle-antiparticle” pairs [G 	 G], and taking K -theory
classes means extracting the invariant that is leftover after such
perturbations.

This should remind you of the notion of Fredholm index.
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Mathematical preliminaries: C ∗-algebra K -theory

It is useful (and essential for some generalisations) to formulate
K 0(X ) in terms of operator K -theory of the corresponding
C ∗-algebra C (X ).

Recall: Bounded operators L(H ) on a (complex) Hilbert space is
a Banach ∗-algebra with respect to adjoint and operator norm.

Definition: A C ∗-algebra A is a norm-closed ∗-subalgebra of the
bounded operators L(H ) on a Hilbert space.

Commutative example: Continuous functions C (X ) with pointwise
multiplication and complex conjugation, and supremum norm. Can
think of f ∈ C (X ) as multiplication operator Mf on L2(X ) w.r.t
some suitable measure.

Noncommutative example: L(H ) itself, matrix algebras
Mn(C),Mn(A)
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Mathematical preliminaries: Noncommutative topology

Gelfand–Naimark theorem The categories of compact Hausdorff
spaces and unital commutative C ∗-algebras are (anti)-equivalent.

The morphisms are, respectively, continuous maps and
∗-homomorphisms.

In one direction the correspondence on objects is X 7→ C (X ).
A continuous map f : X → Y corresponds to
pullback/precomposition f ∗ : C (Y )→ C (X ).

In the other direction, if A is a unital commutative C ∗-algebra, the
character/maximal ideal space/spectrum/state space Ω(A) of
nonzero ∗-homomorphisms A → C is compact in topology of
pointwise convergence.
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Mathematical preliminaries: Noncommutative topology

For A = C (X ), the spectrum Ω(A) comprises the evaluation
characters evx, x ∈ X . Thus Ω(C (X )) ∼= X .

For X = Ω(A), the algebra C (X ) comprises the Gelfand
transforms â labelled by a ∈ A. Here, the complex-valued function
â has value at ρ ∈ Ω(A) equal to ρ(a). Thus C (Ω(A)) ∼= A.

A construction on an actual spaces X has an analogue in terms of
the C ∗-algebra A = C (X ). Dropping the commutativity
requirement formally defines the construction for the
“noncommutative space” A.
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Mathematical preliminaries: Vector bundles and projections

Example: By the Serre–Swan theorem, a vector bundle E → X
corresponds to a finitely-generated projective (f.g.p.) module over
C (X ). This proceeds by taking the space of sections Γ(E), which
admits pointwise multiplication by C (X ).

A free module over C (X ) has the form C (X )n, which corresponds
to the section space of the trivial bundle X × Cn. A f.g.p. module
is a direct summand of C (X )n, corresponding to the section space
of some subbundle of X × Cn.

The projection onto the direct summand is an idempotent p in
Mn(C (X )). Equivalence of vector bundles corresponds to similarity
of idempotents (p ∼ upu−1 where u is invertible in Mn(C (X )).
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Mathematical preliminaries: Vector bundles and projections
The ambient trivial bundle may have arbitrarily large rank n, and
we were taking direct sums of bundles anyway, so we might as well
consider the corresponding idempotent to live in the direct limit
M∞(C (X )) = ∪n∈NMn(C (X )).

This confers a great advantage: Similarity of idempotents becomes
equivalent to homotopy of idempotents!

By doubling the dimension n→ 2n, there is enough room to
exhibit a homotopy from diag(U,U−1) to the identity. Let

R(t) =

(
cos t − sin t
sin t cos t

)
, t ∈ [0,

π

2
],

Ut =

(
u 0
0 1

)
R(t)

(
1 0
0 u−1

)
R(t)−1.

Then Pt = Ut diag(p, 0)U−1
t is a homotopy from diag(upu−1, 0)

to diag(p, 0).
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Mathematical preliminaries: C ∗-algebra K0-theory

For C ∗-algebras, we can use projections and unitaries in place of
idempotents and invertibles. Analogous to giving the bundles a
Hermitian metric.

Definition: For a unital C ∗-algebra A, let V(A) be the monoid of
homotopy classes of projections in M∞(A). Then K0(A) is the
Grothendieck completion of V(A).

One often constructs vector bundles from a physical system, and
wants to classify them “up to homotopy”. The above formulation
of K -theory exhibits this idea.

Functoriality: if π : A → A′, then there is a map
π∗ : K0(A)→ K0(A′) by taking π∗[p] = [π(p)].

24 / 168



Mathematical preliminaries: C ∗-algebra K1-theory

Let Un(A) denote the group of unitaries in Mn(A). By appending
1 along the diagonal, we can form U∞(A) = ∪n∈NU.

A convenient way to define K1(A) is as the homotopy classes of
unitaries in U∞(A).

Example: Let A = C. The unitary groups U(n) are all connected,
so K1(C) = K−1(pt) = 0.

Example: Let A = C (S1). Homotopy class of u : S1 → U(n) is
given by the winding number of det u : S1 → U(1). Using Bott
periodicity, we can actually show that K1(C (S1)) = K−1(S1) ∼= Z
with generator z with winding number 1.
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Mathematical preliminaries: Suspensions in K -theory

The suspension of A is C0(R,A), the non-unital C ∗-algebra of
functions R→ A which vanish at ∞.

A nonunital C ∗-algebra B is a “noncommutative locally compact
space”. It can be unitised to B+ (“one-point compactification”).
Take B × C with (b1, λ)(b2, µ) = (b1b2 + λb2 + µb1, λµ).

There is a morphism π : B+ → C which induces π∗ in K -theory.
K0 is extended to non-unital algebras B by defining

K0(B) = ker (π∗ : K0(B+) −→ K0(C)).

There is a natural isomorphism between K0(C0(R, ·)) and K1(·).
There is also a notion of suspension using Clifford algebras, based
around ideas of Karoubi, Atiyah–Bott–Shapiro, Kasparov.
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Mathematical preliminaries: Suspensions in K -theory

In the topological K -theory of spaces, one similarly suspends
X → Rn × X and uses “K -theory with compact supports” to
define K−n(X ).

Either way, we obtain a sequence of generalised (co-)homology
functors Kn(·) or K−n(·), and there are long exact sequences
(LES) associated to each 0→ A→ B → C → 0, i.e.

. . .
∂−→ Kn(A)→ Kn(B)→ Kn(C)

∂−→ Kn+1(A)→ . . .

The connecting maps ∂ are a kind of topological index measuring
obstructions to lifting e.g. projections/unitaries from C to B, and
are important for formulating bulk-boundary correspondences.

K -theory has Bott periodicity, i.e. K2(·) ' K0(·). This means that
the LES wrap around itself and is cyclic with just six terms.
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Part 2: Toeplitz index theory and the
SSH model



Quantum mechanics of a particle

We will now study the simplest physical model whose topological
invariant is K−1(S1) ∼= Z. Then we will see that the
bulk-boundary correspondence in this case is an expression of the
Toeplitz index theorem [T (unpublished)].

Some basic principles of quantum mechanics:

I Space of quantum states (the “wavefunctions”) is a complex
Hilbert space H .

I Dynamics of a closed system is given by unitary time
evolution Ut = e−iHt . Its generator H = H† is called the
Hamiltonian, and is the observable corresponding to energy.

I If there is a group of symmetries, it is represented unitarily on
H and commutes with H.

29 / 168



Quantum mechanics of a particle

The Hilbert space of a (free, nonrelativistic) electron moving in
Euclidean space Rd is L2(Rd)⊗ CN where CN encodes some
“internal” degrees of freedom (e.g. spin).

The Euclidean group acts on L2(Rd), but this symmetry is usually
“broken”.

In a crystalline material, the electron moves in a potential V
provided by some regular lattice of atoms, so the Hamiltonian
H = Hfree + V only has a lattice Zd of translation symmetry (and
maybe some others like reflection, rotation, etc. which we ignore
for now).

In the tight-binding approximation, one assumes that it suffices to
use a Hilbert subspace of wavefunctions that are localised around
the atomic sites. Then one uses l2(Zd)⊗ CN instead, and the
lattice translations act regularly on this subspace.
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SSH model

Consider a 1D model H = l2(Z)⊗ C2 = l2(Z)⊕ l2(Z) which has
sublattice symmetry. This means that there are two translation
invariant sublattices, which we call A and B.

A A A A A A

B B B B B

. . . . . .

n = −1 n = 0 n = 1 n = 2 n = 3

Thus H = l2(Z(A))⊕ l2(Z(B)) ≡HA ⊕HB is graded by the
sublattice operator S = 1HA

⊕−1HB
. (We could also use −S.)
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SSH model
We wish to study Hamiltonians H = H† which commute with the
translations but anticommute with S. The latter condition,
HS = −SH, means that S inverts the spectrum of H about 0.

Later we will see that QM quite generally allows this sort of “odd”
symmetry besides the usual “even” ones which commute with H.

Thus the operator H always exchanges A↔ B. For example, the
“hopping Hamiltonians” Hblue and Hred illustrated below translate
an A degree of freedom (d.o.f.) to an adjacent B d.o.f.

A A A A A A

B B B B B

. . . . . .

n = −1 n = 0 n = 1 n = 2 n = 3
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SSH model

Because Z is an abelian group, we can Fourier transform l2(Z) to
L2(S1). For mathematicans, S1 is the Pontryagin dual group of
unitary characters (irreps) of Z. The characters are χk : n 7→ e ikn

labelled by the circle coordinate k ∈ [0, 2π]/0∼2π.

Physicists call this the Brillouin zone of quasimomenta, or
sometimes simply “momentum space”.

Thus we have H = L2(S1)⊕ L2(S1), with S acting as

S(k) =

(
1 0
0 −1

)
and translation by n ∈ Z becomes pointwise multiplication by e ink .
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SSH model

Since H is odd w.r.t S,

H(k) =

(
0 U(k)

U(k)∗ 0

)
, U(k) ∈ C

We assume that k 7→ H(k) is continuous, so that k 7→ U(k) is
continuous1.

We also assume that H is gapped (at 0), i.e. 0 is not in its
spectrum. Then (H(k))2 > 0 so we need U(k)U(k)∗ 6= 0, so that
U(k) ∈ C∗ ∼= GL(1).

We can homotope H to sgn(H), which corresponds to replacing
U(k) by U(k)/|U(k))| ∈ U(1). There is an obvious topological
invariant, which is the winding number of U : S1 → U(1).

1This is related to decay of the hopping terms as the hopping range goes to
infinity.
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SSH model

What is the position space meaning of U and Wind(U)?

A A A A A A

B B B B B

. . . . . .

n = −1 n = 0 n = 1 n = 2 n = 3

The “hopping term” Ublue taking A to B rightwards within a unit

cell is represented, after Fourier transform, by

(
0 0
1 0

)
, whereas

the term Ured taking B to A rightwards changes unit cell and is

represented by

(
0 e ik

0 0

)
.
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SSH model

The general Hamiltonian is a self-adjoint combination of powers of
Ublue,Ured which is also required to be gapped and compatible
with S, so that after Fourier transform, it has the form

H(k) =

(
0 U(k)

U(k)∗ 0

)
, U(k) ∈ C∗ (1)

Consider the “fully-dimerised” Hamiltonian

Hblue = Ublue + U†blue =

(
0 1
1 0

)
which has winding number 0.

Another fully-dimerised Hamiltonian is

Hred = Ured + U†red =

(
0 e ik

e−ik 0

)
which has winding number 1.
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SSH model

There is an important subtlely in the above analysis.

It is clear that Hblue and Hred are unitarily equivalent by
translating the A sublattice by one unit, or equivalently, choosing a
different unit cell convention such that Tred is an intra-cell hopping
term rather than an inter-cell one:

A A A A A A

B B B B B

. . .

n = −1 n = 0 n = 1 n = 2 n = 3

n′ = −1 n′ = 0 n′ = 1 n′ = 2
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SSH model
Generally, in labelling the atomic sites by Z, we have chosen an
origin with respect to which the Fourier transform is taken. A
different choice means that we have to conjugate everything in
Fourier space by a large gauge transformation e imk .

In the SSH model, we have to choose an origin for each of the A
and B sublattices. The two choices shown previously are related by(
e ik 0
0 1

)
corresponding to shifting the origin of the A lattice by

one unit.

Thus the absolute winding number has some inherent ambiguity,
although the change in winding number does not — this is already
familiar from the notion of polarisation.

The difference between the winding numbers for Hblue and Hred is
a gauge-invariant signature that they cannot be deformed into one
another without violating the gapped condition.
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SSH model
Nevertheless, when a boundary of the chain is specified, the unit
cells are well-defined — this corresponds to a “gauge-fixing”.

With respect to this choice, the bulk topological invariant of H
(the winding number) is well-defined. Then we may say that Hblue

is a trivial phase and Hred is nontrivial.

A A A A A A

B B B B B

. . .

n = −1 n = 0 n = 1 n = 2 n = 3

When the boundary is introduced, the red hopping terms is “cut”,
leaving behind a “dangling zero mode’ of A type. This is why it
makes sense to say that Hred is nontrivial.
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SSH model

The general H will acquire some number of “dangling zero modes”
of A type and B type when it is truncated to the right half-line.

We can define a boundary invariant for H as the difference in the
number of resulting A and B zero modes.

It turns out that bulk invariant (winding number of U) equals
boundary invariant, as a consequence of an index theorem.

Strictly speaking we should also define a notion of “addition of
phases”, and then the equality of invariants is an isomorphism
Z→ Z of groups. The language for this is naturally in K -theory,
but we shall begin with the above simple “2-level” model first.
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Toeplitz operators

Recall that the Hardy space H2 ≡ H(S1) is defined to be the
Hilbert subspace of l2(Z) ∼= L2(S1) spanned by the basis vectors en
with n ≥ 0.

Applying the projection p : L2(S1)→ H is the operation of
truncating to non-negative Fourier coefficients, or to the right-half
line in our picture.

After applying p, we see that the intra-cell hopping operator Ublue

remains unitary, whereas the inter-cell Ured becomes only an
isometry Ũred:

ŨredŨ
†
red = 1− pnA=0

where pnA=0 is the projection onto the A-site at n = 0.
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Toeplitz operators

In fact, Ũred is a Toeplitz operator with symbol the invertible
function S1 3 k 7→ Ured(k) = e ik .

It is furthermore a Fredholm operator with index equal to
−Wind(u) = −1.

Recall that a bounded operator is Fredholm if its kernel and
cokernel are finite-dimensional. Its (analytic) Fredholm index is the
difference of these dimensions.

The product of two Fredholm operators is again Fredholm, and the
index of a product is the sum of the indices. Furthermore, the
index is invariant under a compact perturbation.
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Toeplitz operators

The Toeplitz operator Ũ with continuous symbol U ∈ C (S1) is the
compression of the multiplication operator U on L2(S1) to the
Hardy space H2,

H2 L2(S1) L2(S1) H2.ι

Ũ

U p
(2)

The operator Ũ is Fredholm iff its symbol U is invertible
everywhere (i.e. U is an invertible element of C (S1).

Toeplitz/Göhberg–Krein index theorem: (analytic) Fredholm index
of a Toeplitz operator is minus the topological winding number of
its symbol.
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Index theorem and bulk-boundary correspondence

The boundary invariant for Hred defined earlier can be thought of
as ker Ũ†red − ker Ũred, which is just (-1) times the Fredholm index

of the operator Ũred.

This integer must equal the bulk invariant WindUred by the index
theorem.

Thus the SSH model provides a physical interpretation of this
index theorem. Alternatively, the index theorem explains why there
is a bulk-edge correspondence of topologically meaningful integers.
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Addition of phases
Higher winding numbers may be obtained by “dimerising” across
more unit cells, which causes more bonds to be intercepted by the
boundary, leaving more zero modes unpaired.

A more natural alternative is to consider direct sums of the basic
SSH model, so that there are 2N sites per unit cell. Then a
S-symmetric Hamiltonian has the form

H(k) =

(
0 U(k)

U(k)† 0

)
, U(k) ∈ GL(N,C). (3)

which still has a bulk topological invariant given by the ordinary
winding number of det(U).

Allowing N to be finite but arbitrarily large, we can take direct
sums H(k)⊕ H ′(k) as the operation of “adding physical systems”
or phases. Physically, the arbitrarily large N is available because
L2(R) ∼= l2(Z)⊗ L2(R/Z) and the second factor is “internal”.
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Addition of phases

Consider Hgreen with winding number −1. The truncated H̃green

acquires a dangling B zero mode.

A A A A

B B B B

A A A A

B B B B

. . .

n = −1 n = 0 n = 1 n = 2 n = 3
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Addition of phases

A A A A

B B B B

A A A A

B B B B

. . .

n = −1 n = 0 n = 1 n = 2 n = 3

The bulk story says that Hred ⊕ Hgreen has total winding number
zero ⇒ “trivial”.
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Addition of phases

The boundary story is: A and B boundary zero modes at position
n = 0 can be paired and gapped out by turning on a boundary
term which is compatible (anticommutes) with S|n=0,

Hbdry =

(
0 a
a 0

)
,

which has spectrum ±|a|. Thus the two zero modes in
combination are not topologically protected, in accordance with
the cancelling winding numbers.
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K -theoretic topological phases
We need to be able to (1) consider Hamiltonians with N finite but
arbitrarily large, and (2) extract a topological invariant for U ⊕ U ′

which is additive with respect to ⊕, in accordance with the
addition of boundary zero modes.

This is precisely what K -theory allows us to do. In more detail,
allowing for direct sums and noting that invertible matrices can be
retracted to unitary ones, the S-symmetric Hamiltonians are
classified by the homotopy classes of maps from S1 into the
infinite unitary group U = ∪N∈NU(N).

This is K1(S1) which can be shown to be Z by Bott periodicity.
The generator may be represented as follows:

For each N, the winding number of a map S1 → U(N) can be
defined as the ordinary winding number of its determinant, and
there is a map with winding number 1. N = 1 was the case we’d
analysed.
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K -theoretic phases

The winding number is a homomorphism with respect to matrix
multiplication, in that Wind(UV )=Wind(U)+Wind(V ).

Recall the homotopy

R(t) =

(
cos t − sin t
sin t cos t

)
, t ∈ [0,

π

2
],

Ut =

(
u 0
0 1

)
R(t)

(
1 0
0 v

)
R(t)−1.

which takes u ⊕ v to diag(uv , 1). Then we see that the winding
number is also additive w.r.t. direct sums (of K -theoretic phases).
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Toeplitz index in K -theory
On the analytic side, we can extend the discussion of Toeplitz
operators to that on (H2)⊕N for any finite N.

A continuous function N × N matrix-valued function U on S1

defines a multiplication operator by U on (L2(S1))⊕N , whose
truncation to (H2)⊕N is the Toeplitz operator Ũ with
matrix-valued symbol U.

As before, Ũ is Fredholm iff U is invertible, and the index of Ũ is
equal to −Wind(U). The index is unchanged if Ũ is modified into
Ũ ⊕ 1N′ acting on N ′ extra copies of H2.

Thus we can consider the map [U] 7→ Index(Ũ) as a
homomorphism K−1(S1)→ Z (which is an isomorphism).

Theorem: Let U ∈ C (S1,GL(N,C)) represent a class [U] in
K−1(S1). The analytic index map [U] 7→ Index(Ũ) is equal to the
topological index −Wind(U).
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Part 3: Chern insulator,
Z2-topological insulator, and “Real”

K -theory



Topological phases classified by bundle invariants

Previously, we saw an example of a class of physical systems
(Hamiltonians compatible with Z translations and sublattice
symmetry S), for which the gapped phases have a homotopy
classification by K−1(S1) ∼= Z.

A geometric way to think about K−1(S1) is as a classification of
“large gauge transformations” of a trivial bundle over S1.

Each sublattice corresponds to sections of a trivial line bundle over
S1, and the gapped Hamiltonian effectively implements an
isomorphism between the two bundles.

There are bundle isomorphisms which are not connected to the
identity map.

Let us now see how non-trivial bundles can appear in similar
models, but with different symmetries.
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Topological phases classified by bundle invariants

Recall the typical tight-binding Hilbert space l2(Zd)⊗ Cm. The
character (momentum) space of Zd is Td , called the Brillouin
torus in physics.

Fourier transform2 diagonalises Zd invariant operators on
l2(Zd)⊗ Cm into multiplication operators on
L2(Td × Cm) ∼= L2(Td)⊗ Cm.

The Hamiltonian becomes a fibered family of Bloch Hamiltonians
k 7→ H(k), k ∈ Td , each with m eigenvalues.

For a band insulator, the spectra of H(k) assemble into continuous
bands over Td , with a gap at a particular energy called the Fermi
energy (which we set to zero)

2The full-blown theory is Bloch–Floquet theory, which will be discussed in
another talk.
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Topological phases classified by bundle invariants
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Topological phases classified by bundle invariants

Electrons obey the Pauli exclusion principle, so they fill up the low
energy states up until a certain Fermi energy EF .

In order for electrons to act as charge carriers, there needs to be
vacant electronic states to move into. Then the electrons can
increase their energy (accelerate) when an electric field is applied.

If EF lies in a band gap, an electron must traverse this energy
barrier to access the next available state for conduction, thus the
insulating property.

56 / 168



Topological phases classified by bundle invariants

The bundle E = Td × Cm is graded by the gapped Hamiltonian
into a positive energy sub-eigenbundle and a negative energy
sub-eigenbundle EF . These are respectively called the conduction
and valence bundles.

The negative energy valence bundle can be topologically non-trivial
when d ≥ 2!

This has important consequences: the composite bands are trivial
and come from a tight-binding Hilbert space, but EF by itself may
not! In other words, there is a topological obstruction to
localisability of wavefunctions.

This prompts us to seek a classification of possible EF (in an
appropriate category).

57 / 168



Topological phases classified by bundle invariants

The simplest class systems that exhibits this kind of topological
phase is in d = 2. No additional symmetry besides Z2 translations
is present.

It is known that there is a non-trivial line bundle over T2, which is
just the pullback of the Hopf (or tautological line) bundle over S2

under a degree-1 map T2 → S2 (e.g. the collapse map to the
2-cell).

It is fairly easy to construct a Hamiltonian whose EF is such a
non-trivial complex line bundle. This is sometimes called the Chern
insulator phase because the topological invariant is the first Chern
class.
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Chern topological insulator

We seek a classification complex vector bundles EF over T2. These
are classified by the (first) Chern class c1(EF ) = c1(det EF ).

Thus we look just at line bundles, or principal U(1) bundles. They
are classified by
[T2,BU(1)] = [T2,CP∞] = [T2,K (Z, 2)] = H2(T2;Z).

This is a fancy way of saying that there is a universal tautological
line bundle Etaut → CP∞, and any line bundle over X is obtained
by pulling back Etaut under a classifying map X → CP∞.

The isomorphism class of the pullback bundle only depends on the
homotopy class of the classifying map. CP∞ is a K (Z, 2) so
[T2,BU(1)] = H2(T2;Z).
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Chern topological insulator

Because T2 has low dimension, it suffices to look at classifying
maps T2 → CP1 ⊂ CP∞.

It is known that CP1 is homeomorphic to S2. The physicist’s way
to see this is through the Pauli matrices σ = (σ1, σ2, σ3).

They span the traceless 2× 2 Hermitian matrices, and have the
(Clifford algebra) property σiσj + σjσi = 2δij .

Then the spectrum of the linear combination h · σ is easily
computed: the square is a scalar |h|2, so the eigenvalues are ±|h|.

Each unit vector ĥ ∈ S2 ⊂ R3 defines a point in CP1 by taking the
(−1) eigenspace of ĥ · σ. This may be shown to be a bijection.
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Chern topological insulator

A family of 2× 2 Bloch Hamiltonians H(k) over T2 can be written
as H(k) = h(k) · σ, where h : T2 → R3 is some 3-vector field.

The gapped condition is simply that h is nowhere vanishing, so the
unit vector field ĥ : T2 → S2 may be defined.

The valence line bundle EF is the collection of (-1) subspaces for

ĥ(k) · σ, k ∈ T2.

By the earlier identification of S2 ∼= CP1, EF is nothing but the
pullback of the tautological bundle over CP1 under the classifying
map ĥ.

The Chern class of EF in H2(T2,Z) is the homotopy class of

ĥ : T2 → S2 (i.e. the Brouwer degree, or the number to times S2

is “wrapped” around by ĥ).
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Chern topological insulator

Choose any nowhere vanishing h such that ĥ has nonzero degree
n. Then the Hamiltonian H(k) = h(k) · σ has a nontrivial valence
bundle with Chern class n, i.e. a Chern insulator phase.

The topological invariant which distinguishes these phases is
c1(T2,Z) ∈ H2(T2,Z) ∼= Z.

We can be quite explicit and use the following vector field:

h(k) = (cos k1, cos k2,m + a cos(k1 + k2) + b(sin k1 + sin k2))

where m, a, b are real parameters. The Chern class of EF may be
computed to be

c1(EF ) = sgn(−m − a) +
1

2
[sgn(m − a + 2b) + sgn(m − a− 2b)].
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Chern topological insulator phase diagram
Schematically a partial phase diagram would look like:

Sticlet et al, PRB 85 (2012)

We should, however, be careful. Such models introduce extra
non-physical constraints. They can only realise some of the
possible phases, and may also artificially introduce some extra ones.
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Chern topological insulator via curvature methods

Usually in the physics literature, the Chern insulator is discussed in
the context of “Berry connection” and “Berry curvature”.

When EF is a line bundle, the (gauge-dependent) Berry connection
is usually defined (locally) as

A =
1

i
〈ψ−|dψ−〉

where |φi 〉 is a local section of EF . Alternatively, there is a
canonical Grassmann connection on the tautological bundle over
CP1 which is pulled back to EF .

The Berry curvature F = dA of this connection is gauge-invariant,
and integrates over T2 to give an integral Chern number. This is
because F is an integral class in H2(T2,R) (de Rham
cohomology).

64 / 168



Chern topological insulator via curvature methods

In terms of the vector field h, one can show that

c(EF ) =
1

4π

∫
T2

dk ĥ(k) · ∂ĥ(k)

∂k1
∧ ∂ĥ(k)

∂k2

where the integrand is the Berry curvature.

In NCG language, this is the Chern character

i

2
Tr(PdP ∧ dP)

for the projection pF ∈ M2(C (T2)),

pF (k) =
1

2
(1− ĥ(k) · σ)
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K -theoretic topological insulator

Since we know some K -theory, e.g. that it provides a classification
of complex vector bundles over a space, we could also consider
K 0(T2) ∼= Z⊕ Z. As before, K -theory allows the natural
“addition” of phases.

Under the Chern character map from K -theory to (rational)
cohomology, the two factors of Z correspond to the rank (number
of bands) and the first Chern class.

The rank invariant is often ignored (so one is looking at reduced
K -theory), but actually it has physical meaning as the density of
valence states. Furthermore, we will see in a later talk that
T-duality exchanges rank ↔ Chern in this case!
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K -theoretic topological insulator

In anticipation of a later talk, let us note that C (T2) is the
(reduced) group C ∗-algebra of the underlying symmetry group Z2.

The group C ∗-algebra is generated by the image of the regular
representation of Z2 (in this case, by multiplication operators e in·k

after Fourier transform).

In computing K 0(T2) = K0(C (T2)), we are equivalently computing
K0(C ∗(Z2)) as the group of topological phases of Z2-symmetric
gapped Hamiltonians. We will replace Z2 by more general
nonabelian groups later.
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K -theoretic topological insulator

In a sense, the Berry curvature way of understanding the Chern
insulator is not necessary, and it is not actually easy to measure
directly (as far as I know).

It is, however, useful in analogy to electromagnetism (as a U(1)
gauge theory), and there are analogues of Dirac monopoles and
strings in condensed matter systems.

The latter appear in Weyl semimetals, discovered in 2015, and
they are now a big field of study.

In the setting of torsion topological phases that K -theory methods
come to the forefront, because these are not typically detected
(mathematically) by curvature methods. Remarkable, these torsion
phases actually have been found (physically)!
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Time-reversal and quaternions

In quantum theory, symmetries may be represented (projectively)
by antiunitary operators (Wigner’s theorem). The basic example is
fermionic time-reversal Θ, with Θ2 = −1.

Example: On C2, take Θ = K ◦
(

0 −1
1 0

)
, where K is complex

conjugation. This is a quaternionic structure identifying C2 ∼= H.

Example: On a complex vector bundle E → T , a quaternionic
structure is an antilinear bundle map squaring to −1, which
reduces the structure group from U(2n) to Sp(n). Fiberwise, this
identifies C2n with Hn.

Notice that the complex dimension must be even — this is
“Kramers degeneracy”. So ψ and Θψ are orthogonal (as state
vectors or sections) and called “Kramers partners”.
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“Quaternionic” bundles

Symplectic characteristic classes, connections, . . . , are known, e.g.
Sp(1) = SU(2). A higher-dimensional d ≥ 4 base manifold is
needed to host non-trivial symplectic bundles, which is why they
are not really relevant in the 3D world of CMP.

Nevertheless, recall that our base manifold Td is a momentum
space, not position space.

Time-reversal also implements momentum reversal θ : k 7→ −k , so
that the Brillouin torus Td is naturally a space with involution (a
Real space in the sense of Atiyah).

This means that time-reversal as a bundle map Θ is required to be
an antiunitary lift of θ satisfying Θ2 = −1.
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“Quaternionic” bundles

The appearance of the involution θ is familiar from the fact that
the Fourier transform of a real-valued function f : n 7→ f (n) (i.e.
invariant under complex conjugation) is a complex valued function
f̂ : S1 → C satisfying the modified reality condition

f̂ (k) = f̂ (−k) ≡ f̂ (θ(k)).

From the representation theory (harmonic analysis) point of view,
the complex character χk is mapped to the conjugate character
χk = χθ(k).

Time-reversal Θ in position space (say acting on l2(Zd)⊗ C2n) is
complex conjugation κ composed with some unitary matrix U.
Accordingly, its Fourier transform effects k 7→ θ(k) followed by
multiplication by U.
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“Quaternionic” bundles

For the Brillouin torus, the involution θ has fixed point set F with
2d points. The fibre over each fixed point (and hence the whole
bundle) is even dimensional (Kramers degenerate) over C.

Think of each circle T as unit complex numbers e ik with θ acting
by conjugation, so k = 0, π are fixed. (Notice that these are the
two real-valued characters of Z.) The Brillouin torus is the d-fold
product of this Real circle.

kz

kx

ky

π

0

0 π
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“Quaternionic bundles”

Quite generally, for involutive base spaces (X , θ), complex
(hermitian) bundles E , with a “Quaternionic” lift Θ of θ as above,
form a category of “Quaternionic” (“Q”) bundles.

This category has not really been studied much mathematically.
Let us consider the basic example X = T2. The involution θ is
orientation preserving.

Näıvely, Θ implements an antilinear isomorphism between E and
θ∗E , so

c1(E) = c1(θ∗E) = −c1(θ∗E) = −c1(E) = 0.

Thus E trivialises as a complex bundle. But physicists
Fu–Kane–Mele constructed a Z2-topological invariant in 2006!
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2D FKM invariant

It will suffice to take E to be a trivial complex rank-2 bundle.

Although there are non-vanishing global sections u1 ⊥ u2, it turns
out that the “generalised Kramers pairing” condition
Θu1(k) = u2(θ(k)) cannot be globally implemented in general.

One way to measure the obstruction is to form the 2× 2 “sewing
matrix” function

ωab(k) = 〈ua(θ(k))|Θub(k)〉.

At each fixed point k ∈ F , ω(k) is an antisymmetric matrix, and

we can assign the sign ± =

√
det(ω)

Pf(ω) (k) to that point.

The product-of-signs (POS) over F is defined to be the 2D FKM
number ν ∈ Z2 (One checks that this product is gauge-invariant).
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3D FKM invariant

kz

kx

ky

π

0

0 π

For T3, there are six choices of 2D tori
which are stable under θ. These have
kx/y/z = 0 or π. So there are six 2D FKM
invariants νi ,0, νi ,π, i = x , y , z .

However, not all six are independent!

Define the strong FKM number ν0 to be the POS at all eight fixed
points. There are constraints

νi ,0 = ν0νi ,π, i = x , y , z .

So only four independent Z2 numbers classify 3D topological
insulators with time-reversal symmetry.
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Systematic classification of “Quaternionic bundles”
The FKM constructions are ad-hoc, and it’s not clear how to
generalise them or what their functorial properties are.

A recent mathematical work showed that there is a characteristic
class κ : Vect2m

Q (X , θ)→ H2
Z2

(X ,F ;Z(1)) which is even a bijection
in the above cases (any many other low-dimensional cases).

This means that tools from algebraic topology like Poincaré duality
can be used to formulate a topological bulk-boundary map. This in
fact correctly predicts the appearance of the famous Dirac cone
surface state [Gomi+Sato+T].
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K -theoretic Z2 topological insulator

More directly, there is a stable classification of “Quaternionic”
bundles using Dupont’s KQ-theory, which is the quaterionic version
of Atiyah’s KR-theory for “Real” vector bundles.

Here, KQ0(X , θ) is the Grothendieck group of isomorphism classes
of “Quaternionic” bundles over (X , θ).

Using a stable splitting of the torus, it is not hard to show that

K̃Q
0
(T2, θ) = Z2 and K̃Q

0
(T3, θ) = Z4

2, as realised by FKM’s
constructions.

Kitaev in 2009 calculated this by using the Baum–Connes
isomorphism and Poincaré duality to convert to a KO-theory
computation. This is in fact a type of T-duality!
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Real noncommutative topology

In the complex world, we saw that the K -theory of the group
C ∗-algebra of the group of symmetries (Zd) gave us the
classification of Zd -symmetric topological phases.

This philosophy of using C ∗-algebraic language will allow
generalisation to nonabelian groups, and we want to do the same
in the real (R) setting.

In the real world, there is again a correspondence between l.c.h.
Z2-spaces (X , θ) and commutative C ∗-algebras over R, due to
Arens–Kaplansky.

Specifically, the latter are all of the form

C0(X , θ) := {f ∈ C0(X ) : f (θ(x)) = f (x) ∀x ∈ X}.
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Real noncommutative topology

Roughly speaking, (X , θ) is the “Real spectrum” of the real
C ∗-algebra.

An illustrative example is the real group C ∗-algebra of Zd , which is
C ∗R(Zd) ∼= C (Td , θ).

Note that C ∗R(Zd)⊗R C ∼= C ∗(Zd), and C ∗R(Zd) is the real
subalgebra under complex conjugation.

The spectrum of C ∗R(Zd) is defined to be that of the
complexification (which is Td). The Real structure θ on Td is
induced from complex conjugation (thus it is conjugation of the
characters in Td).

The fixed points are the characters that map into R.
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Real noncommutative topology

When there is time-reversal symmetry T , the symmetry group is
abstractly Zd × {1,T}.

However, there are two additional pieces of data. (1) T needs to
act as an antilinear operator Θ, and (2) Θ2 = ±1 so that T is only
projectively represented as an involution.

Then the correct notion of group C ∗-algebra should be the twisted
crossed product Coφ,σ G . Here, φ denotes an action of G on C
(e.g. T acts by conjugation), and σ is a 2-cocycle which encodes
projective data.

The ordinary C ∗(G )-algebra is the special case where φ, σ are
trivial.

80 / 168



Real noncommutative topology

So for G = Zd × {1, t} with Θ2 = −1, we have

C ∗(G , φ, σ) = Coφ,σ (Zd × {1,T}) = C ∗(Zd) oφ,σ {1,T}
∼= (C ∗R(Zd)⊗R C) o1⊗φ,1⊗σ {1,T} ∼= C ∗R(Zd)⊗R H.

The f.g.p modules for C ∗R(Zd)⊗R H are precisely sections of
“Quaternionic bundles” over (Td , θ).

So instead of computing KQ0(Td , θ) for the time-reversal invariant
topological insulators, we can compute

KO0(C ∗R(Zd)⊗R H) ∼= KO4(C ∗R(Zd)).
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Z2 topological insulator

By the Baum–Connes isomorphism in real K -theory,

KO4(C ∗R(Zd)) ∼= KO4(BZd)

where the classifying space BZd is Rd/Zd which is a (different!!)
torus.

By Poincaré duality, this is KOd−4(Td). Then classical algebraic
topology techniques can be used.

Note that we can think of Rd/Zd as the unit cell (fundamental
domain) in position space, so we have done a kind of topological
Fourier transform!
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Part 4: Wigner’s theorem, generalised
symmetries and Bott-Periodic Table

of topological phases



Symmetries in quantum mechanics

In the examples from the previous talks, topological phases were
defined with respect to a group of symmetries G .

Symmetry compatibility constrained the set of possible gapped
Hamiltonians, such that there can be disconnected regions
(topological phases) in “Hamiltonian space” labelled by a K -theory
group.

Some of the symmetry group elements are unusual. They can be
(1) antilinear, (2) odd/even, (3) represented projectively.

Mathematicians have done a lot with unitary representation theory.
But one message from the physicists is that working over C is
sometimes too convenient and misses interesting phenomena.
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Symmetries in quantum mechanics

Pure states in quantum mechanics (QM) are elements of the
projective Hilbert space PH , usually represented by a normalised
vector |ψ〉.

QM symmetries are a bit unusual in that they only need to
preserve transition probabilities between any pair of states, i.e. the
symmetric function

p : ([ψ1], [ψ2]) 7→ |〈ψ1|ψ2〉|2 ∈ [0, 1].

I have used Dirac’s bra-ket notation for the inner product 〈·|·〉.

A classical theorem of Wigner3 says that any automorphism of
(PH , p) is implemented by a unitary or antiunitary operator on
H .

3see [D.S. Freed, Geom. Top. Monogr. 18 83–89 (2012)] for a modern
geometric proof.
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Symmetries in quantum mechanics

Recall that an antiunitary operator on H is a complex-antilinear
bijection U such that 〈Uψ1|Uψ2〉 = 〈ψ2|ψ1〉 for all |ψ1〉, |ψ2〉 ∈H .

Modifying the (anti)unitary implementing operator U by an overall
phase does not change the automorphism of (PH , p).

Thus the target group of “QM automorphisms” is the projective
unitary-antiunitary (PUA) group of H, and it is
“PUA-representation theory” which is needed.

In contrast, ordinary unitary representation theory (e.g. of locally
compact second countable topological groups) is the study of
homomorphisms into unitary operators U(H ).
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Symmetries in quantum mechanics

Example: Complex conjugation κ is antiunitary.
Example: Fermionic time-reversal T, which squares to −1 instead

of +1, e.g.

(
0 1
−1 0

)
◦ κ. This is a quaternionic structure.

Recall that Sp(1) ∼= SU(2) ∼= Spin(3) is a double cover of SO(3),
which as groups/manifolds is

{±1} ∼= Z2 ↪→ S3 ∼= SU(2)� RP3 ∼= SO(3).

The failure of SO(3) to lift into SU(2) means that the latter acting
on C2 gives a projective representation of SO(3).
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Symmetries in quantum mechanics

Notation: For each g ∈ G , we write g for its representative
operator on H .

There is a homomorphism φ : G → {±1}, which specifies whether
g is unitary (φ(g) = +1) or antinunitary (φ(g) = −1).

We wish to study dynamical symmetries. Recall that time
evolution in QM is given by a strongly-continuous 1-parameter
group of unitaries R 3 t 7→ Ut = e−iHt . The self-adjoint generator
H, given by Stone’s theorem, is called the Hamiltonian.

Usually, if g is a dynamical symmetry, then gUtg
−1 = Ut .
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Symmetries in quantum mechanics

We can also consider time-reversing symmetries: gUtg
−1 = U−t .

Thus there is another homomorphism τ : G → {±1} which
encodes the time-arrow preserving/reversing property,

gUtg
−1 = Uτ(g)t .

Since Ut = e−iHt , we can rewrite this as

g(iH)g−1 = τ(g)(iH).

Removing the i factor, we get

g(H)g−1 = φ · τ(g)H =: c(g)H

where the product homomorphism c gives G a grading, and
encodes (anti-)commutativity of g with the Hamiltonian H.
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Symmetries in quantum mechanics

Often, c is assumed to be trivial so symmetries ⇔ commute with
H, but this is not generally the case..

The letter c is meant to suggest “charge-conjugation”, or
“particle-hole” symmetry: notice that if c(g) = −1, then g reflects
the spectrum of H about 0.

By definition, φ · c · τ ≡ 1, and any two of these three
homomorphisms are independent.

Thus it is not enough to say that G is the symmetry group. We
must also specify the data of φ, c .

One last ingredient is needed to account for phase ambiguities in g.
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Symmetries in quantum mechanics

Given (G , φ), a PUA-rep on H is map4 θ : g 7→ ρg such that ρg is
(anti)unitary according to φ(g) = ±1, and such that
ρxρy = σ(x , y)ρxy for some function σ : G × G → U(1). Then

σ(x , y)σ(xy , z) = σ(y , z)φ(x)σ(x , yz).

follows from associativity. This is the (generalised) 2-cocycle
condition δσ = 1 in the sense of group cohomology.

Modifying θx 7→ λxθx , where λ : x 7→ λx ∈ U(1), corresponds to

multiplying σ by a 2-coboundary δλ : (x , y) 7→ λxλ
φ(x)
y /λxy . Such

phase modifications do not matter physically, so only the cocycle
class [σ] is invariant.

4For infinite topological groups, we would technically need ρ and the
subsequent 2-cocycle σ to be a Borel map. For σ ≡ 1, θ is a homomorphism
which is automatically continuous.
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Symmetries in quantum mechanics
What about the condition gH = c(g)Hg?

For H which are gapped (at 0), Γ := sgn(H) gives a Z2-grading of
H and there is a homotopy from H to Γ through gapped
self-adjoint operators (at least for bounded H, otherwise a
truncation is assumed).

Given (G , c, φ, σ), define an sPUA-rep to be a PUA-rep on a
super-Hilbert space (H , Γ), such that G graded commutes with Γ.

If we agree not to distinguish homotopic gapped H, then the Γ in a
sPUA-rep for (G , c , φ, σ) represents a “topological class/phase” of
symmetry-compatible gapped Hamiltonians.

There could be many ways state the precise equivalence relation
defining “phase”, but each at least contains the previous homotopy
equivalence. E.g. allowing homotopies within direct sums will lead
to a K -theory classification.
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CT symmetries

The basic illustrative example is the “CT -group” {1,C} × {1,T},
so-called because C ,T are respectively the Charge-conjugation
and Time-reversal symmetries.

The diagonal element CT = TC is denoted S , for Sublattice.

By convention, τ, c are defined to be

τ(C ) = +1, c(C ) = −1, τ(T ) = −1, c(T ) = +1. (4)

Note that φ(C ) = −1 = φ(T ), so the representatives C,T are
antiunitary, whereas the diagonal element S is represented by a
unitary S.
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CT symmetries

In general, only some subgroup of A ⊂ G is present for a given
physical system.

Even though C 2 = 1 = T 2 and CT = TC , the operators C,T only
need to be involutions up to a phase, and they also commute only
up to a phase.

These phase ambiguities are encoded in a 2-cocycle σ. The
symmetry data is (A, σ), with φ, c : A→ {±1} implicitly.

Q: What are all the possibilities for C,T (“CT -symmetry classes”),
i.e. the possible (A, σ)?
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CT symmetries

Proposition: There are exactly ten classes, corresponding to the
8 + 2 Morita classes of real + complex (graded) Clifford algebras /
super-Brauer group over R and C / ten superdivision algebras over
R. They are labelled by the squares of C and T (where present).

Sketch of proof: Note that T2 = λ for some λ ∈ U(1), so
λT = T3 = Tλ = λT, and λ ∈ {±1}. Thus T2 = ±1, and
similarly C2 = ±1. Note that this sign is invariant under T 7→ µT.
Next, we use the phase freedom in defining C,T, S to
“standardize” them; specifically, we can arrange for TC = CT and
S2 = +1. Therefore we just need to assign, for each of the five
possible subgroups A ⊂ G :

{1}, {1, S}, {1,T}, {1,C}, {1,C ,T ,S},

a ±1 sign to C,T (where present).
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Tenfold way

Symmetry C2 T2 Clifford algebra Graded Morita class
T +1 Cl1,2 Cl0,0
C ,T −1 +1 Cl2,2 Cl1,0
C −1 Cl2,1 Cl2,0
C ,T −1 −1 Cl3,1 Cl3,0
T −1 Cl3,0 Cl4,0
C ,T +1 −1 Cl0,4 Cl5,0
C +1 Cl0,3 Cl6,0
C ,T +1 +1 Cl1,3 Cl7,0

N/A N/A Cl1 Cl0
S S2 = +1 Cl2 Cl1

96 / 168



Tenfold way

We can identify A with the image of (φ, c). More generally, A
arises as a quotient of the full symmetry group G by the kernel G0

of (φ, c), i.e.

1→ G0 → G
φ,c−−→ A→ 1,

and there is a 2-cocycle σ̃ on G × G which projects onto σ on
A× A.

G0 is the “nice” subgroup which may be studied by (projective)
unitary representation theory.

We had studied G = Zd × {1,S} and G = Zd × {1,T} previously.

Generally, A need not map back into G ! Obstruction is again
cohomological and leads to twists in the classification scheme.
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Clifford algebras

In connection with geometry, it is usual to define the (real) Clifford
algebra for a vector space V with a quadratic form Q to be the
free (tensor) algebra (over R) subject to v2 = Q(v), v ∈ V .

This is a “quantization” of the exterior algebra (Q ≡ 0), i.e. the
same underlying vector space but modified multiplication law.

Complexification (·)⊗R C yields the complex Clifford algebra.
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Complex Clifford algebras

We will proceed more concretely (corresponding to taking a
standard form for Q, using Sylvester’s law of inertia).

Define the complex Clifford algebra Cln to be the complex unital
algebra generated by anticommuting elements fi , i = 1, . . . , n that
square to +1.

For example, Cl0 ∼= C, Cl1 ∼= C[ 1+f1
2 ]⊕ C[ 1−f1

2 ], and Cl2 ∼= M2(C)

with f1 =

(
0 1
1 0

)
, f2 =

(
0 −i
i 0

)
.
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Real Clifford algebras

The real Clifford algebra Clr ,s is generated (over R) by
anticommuting elements ei , fj , i = 1, . . . , r , j = 1, . . . , s such that
e2
i = −1, f 2

j = +1.

For example, Cl0,0 ∼= R,Cl1,0 ∼= C,Cl0,1 ∼= R⊕ R and

Cl1,1 ∼= M2(R) with f1 =

(
0 1
1 0

)
, e1 =

(
0 −1
1 0

)
.

We also have Cl2,0 ∼= H and Cl0,2 ∼= M2(R). One can also show
that Cl0,8 ∼= M16(R) ∼= Cl8,0.

When we complexify, iei squares to +1, so Clr ,s ⊗R C ∼= Clr+s as
complex algebras. E.g. the complexifications of Cl1,0 and Cl0,1 are
both C⊕ C ∼= Cl1, and the complexifications of Cl2,0,Cl1,1,Cl0,2
are all M2(C) ∼= Cl2.
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Clifford algebras

It turns out that there are (algebraic) “Bott periodicity” identities

Clr+1,s+1
∼= Clr ,s ⊗R Cl1,1

Clr+8,0
∼= Clr ,0 ⊗R Cl8,0

Cl0,s+8
∼= Cl0,s ⊗R Cl0,8

Cln+2
∼= Cln ⊗C Cl2

Since Cl1,1,Cl8,0,Cl0,8,Cl2 are each matrix algebras, the Morita
class (representation theory) of Cln only depends on n (mod 2)
while that of Clr ,s only depends on r − s (mod 8).

In total, there are 8+2=10 Morita classes of real/complex Clifford
algebras, and each is a matrix algebra over R/C/H or a direct sum
of two matrix algebras (of the same dimension over the same
(skew)-field).

101 / 168



Graded Clifford algebras

It is mathematically convenient and physically essential to regard
the Clifford algebras as Z2-graded real/complex C ∗-algebras.

Define ei , fj to be odd, ei to be skew-adjoint, fj to be self-adjoint,
and taking the (unique) C ∗-norm e.g. from their matrix
realisations.

Then we can define M̂r ,s and M̂ C
n to be the free abelian groups

generated by the distinct irreducible unitary (orthogonal in the real
case) super-reps of Clr ,s and Cln respectively.
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Graded Clifford algebras

We can regard the grading operator in a super-rep as representing
an extra Clifford generator fs+1 in the ungraded sense, so the
ungraded versions Mr ,s and M C

n are related to the graded ones via

M̂r ,s
∼= Mr ,s+1 and M̂ C

n
∼= M C

n+1.

Furthermore, the Z2-graded tensor product gives an isomorphism
Clr1,s1⊗̂Clr2,s2

∼= Clr1+r2,s1+s2 , and the Z2-graded tensor product

W ⊗̂V of modules W ∈ M̂r1,s2 ,V ∈ M̂r2,s2 is canonically a
Clr1+r2,s1+s2-module.

Thus there are natural pairings M̂r1,s1 ⊗Z M̂r2,s2 → M̂r1+r2,s1+s2

which give ⊕r ,s≥0M̂r ,s the structure of a bigraded ring

Similarly, we get a graded ring ⊕n≥0M̂ C
n in the complex case.
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Tenfold way and Clifford algebras

It is now an exercise to get a one-to-one correspondence between
the ten C,T possibilities and the Clifford algebras.

For example, if A = {1,C ,T ,S} and C2 = −1,T2 = +1, then
{C, iC, iCT} are odd Clifford generators. From their squares, we
see that we have a graded representation of Cl2,1, in which
e1 = C, e2 = iC, f1 = iCT.

In other words, an element of M̂r ,s or M̂ C
n is nothing but a

sPUA-rep for the corresponding (A, σ).

Remark: The two A = {1,T} cases are a bit tricky: T gives the
graded Hilbert space H a real or quaternionic structure. Take
{i,T, iTΓ} as generators of the ungraded Clifford algebra Cl1,2
when T2 = +1 and Cl3,0 when T2 = −1. The sPUA-reps are

classified by M1,2
∼= M̂1,1

∼= M̂0,0 or M3,0
∼= M4,1

∼= M̂4,0.
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Tenfold way

Symmetry C2 T2 Clifford algebra Graded Morita class
T +1 Cl1,2 Cl0,0
C ,T −1 +1 Cl2,2 Cl1,0
C −1 Cl2,1 Cl2,0
C ,T −1 −1 Cl3,1 Cl3,0
T −1 Cl3,0 Cl4,0
C ,T +1 −1 Cl0,4 Cl5,0
C +1 Cl0,3 Cl6,0
C ,T +1 +1 Cl1,3 Cl7,0

N/A N/A Cl1 Cl0
S S2 = +1 Cl2 Cl1

A version of the Tenfold way.
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Atiyah–Bott–Shapiro construction

An interesting construction of Atiyah–Bott–Shapiro expresses the
K -theory rings of a point in terms of Clifford modules:

Kn(?) ∼= M̂ C
n /ι

∗M̂ C
n+1, KOr−s(?) ∼= M̂r ,s/ι

∗M̂r ,s+1

This quotienting operation has a physical interpretation: a
Cln-module (sPUA-rep for some CT -class) which admits a
Cln+1-module structure should really be considered sPUA-reps for
some other CT -class.

In this sense, the K -theory groups of a point classify the
“topological” phases for 0-dimensional systems. The
“noncommutative topology” comes from the CT -symmetries.
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Karoubi K -theory

In “super” language, there is yet another formulation due originally
to Karoubi.

The idea is to consider a graded vector bundle (or f.g.p. module) E
as an ungraded one together with a grading operator Γ (which
squares to the identity bundle endomorphism).

If Γ can be homotoped to −Γ, this means that particles and
antiparticle sectors can be exchanged in a continuous manner.
Their distinction is not intrinsic so their difference should be
considered “topologically trivial”.

For example, if E ≡ (E , Γ) admits a trivialising odd operator I in
the earlier sense, then (cos t)Γ + (sin t)I, t ∈ [0, π] shows that Γ
and −Γ are homotopic (through gradings).
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Karoubi K -theory

More precisely, consider triples (E , Γ1, Γ2) where E is a vector
bundle and Γi are gradings. This represents the ordered difference
between (E , Γ1) and (E , Γ2).

If Γ1 ∼homotopic Γ (through gradings), declare (E , Γ1, Γ2) to be
trivial.

⊕ gives a monoid of triples, and quotienting by the trivial
submonoid of triples gives K(X ) = K(C (X )).

[E , Γ1, Γ2] = −[E , Γ2, Γ1] (indeed a group)
[E , Γ1, Γ2] + [E , Γ2, Γ3] = [E , Γ1, Γ3] (path independence)
[E , Γ1, Γ2] + [E , Γ′1, Γ′2] if Γi ∼h Γ′i (homotopy independence)
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Karoubi K0-theory and projections

Karoubi’s K(·) is another model for K0(·).

From the first formulation to Karoubi’s formulation:
A virtual (or graded) bundle E = E+ 	 E− representing [E] has
associated underlying ungraded bundle E = E+ ⊕ E− with grading
operator Γ = diag(1E+ ,−1E−).
The associated Karoubi K -theory class is
[E+,−1, 1] + [E−, 1,−1] = [E ,−Γ, Γ].

From a Karoubi class [E , Γ1, Γ2], take the formal difference of the
two negatively graded subbundles, [E−,1 	 E−,2].
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Karoubi K -theory

Karoubi’s formulation also works for graded C ∗-algebras A, not
just C (X ). A triple [E , Γ1, Γ2] comprises an ungraded f.g.p.
A-module E , and operators (module maps) Γ, Γ2 = 1 that turn E
into a graded A- module.

Example: take Cl1 as a graded C ∗-algebra. An ungraded module is

C⊕ C where the Clifford generator acts as

(
1 0
0 −1

)
. A grading

operator for this module looks like

(
0 u

u−1 0

)
for u ∈ C∗, so a

triple looks like

[C⊕ C,
(

0 u
u−1 0

)
,

(
0 v

v−1 0

)
].

Since any u ∼h v , the triples are trivial, and K(Cl1) = 0.
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Karoubi K -theory and unitaries
In fact, K1(A) ∼= K(A⊗̂Cl1) (“Clifford suspension”).

In Karoubi’s formulation, K−1(S1) ∼= K(C (S1)⊗̂Cl1) is generated
by [

S1 × (C⊕ C),

(
0 1
1 0

)
,

(
0 e−ik

e ik 0

)]
where the Cl1 generator acts as

(
1 0
0 −1

)
(this was called a

sublattice operator S). So the S compatible gradings
(Hamiltonians) are homotopically classified by K−1(S1).

Generally, a Karoubi triple representing a class in K−1(X ) has the
form [

E ⊕ E ,
(

0 u
u−1 0

)
,

(
0 v

v−1 0

)]
where u, v are regarded as unitaries in some Mn(C (S1)). This
corresponds to [u−1v ] in the unitary formulation.
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Karoubi K -theory and relative phases

This last formulation of K -theory is a “relative” one. It measures
an obstruction to deforming one grading operator (gapped
Hamiltonian) into another while respecting the module action (the
symmetries).

Generally, a base grading operator Γ1 needs to be fixed first in
order to assign an “absolute” K -theory class to Γ2.

In the SSH model example where A = C (S1)⊗̂Cl1, there is no
canonical basepoint.
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Dimension shifts

The 0-dimensional classification can be related to the d ≥ 1 cases
by “K -theoretic dimension shift”.

Sketch: Zd or Rd symmetries introduce a momentum space T̆d or
R̆d (we use the (̆·) notation to avoid ambiguity). So we might want
to compute K0(C (T̆d)) or K0(C0(R̆d)) for the topological phases.
There is a contribution from the d-fold suspension of a point.

Extra CT -symmetries are accounted for by graded tensor product
with a Clifford algebra, which implements suspension.

Both suspensions shift the K -theory degree, so that the d ≥ 1
classification is just a shift of the d = 0 one.
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Periodic Table

n C2 T2 KOd−n(?) or Kd−n(?)
d = 0 d = 1 d = 2 d = 3

0 +1 Z 0 0 0
1 +1 +1 Z2 Z 0 0
2 +1 Z2 Z2 Z 0
3 +1 −1 0 Z2 Z2 Z
4 −1 Z 0 Z2 Z2

5 −1 −1 0 Z 0 Z2

6 −1 0 0 Z 0
7 −1 +1 0 0 0 Z
0 N/A Z 0 Z 0
1 S2 = +1 0 Z 0 Z

Only the “strong” phases, corresponding to pullback under Td → Sd are
accounted for in this Table.
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Part 5: T-duality and the
bulk-boundary correspondence



T-duality

Loosely speaking, T-duality is an equivalence of two seemingly
different physical theories when some circles or tori are present in
the model. It originated in string theory, but the mathematical
aspect is quite general and applicable elsewhere.

The basic example comes from considering a closed string
propagating on a circle with radius R (think of this as one of the
compactified spatial dimensions).

There are two basic quantised quantities: (1) winding number, and
(2) momentum. Their contributions to the energy are proportional
to R and 1

R respectively.

So if we pass to a dual circle with radius 1
R , the “same” theory is

obtained with winding number and momentum exchanged.
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Origin of tori in solid state physics

More generally, a circle bundle has a bunch of topological
invariants, and there exists canonically a “T-dual” circle bundle
with the same invariants but permuted
(Bouwknegt–Evslin–Mathai).

For torus bundles, the T-dual is a “noncommutative torus bundle”!

In solid state physics, the duality is between momentum space
(e.g. Brillouin torus) and position space (e.g. unit cell or
fundamental domain).

This is most useful when the momentum “space” is
noncommutative, which happens when the symmetry group is
non-abelian.
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Origin of tori in solid state physics

A lattice Zd ⊂ Rd defines two related tori: the unit cell
Td = Rd/Zd , and the Pontryagin dual of characters

T̆d = Hom(Zd ,U(1)).

T and T̆ are related through two self-dual exact sequences of
groups.

0 −→ Z −→ R −→ T −→ 0

0 −→ Z̆ −→ R̆ −→ T̆ −→ 0

position space

momentum space

self-dual under
Hom( · ,U(1))

Notation: In these slides, (̆·) generally denotes a momentum space
quantity to distinguish from a position space quantity. We also
suppress the dimension and write Z,R,T, unless it becomes
necessary to specify d .
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Origin of tori in solid state physics

In solid state physics, p ∈ R̆ is the momentum variable, and
Z̆ ≡ Hom(T,U(1)) ⊂ R̆ is the reciprocal lattice of momenta whose
value is trivial on the real space lattice Z.

The momentum space quotient R̆/Z̆ is the Brillouin torus of
quasimomenta, and coincides with the Pontryagin dual T̆.

In position space, the unit cell R/Z is also a torus T, and
mathematically it is a classifying space BZ (the quotient of
contractible R by a free Z action).

The Brillouin torus is of fundamental importance because
Z-translation invariant (Hamiltonian) operators become
“diagonalised” over T̆ under a Fourier transform.
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Bloch–Floquet transform

Recall that electron motion in a crystalline material is described by
a Hamiltonian H = H† acting on L2(R), e,g, H = −∇2 + V , with
V invariant under Z ⊂ R.

Bloch–Floquet transform decomposes H into H =
∫ ⊕
k∈T̆Hk . where

each Bloch Hamiltonian acts on the Bloch waves that are
k-quasiperiodic,

fk(x + 1) = e ik fk(x), (Bloch wave condition)

Intuitively, one solves Schrödinger’s equation on the unit cell T for
each quasi-periodic boundary condition labelled by k ∈ T̆, then
integrates over all such conditions.
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Bloch–Floquet transform

Hk typically has discrete spectrum {Ei (k)}i∈N, and as k varies over
B, we obtain bands of spectra.

Equivalently, we are transforming L2(R) into the section space
L2(T̆, E) of a certain Hilbert bundle E → T̆. The fibre Ek is the
infinite-dimensional Hilbert space of k-quasi-periodic Bloch waves,
or equivalently, the L2-sections of a line bundle Lk → T.

A f ∈ L2(R) has a Bloch decomposition

f (x) =

∫
k∈T̆

f̆k(x) dk

whose k-component f̆k is obtained from f by a Bloch sum

f̆k(x) =
∑
m∈Z

e−2πikmf (x + m).
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Bloch–Floquet transform

In f (x) =
∫
k∈T̆ f̆k(x) dk, we note that f̆k(x) is a function of

(x , k) ∈ R× T̆

which is equivariant under Z-translations according to

f (x + m, k) = e ikmf (x , k)

Thus f̆ can equally be regarded as a section of the Poincaré line
bundle P → T× T̆,

P = R× T̆× C/∼Z, m · (x , k ; z) = (x + m, k; e ikmz),

putting T and T̆ on a more equal footing. Later, we will see that
P implements T-duality.
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Geometric intuition behind bulk-boundary correspondence

All topological insulators are “spectrally identical” in the bulk, so
they are hard to probe directly.

At an interface between two systems with different bulk invariants,
the insulating gap should close for “continuous interpolation” of
the invariants.

Thus one expects gapless (metallic/conducting) boundary modes,
which can be measured as a signature of the change in bulk
invariants across the interface.

Furthermore, such boundary modes inherit topological protection
from the bulk.
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Geometric intuition behind bulk-boundary correspondence

Example: In the semiclassical picture of the Quantum Hall Effect,
electrons in a 2D sample subject to a uniform perpendicular
magnetic field move in cyclotron orbits.

Its (quantized) angular momentum turns into a (quantized) linear
momentum when intercepted by the boundary, giving rise to
(quantized) unidirectional conductance along the boundary.

We stress that in position space, the bulk-boundary
correspondence should be a kind of “geometric restriction”.
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Momentum space model for bulk-boundary correspondence

Suppose there is a boundary C ∗-algebra of observables A, and we
also have an extra transverse Z-symmetry. Then the bulk algebra
B̆ would be A⊗ C ∗(Z).

More generally, Z could act by automorphisms α of A. Then
B̆ = Aoα Z.

There is a canonical “Toeplitz extension”,

0 −→
Boundary

algebra
A⊗K

−→
Bulk-with-
boundary
algebra
T (A, α)

ev∞−−→
Bulk

algebra B̆ −→ 0,

where T (A, α) is the bulk-with-boundary algebra in which the
transverse translations are turned into unilateral shifts.
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Momentum space model for bulk-boundary correspondence

Special case: in the SSH model where the boundary is just a point,
we have A = C and the algebra T containing the Toeplitz
operators fits into the extension

0 −→ K −→ T −→ C ∗(Z) = C (T̆) −→ 0.

A deep result of Pimsner–Voiculescu says that the K -theories of
T (A, α) and A are the same, so that the six-term long exact
sequence for the Toeplitz extension becomes

K0(A)
1−α∗ // K0(A)

j∗ // K0(B̆)

∂

��
K1(B̆)

∂

OO

K1(A)
j∗

oo K1(A)
1−α∗
oo
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Momentum space model for bulk-boundary correspondence
In the SSH example, ∂ : K1(C (T̆))→ K0(K) ∼= K0(C) is the
topological index (= winding number). It is an isomorphism in this
case.

In the Chern insulator example, ∂ : K0(C (T̆2))→ K1(T̆) takes the
Chern class to the winding invariant. Physically, this means that
the Chern insulator gives rise to a “winding” mode parallel to the
boundary. This may be interpreted as spectral flow/“charge
punping”.

k||

E

EF

(a)

Generally, ∂ is interpreted as the topological bulk-boundary map,
which “integrates out T̆”.
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Position space bulk-boundary correspondence?

This framework was first used by
Kellendonk–Richter–Schulz-Baldes to prove equality of Hall and
edge conductance in the Quantum Hall Effect.

As it stands, connecting homomorphims ∂ are somewhat abstract,
and we would like a geometrical understanding which is consistent
with the heuristics.

It turns out that T-duality is precisely the tool to make this
connection. The slogan is that T-duality implements a “geometric
Fourier transform” which converts ∂ into a restriction-to-boundary
map in position space.
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Commutative T-duality
The basic commutative T-duality is an isomorphism between the
K -theories of Td and T̆d with a degree shift of d .

In this case, T-duality is the Fourier–Mukai transform,
implemented the Poincaré line bundle, and is summarised by the
following diagram,

P

��

Td × T̆d

p

{{

p̆

##
Td T̆d .

The first Chern class of P can be represented by the 2-form∑d
i=1 dxi ∧ dki . Then T : K 0(Td)

∼−→ K−d(T̆d) is

T : [E ] 7→ [Ĕ ] = [p̆∗(p
∗(E)⊗ P)].
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Commutative T-duality

In terms of Chern character,

ch(Ĕ) =

∫
Td

ch(E)ch(P)

This is already interesting in d = 2. Then K 0(T2) ∼= Heven(T2) is
given by the rank r and first Chern class c , i.e.

ch(E) = r(E) + c(E)dx1 ∧ dx2

The T-dual Ĕ has

ch(Ĕ) =

∫
T2

ch(E)ch(P) = c(E) + r(E)dk1 ∧ dk2

= r(Ĕ) + c(Ĕ)dk1 ∧ dk2.

Thus rank and first Chern number are interchanged!
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Real commutative T-duality

The bundle P has a natural antilinear lift of the involution id× θ
on T× T̆, so that P is a Real bundle.

There are real versions of the Fourier–Mukai transform,

KO−n+d(Td) ∼=KR−n(T̆d)

KSp−n+d(Td) ∼=KQ−n(T̆d)

Under these isomorphisms, the Z2 FKM invariants become
Stiefel–Whitney classes in a certain sense.
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T-duality as Fourier transform
We can think of T-duality as a kind of Fourier transform at the
level of topological invariants.

Recall that the ordinary Fourier transform takes f : Z→ C to
f̆ : T̆→ C, implemented by the kernel P(m, k) = e2πikm.

f̆ is obtained by pulling back f = f (m) to a function f = f (m, k)
on Z× T̆, multiplying by kernel P(m, k), then integrating out Z.

Let ι : Zd−1 → Zd be (m1, . . . ,md−1) 7→ (m1, . . . ,md−1, 0), and
∂ : f̆ 7→ ∂ f̆ be integration (push-forward) along d-th circle in T̆d .
Only Fourier components with md = 0 survive, so

f

ι∗

��

∼
FT

// f̆

∂
��

ι∗f
∼
FT

// ∂ f̆

commutes, with ι∗ the restriction map to md = 0.
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T-duality as Fourier transform

This observation is consistent with the geometric (or physical)
intuition of the bulk-boundary correspondence as being a
restriction-to-boundary map,

Position space
bulk invariant

Restriction to
boundary ��

∼
T−duality

// Momentum space
bulk invariant

bulk-boundary homo-
morphism��

Position space
boundary invariant

∼
T−duality

// Momentum space
boundary invariant

Mathematically the RHS is formulated generally using crossed
product C ∗-algebras, while the LHS is “geometric”.
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Twisted crossed products

Definition: A C ∗-dynamical system (A,G , α) has a locally
compact group G acting on a C ∗-algebra A by automorphisms αg .

The crossed product Aoα G is obtained by taking the compactly
supported functions G → A with α-convolution product, and
completing in a certain C ∗-norm.

The action can also be twisted by a 2-cocycle σ, in which case the
crossed product is twisted, Aoα,σ G .

We had an example where G = 1,T acted on C by complex
conjugation, and there was a 2-cocycle σ which encoded T2 = −1.
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Twisted crossed products

The rotation algebra C (S1) oRθ
Z where Rθ is rotation by angle θ,

is also known as the noncommutative torus Aθ.

It can also be constructed as a twisted crossed product Coid,σ Z2,
which is the algebra of magnetic translations. Two translations
Tm,Tn differ from Tm+n by a phase σ(m,n) = e iθn1m2 where θ is
the magnetic field strength.

Let A = C (Ω) where Ω is a compact disorder space. The algebra
C (Ω) oα,σ Zd was used by Bellissard et al to model disorder in the
quantum Hall effect.
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Induced algebra

When Z acts on A by α, there is another natural associated
algebra.

Z acts freely on R on the right. The induced algebra
B = IndRZ(A, α) consists of continuous functions f : R→ A
satisfying Z-equivariance

f (x + 1) = α−1(f (x)), x ∈ R.

There is a left action τα of R on IndRZ(A, α) by translation

ταy f (x) := f (x − y).

We can think of the induced algebra as a bundle of algebras over
T = R/Z with fibre A, i.e. a mapping torus for α.
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Two long exact seqences

Let the bulk and boundary algebras be related by B̆ = Aoα Z as
before.

The momentum space Toeplitz extension

0→ A→ T (A, α)→ B̆ → 0

gave the long exact sequence

K0(A)
1−α∗−→ K0(A) −→ K0(B̆)

∂ ↑ ↓ ∂
K1(B̆) ←− K1(A)

1−α∗←− K1(A),
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Two long exact sequences

There is also a geometric sequence for B = IndRZ (A, α),

0→ SA → B ev0−−→ A → 0,

where SA is the suspension C0((0, 1),A) and ev0 is evaluation at
0. This SES gives, using the suspension isomorphism
K0(S(·)) ∼= K1(·), the long exact sequence

K0(A) −→ K1(B)
ι∗−→ K1(A)

1− α∗ ↑ ↓ 1− α∗

K0(A)
ι∗←− K0(B) ←− K1(A),

(6)

where ι∗ ≡ (ev0)∗ is restriction to fibre at 0 (the boundary).
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Noncommutative T-duality

Take A = C and α = id. Commutative T-duality
K•(C (T))

∼−→ K•+1(C (T̆)) is a special case of

T ≡ T •α : K•(Ind
R
Z (A, α))

∼−→ K•+1(Aoα Z)

T •α is defined by Connes’ Thom isomorphism

K•(Ind
R
Z (A, α))

∼−→ K•+1(IndRZ (A, α) oτα R)

followed by the isomorphism from Green’s imprimitivity theorem

IndRZ (A, α) oτα R ∼= Aoα Z⊗K

which induces the K -theory isomorphism

K•+1(IndRZ (A, α) oτα R) ∼= K•+1(Aoα Z).
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T-duality characterisation

[HMT] In fact, we can abstractly characterise T as the unique
transformation of the functors K•(Ind

R
Z ( · )) and K•+1(( · ) o Z),

from the category of Z-C ∗-algebras to abelian groups, which

I normalizes to standard T-duality for • = 0, A = C, α = id;

I is natural in the appropriate sense;

I is compatible with suspensions.

The same constructions can be carried out in real K -theory, with a
modification of the normalisation condition.

Physically, the functors IndRZ ( · ) and ( · ) o Z introduce a position
and momentum space circle respectively. Then T-duality
exchanges them K -theoretically, with a degree shift.
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Paschke’s map

Paschke5 had previously constructed a concrete map γ•α which
intertwines the two LES,

K•+1(Aoα Z)

∂

((

γ•
α

��

. . .
1−α∗−−−→ K•+1(A)

66

((

K•(A)
1−α∗−−−→ . . .

K•(IndRZ(A, α))

T

OO

ι∗
66

One can show that his γ•α satisfies the characterisation of (and is
thus equal to) T .

5On the mapping torus of an automorphism. Proc. Amer. Math. Soc. 88
481–485 (1983)
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Paschke’s map

γ0
α : K0(IndRZ (A, α))→ K1(Aoα Z)

is constructed as follows. For p = {pt}t∈[0,1] ∈ IndRZ (A, α), a path
of unitaries t 7→ wtA is found such that

pt = Ad(wt)(p0), t ∈ [0, 1].

In particular, p1 = Ad(w1)(p0). Then

γ0
α[p] := [L∗w1p0 + 1− p0],

where L ∈ (Aoα Z) is the unitary implementing α (i.e.
α(a) = LaL∗, a ∈ A).

The • = 1 case is defined by compatibility with suspensions.

142 / 168



T-duality simplifies bulk-boundary correspondence

To summarize: T-duality is like a topological Fourier transform,
switching between momentum space picture and geometric real
space picture, and exchanges the bulk-boundary homomorphism ∂
with geometrical restriction ι∗.

K•(B)

ι∗

��

∼
T

// K•+1(B̆)

∂
��

K•(A)
∼
=

// K•(A)

,

The abstract characterisation of T ≡ T •α = γ•α allows
generalisation to actions by Zd .

For even more complicated groups, the Connes–Thom isomorphism
generalises to Baum–Connes+Poincaré duality. The RHS is very
hard to describe, but we can use the geometric LHS to do the
description, and then T-dualise.
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Part 6: Applications to lattices with
defects, and hyperbolic and

crystallographic topological phases



Main messages of this talk

1. Geometry is also important: crystalline phases, FQHE,
bulk-boundary relations, defects, Berry phases. . .

2. Non-abelian symmetries can be Fourier transformed in
Non-Commutative Geometry

3. Although NC-spaces are hard to picture, T-duality provides a
complementary picture, e.g. of BEC in position-space as the
“obvious” restriction-to-boundary map.

4. Applications: Screw dislocations, hyperbolic geometry
(fractional BEC, hyperbolic Kane–Mele invariant), and
crystallographic space groups (torsion phases).
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Screw dislocations
The integer Heisenberg group HeisZ0 a c

0 0 b
0 0 0

 , a, b, c ,∈ Z,

is a central extension of Z2 by Z.

Imagine this as two “horizontal” translations a, b which fail to
commute up to some “vertical” translation c — this describes the
symmetries of a uniform distribution of screw dislocations of a
standard Euclidean lattice.
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Screw dislocations

HeisZ is a discrete subgroup of the real Heisenberg group HeisR

(which is topologically R3)0 a c
0 0 b
0 0 0

 , a, b, c ∈ R,

The classifying space BHeisZ is the quotient HeisR/HeisZ, which
is a manifold called Nil (the name comes from “nilpotent
geometry”, a departure from Euclidean geometry)

Physically, Nil replaces T3 as the unit cell.

Because HeisZ is nonabelian, “momentum space” is not T̆3 but
C ∗(HeisZ), which is an interesting noncommutative “space”.
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Screw dislocations

Roughly speaking, C ∗(HeisZ) is a family of noncommutative 2-tori
Aθ over T̆, where over θ ∈ T̆ the rotation parameter is θ itself.

Nil is a principal circle bundle over T2, with Chern class the
generator of H2(T2,Z). It is sometimes called a “twisted torus” by
physicists because it is also a (non-principal) torus bundle over a

circle T, with monodromy given by the SL(2,Z) matrix

(
1 1
0 1

)
.

There is isomorphism between the K -theories of Nil = BHeisZ and
C ∗(HeisZ), using the Baum–Connes isomorphism or crossed
product by HeisR, which is a nonabelian version of T-duality.
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Screw dislocations

We can introduce a 2D boundary as a vertical plane along a, c ,
containing the screw axes. So the boundary has symmetries

Z2 =


1 a c

0 1 0
0 0 1

 , b, c ∈ Z

 ⊂ HeisZ.

with b generating the transverse translations. Abstractly,

1 −→ Z2 −→ HeisZ = Z2 o Z −→ Z −→ 1

with the semidirect product defined by the action of Z on Z2 via
the SL(2,Z) matrix mentioned above.

Then the boundary algebra is A = C ∗(Z2) ∼= C (T̆2) and the bulk
algebra is B̆ = C ∗(HeisZ) = C ∗(Z2) oα Z.
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Screw dislocations
As before, there is a “momentum space” extension algebra
T (A, α) inducing a topological bulk-boundary map

∂ : K0(B̆) = K0(C ∗(HeisZ))→ K1(A) = K1(C (T̆2)).

Unlike the SSH and Chern insulator examples, ∂ is not surjective in
this case. The image is only generated by windings parallel to the
screw dislocation!

This was predicted by physical
arguments in [Ran, Zhang,
Vishwanath, Nature Phys. 5
298–303 (2009)]
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Screw dislocations and H-flux

As a circle bundle Nil→ T2, there is also a T-dual in the sense of
BEM, which is a 3-torus T̆1 × T2 with “H-flux” the generator vol
of H3(T̆1 × T2).

This as a “partial Fourier transform” along the screw axis.

This means that there is an isomorphism between K−1(Nil) and
twisted K -theory K 0(T̆1 × T2, vol). The latter is also the K -theory
of the continuous-trace C ∗-algebra CT (T̆1 × T2, vol).

K 0(T̆× T2, vol)

Tcircle

∼

''

∼
T

// K0(C ∗(HeisZ))

K 1(Nil)

TBC

∼
77
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Noncommutative Bloch theory

Translations in Zd generate a convolution algebra C ∗(Zd). The
Fourier transform is C (T̆d) with pointwise multiplication.

For general G non-abelian, (the reduced) C ∗(G ) ∼ convolution
algebra of translations on L2(G ), and plays the role of “momentum
space”. Projective symmetries also possible using C ∗(G , σ).

There is a notion of NC-Bloch theory (Grüber, Mathai–Marcolli)
and NC-bundles over C ∗(G ). Spectral projections of G -invariant
Hamiltonian are elements of some matrix algebra over C ∗(G ),
leading us to compute the K -theory of C ∗(G ).

Put in another way, noncommutative “valence bundles” are
classified by K0(C ∗(G )). They are Hilbert C ∗-modules over
C ∗(G ), or roughly, Hilbert spaces parametrised by Ĝ .
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Momentum space and unit cell duality

A deep result of Baum–Connes says that C ∗(G ) and (proper)
classifying space BG are dual for a large class of groups (we will
only look at discrete G )

Baum–Connes defined an assembly map
µ : K•(BG ) ∼= K•(C

∗(G )), which is an isomorphism in many cases.

Here, K•(BG ) is short-form for the G -equivariant K -homology of
the proper classifying space EG . The latter is a contractible space
on which G acts freely up to finite isotropy. We do not need a
precise definition of K -homology, just that it is often computable
in terms of ordinary homology.

We have seen some examples: Zd acts freely on Rd , and HeisZ on
HeisR, so the quotients Td = BZd and Nil = BHeisZ.

153 / 168



Momentum space and unit cell duality

In fact, Rd is an EG for any crystallographic space group!

Definition: a space group G is a discrete cocompact subgroup of
the Euclidean group Rd oO(d). As abstract groups, G has the
form

1 −→ Zd −→ G −→ F −→ 1

Here Zd ⊂ Rd is the maximal abelian normal subgroup of lattice
translations (acting freely), while F ⊂ O(d) is the finite point
group (e.g. reflections, rotations which may have fixed points)

F acts on the normal subgroup Zd and thus it has a dual action on
the Brillouin torus T̆d .
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Momentum space and unit cell duality

Only some space groups are semidirect products Zd oα F . Most of
them are nonsymmorphic, meaning that G is a non-split extension
of F by Zd .

A group 2-cocycle ν : F × F → Zd measures nonsymmorphicity
(obstruction to semidirect product).

In the split case, C ∗(G ) = C ∗(Zd) oα F = C (T̆d) oᾰ F . Valence
bundles are now F -equivariant bundles over T̆d , so we compute
KF

0 (T̆d) for the G -symmetric topological phases.
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Momentum space and unit cell duality

In the nonsymmorphic case, ν induces an equivariant twist ν̆ so
that valence bundles are ν̆-twisted F -equivariant bundles, classified
by twisted equivariant K -theory K 0+ν̆

F (T̆d) (as suggested by
Freed–Moore).

K 0+ν̆
F (T̆d) is hard (even to define)! Using Baum–Connes, we can

“compute in position space” instead.

The unit cell is Rd/G ∼= Td/F ≡ BG (an orbifold).

We compute K0(BG ) instead. This can be done by approximating
(i.e. spectral sequece) with (Bredon equivariant) homology.
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Application: Nonsymmorphic crystalline phases

Wallpaper group pg is
non-symmorphic: F = Z2

reflection lifts to glide
reflection of infinite order.

1 −→ Z⊕ Z (×1,×2)−→ pg = Z o Z mod 2−→ Z2 −→ 1

In the semidirect product, the second Z acts on the first Z by
x 7→ −x .

Unit cell is a Klein bottle
K = R2/pg = F\(R2/Z2) = Zfree

2 \T2.
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Application: Klein topological phase

K1(C ∗(pg))
T∼= K1(Bpg) = K1(K) ∼= H1(K) = Z⊕ Z2

.

As far as I know, this Z2-phase has not been found by other means
(Berry curvature methods cannot detect torsion).

In ongoing work, K. Gomi and I show that there is an exotic 1D Z2

boundary mode, which is the index of the Z2 phase above.

We formulate an index
map between twisted
K -theory groups, for a
“twisted family of Toeplitz
operators”.
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Toward fractions: hyperbolic plane geometry

Hyperbolic plane H can be indentified with interior of a Euclidean
disc but with different metric.

Geodesics in H (green) are arcs of Euclidean

circles intersecting disc boundary at right

angles. PSL(2,R) acts transitively and

isometrically on H by Möbius transformations,

and can be categorised into

hyperbolic/parabolic/elliptic transformations. A

hyperbolic element effects “translations” and

each orbit lies on a hypercycle (red),

homeomorphic to R. An elliptic element effects

“rotations”.
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Space groups and unit cells in hyperbolic plane

Cayley graph of Γ2 in H, illustrating
that [A1,B1][A2,B2] = 1.

Analogue of lattice Z2 is a
cocompact discrete torsion-free
Γg ⊂ PSL(2,R), with canonical
generators A1,B1, . . . ,Ag ,Bg .

Unit cell is genus g Riemann
surface Σg .

Analogue of space group is
Fuchsian group Γg ,ν

1→ Γg ′ → Γg ,ν → F → 1.

ν lists the order of elliptic
rotations Cj , C

νj
j = 1. Unit cell

Σg ,ν = Σg ′/F is a hyperbolic
orbifold.
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Euclidean plane quantum Hall effect

In 2D Euclidean space, A = −θ ydx is potential for magnetic field
B = θ dx ∧ dy = dA. Quantum Hall Hamiltonian is
HA,V = 1

2 (d + iA)∗(d + iA) + V for a Z2-invariant potential.

Then HA,V commutes with magnetic translations T σ
n . The latter

furnish a projective rep. of Z2 with 2-cocycle σ(n,n′) = e−2πiθn′1n2 .

Spectral projections of HA,V lie in C ∗(Z2, σ)⊗K(L2(T2)). Pairs
with conductance cyclic cocycle τKubo (NC-integration) to give
integer values for the Hall conductance as a NC Chern number.

Suffices here to mention that the NC analogue of the Chern
insulator is the Rieffel projection.
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Quantum Hall effect in hyperbolic space

Everything works for H: PSL(2,R) acts transitively and
isometrically on H by Möbius transformations. Invariant B field is
θ dx ∧ dy/y2 in half-plane model of H.

Z2 is replaced by Γg ,ν ⊂ PSL(2,R), and spectral projections for
Γg ,ν-invariant Hamiltonian lie in C ∗(Γg ,ν , σ)⊗K.

These projections can be classified by K -theory,

K•(C
∗(Γg ,ν , σ)) ∼=

{
Z2+

∑r
j=1(νj−1) • = 0,

Z2g • = 1.

whose computation uses K •orb(Σg ,ν) [Farsi’92] and Baum–Connes
isomorphism. This is “Riemann surface T-duality”.
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Fractional indices

Main difference: range of τKubo,H is φZ ⊂ R, where

φ = 2(g − 1) +
r∑

j=1

(1− 1

νj
) ∈ Q

is the orbifold Euler characteristic of Σg ,ν [M+M’01].

Another interpretation: Effective geometry due to interactions
among electrons (model for FQHE). φ ∼ effective charge
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Geometry of bulk and boundary

A hyperbolic X ∈ Γ effects translation along a hypercycle OX which
serves as an effective boundary that partitions H into “bulk” and
“vacuum”. Not all complementary directions are transverse!
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Fractional bulk-boundary correspondence

It was easy to label points in Zd and write down an explicit
tight-binding model to truncate.

Very hard to enumerate the lattice points in the hyperbolic
half-plane!

Geometrically it is easy to describe: a “boundary” is the hypercycle
generated by some choice of hyperbolic symmetry group element.

Topologically, this boundary is also R, but it is embedded in
hyperbolic R2 differently from in Euclidean space. This is reflected
in the “geometric factor” φ. The boundary unit cell is again
R/Z = T

Given this geometric bulk-boundary relation, we can formulate the
bulk-boundary correspondence (in momentum space) abstractly
using T-duality.
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Fractional bulk-boundary correspondence

T-duality converts the geometric restriction-to-bounday map

ι∗ : K •orb(Σg ,ν)→ K •(T)

into some homomorphism between bulk and boundary algebras,

∂ : K•(C
∗(Γg ,ν , σ))→ K•+1(C (T̆)).

Deep theorem of Rosenberg–Schochet (Universal Coefficients) says
that ∂ is the index map for a unique class of extensions of
C ∗(Γg ,ν , σ) by C (B′).

Desired “Topelitz” algebra is in this class, and its index map ∂
gives the bulk-boundary map. There is also a dual boundary
conductance 1-cocycle so that boundary and bulk fractional
conductance are equal.
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Bulk-boundary map for general geometries

• Take a sensible codimension-1 boundary with enough
translational and/or point symmetries, so that the boundary unit
cell is a subspace of the bulk unit cell.
• All bulk and boundary unit cell invariants have a T-dual
momentum space counterpart.
• Desired index homomorphism ∂ in momentum space ↔
“Obvious” restriction homomorphism at unit cell level.
• Implicit construction of “Toeplitz” algebra of truncated hopping
terms, with momentum space bulk-boundary map ∂.
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Part 7: Remarks and discussion


