
Lightcone quantization of topological flux observables
for flux-quantization in A-theory [SS23-Qnt].

Nonprtrbtv BRST complex of topological fields.
The observables on charge (super-selection) sectors are
evidently the linear combinations of π0Maps
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The higher homotopies πnMaps
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gauge transformations, whence higher chains are (topo-
logical) higher “BRST-ghost” field observables.
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Therefore the gauge invariant observables are the chain-
homology of this BRST complex, hence are the complex
homology of the topological phase space.
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Non-perturbative M-theory spacetime domain.
In lifting a type IIA spacetime domain. X9

IIA (a pointed
space) to fully non-perturbative M-theory, the IIA-
circle fiber S1

A is meant to appear decompactified as R1.
But assuming that fluxes vanish at infinity along this
direction, the corresponding fiber domain is R1
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Makes topological phase space a loop space. This
implies that the phase space of flux-quantized topolog-
ical fields in M-theory is a based loop space:
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M-theory quantizes itself. From
this, the topological observables inherit a
non-commutative Pontrjagin-Hopf algebra
structure, which makes them be quantum
observables [CSS23-Qnt]:
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whose operator product is given by by
translation followed by “fusion” of solitons
in the M-theory circle-direction.

The Discrete lightcone emerges. But,
generally, the operator product of quantum
observables reflects temporal order (origi-
nally observed by [Fey42, p. 35][Fey48, p.
381], cf. [Ong]), whence we are faced with
a topological version of “discretized light
cone” quantization (cf. [BFSS97][Susk97]).
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The star-involution of Light-cone time-reversal
must hence be the combination of the Pontrjagin an-
tipode (spatial inversion) with complex conjugation
(plain temporal inversion), which together makes the
quantum observables into a complex Hopf algebra.
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Quantum states of topological fields are
therefore the positive linear functionals on this
complex Pontrjagin-Hopf homology algebra:
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