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“small [NISQ] machines are unlikely to uncover truly macroscopic
quantum phenomena, which have no classical analogs. This will likely
require a scalable approach to quantum computation [...] based on [...]
topological quantum computation (TQC) [...] The central idea of TQC
is to encode qubits into states of topological phases of matter. Qubits
encoded in such states are expected to be topologically protected, or
robust, against the ’prying eyes’ of the environment, which are believed
to be the bane of conventional quantum computation.”

J. Sau: Roadmap for Scalable Topological Quantum Computers
Physics 10 (2017) 68
[physics.aps.org/articles/v10/68]
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“The qubit systems we have today are a tremendous scientific achieve-
ment, but they take us no closer to having a quantum computer that
can solve a problem that anybody cares about. [...] What is missing
is the breakthrough [...] bypassing quantum error correction by us-
ing far-more-stable qubits, in an approach called topological quantum
computing.”

S. Das Sarma: Quantum computing has a hype problem
MIT Technology Review (March 2022)
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Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.
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Now to say all this in more detail −!
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There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

68

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block


There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

69

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block


There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

70

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanKitaevLarsenWang03


There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremen-
dous scientific achievement,

but they take us no closer to having a quantum computer
that can solve a problem that anybody cares about.

What is missing is the breakthrough bypassing quantum
error correction by using far-more-stable quantum-bits,
in an approach called topological quantum computing.”
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Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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(3.) its path lifting operation is anyonic braid gate execution.
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We first observe that:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

109

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport


In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

110

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport


In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
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akin to continuous paths in topological spaces.
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∗

∗ ∗

g2
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g1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
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BBr(3) =

{ }
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
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with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
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An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
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P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2 )

tr(γ3)

tr(γ1)

γ2

γ3

γ1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
and compatible path lifting:

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
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x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
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E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
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fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.
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a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
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with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{
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akin to continuous paths in topological spaces.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.
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the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.
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Claim: This has natural construction in HoTT languages:
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS
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Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

Part I
Verifying realistic topological quantum gates

Part II
Verifying their compilation into quantum circuits
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Pure quantum circuits are easy...

Linear operator composed & tensored from given quantum logic gates

H
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H H
⊗ ⊗
H H
⊗ ⊗
H H
⊗
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H in



H out

Hilbert space of
possible input

quantum states linear transformation
upon execution

Hilbert space of
possible output
quantum states

I12

U23
U34

O45

Up56
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but real quantum circuits have classical control & effects
(Example: QBit Teleportation protocol)

|0⟩

|0⟩

H

H 0 1

0 1

X Z

quantum state

preparation

quantum
measurement

classical control

plain quantum gates

input
quantum state

output
quantum state
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full reality is a loop: Classical Quantumprepare

measure

dynamic
lifting

di
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full loop needed e.g. for

quantum
error correction

but its formal language

theory had remained thin

existing models for

dynamic lifting are

ad hoc &
unverified
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Existing quantum typed circuit languages
are embedded inside classical type theories:
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Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

unverified linear type universe

Quantum Circuit Language
e.g. QML, Quipper, QWIRE, ...

for lack of a universal linear type theory.

Until now...
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Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)
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(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

212

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39


Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]
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More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.
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(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

235

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39


Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]
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QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

Quantum Systems Language (QS)
for quantum logic circuits

Topological Quantum Gate Circuits
for realistic quantum computation

ambient LHoTT verifies classically dependent quantum linear types
ambient HoTT provides specification of topological quantum gates
ambient dTT provides full verified classical control
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏b:B

product

∗B×
∏

b:B
co-product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏b:B

product

∗B×

classical
context extension

∏
b:B

co-product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×
∏

b:B
co-product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

linear
context extension

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers
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Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b ) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H )⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
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⊗
)
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type system

quantum base change
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pB

∏
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co-product
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⊥

⊥
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⊥

⊥

Dependent linear
Type Formers
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Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:

D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

effectful program

output data of nominal type D2
causing effects of type E (−)

prog23

second program

input data of type D2
causing effects of type E (−) bind previous effects

into second program

retED

returning trivial E (−)-effect

prog12 bindE prog23

carry any previous E (−)-effects along

compose

bindE retED
= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects
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Recall: Monadic computational effects.
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Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:
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Recall: Monadic effect handlers.

D1 D2 data type to absorb E -effects

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects
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Recall: Monadic effect handlers.
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Recall: Monadic effect handlers.

D1 D2

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

283



Recall: Monadic effect handlers.

D1 D2

E (D1) D2

D1 E (D1) D2
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Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥
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Recall: Data type system of Monadic effect handlers.
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Recall: Data type system of Monadic effect handlers.
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Recall: Data type system of Monadic effect handlers.
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Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type induced monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

289



Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
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prog12
no effect

retED1

produce
trivial effect
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running program

hndlED2
(D0

prog01−−−! E (D1)
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handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type induced monad

E -modales in Type
(“EM-category”) TypeE

KUF
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parison
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F
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U
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⊥
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term
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functor

F
U
⊥ E

F
E

U
E
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⊥

Now just to work this out

for the effects induced by

dependent data type formers

in LHoTT
−!
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′ )b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

291



Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.
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The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
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b : B ⊢ ⊕
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H b′ H b b : B ⊢ H b ⊕
b′:B

H b′
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∗H H H
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H H H ⊕
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|ψb⟩ 7! ⊕b′
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Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃
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Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}
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Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B

su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

quantum gate

H φ
−! QBit⊗K ≃ ⃝BK

⃝B

hndl⃝B
⃝BK⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse
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Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1
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Exmp: Deferred measurement principle – Proven by monadic effect logic.

Kl
(
□B

)
□B-Kleisli morphisms

LTypeB□B

□B-coalgebra homomorphisms

Kl
(
□B

)
□B-Kleisli morphisms

□BH •
F
−!□BH •

ε
□B

H •−−!H •
G•−!H •

measurement-controlled quantum gate
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

quantum-controlled quantum gate...
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

ε
□B

H •−−!H •
...followed by measurement

B0 1

F

G•

Deferred Measurement Principle
 −−−−−−−−−−−−−−−−−−!

B0 1

F

G•

∼
δ B ◦□B(−)

id
Kleisli equivalence

∼

ε□B◦(−)

classically controlled gate quantumly controlled gate

BB

KK G•

B•⊠K B•⊠K

b : B ⊢ K K

G•

Gb

BB

KK G•

□BB•⊠K □BB•⊠K

b : B ⊢ ⊕
b′B

K ⊕
b′B

K

□BG•

⊕
b′:B

Gb′
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The Quantum modality.
Also the exponential modality traditionally postulated in linear logic
is an emergent effect in LHoTT,
as is the crucial Quantum Modality, not considered before:

Type LType exponential
modality

classical
types

linear
types

quantum
modality Q

Ω∞

Σ∞
+ : B 7! 9B1

linear randomization
aka: stabilization/motivization

⊥ !
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It is the secret actor behind QBit = Q(Bit)...
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Quantum Circuits
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Quantum effects are compatible with tensor product.
Linear Randomness and Indefiniteness are “very strong” effects, in that:

⃝B
(
D⊗D′) ≃

(
⃝BD

)
⊗D′ , 9B

(
D⊗D′) ≃

(
9BD

)
⊗D′

There is a whole system of them:

⃝B⃝B′ ≃ ⃝B×B′ , NB: ⃝B⃝′
B ≃ ⃝B1⊗⃝′

B

which under dynamic lifting (monadicity comparison functor)
gives the external tensor product of dependent linear types:

free ⃝B-effect handlers
in linear data types LType⃝B

⃝B×B′ ⃝B×B′H

B-dependent
linear data types LTypeB

(
□B1B

)
⊠

external
tensor product

(
□B′1B′

)
⊗H

K
⊕

B
1

B ⊗

com
parison

functor

⃝
B×B′

so...341



Quantum circuits with classical control & effects
are the effectful string diagrams in the linear type system

E.g.
The dependent linear type of a measurement on a pair of qbits:

0 1

0 1

type of a pair of
coherent qbits

□Bit2
(
QBit•⊠QBit•

)
type of

collapsed qbits
dependent on

measured bits b,b′

QBit•⊠QBit•

measured bits

(b,b′) : Bit2 ⊢ □Bit2
(
QBit•⊠QBit•

)
(b,b′) ≃ C2 ⊗C2 C .

εBit2 (QBit•⊠QBit•)

pair of measurements

∑d,d′ qdd′ |d⟩⊗|d′⟩ 7! qbb′ |b⟩⊗|b′⟩

collapse of the quantum state
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Example: Bell states of q-bits are typed as follows (regarded in LTypeBit×Bit):

|0⟩

|0⟩

H

Bell state preparation

QBit•⊠QBit•
(
♢BitQBit•

)
⊠
(
♢BitQBit•

)
≃ □Bit2

(
QBit•⊠QBit•

)
□Bit2

(
QBit•⊠QBit•

)
b,b′ : Bit ⊢ C C2 ⊗C2

1 7! |0⟩⊗|0⟩ 7! 1√
2

(
|0⟩+|1⟩

)
⊗|0⟩ 7! 1√

2

(
|0⟩⊗|0⟩+ |1⟩⊗|1⟩

)

H

Bell state measurement

0 1

0 1

□Bit2
(
QBit•⊠QBit•

)
QBit•⊠QBit•

b1,b2 : Bit ⊢ C2 ⊗C2 C
∑b′1b′2

qb′1b′2
·|b′1⟩⊗|b′2⟩ 7!

(
q0,b2+(−1)b1 ·q1,(1−b2)

)
·|b1⟩⊗|b2⟩
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QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

discussed inPart I

Quantum Systems Language (QS)
for quantum logic circuits

discussed inPart II
Topological Quantum Gate Circuits

for realistic quantum computation
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