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- “small [INISQ] machines are unlikely to uncover truly macroscopic
quantum phenomena, which have no classical analogs. This will likely
require a scalable approach to quantum computation [...] based on |...]
topological quantum computation (TQC) [...] The central idea of TOQC
is to encode qubits into states of topological phases of matter. Qubits
encoded in such states are expected to be topologically protected, or
robust, against the ’prying eyes’ of the environment, which are believed
to be the bane of conventional quantum computation.”

J. Sau: Roadmap for Scalable Topological Quantum Computers
Physics 10 (2017) 68
[physics.aps.org/articles/v10/68]
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" “The qubit systems we have today are a tremendous scientific achieve-
ment, but they take us no closer to having a quantum computer that
can solve a problem that anybody cares about. [...]| What is missing
is the breakthrough [...] bypassing quantum error correction by us-
ing far-more-stable qubits, in an approach called topological quantum

computing.”
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even with good linear circuit logic:

topological gate set is highly constrained,
& movement of topological gbits 1s costly
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Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/31735]
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“We argue that quantum programs demand machine-checkable proofs of correct-|
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined.
Thesis Statement:

Quantum programming is not only amenable to formal verification: i1t demands 1t.”

Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/31735]
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all the more for topological quantum computing:
due to exotic gates in complex & unituitive circuits

but existing quantum circuit verification languages
such as QWIRE or Quipper
lack support for topological gates
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anyon defect braiding in topologically ordered quantum materials, has a surprisingly slick
formulation in parameterized point-set topology, which is so fundamental that it lends itself to
certification in modern homotopically typed programming languages, such as cubical Agda.



https://ncatlab.org/schreiber/show/Topological+Quantum+Gates+in+Homotopy+Type+Theory

r
Q  https://ncatlab.org/schreiber/show/TQP

An article that we are finalizing at CQTS:
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Topological Quantum Gates in Homotopy Type Theory

download: pdf

Abstract. Despite the evident necessity of topological protection for realizing scalable quantum
computers, the conceptual underpinnings of topological quantum logic gates had arguably remained
shaky, both regarding their (elusive) physical realization as well as their quantum information-
theoretic nature. Building on recent results on defect branes in string/M-theory [SS23a] and on their
holographically dual anyonic defects in condensed matter theory [SS23b], here we explain (as
announced in [SS22]) how the specification of realistic topological quantum gates, operating by
anyon defect braiding in topologically ordered quantum materials, has a surprisingly slick
formulation in parameterized point-set topology, which is so fundamental that it lends itself to
certification in modern homotopically typed programming languages, such as cubical Agda.

Now to say all this in more detaill —
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TOPOLOGICAL QUANTUM COMPUTATION

MICHAEL H. FREEDMAN, ALEXEI KITAEV, MICHAEL J. LARSEN,
AND ZHENGHAN WANG

ABSTRACT. The theory of quantum computation can be constructed from the
abstract study of anyonic systems. In mathematical terms, these are unitary
topological modular functors. They underlie the Jones polynomial and arise in
Witten-Chern-Simons theory. The braiding and fusion of anyonic excitations
in quantum Hall electron liquids and 2D-magnets are modeled by modular
functors, opening a new possibility for the realization of quantum computers.
The chief advantage of anyonic computation would be physical error correction
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Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremen-
dous scientific achievement,

but they take us no closer to having a quantum computer

that can solve a problem that anybody cares about.

What is missing is the breakthrough bypassing quantum
error correction by using far-more-stable quantum-bits,
in an approach called topological quantum computing.”
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then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,
specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

A Modular Functor Which is Universal for
Quantum Computation

Michael H. Freedman, Michael Larsen & Zhenghan Wang

Communications in Mathematical Physics 227, 605-622 (2002) | Cite this article

2 A universal quantum computer

The strictly 2-dimensional part of a TQFT is called a topological modular
functor (TMF). The most interesting examples of TMFs are given by the
SU(2) Witten-Chern-Simons theory at roots of unity [Wi]. These exam-
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Such braid gates are rather special among all quantum gates.
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High Energy Physics - Theory
[Bubmitted on 14 Dec 2021]
Ising- and Fibonacci-Anyons from KZ-equations

Xia Gu, Babak Haghighat, Yihua Liu

In this work we present solutions to Knizhnik-Zamolodchikov (KZ) equations corresponding to conformal
block wavefunctions of non-Abelian Ising- and Fibonacci-Anyons. We solve these equations around
regular singular points in configuration space in terms of hypergeometric functions and derive explicit
monodromy representations of the braid group action. This confirms the correct non-Abelian statistics
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SYMPOSIUM ON QUANTUM GROUPS

Monodromy Representations of the Braid Group”

I. T. Todorov: and L. K. Hadjiivanov™"

Theoretical Physics Division, Institute for Nuclear Research and
Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
Received February 19, 2001

Abstract—Chiral conformal blocks in a rational conformal field theory are a far-going extension of Gauss
hypergeometric functions. The associated monodromy representations of Artin’s braid group B,, capture
the essence of the modern view on the subject that originates in ideas of Riemann and Schwarz. Physically,
such monodromy representations correspond to a new type of braid group statistics which may manifest
itself in two-dimensional critical phenomena, e.g., in some exotic quantum Hall states. The associated
primary fields satisly R-matrix exchange relations. The description of the internal symmetry ol such
fields requires an extension of the concept of a group, thus giving room to quantum groups and their
generalizations. We review the appearance of braid group representations in the space of solutions of
the Knizhnik—Zamolodchikov equation with an emphasis on the role of a regular basis of solutions which
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hardly suitable as a foundation for quantum programming.
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E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*,%) ~ G.
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For G = Br(n) an Artin braid group this is the homotopy
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In HoTT, data types come with paths between their terms

X € Types

5y € X - Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

E.g.: if G 1s a finitely presented group, then we get a type BG
with essentially unique * € BG s.t. Pathsgg(*, %) ~ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ~ [Conf,(C).

An X-dependent type family | x € X F P(x) € Types
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In HOTT, data types come with paths between their terms

X € Types

Xy € X = Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

= Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.

Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

Homotopy type theory is a new branch of mathematics

that combines aspects of several different fields in a H0m0t0py
surprising way. It is based on a recently discovered Type Theory
.._l-‘II.'L-IE"-'-' .I (L. s of Mathematics

connection between homotopy theory and type theory.

datwor
It touches on topics as seemingly distant as the

homotopy groups of spheres, the algorithms for type

checking, and the definition of weak ©0-groupoids.

Homotopy type theory offers a new ‘“univalent”

foundation of mathematics, in which a central role is

played by Voevodsky's univalence axiom and higher
inductive types. The present book is intended as a first
systematic exposition of the basics of univalent

foundations, and a collection of examples of this new

style of reasoning — but without requiring the reader THE UNIVALENT FOUNDATIONS PROGRAN
) A DN CED TLLY

INSTITUTE Fi

to know or learn any formal logic, or to use any

computer proof assistant. We believe that univalent

foundations will eventually become a viable alternative to set theory as the “implicit foundation”
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

= Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.

Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

Homotopy Type Theory

Home Blog Code Events Links References Wiki The Book

+«— Geometry in Modal HoTT now on Zoom HoTT 2019 Last Call —

Introduction to Univalent Foundations of Mathematics
with Agda

Posted on 20 March 2019 by Martin Escardo

I am going to teach HoTT/UF with Agda at the Midlands Graduate School in April, and I
produced lecture notes that I thought may be of wider use and so I am advertising them

here.
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x,y € X
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Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

= Pathsy(x,y) = {x/\/y\ﬁy} e Types

akin to continuous paths in topological spaces.

Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.
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fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:
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In HOTT, data types come with paths between their terms

X € Types
x,y € X

= Pathsy(x,y) = {x/\/y\ﬁy} € Types

akin to continuous paths in topological spaces.

Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HOTT programming languages;


https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
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x,y € X
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akin to continuous paths in topological spaces.
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We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HOTT programming languages;

KZ-connection on

51U —2-conformal blocks GO @ity IE“%}(E) - [Q (I{FPFE}(E\{ZI}?_J(T}_*K(qj:”)('r})]
[ AN T 0

(Recall here that I{ Conf } (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1,--- N

braid relations as in (32).)
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akin to continuous paths in topological spaces.

Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:
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akin to continuous paths in topological spaces.

Such HOoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution — such as in quantum computation —
1s described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HOTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.
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(2.) The dependent homotopy type family of su(2)-conformal blocks
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(3.) its path lifting operation is exactly anyonic braid gate execution.

= natural & powerful topological-hardware-aware Q-pogramming paradigm
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)

@)yt I Conf (€)  + [

H (_f Conf} (CC \ {z:,r}?r_l) (1) — K[C,n)(‘r})]

t:BEyx {yeeom

0

(Recall here that I{ Conf } (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)
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1:BEy o \/ 0

classifying type for

(Recall here that I{ Conf} (C) etc. may be regarded as nothing but suggestive notation for types fin complex cohomology
1o N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks

secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on
5155~ 2-conformal blocks GO @ity - I{Fonﬁ}(ﬂ:) = [ [1 (I{Fonl'} (C\{zr}ity) (7) — K[C,n)('r})]
I I:BEK TN | \ , U
classifying type for

(Recall here that [ {Conf }{C) etc. may be regarded as nothing but suggestive notation for types fin complex cohomology
l,---,N
braid relations as in (32).)

Eilenberg-MacLane spaces in homotopy type theory
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type

A\

KZ-connection on 31) N N

sz~ 2-conformal blocks || 1) | @ity s T Conf (©) | T (J Conf (C\{z}ils) (7) — K(C,m)(¥))
s B~ N~ 0

classifying type for

(Recall here that I{ Fonﬂ } (C) etc. may be regarded as nothing but suggestive notation for types fin complex cohomology

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type

N\
7 N\

KZ-connection on

su% —2-conformal blocks GO @)y - I{E?T;:(C) - [ lﬂ;l (I{FOHE}(E\{E;}IN_J(T} _’K(C1”)(T})]
rBEx ' ~ 0

N Vi

N classifying type for

(Recall here that | Conf (C) etc. may be regarded as nothing ~ dependent product - types fin ~ complex cohomology
{1,---,N} over twist variable

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

fiberwise function type

N\

KZ-connection on é o 1 fiberwise
el N . AN homotopy
s1>% —2-conformal blocks (31) (zr)i=y _[{ Fﬂn};l(ﬂ:) = [ H (_f{']f'onf} (C \ {z }1_1) (1) — K(C,n){r})] J 0-truncation
T BT N N~ o
~ classifying type for

(Recall here that I{ Conf} (C) etc. may be regarded as nothing ~ dependent product - types fin ~complex cohomology
1o N

braid relations as in (32).)

over twist variable
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

fiberwise function type

_ - % N fiberwise
KZ-connection on homotopy

s1>% —2-conformal blocks SRR IC)/ S IgE?%JC) - [ I1 ('r{FDHE}(E\{F"}?—J(T} _}K(C'H)(T})] J()-truncation
. : - 0

BE v

N Vi

N classifying type for

(Recall here that | Conf (C) etc. may be regarded as nothing ~ dependent product - types fin ~ complex cohomology
{1,---,N} over twist variable

braid relations as in (32),)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

Definition 6.7 (Homotopy data structure of conformal blocks). In specialization of Def. 5.15, we obtain this data type:

punctures degree shifted level )
N:N;, n:N, K:N>p

7 : X\ s [ fib. = +n . pn
W(_) :N N {0: o J K-_ 2} > I_ (Z l(f . BC ) (hb(:,z} (prﬁ 3 T(K,W.]) B (Cr Cl.ld])):|

): BPBr(N) — Type
0

weights )
where
T(k,we) - BPBr(N+n) — BC*
(s pi¥t" . BPBr(N+n) — BPBr(N) (53) (203) $Ply — Pty (204)
pt — pt by exp(inw—g]
s L
bii ¢ t — t
e 10
ifjf — i\l/)jf bi j cxp(ZJ‘.':i%)
bry by iEff — pt
b1y exp(in%]

o

Myers, Sati & Schreiber: Topological Quantum Gates in Homotopy Type Theory
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

s1>% —2-conformal blocks SN S I#E{.J.I?r{:—(@ " [ 1 (I CUHE}(C\{H}?1)(1}_}K(C’H)(T})]

8L~ 0

(Recall here that I{ Conf } (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

works because
and uses that

This < > HoTT has categorical semantics

in Parameterized Homotopy Theory.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

st~ 2-conformal blocks | D | @)y : T Conf (©)  + llﬂ'z[ (I{F;_J_ng}(ﬂ\{z;}?'1)(1)—>K(C,n)('r))]
By T 0

(Recall here that I{Conf }{C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

HoTT has categorical semantics

Thig <W0rks because>

and uses that
in Parameterized Homotopy Theory.

Emily Riehl, On the co-topos semantics of homotopy type theory,

lecture at Logic and higher structures CIRM (Feb. 2022) [ pdf, pdf]
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

e oo blocks || O | @y + T cont (@) F [1‘31 (I{g;;;_r;g}(«:\{z;}?J(r)—»x(&@(r))]

0

Knizhnik-Zamolodchikov
connection

over configuration over deloopings
spaces of points of braid groups

Gauss-Manin
connections

ﬁ on

twisted generalized
cohomology

e.g. twisted K-theory,
twisted Cohomotopy, ...

parameterized semantics homotopy type
homotopy theory theory (HoTT)

syntax
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HoTT:

KZ-connection on

$1>X —2-conformal blocks

(31)

(z)¥ :I{E?nrigl(ﬂl) - [

H (_f Conf} (CC \ {z };N_l) (1) — K{C,n){‘r})]

1BEy e 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32).)
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

iz 2-conformal blocks | G | @)y + [ Conf (©)  F [H(I Cong}(wa}?'J(r}—m(c,n)(fc})]

1BEy e 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation

P: X — Types P _
— 1YPp /&(&"{0 — (y ) tr(}? )

S

X : Types X NNANNANNANNNANNANS Z
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

iz 2-conformal blocks | G | @)y + [ Conf (©)  F [H(I Cong}(wa}?'J(r}—m(c,n)(fc})]

1BEy e 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

o~

P: X — Types Wpy%
z

Px "NNANNANANANNNANNN2 Dy

Wyw
&}
b IRAVAVAVAVAVAVAVAVAVAVAVA. IV

X : Types


https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

s~ 2-conformal blocks || @V | @iy @ J Conf (C) [13;1(IE‘?,“E}(C\{Z:}?1)(‘:}—*(@1”)(?})]
B ' 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
l,--- N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on
51X~ 2-conformal blocks

@ | @iy s g © b | T (1o €\l — K(E(0)
! : 0

IZHEK v

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32).)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.
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Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.
We show how to construct this as a dependent type family in HOTT:

KZ-connection on

5155~ 2-conformal blocks GO (@t I{E‘ff}{’([ﬁ) - [ lﬂ;l (I{FI‘?FE}(E\{ZI}?_J(T} —’K(‘Cﬂ){f})]
rBEy ' 0

(Recall here that I{Conf} (C) etc. may be regarded as nothing but suggestive notation for types finitely presented by the Artin
1o N

braid relations as in (32),)

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HOTT language like Agda
gives a Topological Quantum Programming Language
which is fully aware of topological anyon braid quantum gates.
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To compute is
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To compute is to execute

Y
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OO 0?&‘ & 5
S
co _ Ve
X
; ——
I O braid

representation
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To compute is to execute
sequences of instructions

topological
quantum
circuit

&

o\
co/\//\\\

XCOC

braid

representation
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To compute is to execute
sequences of instructions
as composable operations

topological
quantum
circuit

&

o\
co/\//\\\

XCOC

braid

representation



https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

o\
O/\//\\\

topological o \

XCOC

quantum

circuit

braid

representation

Hy —— Hy
| Win) = | Wout)
Hy s H;
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state

topological
quantum
circuit

N - —/m  ~ ——m0
A Vi)

\ T

é o

o\
. S DO

braid

representation

Hy —— Hy
| Win) = | Wout)
Hy s H;
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

topological
quantum
circuit

N - —m ~ ——0

U
AVin) — |Wour)r®
7 o

o < 7T

braid

representation

Hy —— Hy
| Win) = | Wout)
Hy s H;
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

bundle of . quantum states
conformal blocks 7 in Hilbert spaces
\
>
A~
0\0%&0&\00 .
\OQ > \‘b\ g
& N (pb)
00&/// ’
configuration space .
h 5 2. : — unitary operators
pat topological ’ of distinct points braid yop
quantum representation

program
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To compute is to execute
sequences of instructions
as composable operations
on a chosen state space,

turning a given initial state
into the computed result.

Claim: This has natural construction in HoTT languages:

bundle of . quantum states
conformal blocks 7 in Hilbert spaces
\
>
A~
\0%0“\. N\ | |
R - Spe iy,
* & Q& . Ype fnde_llt (pb) Ype u Ueqyy
N al?)[] P ye
& Ko % Tse
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=
- configuration space
ath 3 . ; N unitary operators
P topological ’ of distinct points braid yop
quantum representation

program
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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4"'l‘\.d' > hep-th > arXiv:2203.11838

High Energy Physics - Theory
[Submitted on 22 Mar 2022]

Anyonic Defect Branes and Conformal Blocks In
Twisted Equivariant Differential (TED) K-theory

Hisham Sati, Urs Schreiber
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
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In fact, yet more fine-detail of TQC hardware 1s naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter

[Submitted on 18 Jan 2009 (v1), last revised 20 Jan 2009 (this version, v2)]

Periodic table for topological insulators
superconductors

Alexei Kitaev

Gapped phases of noninteracting fermions, with and without charge
conservation and time-reversal symmetry, are classified using Bott
periodicity. The symmetry and spatial dimension determines a general
universality class, which corresponds to one of the 2 types of complex
and 8 types of real Clifford algebras. The phases within a given class
are further characterized by a topological invariant, an element of some
Abelian group that can be 0, Z, or Z_2. The interface between two
infinite phases with different topological numbers must carry some
gapless mode. Topological properties of finite systems are described in
terms of K-homology. This classification is robust with respect to
disorder, provided electron states near the Fermi energy are absent or
localized. In some cases (e.q., integer quantum Hall systems) the
K-theoretic classification is stable to interactions, but a counterexample
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter



In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.



In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

International Journal of Modern Physics B
| Vol. 05, No. 10, pp. 1641-1648 (1991)
| 1V. CHERN-SIMONS FIELD ...

TOPO LOGICAL ORDERS AND Intemational Joumnal of
CHERN-SIMONS THEORY IN

Modern Physics

STRONGLY CORRELATED
QUANTUM LIQUID

XIAO-GANG WEN

https://doi.org/10.1142/50217979291001541 | Cited by: 98
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.
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arl <1V = hep-th = arXiv:2206._13563

High Energy Physics - Theory

[Submitted on 27 Jun 20227

Anyonic Topological Order in Twisted Equivariant Differential (TED) K-Theory

Hisham Sati, Urs Schreiber

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;
expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HOTT languages
called Cohesive HOTT.
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In fact, yet more fine-detail of TQC hardware is naturally HoT'T-codeable:

Quantum Gauge Field Theory in Cohesive Homotopy Type Theory

Urs Schreiber (Radboud University Nijmegen), Michael Shulman (University of San Diego)

We implement in the formal language of homotopy type theory a new set of axioms called cohesion. Then we
indicate how the resulting cohesive homotopy type theory naturally serves as a formal foundation for central
concepts in quantum gauge field theory. This is a brief survey of work by the authors developed in detail
elsewhere.

Comments: In Proceedings QPL 2012, arXiv- 1407 8427
Subjects: Mathematical Physics (math-ph); Logic in Computer Science (cs LO); Category Theory (math CT)
Cite as: arxiv:1408 0054 [math-ph]
(or arXiv:1408.0054v1 [math-ph] for this version)
https /idoi.org/10.48550/arxXiv.1408.0054 0
Journal reference: EPTCS 158, 2014, pp. 109-126
Related DOI: https://doi.org/10.4204/EPTCS.158.8 o
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Tutorial 6 Felix Wellen: Differential Cohesive HoTT
407 views Jun 25, 2018

hem Hausdorff Center for Mathematics
="  6.34K subscribers

The lecture was held within the framework of the Hausdorff Trimester Program: Types, Sets and
Constructions.

Abstacts:
Several modal extensions of homotopy type theory have been or are being developed, with
applications to synthetic formalizations of aspects of topology, differential geometry, and spectra,

as well as internal language presentations of cubical models of HoTT. In this tutorial, we will
describe some recent work on these type theories, the frameworks we use to design them, and
their applications in real-cohesive and differential-cohesive HoTT.

The preliminary lecture schedule is:

A Fibrational Framework for Modal Simple Type Theories

The Shape Modality in Real-cohesive HoTT and Covering Spaces
Discrete and Codiscrete Modalities in Cohesive HoTT, |

Discrete and Codiscrete Modalities in Cohesive HoTT, Il

A Fibrational Framework for Modal Dependent Type Theories
Differential Cohesive HoTT
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O 8 htips://agda.readthedocs.io/en/v2.6.2.2/language/flat.html

Docs » Language Reference » Flat Modality

Flat Modality

The flat/crisp attribute @w/@fiat is an idempotent comonadic modality modeled after Spatial Type
Theory and Crisp Type Theory. It is similar to a necessity modality.

We can define » 4 asatype forany (@ 4 : set 1) via an inductive definition:

data b {@h 1 : Level} (@b A : Set 1) : Set 1 where
con : (@b x : A) - b A

counit : {@h 1 : Level} {@h A : Set 1} - b A = A
counit (con %) = x

Parts of Cohesive HOTT have already been implemented in Agda.
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Parts of Cohesive HOTT have already been implemented in Agda.
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Part 1
Verifying realistic topological quantum gates

Part 11
Verifying their compilation into quantum circuits




The Problem



Pure quantum circuits are easy...

Linear operator composed & tensored from given guantum logic gates
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but real quantum circuits have classical control & effects

(Example: QBit Teleportation protocol)
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Existing quantum typed circuit languages

are embedded 1nside classical type theories:

unverified linear type universe

for lack of a universal linear type theory.

Until now...



Our Solution



Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
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S — Quantum Systems language @ CQTS

~~ full-blown Quantum Systems language emerges embedded in LHoTT

ambient LHoTT verifies  classically dependent quantum linear types
ambient HoTT  provides specification of topological quantum gates
ambient dTT provides full verified classical control
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Aside: Linear indefiniteness monad recovers Coecke’s ‘““classical structures’’.

(see nLab:quantum-+reader+monad)
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* —En
I 4 YA
0 / 1

r—

[

* —En
I 4 YA
0 / 1

F Deferred Measurement Principle F
—_ G, — — G.
classically controlled gate quantumly controlled gate
B B
B T B T
K =— G, %X K=— G, X
G (3B, X G, 8.
Be X K * BN K BB XK ) » UpBe X K
@ b/
. Gy \ b:B+  PDx &l » DK
b:B X >y K P o




Exmp: Deferred measurement principle — Proven by monadic effect logic.

EDB
OpH, 5 Opaf, 2o a1, 2 4,

measurement-controlled quantum gate

= g / Y B
r .

e DB.‘}[.

diagy (Ga) o

Deferred Measurement Principle

diagp(Ga) o

eDB

F I:‘B.l]_[. — DBH.

quantum-controlled quantum gate...

L oopa, 2 a1,

...followed by measurement

T f V‘IZB

Ge

quantumly controlled gate

17(_

T B

Ge X
50 B.R K
&) Gb’
b':B

D
A

— G —
classically controlled gate
B
B T B
X Ge X
B X K G BR%K OpBe X K
—_— % Gy . % b:B ;1217(

b'B




Exmp: Deferred measurement principle — Proven by monadic effect logic.

id

[

Kleisli equivalence

Y

KI( -
( B) SBODB(—)
[p-Kleisli morphisms

F gyD{B G
DB.‘7‘[.—>DB.'}[.—.>.7‘[.—.> °

measurement-controlled quantum gate

= g / Y B
r .

— DB.‘}[.

> LType B0

[Ip-coalgebra homomorphisms

diagy (Ga) o

quantum-controlled quantum gate...

Deferred Measurement Principle

eHBo(-)

F DB"]_[. — DBH.

1

> Kl(DB>

[1p-Kleisli morphisms

diagp(Ge) o

F e
ClpH, 2= 9,

...followed by measurement

T f V‘IZB

Ge

quantumly controlled gate

g(_

T B

Ge X
50 B.R K
&) Gb’
b':B

D
A

— G —
classically controlled gate
B
B T B
X Ge X
B X K G BR%K OpBe X K
—_— % Gy . % b:B ;1217(

b'B




The Quantum modality.

Also the exponential modality traditionally postulated 1n linear logic
1s an emergent effect in LHoTT,

linear randomization
aka: stabilization/motivization
— Z:E : B — %B]l —
Type 1 LType
< Q%
classical linear
types types

exponential
modality




The Quantum modality.

Also the exponential modality traditionally postulated in linear logic
1s an emergent effect in LHoTT,
as 1s the crucial Quantum Modality, not considered before:

linear randomization
aka: stabilization/motivization
v B e Yol —

hoduiy Q| Tyee 4 Hvpe

classical linear
types types

exponential
modality




The Quantum modality.

Also the exponential modality traditionally postulated in linear logic
1s an emergent effect in LHoTT,
as 1s the crucial Quantum Modality, not considered before:

linear randomization
aka: stabilization/motivization

— 3B Yol — .

quantum N | exponentia

modality Q Typ © ) 0 LType - modality
A\

classical linear
types types

The Q-monad plays a crucial role in the full formulation of the QS-language.
It is the secret actor behind QBit = Q(Bit)...



The Quantum modality.

Also the exponential modality traditionally postulated in linear logic
1s an emergent effect in LHoTT,
as 1s the crucial Quantum Modality, not considered before:

linear randomization
aka: stabilization/motivization

—¥® : B 1 —

quantum Q Type * T %B LType ' EXPOHEI}tial

modality ) 0 «  modality
A\

classical linear
types types

The Q-monad plays a crucial role in the full formulation of the QS-language.
It is the secret actor behind QBit = Q(Bit)...



Quantum Circuits



Quantum effects are compatible with tensor product.

Linear Randomness and Indefiniteness are “very strong” effects, in that:

Op(D®D') ~ (OpD)®D", Ycp(D®D') ~ (JepD) @D’

There 1s a whole system of them:

OpOp =~ Opxp, NB: OpOp ~ Opl®Op
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Quantum circuits with classical control & effects

are the effectful string diagrams in the linear type system

E.g.
The dependent linear type of a measurement on a pair of gbits:

‘—E.
’ V(\
0 1
‘—E.
’ V(\
0 1

type of
. collapsed gbits
type of a pair of pair of measurements dependent on
coherent (bits measured bits b, b’

Egi2 (QBit, X QBit,)

Og;2 (QBit, X QBit, ) » QBit, X QBit,

measured bits 5 el p
14, = gy
(b,0): Bi® + Ol (QBit, MQBit,) , ) ~ C?@C2 == Y 5 C

collapse of the quantum state




Example: Bell states of q-bits are typed as follows (regarded in LTypeg; . pi):
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S — Quantum Systems language @ CQTS

~~ full-blown Quantum Systems language emerges embedded in LHoTT




