
Towards verified hardware-aware
Topological Quantum Programming

Urs Schreiber @ CQTS

presenting at:

CQTS and TII Workshop

NYU Abu Dhabi, 24 Feb 2023

slides and references at: ncatlab.org/schreiber/show/TQP#TalkForTII

1

https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems
https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems#CQTSandTIIWorkshopFeb2023
https://ncatlab.org/schreiber/show/TQP#TIIMeetingTalk

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require...

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

2

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require...

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

3

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require...

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

4

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require:

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

5

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

6

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

7

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

8

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

9

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

10

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

11

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“small [NISQ] machines are unlikely to uncover truly macroscopic
quantum phenomena, which have no classical analogs. This will likely
require a scalable approach to quantum computation [...] based on [...]
topological quantum computation (TQC) [...] The central idea of TQC
is to encode qubits into states of topological phases of matter. Qubits
encoded in such states are expected to be topologically protected, or
robust, against the ’prying eyes’ of the environment, which are believed
to be the bane of conventional quantum computation.”

J. Sau: Roadmap for Scalable Topological Quantum Computers
Physics 10 (2017) 68
[physics.aps.org/articles/v10/68]

12

https://physics.aps.org/articles/v10/68

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“small [NISQ] machines are unlikely to uncover truly macroscopic
quantum phenomena, which have no classical analogs. This will likely
require a scalable approach to quantum computation [...] based on [...]
topological quantum computation (TQC) [...] The central idea of TQC
is to encode qubits into states of topological phases of matter. Qubits
encoded in such states are expected to be topologically protected, or
robust, against the ’prying eyes’ of the environment, which are believed
to be the bane of conventional quantum computation.”

J. Sau: Roadmap for Scalable Topological Quantum Computers
Physics 10 (2017) 68
[physics.aps.org/articles/v10/68]

13

https://physics.aps.org/articles/v10/68

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“small [NISQ] machines are unlikely to uncover truly macroscopic
quantum phenomena, which have no classical analogs. This will likely
require a scalable approach to quantum computation [...] based on [...]
topological quantum computation (TQC) [...] The central idea of TQC
is to encode qubits into states of topological phases of matter. Qubits
encoded in such states are expected to be topologically protected, or
robust, against the ’prying eyes’ of the environment, which are believed
to be the bane of conventional quantum computation.”

J. Sau: Roadmap for Scalable Topological Quantum Computers
Physics 10 (2017) 68
[physics.aps.org/articles/v10/68]

14

https://physics.aps.org/articles/v10/68

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“small [NISQ] machines are unlikely to uncover truly macroscopic
quantum phenomena, which have no classical analogs. This will likely
require a scalable approach to quantum computation [...] based on [...]
topological quantum computation (TQC) [...] The central idea of TQC
is to encode qubits into states of topological phases of matter. Qubits
encoded in such states are expected to be topologically protected, or
robust, against the ’prying eyes’ of the environment, which are believed
to be the bane of conventional quantum computation.”

J. Sau: Roadmap for Scalable Topological Quantum Computers
Physics 10 (2017) 68
[physics.aps.org/articles/v10/68]

15

https://physics.aps.org/articles/v10/68

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

16

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“The qubit systems we have today are a tremendous scientific achieve-
ment, but they take us no closer to having a quantum computer that
can solve a problem that anybody cares about. [...] What is missing
is the breakthrough [...] bypassing quantum error correction by us-
ing far-more-stable qubits, in an approach called topological quantum
computing.”

S. Das Sarma: Quantum computing has a hype problem
MIT Technology Review (March 2022)
[www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem]

17

https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“The qubit systems we have today are a tremendous scientific achieve-
ment, but they take us no closer to having a quantum computer that
can solve a problem that anybody cares about. [...] What is missing
is the breakthrough [...] bypassing quantum error correction by us-
ing far-more-stable qubits, in an approach called topological quantum
computing.”

S. Das Sarma: Quantum computing has a hype problem
MIT Technology Review (March 2022)
[www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem]

18

https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“The qubit systems we have today are a tremendous scientific achieve-
ment, but they take us no closer to having a quantum computer that
can solve a problem that anybody cares about. [...] What is missing
is the breakthrough [...] bypassing quantum error correction by us-
ing far-more-stable qubits, in an approach called topological quantum
computing.”

S. Das Sarma: Quantum computing has a hype problem
MIT Technology Review (March 2022)
[www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem]

19

https://www.technologyreview.com/2022/03/28/1048355/quantum-computing-has-a-hype-problem

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

20

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

21

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“Why did discovering quantum teleportation take 60 years?
We claim that this is due to a ‘bad quantum formalism’
I claim that a good formalism exists:

Bob Coecke: Kindergarten QM [arXiv:quant-ph/0510032]
Quantum Picturalism [arXiv:0908.1787]

22

https://arxiv.org/abs/quant-ph/0510032
https://arxiv.org/abs/0908.1787

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“Why did discovering quantum teleportation take 60 years?
We claim that this is due to a ‘bad quantum formalism’
I claim that a good formalism exists:

Bob Coecke: Kindergarten QM [arXiv:quant-ph/0510032]
Quantum Picturalism [arXiv:0908.1787]

23

https://arxiv.org/abs/quant-ph/0510032
https://arxiv.org/abs/0908.1787

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“Why did discovering quantum teleportation take 60 years?
We claim that this is due to a ‘bad quantum formalism’
I claim that a good formalism exists: [linear circuit logic]

Bob Coecke: Kindergarten QM [arXiv:quant-ph/0510032]
Quantum Picturalism [arXiv:0908.1787]

24

https://arxiv.org/abs/quant-ph/0510032
https://arxiv.org/abs/0908.1787

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

25

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

even with good linear circuit logic:

topological gate set is highly constrained,
& movement of topological qbits is costly
⇒ topological quantum compilation intricate

26

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

even with good linear circuit logic:

topological gate set is highly constrained,
& movement of topological qbits is costly
⇒ topological quantum compilation intricate

27

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

even with good linear circuit logic:

topological gate set is highly constrained,
& movement of topological qbits is costly
⇒ topological quantum compilation intricate

28

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

even with good linear circuit logic:

topological gate set is highly constrained,
& movement of topological qbits is costly
⇒ topological quantum compilation intricate

29

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

30

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

31

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

to declare the data type of all data
formally specifying the admissible

data construction and behaviour
(aka: “formal methods”)

32

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

to declare the data type of all data
formally specifying the admissible

data construction and behaviour
(aka: “formal methods”)

33

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

to declare the data type of all data
formally specifying the admissible

data construction and behaviour
(aka: “formal methods”)

34

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

35

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“We argue that quantum programs demand machine-checkable proofs of correct-
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined.
Thesis Statement:
Quantum programming is not only amenable to formal verification: it demands it.”

Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/3175]

36

https://repository.upenn.edu/edissertations/3175

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“We argue that quantum programs demand machine-checkable proofs of correct-
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined.
Thesis Statement:
Quantum programming is not only amenable to formal verification: it demands it.”

Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/3175]

37

https://repository.upenn.edu/edissertations/3175

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“We argue that quantum programs demand machine-checkable proofs of correct-
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined.
Thesis Statement:
Quantum programming is not only amenable to formal verification: it demands it.”

Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/3175]

38

https://repository.upenn.edu/edissertations/3175

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“We argue that quantum programs demand machine-checkable proofs of correct-
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined.
Thesis Statement:
Quantum programming is not only amenable to formal verification: it demands it.”

Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/3175]

39

https://repository.upenn.edu/edissertations/3175

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

“We argue that quantum programs demand machine-checkable proofs of correct-
ness. We justify this on the basis of the complexity of programs manipulating quan-
tum states, the expense of running quantum programs, and the inapplicability of
traditional debugging techniques to programs whose states cannot be examined.
Thesis Statement:
Quantum programming is not only amenable to formal verification: it demands it.”

Robert Rand: Formally Verified Quantum Programming
UPenn (2018) [repository.upenn.edu/edissertations/3175]

40

https://repository.upenn.edu/edissertations/3175

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

41

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

all the more for topological quantum computing:
due to exotic gates in complex & unituitive circuits

existing quantum circuit verification languages
such as QWIRE or Quipper
lack support for topological gates

42

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

all the more for topological quantum computing:
due to exotic gates in complex & unituitive circuits

but existing quantum circuit verification languages
such as QWIRE or Quipper
lack support for topological gates

43

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming

linear homotopy type
programming.

Foundations Project
@ CQTS

44

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is linear homotopy type

programming.

Foundations Project
@ CQTS

45

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy type
theory

Foundations Project
@ CQTS

46

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy type
theory

Foundations Project
@ CQTS

47

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming

Foundations Project
@ CQTS

48

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

49

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

50

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

Part I
Verifying realistic topological quantum gates

Part II
Verifying their compilation into quantum circuits

51

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

Part I
Verifying realistic topological quantum gates

Part II
Verifying their compilation into quantum circuits

52

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

Part I
Verifying realistic topological quantum gates

Part II
Verifying their compilation into quantum circuits

53

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

54

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

55

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

56

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

57

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

58

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

59

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

60

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

61

https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

62

https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.
with a slick formal specification in homotopy-typed programming languages

63

https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.
with a slick formal specification in homotopy-typed programming languages

64

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory

Towards verifying realistic topological quantum gates

Taken at traditional face value,
formally specifying & certifying
realistic topological quantum gates

aka: anyon braiding in topological materials,
aka: monodromy of WZW-conformal blocks,
aka: Wilson lines of Chern-Simons QFT

seems a formidable task and
grossly inefficient even if possible.

Nobody had touched this, even remotely.
But recently we showed that:

Realistic topological quantum gates secretly
are natives of parameterized homotopy theory
with a slick formal specification in
homotopy-typed programming languages
such as Agda.

65

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Gates+in+Homotopy+Type+Theory

66

https://ncatlab.org/schreiber/show/Topological+Quantum+Gates+in+Homotopy+Type+Theory

Now to say all this in more detail −!

67

https://ncatlab.org/schreiber/show/Topological+Quantum+Gates+in+Homotopy+Type+Theory

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

68

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

69

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

70

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanKitaevLarsenWang03

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

Das Sarma, MIT Tech Rev (2022):

“The quantum-bit systems we have today are a tremen-
dous scientific achievement,

but they take us no closer to having a quantum computer
that can solve a problem that anybody cares about.

What is missing is the breakthrough bypassing quantum
error correction by using far-more-stable quantum-bits,
in an approach called topological quantum computing.”

71

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological quantum computation#DasSarma22

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

72

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

73

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

74

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

75

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

76

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

77

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/topological+quantum+computation#FreedmanLarsenWang02

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

78

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

79

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

80

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

81

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

82

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

83

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

84

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#GuHaghighatLiu21

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

85

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#TodorovHadjiivanov01

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

86

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

87

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

88

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

89

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

90

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

91

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

92

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

93

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

There are good arguments that
if Quantum Computation is to be a practical reality

then in the form of Topological Quantum Computation
with quantum gates given by adiabatic braiding of anyons,

specifically of su(2)-anyons (Ising/Majorana-, Fibonacci-, ...).

Such braid gates are rather special among all quantum gates.
Mathematically, they are the monodromy of

the Knizhnik-Zamolodchikov connection
on bundles of conformal blocks of the

chiral su(2) WZW model CFT.

Efficient programming of topological quantum computers
must be aware of this peculiar su(2)-braid gate hardware.

However, bundles of conformal blocks superficially
appear to be a convoluted mathematical structure,

hardly suitable as a foundation for quantum programming.

We show that the opposite is the case.

94

https://ncatlab.org/nlab/show/quantum+computation
https://ncatlab.org/nlab/show/topological+quantum+computation
https://ncatlab.org/nlab/show/quantum+adiabatic+theorem
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/braid+group+statistics
https://ncatlab.org/nlab/show/su(2)-anyon
https://ncatlab.org/nlab/show/Majorana+zero+mode
https://ncatlab.org/nlab/show/monodromy
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation
https://ncatlab.org/nlab/show/conformal+block
https://ncatlab.org/nlab/show/Wess-Zumino-Witten+model
https://ncatlab.org/nlab/show/conformal+field+theory
https://ncatlab.org/nlab/show/conformal+block

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

95

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle

⊢P

96

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle
classifying map

⊢P

97

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle
classifying map

⊢P

98

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

P T̂ypes

X Types

X ∈ Types, x ∈ X ⊢
system of X-dependent types

P(x) ∈ Types

(pb)
bundle of

X-dependent types

univalenttype bundle
classifying map

⊢P

99

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

100

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+type+theory#Norell08

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

101

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

102

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Programming languages suited for describing
bundles are dependently typed

and those which moreover describe
monodromy are homotopically typed.

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

103

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

104

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

105

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

106

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/Awodey%27s+proposal#Awodey10

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

107

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory#HofmannStreicher98

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

108

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory#HofmannStreicher98
https://ncatlab.org/nlab/show/homotopy+type+theory#AwodeyWarren07

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

109

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

110

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BG =


∗

∗ ∗

g2

g1·g2

g1

∣∣∣∣∣∣∣gi ∈ G



111

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

112

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

113

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

BBr(3) =

{ }

114

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

115

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

116

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2)

tr(γ3)

tr(γ1)

γ2

γ3

γ1

117

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
and compatible path lifting:

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1

118

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

119

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

120

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

121

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Homotopy+Type+Theory+--+Univalent+Foundations+of+Mathematics

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

122

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

123

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://homotopytypetheory.org/2019/03/20/introduction-to-univalent-foundations-of-mathematics-with-agda/

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We first observe that:

(1.) Reversible circuit execution (such as in quantum computation) is
described by path lifting in dependent homotopy type families.

(2.) The dependent type family of su(2)-conformal blocks has
a remarkably slick construction in HoTT languages;

(3.) its path lifting operation is anyonic braid gate execution.

124

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

125

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

126

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

127

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

128

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

129

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

130

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

131

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

132

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

133

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

134

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

⇒ natural & powerful topological-hardware-aware Q-pogramming paradigm

135

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

In HoTT, data types come with paths between their terms
X ∈ Types

x,y ∈ X ⊢ PathsX (x,y) =
{

x y
γ

}
∈ Types

akin to continuous paths in topological spaces.

E.g.: if G is a finitely presented group, then we get a type BG
with essentially unique ∗ ∈ BG s.t. PathsBG(∗,∗) ≃ G.
For G = Br(n) an Artin braid group this is the homotopy
type of configurations of points: BBr(n) ≃ SConfn(C) .

An X-dependent type family x ∈ X ⊢ P(x) ∈ Types
inherits transport (monodromy!) along base paths:

Such HoTT programming languages turn out to be remarkably
fundamental, arguably serving as a new foundation for mathematics.

We now first offer the following observations:

(1.) Reversible circuit execution – such as in quantum computation –
is described by path lifting in dependent homotopy type families.

(2.) The dependent homotopy type family of su(2)-conformal blocks
has a slick construction in HoTT programming languages;

(3.) its path lifting operation is exactly anyonic braid gate execution.

⇒ natural & powerful topological-hardware-aware Q-pogramming paradigm

136

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/braid+group
https://ncatlab.org/nlab/show/configuration+space+of+points
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/transport
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

137

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

138

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#DateJimboMatsuoMiwa90

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

139

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#DateJimboMatsuoMiwa90
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#FeiginSchechtmanVarchenko94

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation;
and its path lifting is execution of su(2)-anyon braid gates!

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

140

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#DateJimboMatsuoMiwa90
https://ncatlab.org/nlab/show/Knizhnik-Zamolodchikov+equation#FeiginSchechtmanVarchenko94
https://ncatlab.org/nlab/show/hypergeometric+KZ-solutions+--+references#EtingofFrenkelKirillov98

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

141

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

142

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

143

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

144

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

145

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

146

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷

147

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

148

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

} fiberwise
homotopy

0-truncation

149

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

} fiberwise
homotopy

0-truncation

150

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

︸︷︷︸
classifying type for

complex cohomology

fiberwise function type︷ ︸︸ ︷
︸︷︷︸

dependent product
over twist variable

} fiberwise
homotopy

0-truncation

Myers, Sati & Schreiber: Topological Quantum Gates in Homotopy Type Theory

151

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Gates+in+Homotopy+Type+Theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

This
〈works because

and uses that

〉
HoTT has categorical semantics

in Parameterized Homotopy Theory.

152

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory
https://ncatlab.org/nlab/show/parameterized+homotopy+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

This
〈works because

and uses that

〉
HoTT has categorical semantics

in Parameterized Homotopy Theory.

153

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory
https://ncatlab.org/nlab/show/parameterized+homotopy+theory
https://ncatlab.org/nlab/show/relation+between+type+theory+and+category+theory#Riehl22

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

154

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

155

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

P : X −! Types P(y)

P(x) P(z)

y

X : Types x z

tr(γ2)

tr(γ3)

tr(γ1)

γ2

γ3

γ1

156

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

P : X −! Types py

px pz

y

X : Types x z

γ̂2

γ̂3

γ̂1

γ2

γ3

γ1

157

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

158

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

159

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

Namely, bundles of su(2)-conformal blocks
secretly happen to have a purely cohomological definition.

We show how to construct this as a dependent type family in HoTT:

Claim: Its transport operation is the monodromy braid representation
and its path lifting is execution of su(2)-anyon braid gates.

Hence coding this type family into a HoTT language like Agda
gives a Topological Quantum Programming Language

which is fully aware of topological anyon braid quantum gates.

160

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K#GMConAbs
https://ncatlab.org/nlab/show/homotopy+type+theory

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

161

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I−−! O braid
representation

topologica
l

quantum

computatio
n

162

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I−−! O topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

163

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I−−! O H 3
U

−−−−−!H 3topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

164

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I−−! O H 3
U

−−−−−!H 3

H 3
U

−−−−−! H 3
|ψin⟩ 7! |ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

165

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I−−! O H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3
|ψin⟩ 7! |ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

166

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

I−−! O H 3
U

−−−−−!H 3

|ψin⟩
U
7−! |ψout⟩

H 3
U

−−−−−! H 3
|ψin⟩ 7! |ψout⟩

topological
quantum

circuit

braid
representation

topologica
l

quantum

computatio
n

167

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)
topologica

l

quantum

computatio
n

168

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17

the case of

Topological Quantum Computation

[Sati & Schreiber, PlanQC 2022 33 (2022)]

To compute is to execute cf. [van Leeuwen & Wiedermann (2017)]

sequences of instructions
as composable operations
on a chosen state space,
turning a given initial state
into the computed result.

path configuration space
of distinct points unitary operators

bundle of
conformal blocks

quantum states
in Hilbert spaces

topological
quantum
program

braid
representation

(pb)

dependenttype family

univalenttype universe

topologica
l

quantum

computatio
n

path
lift

Claim: This has natural construction in HoTT languages:

169

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K
https://ncatlab.org/nlab/show/computation#vanLeeuwenWiedermann17
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS

170

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

171

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

172

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://arxiv.org/pdf/2203.11838.pdf#page=5
https://ncatlab.org/schreiber/show/Anyonic+defect+branes+in+TED-K-theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

173

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

174

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter

175

https://ncatlab.org/nlab/show/K-theory+classification+of+topological+phases+of+matter#Kitaev09

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter

176

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

177

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

178

https://ncatlab.org/nlab/show/topological+order#Wen91Review

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

179

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

180

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/schreiber/show/Anyonic+topological+order+in+TED+K-theory
https://arxiv.org/pdf/2206.13563.pdf#page=25

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

181

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

182

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

183

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K theory and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

184

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://youtu.be/uEZXHPdwvJU

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

185

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

186

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

187

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Agda#AgdaFlat

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

188

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

189

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory

In fact, yet more fine-detail of TQC hardware is naturally HoTT-codeable:

These bundles/dependent types of su(2)-conformal blocks map to
bundles of twisted equivariant differential (TED) K-cohomology;

expressing characteristic properties of topological phases of matter
hosting anyonic defects in their topologically ordered ground states.

But TED-K and hence topologically ordered phases
are naturally expressible in an enhancement of HoTT languages

called Cohesive HoTT.

Parts of Cohesive HoTT have already been implemented in Agda.

Further development at CQTS.

190

https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/homotopy+type+theory
https://ncatlab.org/nlab/show/Center+for+Quantum+and+Topological+Systems

Foundations Project @ CQTS

scalable, universal, reliable︸ ︷︷ ︸
Real quantum computation will require

stabilization ↔ topological gates

compilation ↔ linear circuit logic

verification ↔ typed quantum data

Real quantum
programming is

linear homotopy typed
programming.

Foundations Project
@ CQTS

Part I
Verifying realistic topological quantum gates

Part II
Verifying their compilation into quantum circuits

191

The Problem

192

Pure quantum circuits are easy...

Linear operator composed & tensored from given quantum logic gates

H
⊗

H H
⊗ ⊗
H H
⊗ ⊗
H H
⊗
H

H in



H out

Hilbert space of
possible input

quantum states linear transformation
upon execution

Hilbert space of
possible output
quantum states

I12

U23
U34

O45

Up56

193

Pure quantum circuits are easy...

Linear operator composed & tensored from given quantum logic gates

H
⊗

H H
⊗ ⊗
H H
⊗ ⊗
H H
⊗
H

H in



H out

Hilbert space of
possible input

quantum states linear transformation
upon execution

Hilbert space of
possible output
quantum states

I12

U23
U34

O45

Up56

but real quantum circuits have classical control & effects
(Example: QBit Teleportation protocol)

|0⟩

|0⟩

H

H 0 1

0 1

X Z

quantum state

preparation

quantum
measurement

classical control

plain quantum gates

input
quantum state

output
quantum state

194

full reality is a loop: Classical Quantumprepare

measure

dynamic
lifting

di
ag

ra
m

ad
ap

te
d

fr
om

N
ag

ar
aj

an
et

al
.(

20
07

)

full loop needed e.g. for

quantum
error correction

but its formal language

theory had remained thin

existing models for

dynamic lifting are

ad hoc &
unverified

195

https://doi.org/10.1016/j.entcs.2006.12.014

full reality is a loop: Classical Quantumprepare

measure

dynamic
lifting

di
ag

ra
m

ad
ap

te
d

fr
om

N
ag

ar
aj

an
et

al
.(

20
07

)

full loop needed e.g. for

quantum
error correction

but its formal language

theory had remained thin

existing models for

dynamic lifting are

ad hoc &
unverified

196

https://doi.org/10.1016/j.entcs.2006.12.014

full reality is a loop: Classical Quantumprepare

measure

dynamic
lifting

di
ag

ra
m

ad
ap

te
d

fr
om

N
ag

ar
aj

an
et

al
.(

20
07

)

full loop needed e.g. for

quantum
error correction

but its formal language

theory had remained thin

existing models for

dynamic lifting are

ad hoc &
unverified

197

https://doi.org/10.1016/j.entcs.2006.12.014

full reality is a loop: Classical Quantumprepare

measure

dynamic
lifting

di
ag

ra
m

ad
ap

te
d

fr
om

N
ag

ar
aj

an
et

al
.(

20
07

)

full loop needed e.g. for

quantum
error correction

but its formal language

theory had remained thin

existing models for

dynamic lifting are

ad hoc &
unverified

198

https://doi.org/10.1016/j.entcs.2006.12.014

Existing quantum typed circuit languages
are embedded inside classical type theories:

199

Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

200

Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

unverified linear type universe

201

Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

unverified linear type universe

Quantum Circuit Language
e.g. QML, Quipper, QWIRE, ...

202

Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

unverified linear type universe

Quantum Circuit Language
e.g. QML, Quipper, QWIRE, ...

for lack of a universal linear type theory.

203

Existing quantum typed circuit languages
are embedded inside classical type theories:

Classical Type Theory (e.g. Haskell, Coq, ...)
for universal classical computation

unverified linear type universe

Quantum Circuit Language
e.g. QML, Quipper, QWIRE, ...

for lack of a universal linear type theory.

Until now...

204

Our Solution

205

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

206

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

207

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

208

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

209

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

LHoTT is like a quantum microscope for Classical Data Types

210

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

211

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

212

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

213

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

214

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

215

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

216

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

217

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

218

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

219

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

220

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

221

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

222

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

223

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

224

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

225

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

226

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.

227

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#RileyFinsterLicata21

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.

228

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#RileyFinsterLicata21

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.

229

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#RileyFinsterLicata21

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.

230

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#RileyFinsterLicata21

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.

231

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#RileyFinsterLicata21

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Linear Data Types
fibered over

Classical Data Types

dL
Ho
TT

dL
Ho
TT

More technically:
The categorical semantics of LHoTT
is in “infinitesimally cohesive” ∞-toposes
of module spectra parameterized
over classical homotopy types.
[S. (2013), §4.1.2] [S. (2014), §3.2, IHP]
[Riley, Finster & Licata (2021)].

For traditional quantum information theory
this faithfully subsumes the fragment
of complex vector bundles
over finite sets.

232

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
https://arxiv.org/pdf/1310.7930v1.pdf#page=444
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39
https://ncatlab.org/schreiber/show/Differential+generalized+cohomology+in+Cohesive+homotopy+type+theory
https://ncatlab.org/nlab/show/dependent+linear+type+theory#RileyFinsterLicata21

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

233

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

234

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

235

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

236

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

237

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

238

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

239

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

240

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

Dependent Linear Homotopy Type Theory (LHoTT)

Theorem [M. Riley (2022), doi:10.14418/wes01.3.139]:
∃ universal quantum+classical specification language
conservative over classical Homotopy Type Theory (HoTT)
and
verifying axiom scheme “Motivic Yoga” [Riley, §2.4, anticipated in S. (2014), §3.2]

(i.e. Grothendieck’s six operations à la Wirthmüller — more on all this below)

Theorem [CQTS (2022)]:
Motivic Yoga induces a system of monadic computational effects
constituting
linear modalities of actuality and potentiality
which happen to
know all about quantum information theory:

quantum measurement is handling of linear indefiniteness effects
quantum state preparation is handling of linear randomness co-effects
quantum+classical circuits are the effectful string diagrams
quantum dynamic lifting is comparison functor of monadicity theorem

241

https://doi.org/10.14418/wes01.3.139
https://ncatlab.org/nlab/show/dependent+linear+type+theory#Riley22Thesis
https://ncatlab.org/schreiber/show/Quantization+via+Linear+homotopy+types
https://arxiv.org/pdf/1402.7041.pdf#page=39

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

242

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

243

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Quantum Systems Language (QS)
for quantum logic circuits

discussed inthe following

244

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

discussedPart I

Quantum Systems Language (QS)
for quantum logic circuits

discussed inthe following

245

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

discussedelsewhere

Quantum Systems Language (QS)
for quantum logic circuits

discussed inthe following

Topological Quantum Gate Circuits
for realistic quantum computation

246

https://ncatlab.org/schreiber/show/Topological+Quantum+Programming+in+TED-K

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

Quantum Systems Language (QS)
for quantum logic circuits

Topological Quantum Gate Circuits
for realistic quantum computation

ambient LHoTT verifies classically dependent quantum linear types
ambient HoTT provides specification of topological quantum gates
ambient dTT provides full verified classical control

247

Quantum Data Types

248

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

249

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

250

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

251

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

252

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

253

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

254

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

255

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

256

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

257

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

258

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

259

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

260

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

261

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

262

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

263

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏b:B

product

∗B×
∏

b:B
co-product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

264

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏b:B

product

∗B×

classical
context extension

∏
b:B

co-product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

265

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×
∏

b:B
co-product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

266

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

267

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

268

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

269

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

270

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

linear
context extension

⊕b:B

⊥

⊥

Dependent linear
Type Formers

271

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

272

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

273

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

274

Linear/Quantum Data Types

Characteristic
Property

1. their cartesian product
blends into the co-product:

2. a tensor product appears
& distributes over direct sum

3. a linear function type
appears adjoint to tensor

Symbol
⊕

direct sum ⊗ tensor product ⊸ linear function type

Formula
(for B : FinType)

cart. product

∏B H b ≃ ⊕BH b
direct sum

≃
co-product
∏

B H b V ⊗(⊕
b:B

H b) ≃ ⊕
b:B

(
V ⊗H b

) (V ⊗H)⊸ K
≃ V ⊸

(
H ⊸ K

)
AlgTop Jargon

biproduct,
stability, ambidexterity

Frobenius reciprocity mapping spectrum

Grothendieck’s Motivic Yoga of 6 oper. (Wirthmüller form)

Linear Logic additive disjunction multiplicative conjunction linear implication

Physics Meaning superselection sectors
/ quantum parallelism

compound quantum systems
/ quantum entanglement

QRAM systems

finite classical context
(variables, parameters, ...)

B
reference context

∗

classical type system
dependent on context BTypeB BType classical

type system
classical base change /
classical quantification

linear type system
in classical context

(
LTypeB,

ten
sor

⊗B

) (
LType,

ten
sor

⊗
)

linear
type system

quantum base change
/ Motivic Yoga

pB

∏
b:B

co-product

∗B×

∏b:B
product

⊥

⊥

⊕b:B

direct sum

1B⊗

⊕b:B

⊥

⊥

Dependent linear
Type Formers

all availablein LHoTT

275

Quantum Effects

276

Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:

D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

effectful program

output data of nominal type D2
causing effects of type E (−)

prog23

second program

input data of type D2
causing effects of type E (−) bind previous effects

into second program

retED

returning trivial E (−)-effect

prog12 bindE prog23

carry any previous E (−)-effects along

compose

bindE retED
= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects

277

Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:

D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

first program

output data of nominal type D2
causing effects of type E (−)

prog23

second program

input data of type D2
causing effects of type E (−) bind previous effects

into second program

retED

returning trivial E (−)-effect

prog12 bindE prog23

carry any previous E (−)-effects along

compose

bindE retED
= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects

278

Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:

D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

first program

output data of nominal type D2
causing effects of type E (−)

prog23

second program

input data of type D2
causing effects of type E (−) bind previous effects

into second program

retED

returning trivial E (−)-effect

prog12 bindE prog23

carry any previous E (−)-effects along

compose

bindE retED
= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects

279

Recall: Monadic computational effects.

A monad E (−) on a data type system encodes computational effects:

D1 E (D2) D2 E (D3) D E (D)

D1 E (D2) E (D2) E (D3) E (D) E (D)

D1 E (D3)

prog12

first program

output data of nominal type D2
causing effects of type E (−)

prog23

second program

input data of type D2
causing effects of type E (−) bind previous effects

into second program

retED

returning trivial E (−)-effect

prog12 bindE prog23

carry any previous E (−)-effects along

compose

bindE retED
= idE (D)

bindE prog23 ◦ prog12

E -composite program

causing cumulative E (−)-effects

280

Recall: Monadic effect handlers.

D1 D2 data type to absorb E -effects

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

281

Recall: Monadic effect handlers.

D1 D2

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

282

Recall: Monadic effect handlers.

D1 D2

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

283

Recall: Monadic effect handlers.

D1 D2

E (D1) D2

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

284

Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

285

Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

286

Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type induced monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

287

Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type induced monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

288

Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type induced monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

289

Recall: Data type system of Monadic effect handlers.

D1 D2

E (D1) D2 “E -modal data type”

D1 E (D1) D2

consistency conditions

E (D0) E (D1) D2

prog12

in-effectful program
incorporate handling

of E (−)-effects

hndlED2
prog12

in-effectful program
handling effects of type E (−)

prog12
no effect

retED1

produce
trivial effect

hndlED2
prog12

handle effects
running program

hndlED2
(D0

prog01−−−! E (D1)
hndlED2

prog12
−−−−−−−! D2)

handle effects... consecutively

bindE prog01

carry effects
along

hndlED2
prog12

handle
cumulative effects

Monadicity:
free E -modales in Type

(“Kleisli category”) TypeE

any adjunction
on type system Type′ Type induced monad

E -modales in Type
(“EM-category”) TypeE

KUF

initial
com

parison
functor

F
E

U
E

⊥

KUF
term

inal
com

parison
functor

F
U
⊥ E

F
E

U
E

monadic adjunction
⊥

Now just to work this out

for the effects induced by

dependent data type formers

in LHoTT
−!

290

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

291

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

292

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

293

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

294

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

295

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

296

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent data type formers constitute
modalities of actual and potential B-measurements:

actual data TypeB Type potential data

♢
B

possibly

⊥

□
B

necessarily

∏
B

×B

∏B

⊥

⊥

9B

randomly

⊥

⃝
B

indefinitely

necessarily P•
□B P•

actually P•
P•

possibly P•
♢B P•

b : B ⊢ ∏
b′:B

Pb′ Pb
∏

b′:B
Pb′

randomly P

9BP
potentially P

P
indefinitely P

⃝BP

∏

b:B
P P ∏

b:B
P

entails
ε
□B
P•

entails
η
♢B
P•

(pb′)b′:B 7! pb pb 7! (pb)b

ε
9B
P

entails

η
⃝B
P

entails

(p)b 7! p p 7! (p)b:B

classicaldata types

297

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

298

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

299

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

300

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

301

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

302

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

303

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

304

Given B :BType of possible measurement outcomes (“possible worlds”)
the monadic effects of B-dependent linear data type formers constitute
modalities of actual and potential quantum B-measurements.

(LTypeB)♢B
(LTypeB)

♢B

actual data LTypeB LType⃝B LType⃝B
LType potential data

(LTypeB)□B
(LTypeB)

□B

∼

≃♢
B

possibly

⊥

□
B

necessarily

⊕B

⊕B

≃
⊥

⊥

1B⊗

9B

randomly

⊥

⃝
B

indefinitely
∼

≃

necessarily H •

□B H •

actually H •

H •

possibly H •

♢B H •

necessarily H •

□B H •

Given...

b : B
measurement

result

obtain...
⊢ H H b H , where H := ⊕

b′:B
H b′

randomly H

9BH
potentially H

H
indefinitely H

⃝BH

⊕
b:B

H H ⊕
b:B

H

entails
ε
□B
H •

entails

η
♢B
H •

≃

principle of quantum compulsion:

ambidexterity

is

∑b′ |ψb′ ⟩ 7! |ψb⟩

measurement collapse

linear projector onto sub-Hilbert space H b

|ψb⟩7!⊕b′

{
|ψb⟩ if b′=b
0 else

state preparation

ε
9B
H

entails

η
⃝B
H

entails

⊕b |ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7!⊕b|ψ⟩b

quantum parallelization

quantumdata types

305

The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
(pB)

∗(pB)!H •

b : B ⊢ ⊕
b′:B

H b′ H b b : B ⊢ H b ⊕
b′:B

H b′

9B︷ ︸︸ ︷
(pB)!(pB)

∗H H H

⃝B︷ ︸︸ ︷
(pB)∗(pB)

∗H

⊕
b:B

H H H ⊕
b:B

H

ε
□B
H •

necessity counit

η
♢B
H •

possibility unit

⊕b′ |ψb′ ⟩ 7! |ψb⟩
quantum measurement

|ψb⟩ 7! ⊕b′

{
|ψb⟩ if b′=b
0 else

quantum state preparation

“ the actual is possible ”“ the necessary becomes actual ”

“ the random becomes potential ” “ the potential is inderminate ”

adjoints
 −−−−−!

ε
9B
H

randomness counit

η
⃝B
H

indeterminacy unit

⊕b|ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7! ⊕b|ψ⟩b

quantum parallelism

306

The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
(pB)

∗(pB)!H •

b : B ⊢ ⊕
b′:B

H b′ H b b : B ⊢ H b ⊕
b′:B

H b′

9B︷ ︸︸ ︷
(pB)!(pB)

∗H H H

⃝B︷ ︸︸ ︷
(pB)∗(pB)

∗H

⊕
b:B

H H H ⊕
b:B

H

ε
□B
H •

necessity counit

η
♢B
H •

possibility unit

⊕b′ |ψb′ ⟩ 7! |ψb⟩
quantum measurement

|ψb⟩ 7! ⊕b′

{
|ψb⟩ if b′=b
0 else

quantum state preparation

“ the actual is possible ”“ the necessary becomes actual ”

“ the random becomes potential ” “ the potential is inderminate ”

adjoints
 −−−−−!

ε
9B
H

randomness counit

η
⃝B
H

indeterminacy unit

⊕b|ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7! ⊕b|ψ⟩b

quantum parallelism

307

The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
(pB)

∗(pB)!H •

b : B ⊢ ⊕
b′:B

H b′ H b b : B ⊢ H b ⊕
b′:B

H b′

9B︷ ︸︸ ︷
(pB)!(pB)

∗H H H

⃝B︷ ︸︸ ︷
(pB)∗(pB)

∗H

⊕
b:B

H H H ⊕
b:B

H

ε
□B
H •

necessity counit

η
♢B
H •

possibility unit

⊕b′ |ψb′ ⟩ 7! |ψb⟩
quantum measurement

|ψb⟩ 7! ⊕b′

{
|ψb⟩ if b′=b
0 else

quantum state preparation

“ the actual is possible ”“ the necessary becomes actual ”

“ the random becomes potential ” “ the potential is inderminate ”

adjoints
 −−−−−!

ε
9B
H

randomness counit

η
⃝B
H

indeterminacy unit

⊕b|ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7! ⊕b|ψ⟩b

quantum parallelism

308

The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
(pB)

∗(pB)!H •

b : B ⊢ ⊕
b′:B

H b′ H b b : B ⊢ H b ⊕
b′:B

H b′

9B︷ ︸︸ ︷
(pB)!(pB)

∗H H H

⃝B︷ ︸︸ ︷
(pB)∗(pB)

∗H

⊕
b:B

H H H ⊕
b:B

H

ε
□B
H •

necessity counit

η
♢B
H •

possibility unit

⊕b′ |ψb′ ⟩ 7! |ψb⟩
quantum measurement

|ψb⟩ 7! ⊕b′

{
|ψb⟩ if b′=b
0 else

quantum state preparation

“ the actual is possible ”“ the necessary becomes actual ”

“ the random becomes potential ” “ the potential is inderminate ”

adjoints
 −−−−−!

ε
9B
H

randomness counit

η
⃝B
H

indeterminacy unit

⊕b|ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7! ⊕b|ψ⟩b

quantum parallelism

309

The pure effects of these modalities of dependent linear data type formation
are remarkable in their sheer quantum information-theoretic content.

To repeat:

□B︷ ︸︸ ︷
(pB)

∗(pB)∗H • H • H •

♢B︷ ︸︸ ︷
(pB)

∗(pB)!H •

b : B ⊢ ⊕
b′:B

H b′ H b b : B ⊢ H b ⊕
b′:B

H b′

9B︷ ︸︸ ︷
(pB)!(pB)

∗H H H

⃝B︷ ︸︸ ︷
(pB)∗(pB)

∗H

⊕
b:B

H H H ⊕
b:B

H

ε
□B
H •

necessity counit

η
♢B
H •

possibility unit

⊕b′ |ψb′ ⟩ 7! |ψb⟩
quantum measurement

|ψb⟩ 7! ⊕b′

{
|ψb⟩ if b′=b
0 else

quantum state preparation

“ the actual is possible ”“ the necessary becomes actual ”

“ the random becomes potential ” “ the potential is inderminate ”

adjoints
 −−−−−!

ε
9B
H

randomness counit

η
⃝B
H

indeterminacy unit

⊕b|ψb⟩ 7! ∑b |ψb⟩
quantum superposition

|ψ⟩ 7! ⊕b|ψ⟩b

quantum parallelism

310

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

311

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

312

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

313

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

314

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

315

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

316

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

317

Q-bits are the free linear indeterminacy-effect handlers over Bit = {0,1}

Coherent q-bits:

QBit : LType
1Bit⊗
↪−−−! LType

Bit

⊕Bit−−!∼ LType⃝B

:=

⃝
Bit1 = ⊕{0,1}C = C · |0⟩ ⊕ C · |1⟩

QBit
⊗
H

=

⃝
Bit H = ⊕{0,1}H = H ⊗|0⟩ ⊕ H ⊗|0⟩

De-cohered (measured) q-bits:

1Bit : LTypeBit
⊕Bit−−!∼ LType⃝Bit

b : Bit ⊢ C · |b⟩ : LType

1Bit
⊗ b : Bit ⊢ H ⊗|b⟩ : LType
H

Quantum gate with q-bit output:

A quantum gate which
may handle ⃝

Bit -effects
is one with a QBit-output:

H
QBit

K
φ

H QBit⊗K ⃝
Bit K

φ ≃

318

Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B

su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

quantum gate

H φ
−! QBit⊗K ≃ ⃝BK

⃝B

hndl⃝B
⃝BK⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse

319

Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B

su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

quantum gate

H φ
−! QBit⊗K ≃ ⃝BK

⃝B

hndl⃝B
⃝BK⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse

320

Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

(quantum gate

H
φ

−!QBit⊗K ≃⃝BK
) ⃝B

hndl
⃝B
⃝BK

⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse

321

Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

(quantum gate

H
φ

−!QBit⊗K ≃⃝BK
) ⃝B

hndl
⃝B
⃝BK

⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse

322

Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

(quantum gate

H
φ

−!QBit⊗K ≃⃝BK
) ⃝B

hndl
⃝B
⃝BK

⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse

full linearly-typed detail of
quantum measurement logic
is emergent effect in LHoTT

323

Quantum measurement is Linear indefiniteness-effect handling.

quantum circuit H
B := Bit

K
measurement in B-basis

QBit
= □B1B

0 1

φ

⃝B-modal linear types

LType⃝B
⃝BH ⃝B⃝BK ⃝BK

LTypeB
B-dependent linear types

1B ⊗H □B1B ⊗K 1B ⊗K

b : B
measurement

result

⊢ H QBit⊗K K

form
alization

K
(pB

)∗
(pB

) ∗

com
parison

functor

⃝B su
bj

ec
tio

n
to

⃝
B

-e
ffe

ct
s

⃝B

(quantum gate

H
φ

−!QBit⊗K ≃⃝BK
) ⃝B

hndl
⃝B
⃝BK

⃝B-effect handling

⃝B

1B⊗φ ε
□B
1B

⊗K

□B-counit

φ

|0⟩⊗|ψ0⟩
+|1⟩⊗|ψ1⟩

7! |ψb⟩

quantum state collapse

full linearly-typed detail of
quantum measurement logic
is emergent effect in LHoTT

324

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

325

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

326

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

327

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

328

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

329

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

330

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

331

https://ncatlab.org/nlab/show/quantum+reader+monad

Aside: Linear indefiniteness monad recovers Coecke’s “classical structures”.
(see nLab:quantum+reader+monad)

B : FinType ⊢

9B ⃝B

B-CoReader B-Reader

1
B-CoWriter 1

B-Writer

1
B-DualWriter

CoMonad
(
LType

)
Monad

(
LType

)
FrobMonad

(
LType

)
:= :=

≃

≃

≃ ≃

∈

1 B
-W

riter(D
) :=

1 B
⊗

D

bind 1 B
W

riter (
D

1 prog

−−!
1 B
⊗

D
2

)
:=

1 B
⊗

D
1 1 B⊗prog

−−−−−!
1 B
⊗
1 B
⊗

D
2 µ⊗id

D
2

−−−−!
1 B
⊗

D
2

Where 1
B =⊕

b:B
C ·Pb ∈ CMon(LType) is Frobenius algebra of B-projection operators :

1 1
B

1
B ⊗1

B
1

B
1

unit co-product product co-unit
η

1 7! ∑
b:B

Pb

δ

Pb 7! Pb⊗Pb

µ

Pb⊗Pb′ 7!

{
Pb if b=b′

0 else

ε

Pb 7! 1

332

https://ncatlab.org/nlab/show/quantum+reader+monad

Exmp: Deferred measurement principle – Proven by monadic effect logic.

Kl
(
□B

)
□B-Kleisli morphisms

LTypeB□B

□B-coalgebra homomorphisms

Kl
(
□B

)
□B-Kleisli morphisms

□BH •
F
−!□BH •

ε
□B

H •−−!H •
G•−!H •

measurement-controlled quantum gate
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

quantum-controlled quantum gate...
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

ε
□B

H •−−!H •
...followed by measurement

B0 1

F

G•

Deferred Measurement Principle
 −−−−−−−−−−−−−−−−−−!

B0 1

F

G•

∼
δ B ◦□B(−)

id
Kleisli equivalence

∼

ε□B◦(−)

classically controlled gate quantumly controlled gate

BB

KK G•

B•⊠K B•⊠K

b : B ⊢ K K

G•

Gb

BB

KK G•

□BB•⊠K □BB•⊠K

b : B ⊢ ⊕
b′B

K ⊕
b′B

K

□BG•

⊕
b′:B

Gb′

333

Exmp: Deferred measurement principle – Proven by monadic effect logic.

Kl
(
□B

)
□B-Kleisli morphisms

LTypeB□B

□B-coalgebra homomorphisms

Kl
(
□B

)
□B-Kleisli morphisms

□BH •
F
−!□BH •

ε
□B

H •−−!H •
G•−!H •

measurement-controlled quantum gate
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

quantum-controlled quantum gate...
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

ε
□B

H •−−!H •
...followed by measurement

B0 1

F

G•

Deferred Measurement Principle
 −−−−−−−−−−−−−−−−−−!

B0 1

F

G•

∼
δ B ◦□B(−)

id
Kleisli equivalence

∼

ε□B◦(−)

classically controlled gate quantumly controlled gate

BB

KK G•

B•⊠K B•⊠K

b : B ⊢ K K

G•

Gb

BB

KK G•

□BB•⊠K □BB•⊠K

b : B ⊢ ⊕
b′B

K ⊕
b′B

K

□BG•

⊕
b′:B

Gb′

334

Exmp: Deferred measurement principle – Proven by monadic effect logic.

Kl
(
□B

)
□B-Kleisli morphisms

LTypeB□B

□B-coalgebra homomorphisms

Kl
(
□B

)
□B-Kleisli morphisms

□BH •
F
−!□BH •

ε
□B

H •−−!H •
G•−!H •

measurement-controlled quantum gate
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

quantum-controlled quantum gate...
7! □BH •

diagB(G•)◦F
−−−−−−−!□BH •

ε
□B

H •−−!H •
...followed by measurement

B0 1

F

G•

Deferred Measurement Principle
 −−−−−−−−−−−−−−−−−−!

B0 1

F

G•

∼
δ B ◦□B(−)

id
Kleisli equivalence

∼

ε□B◦(−)

classically controlled gate quantumly controlled gate

BB

KK G•

B•⊠K B•⊠K

b : B ⊢ K K

G•

Gb

BB

KK G•

□BB•⊠K □BB•⊠K

b : B ⊢ ⊕
b′B

K ⊕
b′B

K

□BG•

⊕
b′:B

Gb′

335

The Quantum modality.
Also the exponential modality traditionally postulated in linear logic
is an emergent effect in LHoTT,
as is the crucial Quantum Modality, not considered before:

Type LType exponential
modality

classical
types

linear
types

quantum
modality Q

Ω∞

Σ∞
+ : B 7! 9B1

linear randomization
aka: stabilization/motivization

⊥ !

336

The Quantum modality.
Also the exponential modality traditionally postulated in linear logic
is an emergent effect in LHoTT,
as is the crucial Quantum Modality, not considered before:

Type LType exponential
modality

classical
types

linear
types

quantum
modality Q

Ω∞

Σ∞
+ : B 7! 9B1

linear randomization
aka: stabilization/motivization

⊥ !

337

The Quantum modality.
Also the exponential modality traditionally postulated in linear logic
is an emergent effect in LHoTT,
as is the crucial Quantum Modality, not considered before:

Type LType exponential
modality

classical
types

linear
types

quantum
modality Q

Ω∞

Σ∞
+ : B 7! 9B1

linear randomization
aka: stabilization/motivization

⊥ !

The Q-monad plays a crucial role in the full formulation of the QS-language.
It is the secret actor behind QBit = Q(Bit)...

338

The Quantum modality.
Also the exponential modality traditionally postulated in linear logic
is an emergent effect in LHoTT,
as is the crucial Quantum Modality, not considered before:

Type LType exponential
modality

classical
types

linear
types

quantum
modality Q

Ω∞

Σ∞
+ : B 7! 9B1

linear randomization
aka: stabilization/motivization

⊥ !

The Q-monad plays a crucial role in the full formulation of the QS-language.
It is the secret actor behind QBit = Q(Bit)...

339

Quantum Circuits

340

Quantum effects are compatible with tensor product.
Linear Randomness and Indefiniteness are “very strong” effects, in that:

⃝B
(
D⊗D′) ≃

(
⃝BD

)
⊗D′ , 9B

(
D⊗D′) ≃

(
9BD

)
⊗D′

There is a whole system of them:

⃝B⃝B′ ≃ ⃝B×B′ , NB: ⃝B⃝′
B ≃ ⃝B1⊗⃝′

B

which under dynamic lifting (monadicity comparison functor)
gives the external tensor product of dependent linear types:

free ⃝B-effect handlers
in linear data types LType⃝B

⃝B×B′ ⃝B×B′H

B-dependent
linear data types LTypeB

(
□B1B

)
⊠

external
tensor product

(
□B′1B′

)
⊗H

K
⊕

B
1

B ⊗

com
parison

functor

⃝
B×B′

so...341

Quantum circuits with classical control & effects
are the effectful string diagrams in the linear type system

E.g.
The dependent linear type of a measurement on a pair of qbits:

0 1

0 1

type of a pair of
coherent qbits

□Bit2
(
QBit•⊠QBit•

)
type of

collapsed qbits
dependent on

measured bits b,b′

QBit•⊠QBit•

measured bits

(b,b′) : Bit2 ⊢ □Bit2
(
QBit•⊠QBit•

)
(b,b′) ≃ C2 ⊗C2 C .

εBit2 (QBit•⊠QBit•)

pair of measurements

∑d,d′ qdd′ |d⟩⊗|d′⟩ 7! qbb′ |b⟩⊗|b′⟩

collapse of the quantum state

342

Example: Bell states of q-bits are typed as follows (regarded in LTypeBit×Bit):

|0⟩

|0⟩

H

Bell state preparation

QBit•⊠QBit•
(
♢BitQBit•

)
⊠
(
♢BitQBit•

)
≃ □Bit2

(
QBit•⊠QBit•

)
□Bit2

(
QBit•⊠QBit•

)
b,b′ : Bit ⊢ C C2 ⊗C2

1 7! |0⟩⊗|0⟩ 7! 1√
2

(
|0⟩+|1⟩

)
⊗|0⟩ 7! 1√

2

(
|0⟩⊗|0⟩+ |1⟩⊗|1⟩

)

H

Bell state measurement

0 1

0 1

□Bit2
(
QBit•⊠QBit•

)
QBit•⊠QBit•

b1,b2 : Bit ⊢ C2 ⊗C2 C
∑b′1b′2

qb′1b′2
·|b′1⟩⊗|b′2⟩ 7!

(
q0,b2+(−1)b1 ·q1,(1−b2)

)
·|b1⟩⊗|b2⟩

343

QS – Quantum Systems language @ CQTS

⇝ full-blown Quantum Systems language emerges embedded in LHoTT

Dependent Linear Homotopy Type Theory (LHoTT)
for universal algorithmic quantum computation

Homotopy Type Theory (HoTT)
for topological logic gates

discussed inPart I

Quantum Systems Language (QS)
for quantum logic circuits

discussed inPart II
Topological Quantum Gate Circuits

for realistic quantum computation

344

