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Abstract

We consider the hypothesis that the C-field 4-flux and 7-flux forms in M-theory are in the image of the non-
abelian Chern character map from the non-abelian generalized cohomology theory called J-twisted Cohomotopy
theory. We prove for M2-brane backgrounds in M-theory on 8-manifolds that such charge quantization of the
C-field in Cohomotopy theory implies a list of expected anomaly cancellation conditions, including: shifted
C-field flux quantization and C-field tadpole cancellation, but also the DMW anomaly cancellation and the
C-field’s integral equation of motion.
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1 Introduction and survey

We consider the following hypothesis, which we make precise as Def. 3.5 below, based on details developed in §2,
see §4 for background, motivation and outlook:

Hypothesis H: The C-field 4-flux and 7-flux forms in M-theory are subject to charge quantization in J-twisted
Cohomotopy cohomology theory in that they are in the image of the non-abelian Chern character map from J-
twisted Cohomotopy theory.

In support of Hypothesis H, we prove in §3 that it implies the following phenomena, expected for M2-brane
backgrounds in M-theory on 8-manifolds (recalled in Remark 3.1 below):

Cohomotopy theory Expression M-theory

§3.2 Compatible twisting
on 4- & 7-Cohomotopy theory

W7(T X) = 0 (13) DMW anomaly cancellation condition
[DMW03a][DMW03b, 6]

1
24

χ8(T X) = I8(T X)

:= 1
48

(
p2(T X)− 1

4 (p1(T X))2) (13)
one-loop anomaly polynomial

[DLM95][Wi96b, (5.5)]

§2.4 Any cocycle
in J-twisted 7-Cohomotopy

Spin(7)-structure g (14)
≥ 1/8 BPS M2-brane background

[IP88][IPW88][Ts06]

§2.3 Any cocycle in
compatibly twisted 4&7-Cohomotopy

Sp(1) ·Sp(1)-structure τ (15)
4/8 BPS M2-brane background

[MF10, 7.3]

§3.3
Chern character of

rationally twisted 4-Cohomotopy
d G4 = 0

d G7 = − 1
2 G4 ∧G4 +L8

(19)
C-field Bianchi identity with

generic higher curvature correction
[ST16]

§3.3
Chern character of compatibly

rationally twisted 4&7-Cohomotopy
d G̃4 = 0

d G7 = − 1
2

(
G̃4 − 1

4 P4
)
∧ G̃4 +K8

(20)
Shifted C-field Bianchi identity with
generic higher curvature correction

[Ts04]

§3.4 Chern character 4-form of
Sp(2)-twisted 4-Cohomotopy

G̃4 = G4 +
1
4 p1(∇) (21) C-field shift

[Wi96a][Wi96b][Ts04]

[G̃4] ∈ H4(X ,Z) (22) Shifted C-field flux quantization
[Wi96a][Wi96b][DFM03][HS05]

§3.5 (G4)0 = 1
2 p1(∇) (24) Background charge

[Fr09, p. 11][Fr00]

§3.6 Sq3([G̃4]
)
= 0 (23) Integral equation of motion

[DMW03a][DMW03b, 5]

§3.7 Chern character 7-form of compatibly
Sp(2)-twisted 4&7-Cohomotopy

G̃7 = G7 +
1
2 H3 ∧ G̃4 (27) Page charge

[Pa83, (8)][DS91, (43)][Mo05]d G̃7 = − 1
2

χ8(∇) (28)

2
∫

S7
i∗G̃7 ∈ Z (29) Level quantization of Hopf-WZ term

[In00]

§3.8 Integrated Chern character of compatibly
Sp(2)-twisted 4&7-Cohomotopy

NM2 = −I8 (33)
C-field tadpole cancellation

[SVW96]

Table 1 –Implications of C-field charge quantization in J-twisted Cohomotopy.
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Organization of the paper.
– In §1 we survey our constructions and results.
– In §2 we introduce twisted Cohomotopy theory, and prove some fundamental facts about it.
– In §3 we use these results to explains and prove the statements in Table 1.
– In §4 we comment on background and implications.

Generalized abelian cohomology. Before we start, we briefly say a word on “generalized” cohomology theories,
recalling some basics, but in a broader perspective: The ordinary cohomology groups X 7! H•(X ,Z) famously
satisfy a list of nice properties, called the Eilenberg-Steenrod axioms. Dropping just one of these axioms (the
dimension axiom) yields a larger class of possible abelian group assignments X 7! E•(X), often called generalized
cohomology theories. One example are the complex topological K-theory groups X 7! KU•(X).

By the Brown representability theorem, every generalized cohomology theory in this sense has a classifying
space En for each degree, such that the n-th cohomology group is equivalently the set of homotopy classes of maps
into this space: 1

Generalized abelian
cohomology theory En(X)

Brown’s
representability

theorem

≃
{

X continuous function

= cocycle in E-theory
// En

}/
∼homotopy

. (1)

For example, ordinary cohomology theory has as classifying spaces the Eilenberg-MacLane spaces K(Z,n), while
complex topological K-theory in degree 1 is classified by the space underlying the stable unitary group.

For generalized cohomology theories in this sense of Eilenberg-Steenrod, Brown’s representability theorem
translates the suspension axiom into the statement that the classifying spaces En in (1) are loop spaces of each
other, En ≃ ΩEn+1, and thus organize into a sequence of classifying spaces (En)n∈N called a spectrum. The fact
that each space in a spectrum is thereby an infinite loop space makes it behave like a homotopical abelian group
(since higher-dimensional loops may be homotoped and hence commuted around each other, by the Eckmann-
Hilton argument).

Generalized non-abelian cohomology. We highlight the fact that not all cohomology theories are abelian. The
classical example, for G any non-abelian Lie group, is the first non-abelian cohomology X 7! H1

(
X ,G

)
, defined

on any manifold X as the first Čech cohomology of X with coefficients in the sheaf of G-valued functions. Never-
theless, this non-abelian cohomology theory also has a classifying space, called BG, and in terms of this it is given
exactly as the abelian generalized cohomology theories in (1):

Degree-1 non-abelian
cohomology theory H1(X ,G)

principal bundle
theory
≃

{
X continuous function

= cocycle
// BG

}/
∼homotopy

. (2)

Hence the joint generalization of generalized abelian cohomology theory (1) and non-abelian 1-cohomology theo-
ries (2) are assignments of homotopy classes of maps into any coefficient space A

Non-abelian generalized
cohomology theory H(X ,A) :=

{
X continuous function

= cocycle
// A
}/

∼homotopy

. (3)

All this may naturally be further generalized from topological spaces to higher stacks. In the literature of this
broader context the perspective of non-abelian generalized cohomology is more familiar. But it applies to the
topological situation as the easiest special case, and this is the case with which we are concerned for the present
purpose.

Higher principal bundles. This way, the classical statement (2) of principal bundle theory finds the following
elegant homotopy-theoretic generalization. For every connected space A, its based loop space G := ΩA is a higher

1Here and in the following, a dashed arrow indicates a map representing a cocycle that can be freely choosen, as opposed to solid arrows
indicating fixed structure maps.
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homotopical group under concatenation of loops (an “∞-group”). Moreover, A itself is equivalently the classifying
space for that higher group:

Every
connected

space...

A ≃

...is the
classifying

space...

B

G︷︸︸︷
ΩA
...of its

loop group.

(4)

in that non-abelian G-cohomology in degree 1 classifies higher homotopical G-principal bundles:

H(X ,BG) =

non-abelian
G-cohomology

H1(X ,G)
≃

−−−−!

higher homotopical
G-principal bundles

GBundles(X)/
∼

[
X

cocycle
c
−! BG

]
7−!



G-principal bundle
classified by c

P //

homotopy
pullback

c∗(pBG )

��

universal
G-principal bundle

G�G

pBG
��

X c
classifying map for P

// BG


(5)

Cohomotopy cohomology theory. The primordial example of a non-abelian generalized cohomology theory (3)
is Cohomotopy cohomology theory, denoted π•. By definition, its classifying spaces are simply the n-spheres Sn:

Cohomotopy
cohomology theory π

n(X) :=
{

X continuous function

= cocycle
// Sn
}/

∼homotopy

. (6)

Since the (n ≥ 1)-spheres are connected, the equivalence (4) applies and says that Cohomotopy theory is equiva-
lently non-abelian 1-cohomology for the loop groups of spheres G := ΩSn:

π
n(X)

Cohomotopy
theory

≃ H1(X ,ΩSn)
non-abelian 1-cohomology

for sphere loop group

.

Evaluated on spaces which are themselves spheres, Cohomotopy cohomology theory gives the (unstable!) homo-
topy groups of spheres, the “vanishing point” of algebraic topology:

n-cohomotopy groups
of k-sphere π

n(Sk) ≃
{

Sk // Sn
}/

∼
≃ πk

(
Sn) k-homotopy groups

of n-sphere

A whole range of classical theorems in differential topology all revolve around characterizations of Cohomotopy
sets, even if this is not often fully brought out in the terminology.

The quaternionic Hopf fibration. A notable example, for the following purpose, of a class in the Cohomotopy
group of spheres, is given by the quaternionic Hopf fibration

S7

quaternionic Hopf fibration
hH

++≃ S(H2)
unit sphere

in quaternionic
2-space

(q1,q2) 7! [q1:q2]
// HP1

quaternionic
projective
1-space

≃ S4 , (7)

which represents a generator of the non-torsion subgroup in the 4-Cohomotopy of the 7-sphere, as shown on the
left here:

quaternionic
Hopf fibration

[S7 hH! S4]

7!

∈

non-abelian/unstable
Cohomotopy group

π4(S7)

≃

stabilization

Σ∞

//

abelian/stable
Cohomotopy group

S4(S7)

≃

∋ Σ∞[S7 hH! S4]

7!

stabilized
quaternionic

Hopf fibration

non-torsion
generator (1,0) ∈ Z×Z12

(n,a) 7!(n mod 24)
// Z24 ∋ 1 torsion

generator

(8)
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Shown on the right is the abelian approximation to non-abelian Cohomotopy cohomology theory, called stable
Cohomotopy theory and represented, via (1), by the sphere spectrum S, whose component spaces are the infinite-
loop space completions of the n-spheres: Sn ≃ Ω∞Σ∞Sn. Crucially, in this approximation, the quaternionic Hopf
fibration becomes a torsion generator: non-abelian 4-Cohomotopy witnesses integer cohomology groups not only
in degree 4, but also in degree 7; but when seen in the abelian/stable approximation this “extra degree” fades
away and leaves only a torsion shadow behind. From the perspective, composition with the quaternionic Hopf
fibration can be viewed as a transformation that translates classes in degree-7 Cohomotopy to classes in degree-4
Cohomotopy:

S7

hH
��

7-Cohomotopy

reflects into

π7(X)

(hH)∗
��

X

c

99

(hH)∗(c)
// S4

4-Cohomotopy π4(X)

(9)

Twisted non-abelian generalized cohomology. Regarding generalized cohomology theory as homotopy theory
of classifying spaces (3) makes transparent the concept of twistings in cohomology theory: Instead of mapping
into a fixed classifying spaces, a twisted cocycle maps into a varying classifying space that may twist and turn as
one moves in the domain space. In other words, a twisting τ of A-cohomology theory on some X is a bundle over
X with typical fiber A, and a τ-twisted cocycle is a section of that bundle:

τ-twisted
non-abelian generalized
A-cohomology theory

Aτ(X) :=



A-fiber bundle

P

p

��

//

universal
A-fiber bundle

A�Aut(A)

��
X

continuous section
= twisted cocycle

11

X τ

classifying map for P
// BAut(A)

/
∼ homotopy

BAut(A)

≃


X

twist τ
&&

continuous function // A�Aut(A)

vv
BAut(A)

ho
moto

py

|�

/
∼ homotopy

BAut(A)

(10)

Here the equivalent formulation shown in the second line follows because A-fiber bundles are themselves classified
by nonabelian Aut(A)-cohomology, as shown on the right of the first line (due to (5)).

Twisted Cohomotopy theory. For the example (6) of Cohomotopy cohomology theory in degree d −1 there is a
canonical twisting on Riemannian d-manifolds, given by the unit sphere bundle in the orthogonal tangent bundle:

J-twisted
Cohomotopy theory π

T Xd

(Xd) :=



tangent
unit sphere bundle

S(T Xd)

p
��

//

universal tangent
unit sphere bundle

Sd−1�O(d)

��
X

continuous section
= twisted cocycle

33

X T Xd

classifying map of
tangent/frame bundle

// BO(d)

/
∼ homotopy

BO(d)

≃


X

T Xd

twist %%

continuous function // Sd−1�O(d)

vv
BO(d)

ho
moto

py

~�

/
∼ homotopy

BO(d)

(11)
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Since the canonical morphism O(d) −! Aut(Sd−1) is known as the J-homomorphism, we may call this J-twisted
Cohomotopy theory, for short.

Compatibly J-twisted Cohomotopy in degrees 4 & 7. In view of (9) it is natural to ask for the maximal subgroup
G ⊂ O(8) for which the quaternionic Hopf fibration is equivariant, so that its homotopy quotient hH �G exists and
serves as a map of G-twisted Cohomotopy theories (11) from degree 7 and 4. This subgroup turns out to be the
central product of the quaternion unitary groups Sp(n) for n = 1,2:

Sp(2) ·Sp(1)
central product of

quaternion-unitary groups

⊂ O(8) is maximal subgroup s.t.

S7�Sp(2) ·Sp(1)

ww
hH�Sp(2)·Sp(1) universally twisted

quaternionic Hopf fibration

��

B
(
Sp(2) ·Sp(1)

)

S4�Sp(2) ·Sp(1)

gg
(12)

In other words, J-twisted Cohomotopy (11) exists compatibly in degrees 4 & 7 precisely on those 8-manifolds
which carry topological Sp(2) ·Sp(1)-structure, i.e., whose structure group of the tangent bundle is equipped with
a reduction along Sp(2) ·Sp(1) ↪! O(8). This reduction is equivalent to a factorization of the classifying map as
shown on the left below, with some cohomological consequences shown on the right:

X8

τ

((

tangent
bundle T X8

��
BO(8)

classifying space of
orthogonal structure

B
(
Sp(2) ·Sp(1)

)
classifying space of
Sp(2) ·Sp(1)-twists

oo

Sp(2) ·Sp(1)
-structure

�	
=⇒



1
24

Euler
class

χ8 = I8 := 1
48

Pontrjagin classes(
p2 − 1

4(p1)
2
)

(
H2(X8,Z2) = 0

)
⇒ (w6

Stiefel-Whitney
class

= 0) ⇒ (W7

integral
Stiefel-Whitney

class

= 0)
(13)

J-Twisted Cohomotopy and Topological G-Structure. For every topological coset space realization G/H of an
n-sphere, there is a canonical homotopy equivalence between the classifying spaces for G-twisted Cohomotopy
and for topological H-structure (i.e., reduction of the structure group to H), as follows:

coset space structure
on topological n-sphere

Sn ≃
homeo

G/H ⇒

G-twisted Cohomotopy /
topological H-structure

Sn�G ≃
htpy

BH .

(One may think of this as “moving G from numerator on the right to denominator on the left”.)
In particular, on Spin 8-manifolds we have the following equivalences between J-twisted Cohomotopy cocycles

(11) and topological G-structures:

S7�Spin(8)
≃ BSpin(7)

=⇒



classifying space
for J-twisted

Cohomotopy theory

S7�Spin(8)

��
X8

cocycle in
J-twisted Cohomotopy

c
44

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



≃



classifying space
for topological

Spin(7)-structure

BSpin(7)

Bi

��
X8

topological
Spin(7)-structure

g
33

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



(14)
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and

S7�Sp(2) ·Sp(1)
≃ BSp(1) ·Sp(1)

=⇒



classifying space
for Sp(2) ·Sp(1)-twisted

Cohomotopy theory

S7�Sp(2) ·Sp(1)

��
X8

cocycle in
Sp(2) ·Sp(1)-twisted
Cohomotopy theory

c
66

T X8

tangent
spin structure

// BSpin(8)

homotopy

��



≃



classifying space
for topological

Sp(1) ·Sp(1)-structure

BSp(1) ·Sp(1)

Bi

��
X8

topological
Sp(1) ·Sp(1)-structure

g 55

T X8

tangent
spin structure

// BSpin(8)

homotopy

�



(15)

As the existence of a G-structure is a non-trivial topological condition, so is hence the existence of J-twisted
Cohomotopy cocycles. Notice that this is a special effect of twisted non-abelian generalized Cohomology: A non-
twisted generalized cohomology theory (abelian or non-abelian) always admits at least one cocycle, namely the
trivial or zero-cocycle. But here for non-abelian J-twisted Cohomotopy theory on 8-manifolds, the existence of
any cocycle is a non-trivial topological condition.

Compatibly Sp(2)-Twisted Cohomotopy in degree 4 & 7. For focus of the discussion, we will now restrict
attention to G-structure for the further quaternion-unitary subgroup

Sp(2) ↪−! Sp(1) ·Sp(2)

in diagram (12). In summary then, due to the Sp(2)-equivariance of the quaternionic Hopf fibration (12), the map
(9) from degree-7 to degree-4 Cohomotopy passes to Sp(2)-twisted Cohomotopy:

S7�Sp(2)

||

hH�Sp(2) Sp(2)-twisted
quaternionic Hopf fibration

��

X (hH�Sp(2))∗(c) //

cocycle in
twisted

7-Cohomotopy
c

33

twist, uniformly
in degrees 4 & 7 τ ''

S4�Sp(2)
induced cocycle

in twisted
4-Cohomotopy

uu
BSp(2)

and hence (9) becomes:

Sp(2)-twisted
7-Cohomotopy π i7◦τ(X)

reflects into (hH�Sp(2))∗

��

:=


X

twist τ
%%

continuous function // S7�Sp(2)

ww
BSp(2)

ho
moto

py

}�

/
∼ homotopy

BSp(2)
(16)

Sp(2)-twisted
4-Cohomotopy theory π

i4◦τ(X) :=


X

twist τ
%%

continuous function // S4�Sp(2)

ww
BSp(2)

ho
moto

py

}�

/
∼ homotopy

BSp(2)

(17)
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Triality between Sp(2)-structure and Spin(5)-structure. While the group Sp(2) ·Sp(1) (12) is abstractly iso-
morphic to the central product of Spin-groups Spin(5) ·Spin(3), the two are distinct as subgroups of Spin(8), and
not conjugate to each other. But as subgroups they are turned into each other by the ambient action of triality:

Sp(2) �
� //

central product of
quaternion-unitary groups

Sp(2) ·Sp(1)� _

��

oo ≃ //

central product of
Spin-groups

Spin(5) ·Spin(3)� _

��

oo ? _ Spin(5)

Spin(8) oo ≃
tri

triality automorphism

// Spin(8)

While Spin(5) on the right is the structure group of normal bundles to M5-branes, acting on fibers of 4-spherical
fibrations around 5-branes through its vector representation, Sp(2) on the left is the structure group of normal bun-
dles to M2-branes, acting on the 7-spherical fibrations around 2-branes via its defining left action on quaternionic
2-space H2 ≃R R8 ([MFGM09][MF10]):

S
(
H2

left quaternion
multiplication Sp(2)

		 )
= S7 S4 = S

(
R5

Spin(5) vector
representation

�� )
In this article we consider only the M2-case. But all formulas we derive translate to the M5 case via triality.

Generalized Chern characters. Since generalized cohomology theory is rich, one needs tools to break it down.
The first and foremost of these is the generalized Chern character map. This extracts differential form data
underlying a cocycle in nonabelian generalized cohomology. The Chern character is familiar in twisted K-theory
(see [GS19a][GS19c]), as shown in the top half of the following:

Torsionful generalized
cohomology theory

approximation by
generalized Chern character // L∞-valued de Rham

cohomology theory

Chern character on
ordinary

integral cohomology

ordinary
integral cohomology

H3(X ,Z)
extension of scalars
& de Rham theorem //

de Rham
cohomology

H3
dR
(X)

τ
bundle gerbe

7−! [H3]
closed 3-form

Chern character on
B-field-twisted

K-theory

τ-twisted
complex K-theory

KUτ(X)

τ-twisted
Chern character

chτ

//

H3-twisted
de Rham cohomology

H
[H3 ]

dR
(X)

V
virtual twisted
vector bundle

7−!
[
tr
(

exp(F)
)]

exponentiated
curvature form

Chern character on
non-abelian

O(n)-cohomology

non-abelian
O(n)-cohomology

H1
(
X ,O(n)

) characteristic forms //

de Rham cohomology tensor
invariant polynomials on o(n)

HdR

(
X
)
⊗ inv(o(n))

τ
vector bundle

7−! τR ∈ R
[
[Wi(∇τ)]
Stiefel-Whitney

forms

, [pk(∇τ)]
Pontrjagin

forms

]
i,k

Chern character
on J-twisted

n-Cohomotopy

τ-twisted
Cohomotopy theory

πτ
(
X
) cohomotopical

Chern character //

τR-twisted
rational Cohomotopy theory

πτR
(
X
)
R

(18)
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In order to see what the cohomotopical Chern character in the last line is, we need some general theory of gener-
alized Chern characters. This is rational homotopy theory:

Rational homotopy theory. In the language of homotopy theory, generalized Chern character maps are examples
of rationalization, whereby the homotopy type of a topological space (here: the classifying space of a generalized
cohomology theory) is approximated by tensoring all its homotopy groups with the rational numbers (equivalently:
the real numbers), thereby disregarding all torsion subgroups in homotopy groups and in cohomology groups.

Generalized
cohomology theory

OO
classifying

spaces
��

Chern character // L∞-valued
differential forms

OO
Sullivan model

construction
��

Full
homotopy theory rationalization

// Rational
homotopy theory

What makes rational homotopy theory amenable to computations is the existence of Sullivan models. These are
differential graded-commutative algebras (dgc-algebras) on a finite number of generating elements (spanning the
rational homotopy groups) subject to differential relations (enforcing the intended rational cohomology groups).
In the supergravity literature Sullivan models are also known as “FDA”s. Here are some basic examples (see
[FSS16b][FSS18a][FSS18b][FSS19d], review in [FSS19a]):

Rational
super space

Loop
super L∞-algebra

Chevalley-Eilenberg
super dgc-algebras

(“Sullivan models”, “FDA”s)

General X lX CE
(
lX
)

Super
spacetime

Td,1|N Rd,1|N R
[
{ψα}N

α=1,{ea}d
a=0
] /( d ψα = 0

d ea = ψ Γaψ

)

Eilenberg-MacLane
space

K(R, p+2)

≃R Bp+1S1 R[p+1] R[cp+2]
/ (

d cp+2 = 0
)

Odd-dimensional
sphere

S2k+1
R l(S2k+1) R[ω2k+1]

/ (
d ω2k+1 = 0

)
Even-dimensional

sphere
S2k
R l(S2k) R

[
ω2k,ω4k−1

] /( d ω2k = 0
d ω4k−1 = −ω2k ∧ω2k

)

M2-extended
super spacetime

T̂10,1|32 m2brane R
[
{ψα}32

α=1,{ea}10
a=0,h3

] / d ψα= 0
d ea = ψ Γaψ

d h3 = i
2 (ψΓabψ)∧ ea ∧ eb


Under Sullivan’s theorem the rational homotopy type of well-behaved spaces are equivalently encoded in their
Sullivan model dgc-algebras. For spaces and algebras which are nilpotent and of finite type one has:

Spaces/
∼ rational

weak homotopy
equivalence

form
loop Lie algebra

l

≃ //

form Sullivan model
CE(l−)

≃
,,

L∞Algebras/
∼ quasi-

isomorphism

form
Chevalley-Eilenberg algebra

CE

≃ //

“FDA”s in supergravity jargon

dgcAlgebrasop/
∼ quasi-

isomorphism

9



When applying the rational approximation to twisted generalized cohomology theory, the order matters: There
are in general more rational twists X τ

−! BAut(AR) for twisted rational cohomology than there are rationalizations
τR of full twists X τ

−! BAut(A) for rational twisted cohomology. 2 We consider first the general rational twists:

Rationally twisted rational Cohomotopy. We find that the rationally twisted rational Cohomotopy sets in degrees
4 and 7 are equivalently characterized by cohomotopical Chern character forms as follows:

rational twist rational twisted
Cohomotopy

cohomotopical
Chern characters

7-Cohomotopy X τ7

−! BAut
(
S7
R
)

π(τ7)(X) ≃

characteristic form
of twist τ7{ 7-form

G̃7

∣∣∣ d G̃7 = K8

}/
∼

4-Cohomotopy X τ4

−! BAut
(
S4
R
)

π(τ4)(X) ≃


4-form

& 7-form

(G4,G7)

∣∣∣∣∣ d G4 = 0

d G7 =−1
2 G4 ∧G4 +L8

/
∼

characteristic form
of twist τ4

(19)

Here all real 8-classes [K8], [L8] ∈ H8(X ,R) may appear, for some rational twists τ4,7. Constraints on these
characteristic forms appear when we consider more than rational twisted structure:

Compatibly rationally twisted rational Cohomotopy. We may ask that the rational twists τ4,7 in (19) are related
analogously to how the twisted parametrized Hopf fibration (12) relates the full (non-rational) twists, through (16).
We find that this happens precisely when the difference of the characteristic 8-classes in (19) is a complete square

L8 = K8 +
(1

4 P4
)
∧
(1

4 P4
)

and in that case the situation of (19) becomes the following:

Compatible
rational twists

Rational
compatibly twisted

Cohomotopy
Cohomotopical

Chern characters

7-Cohomotopy X τ7

−! BAut
(
S7
R
)

π(τ7)(X) ≃

characteristic form
of twist τ7{

G̃7

∣∣∣ d G̃7 = K8

}/
∼

shifted 4-form

G̃4 := G4 +
1
4 P4

G̃7
shifted 7-form

:= G7 +
1
2 H3 ∧ G̃4

≃


(

H3,

G̃4,G7

) ∣∣∣∣∣∣∣
d H3 = G̃4 − 1

2 P4

d G̃4 = 0

d G7 =−1
2 dH3 ∧ G̃4 +K8

/
∼

4-Cohomotopy X τ4

−! BAut
(
S4
R
)

π(τ4)(X) ≃

{
(G̃4,G7)

∣∣∣∣∣ d G̃4 = 0

d G7 =−1
2(G̃4 − 1

2 P4)∧ G̃4 +K8

}
/
∼

(20)

Here still all real 8-classes and 4-classes [K8] ∈ H8(X ,R) , [P4] ∈ H4(X ,R) may appear, for some pair of
compatible rational twists.

2This is in contrast with twisting vs. differential refinement where the order does not matter – see [GS19a][GS19b].
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Next we find that these real classes are fixed as we consider full (not just rational) Sp(2)-twists, compatible by
the full (not just rational) Sp(2)-twisted quaternionic Hopf fibration (12).

J-Twisted 4-Cohomotopy of Sp(2)-manifolds. Consider a simply-connected Riemannian Spin manifold R2,1 ×
X8 with affine connection ∇ and equipped with:

(i) an Sp(2)-structure τ (13);
(ii) a cocycle c in τ-twisted 4-Cohomotopy (17);

hence equipped with a homotopy-commutative diagram of continuous maps as follows:

R2,1×

spacetime

X8

τ

((

tangent
bundle T X8

��

cocycle in
J-twisted Cohomotopy

c //

classifying space of
Sp(2)-twisted Cohomotopy

S4�Sp(2)

twisting through
Sp(2)≃

abstr
Spin(5)! Aut(S4)vv

BSpin(8)
classifying space of

Spin structure

BSp(2)
classifying space of

Sp(2)-twists

oo

homotopy
{�Sp(2)-structure

~�


homotopy class

over BSp(2)

∈

twisted 4-Cohomotopy
of spacetime X8

π
i4◦τ
(
X8)

Then the 4-Cohomotopical Chern character (18) of [c], hence the differential flux forms (G4,G7) underlying [c]
by (19), as indicated on the left in the following diagram

twisted 4-Cohomotopy

πτ
(
X8
) rationalization

LR
cohomotopical Chern character

//

rational
twisted 4-Cohomotopy

πτ
(
X8
)
R
oooo

equivalence
relations {

(G4,G7) | · · ·
}
��

conditions //

plain
differential forms

Ω4(X8)×Ω7(X8)

[c]

class in
twisted Cohomotopy

� //
[
(G4,G7)

]
Chern character in

twisted Cohomotopy

satisfy, first of all, this condition:
The shifted 4-flux form G̃4 := G4

naive
4-flux

+ 1
4 p1(∇)

shift by first
fractional

Pontrjagin form

∈ Ω
4(X8)

differential
4-forms

(21)

represents an integral cohomology class

[G̃4]

shifted
4-flux

∈ H4
(
X8,Z

)
integral cohomology

extension of scalars // H4
(
X8,R

)
real cohomology

≃ HdR(X
8)

de Rham cohomology

(22)

on which the action of the Steenrod square vanishes:

Steenrod square of
mod-2 reduction of

integral shifted 4-flux

Sq2([G̃4]
)
= 0 hence also

Steenrod cube of
mod-2 reduction of

integral shifted 4-flux

Sq3([G̃4]
)
= 0 , (23)

and its background charge in the case of factorization through hH�Sp(2) is

residual flux of cocucle
factoring through hH�Sp(2)

(G4)0 =

background charge

1
4 p1(∇) . (24)

To see the next condition satisfied by the pair (G4,G7), consider the homotopy pullback of the 4-Cohomotopy
cocycle c along the Sp(2)-twisted quaternionic Hopf fibration hH to a cocycle in twisted 7-Cohomotopy on the
induced 3-spherical fibration Ĥ8 over spacetime:

11





classifying space of
compatible 3-flux

X̂8

induced cocycle in
twisted 7-Cohomotopy

ĉ //

induced
3-spherical

fibration
c∗h=:p

��

classifying space of
Sp(2)-twisted 7-Cohomotopy

S7�Sp(2)

h:=hH�Sp(2)
Sp(2)-parametrized
quaternionic Hopf

fibration

��
spacetime X8

τ

&&

tangent
bundle T X8

��

cocycle in
J-twisted 4-Cohomotopy

c // S4�Sp(2) classifying space of
Sp(2)-twisted 4-Cohomotopy

twisting through
Sp(2)≃

abstr
Spin(5)! Aut(S4)xx

BSpin(8)
classifying space of

Spin structure

BSp(2)
classifying space of

Sp(2)-twists

oo

|�Sp(2)-structure

|�


homotopy class

over BSp(2)

∈

twisted 7-Cohomotopy
of X̂8

π
τ◦p(X̂8) (25)

Then:
The pullback 3-spherical fibration over spacetime

X̂8 := c∗
(
S7�Sp(2)

)
carries a universal 3-flux Huniv

3 which trivializes the 4-flux relative to its background value

d Huniv
3 = p∗G̃4 − 1

4 p1(∇) . (26)

Moreover, the 7-Cohomotopical Chern character of [ĉ], hence the flux forms underlying [ĉ] by (20), as indicated
on the left in the following diagram

twisted 7-Cohomotopy

π p◦τ
(
X̂8
) rationalization

LR
cohomotopical Chern character

//

rational
twisted 7-Cohomotopy

π p◦τ
(
X̂8
)
R
oooo equivalence relations {

G̃7 | · · ·
}
��

conditions //

plain
differential forms

Ω7(X̂8)[
ĉ
]

class in
twisted Cohomotopy

� //
[
G̃7
]

Chern character in
twisted Cohomotopy

satisfy this condition:
The shifted 7-flux form G̃7 = p∗G7

naive 7-flux

+ 1
2

3-flux

Huniv
3 ∧ p∗

shifted 4-flux

G̃4︸ ︷︷ ︸
shift by

Hopf-Whitehead term

(27)

is closed up to the Euler 8-form
d G̃7 = −1

2 p∗χ8(∇) (28)

and half-integral on every 7-sphere S7 i
! X̂8:

2
∫

S7

i∗G̃7 ∈ Z . (29)

Finally, consider the case when:

(i) Our manifold is the complement in a closed 8-manifold of a finite set of disjoint open balls, i.e. of a tubular
neighbourhood N around a finite set {x1,x2, · · ·} of points:

X8 =

closed
manifold

X8
clsd \

tubular
neighbourhood

N{x1,x2,···}

around points in X8
clsd

⇒

boundary
of X8

∂X8 ≃ ⊔
{x1,x2,···}

sphere
around xi

S7 (30)

This implies that X8 is a manifold with boundary a disjoint union of 7-spheres.
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(ii) Such that the corresponding extended spacetime fibration X̂8!X8 (25) admits a global section; hence, equiv-
alently, such that the given cocycle in twisted 4-Cohomotopy lifts through the quaternionic Hopf fibration to
a cocycle in twisted 7-Cohomotopy:

classifying space of
compatible 3-flux

X̂8

p:=c∗(h)
induced

3-spherical
fibration

��
X8

global section of
3-spherical fibration

i

55

X8

⇔
S7�Sp(2)

h:=hH�Sp(2)
Sp(2)-parametrized
quaternionic Hopf

fibration

��
X8

lift to cocycle in
J-twisted 7-Cohomotopy

ĉ
00

c

cocycle in
J-twisted 4-Cohomotopy

// S4�Sp(2)

homotopy

	�

(31)

Here the choice of points in (30) matters only in so far as a sufficient number of points has to be removed for
a lifted cocycle ĉ (31) to exist at all.

By (26) this lift exhibits a 4-fluxless background at least at the level of integral cohomology. In order to refine this
to 4-fluxlessness at the finer level of (stable) Cohomotopy, we observe the following:

(i) Since the 7-sphere is parallelizable, upon restriction of ĉ (31) to the boundary ∂X8 i
−! X8 (30) the twist

vanishes, and we are left with a pair of compatible cocycles in plain Cohomotopy theory as in (9):

S7

hH
plain

quaternionic
Hopf fibration

��
⊔

{x1,x2,···}

boundary 7-spheres

S7 ≃ ∂X8
(hH)∗ĉ|∂X8

underlying boundary
4-Cohomotopy cocycle

//

boundary restriction of
twisted 7-Cohomotopy cocycle

ĉ|∂X8

55

S4
�

(ii) By (8), cocycles in stable 7-Cohomotopy have no side-effect in stable 4-Cohomotopy, hence remain stably
cohomotopically 4-fluxless precisely if they are multiples of 24:

For [c1], [c2] ∈

7-Cohomotopy

π
7(

∂X8) we have


(hH)∗[c1] = (hH)∗[c2] ∈

stable 4-Cohomotopy

S4
(
∂X8

)
⇔

[c1] =mod 24 [c2] ∈ S7
(
∂X8

)
stable 7-Cohomotopy

This means that the unit charge of a lift ĉ in (31), as seen by stable Cohomotopy, is 24. In view of (29) this
says that the cohomotopically normalized 7-flux of X8 is

NM2 := −1
12

∫
X8

i∗dG̃7 = −1
12

∫
∂X8

i∗G̃7 . (32)

Our final result is that:
this equals the I8-number (13) of the manifold:

NM2 = I8[X8] . (33)
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2 J-Twisted Cohomotopy theory

We now introduce our twisted generalized cohomology theory, J-twisted Cohomotopy theory, and discuss some
general properties.

2.1 Twisted Cohomotopy

The non-abelian cohomology theory (see [NSS12], following [SSS12]) represented by the n-spheres is called
Cohomotopy, going back to [Bo36][Sp49]. Hence for X a topological space, its Cohomotopy set in degree n is

π
n(X) = π0Maps

(
X ,Sn) =

{
X

cocycle in
Cohomotopy // Sn

}/
∼
. (34)

A basic class of examples is Cohomotopy of a manifold X in the same degree as the dimension dim(X) of that
manifold. The classical Hopf degree theorem (see, e.g., [Kos93, IX (5.8)], [Kob16, 7.5]) says that for X connected,
orientable and closed, this is canonically identified with the integral cohomology of X , and hence with the integers

πn(X) ≃
Sn!K(Z,n) // Hn(X ;Z)≃ Z , for n = dim(X). (35)

In its generalization to the equivariant Hopf degree theorem this becomes a powerful statement about equivariant
Cohomotopy theory and thus, via Hypothesis H, about brane charges at orbifold singularities [HSS18]. We discuss
this in detail elsewhere [SS19a][BSS19b].

Here we generalize ordinary Cohomotopy (34) to twisted Cohomotopy (Def. 2.1 below), following the general
theory of non-abelian (unstable) twisted cohomology theory [NSS12, Sec. 4]. 3 Generally, Cohomotopy in degree
n may by twisted by Aut(Sn)-principal ∞-bundles, for Aut(Sn) ⊂ Maps(Sn,Sn) the automorphism ∞-group of Sn

inside the mapping space from Sn to itself.

A well-behaved subspace of twists comes from O(n + 1)-principal bundles, or their associated real vector
bundles of rank n+1, under the inclusion

Ĵn : O(n+1) �
� // Aut(Sn) �

� // Maps(Sn,Sn) , (36)

which witnesses the canonical action of orthogonal transformations in Euclidean space Rn+1 on the unit sphere
Sn = S(Rn+1). The restriction of these to O(n)-actions

Jn : O(n) �
� // O(n+1) �

� Ĵn // Maps(Sn,Sn)

are known as the unstable J-homomorphisms [Wh42] (see [Kos93][Ma12] for expositions). By general principles
[NSS12], the homotopy quotient Sn �O(n+1) of Sn by the action via Ĵn is canonically equipped with a map J̃n to
the classifying space BO(n+1), such that the homotopy fiber is Sn:

Sn // Sn �O(n+1)

��
BO(n+1) .

One may think of this as the universal spherical fibration which is the Sn-fiber ∞-bundle associated to the universal
O(n+1)-principal bundle via the homotopy action Ĵn.

3All constructions here are homotopical, in particular all group actions, principal bundles, etc. are “higher structures up to coherent
homotopy”, in a sense that has been made completely rigorous via the notion of ∞-groups, and their ∞-actions on ∞-principal bundles
[NSS12]. But the pleasant upshot of this theory is that when homotopy coherence is systematically accounted for, then higher structures
behave in all general ways as ordinary structures, for instance in that homotopy pullbacks satisfy the same structural pasting laws as
ordinary pullbacks. Beware, this means in particular that all our equivalences are weak homotopy equivalences (even when we denote them
as equalities), and that all our commutative diagrams are commutative up to specified homotopies (even when we do not display these).
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Definition 2.1 (Twisted Cohomotopy). Given a map τ : X ! BO(n+1), we define the τ-twisted cohomotopy set
of X to be

π
τ(X) :=


Sn�O(n+1)

J̃O(n+1)
��

X

cocycle in
twisted

Cohomotopy
44

τ

twist
// BO(n+1)

{�


/

∼

=


E

��

//

(pb)

Sn�O(n+1)

J̃O(n+1)
��

X

cocycle in
twisted

Cohomotopy

66

X τ

twist
// BO(n+1)
y�


/

∼

(37)

Here in the second line, E ! X denotes the n-spherical fibration classified by τ and the universal property of
the homotopy pullback shows that cocycles in τ-twisted equivariant Cohomotopy are equivalently sections of this
n-spherical fibration.

Remark 2.2 (Notation). Here the notation πτ
(
X
)

is motivated, as usual in twisted cohomology, from thinking of
the map τ as encoding, in particular, also the degree n ∈ N.

Remark 2.3 (Cohomotopy twist by Spin structure). In applications, the twisting map τ is often equipped with a
lift through some stage of the Whitehead tower of BO(n+1), notably with a lift through BSO(n+1) or further to
BSpin(n+1)

X

τ

55
τ̂ // BSpin(n+1) // BO(n+1) .

In this case, due to the homotopy pullback diagram

Sn�Spin(n+1) //

��
(pb)

Sn�O(n+1)

J̃O(n+1)
��

BSpin(n+1) // BO(n+1)

the twisted cohomotopy set from Def. 2.1 is equivalently given by

π
τ(X) ≃


Sn�Spin(n+1)

J̃Spin(n+1)
��

X

cocycle in
twisted

Cohomotopy
44

τ̂

twist
// BSpin(n+1)

z�


/

∼

(38)

Most of the examples in §2.3 and §3 arise in this form.

In order to extract differential form data (“flux densities”) from cocycles in twisted Cohomotopy, in Prop. 2.5
below, we consider rational twisted Cohomotopy (Def. 2.4) below. A standard reference on the rational homotopy
theory involved is [FHT00]. Reviews streamlined to our context can be found in [FSS16a, Appendix A][BSS18].

Definition 2.4 (Chern character on twisted Cohomotopy). We write πτ(X)
LR // πτ(X)R for the rationalization

of twisted Cohomotopy to rational twisted Cohomotopy, given by applying rationalization to all spaces and maps
involved in a twisted Cohomotopy cocycle.

We now characterize cocycles in rational twisted Cohomotopy in terms of differential form data (which will be
the corresponding “flux density” in §3).
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Proposition 2.5 (Differential form data underlying twisted Cohomotopy). Let X be a smooth manifold which
is simply connected (see Remark 2.6 below) and τ : X ! BSO(n+ 1) a twisting for Cohomotopy in degree n,
according to Def. 2.1. Let ∇τ be any connection on the real vector bundle V classified by τ with Euler form
χ2k+2(∇τ) (see [MQ86, below (7.3)][Wu06, 2.2]).

(i) If n = 2k+1 is odd, n ≥ 3, a cocycle defining a class in the rational τ-twisted Cohomotopy of X (Def. 2.4) is
equivalently given by a differential 2k+1-form G2k+1 ∈ Ω2k+1(X) on X which trivializes the negative of the Euler
form

π
τ(X)R ≃

{
G2k+1 | d G2k+1 = −χ2k+2(∇τ)

}/
∼
. (39)

(ii) If n = 2k is even, n ≥ 2, a cocycle defining a class in the rational τ-twisted Cohomotopy of X (Def. 2.4) is
given by a pair of differential forms G2k ∈ Ω2k(X) and G4k−1 ∈ Ω4k−1(X) such that

dG2k = 0; π
∗G2k =

1
2
χ2k(∇τ̂) (40)

d2G4k−1 =−G2k ∧G2k +
1
4 pk(∇τ), (41)

where pk(∇τ) is the k-th Pontrjagin form of ∇τ , π : E ! X is the unit sphere bundle over X associated with τ ,
τ̂ : E ! BSO(n) classifies the vector bundle V̂ on E defined by the splitting π∗V = RE ⊕ V̂ associated with the
tautological section of π∗V over E, and ∇τ̂ is the induced connection on V̂ . That is,

π
τ(X)R ≃

{(
G2k,2G4k−1

) ∣∣∣ d G2k = 0 , π
∗G2k =

1
2
χ2k(∇τ̂)

d 2G4k−1 =−G2k ∧G2k +
1
4 pk(∇τ)

}/
∼
. (42)

Proof. By the assumption that the smooth manifold X is simply connected, it has a Sullivan model dgc-algebra
CE
(
lX
)

and we may compute the rational twisted Cohomotopy by choosing a Sullivan model lE for the spherical
fibration classified by τ . By definition of rational twisted Cohomotopy, we are interested in the set of homotopy
equivalence classes of dgca morphisms CE(lE)! CE(lX) that are sections of the morphism CE(lX)! CE(lE)
corresponding to the projection E ! X . The Sullivan model model for E is well known. We recall from [FHT00,
Sec. 15, Example 4]:

(I). The Sullivan model for the total space of a 2k+1-spherical fibration E! X is of the form

CE(lE) = CE(lX)⊗R[ω2k+1]/(d ω2k+1 =−c2k+2) , (43)

where

(a) c2k+2 ∈ CE
(
lX
)

is some element in the base algebra, which by (43) is closed and so it represents a
rational cohomology class

[c2k+2] = H2k+2(X ;R).

This class classifies the spherical fibration, rationally. Moreover, if the spherical fibration E ! X
happens to be the unit sphere bundle E = S(V ) of a real vector bundle V ! X , then the class of c2k+2
is the rationalized Euler class χ2k+2(V ) of V :

[c2k+2] = χ2k+2(V ) ∈ H2k+2(X ;R) . (44)

(b) and in this case, under the quasi-isomorphism CE(lE)!Ω•
dR(E) the new generator ω2k+1 corresponds

to a differential form that evaluates to the unit volume on each (2k+1)-sphere fiber:〈
ω2k+1, [S2k+1]

〉
= 1 . (45)

(This is not stated in [FHT00, Sec. 15, Example 4], but follows with [Che44], see [Wa04, Ch. 6.6,
Thm. 6.1].)
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The morphism CE(lX)! CE(lE) is the obvious inclusion, so a section is completely defined by the image
of ω2k+1 in CE(lX). This image will be an element g2k+1 ∈ CE(lX) such that dg2k+1 = c2k+2, and every
such element defines a section CE(lE)! CE(lX) and so a cocycle in rational twisted cohomotopy. Under
the quasi-isomorphism CE(lX)! Ω•

dR(X) defining CE(lX) as a Sullivan model of X , the element c2k+2 is
mapped to a closed differential form χ2k+2(∇τ) representing the Euler class χ2k+2(V ) of V , and so g2k+1
corresponds to a differential form G2k+1 on X with dG2k+1 = χ2k+2(∇τ).

(II). The Sullivan model for the total space of 2k-spherical fibration E! X is of the form4

CE(lE) = CE(lX)⊗R
[
ω2k,ω4k−1

]/( d ω2k = 0
d2ω4k−1 =−ω2k ∧ω2k + c4k

)
, (46)

where

(a) c4k ∈ CE(lX) is some element in the base algebra, which by (46) is closed and represents the rational
cohomology class of the cup square of the class of ω4k:

[c4k] = [ω2k]
2 ∈ H4k(X ;R).

This class classifies the spherical fibration, rationally.

(b) under the quasi-isomorphism CE(lE)! Ω•
dR(E) the new generator ω2k corresponds to a closed dif-

ferential form that restricts to the volume form on the 2k-sphere fibers S2k ≃ Ex ↪! E over each point
x ∈ X : 〈

ω2k, [S2k]
〉
= 1 . (47)

Note that the element [ω2k]
2 is a priori an element in H4k(E,R). By writing [c4k] = [ω2k]

2 ∈ H4k(X ;R)
we mean that [ω2k]

2 is actually the pullback of the element [c4k] via the projection π : E! X .

Moreover, if the spherical fibration π : E ! X happens to be the unit sphere bundle E = S(V ) of a real
vector bundle V ! X , then the tautological section of π∗V defines a splitting π∗V = RE ⊕V̂ and

(a) the class of ω2k is half the rationalized Euler class χ2k(V̂ ) of V̂ :

[ω2k] =
1
2
χ(V̂ ) ∈ H2k(E;R) . (48)

(b) the class of c4k is one fourth the rationalized k-th Pontrjagin class pk(V ) of V :

[c4k] =
1
4 pk(V ) ∈ H4k(X ;R) . (49)

The second equation is actually a consequence of the first one and of the naturality and multiplicativity of the total
rational Pontrjagin class:

π
∗pk(V ) = pk(RE ⊕V̂ ) = pk(V̂ ) = χ2k(V̂ )2.

Reasoning as in the odd sphere bundles case, a section of CE(lX)! CE(lE), and so a cocycle in rational twisted
cohomotopy, is the datum of elements g2k,g4k−1 ∈ CE(lX) such that dg2k = 0 and d2g4k−1 = −g2k ∧ g2k + c4k.
Under the quasi-isomorphism CE(lE)! Ω•

dR(E), the element g2k, seen as an element in CE(lE), is mapped to a
closed differential form 1

2
χ2k(∇τ̂) representing 1/2 the Euler class χ2k(V̂ ) of V̂ , while under the quasi-isomorphism

CE(lX)! Ω•
dR(X) the element c4k is mapped to a closed differential form 1

4 pk

(
∇τ̂

)
representing 1/4 the k-th

Pontrjagin class 1
4 pk(V ) of V . Therefore, the quasi-isomorphism CE(lX)! Ω•

dR(X) turns the elements g2k and
g4k−1 into differential forms G2k and G4k−1 on X , subject to the identities dG2k = 0, π∗G2k = 1

2
χ2k(∇τ̂), and

d2G4k−1 =−G2k ∧G2k +
1
4 pk(∇τ̂).

4There is an evident sign typo in the statement (but not in the proof) of [FHT00, Sec. 15, Example 4] with respect to equation (43):
The standard fact that the Euler class squares to the top Pontrjagin class means that there must be the relative minus sign in (43), which is
exactly what the proof of [FHT00, Sec. 15, Example 4] actually concludes.
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Remark 2.6 (Simply-connectedness assumption). The assumption in Prop. 2.5 that X be simply connected is just
to ensure the existence of a Sullivan model for X , as used in the proof. (It would be sufficient to assume, for that
purpose, that the fundamental group is nilpotent). If X is not simply connected and not even nilpotent, then a
similar statement about differential form data underlying twisted Cohomotopy cocycles on X will still hold, but
statement and proof will be much more involved. Hence we assume simply connected X here only for convenience,
not for fundamental reasons. A direct consequence of this assumption, which will play a role in §3, is that, by the
Hurewicz theorem and the universal coefficient theorem, the degree 2 cohomology of X with coefficients in Z2 is
given by:

H2(X ;Z2) ≃ HomAb
(
H2(X ,Z), Z2

)
. (50)

2.2 Twisted Cohomotopy via topological G-structure

We discuss how cocycles in J-twisted Cohomotopy are equivalent to choice of certain topological G-structures
(Prop. 2.8 below).

The following fact plays a crucial role throughout:

Lemma 2.7 (Homotopy actions and reduction of structure group). Let G be a topological group and V any topo-
logical space.
(i) Then for every homotopy-coherent action of G on V , the corresponding homotopy quotient V �G forms a
homotopy fiber sequence of the form

V // V �G // BG

and, in fact, this association establishes an equivalence between homotopy V -fibrations over BG and homotopy
coherent actions of V on G.
(ii) In particular, if ι : H ↪! G is an inclusion of topological groups, then the homotopy fiber of the induced map
Bι of classifying spaces is the coset space G/H:

G/H fib // BH Bι // BG

thus exhibiting the weak homotopy equivalence
(
G/H

)
�G ≃ BH.

Proof. This equivalence goes back to [DDK80]. A modern account which generalizes to geometric situations
(relevant for refinement of all constructions here to differential cohomology) is in [NSS12, Sec. 4]. When the
given homotopy-coherent action of the topological group G on V happens to be given by an actual topological
action we may use the Borel construction to represent the homotopy quotient. For the case of H ↪!G a topological
subgroup inclusion, we may compute as follows:

BH ≃ ∗×H EH

≃ ∗×H EG

≃ ∗×H (G×G EG)

≃ (∗×H G)×G EG

≃ (G/H)×G EG

≃ (G/H)�G .

Here the first weak equivalence is the usual definition of the classifying space, while the second uses that one may
take a universal H-bundle EH, up to weak homotopy equivalence, any contractible space with free H-action, hence
in particular EG. The third line uses that G is the identity under Cartesian product followed by the quotient by the
diagonal G-action.
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Proposition 2.8 (Twisted cohomotopy cocycle is reduction of structure group). Cocycles in twisted Cohomotopy
(Def. 2.1) are equivalent to choices of topological G-structure for G = O(n) ↪! O(n+1):

π
τ(X) =


BO(n)

��
X

cocycle in
twisted

Cohomotopy

55

τ

twist
// BO(n+1)

/∼

Moreover, if the twist is itself is factored through BSpin(n+ 1) as in Remark 2.3, then τ-twisted Cohomotopy is
equivalent to reduction along Spin(n) ↪! Spin(n+1):

π
τ(X) =


BSpin(n)

��
X

cocycle in
twisted

Cohomotopy
44

τ̂

twist
// BSpin(n+1)

/∼

Generally, if there is a coset realization of an n-sphere Sn ≃ G/H and the twist is factored through G-structure,
then τ-twisted Cohomotopy is further reduction to topological H-structure:

π
τ(X) =


BH

��
X

cocycle in
twisted

Cohomotopy

55

τ̂

twist
// BG

/∼

Proof. This follows by applying Lemma 2.7 and using the fact that Sn ≃ O(n+1)/O(n).

Remark 2.9 (Cohomotopy twists from coset space structures on spheres).

(i) Prop. 2.8 say that for each topological coset space structure on an n-sphere Sn ≃ G/H the corresponding
G-twisted Cohomotopy (Def. 2.1) classifies reduction to topological H-structure.

(ii) Coset space structures on n-spheres come in three infinite series and a few exceptional cases:

Spherical coset spaces [MS43], see [GG70, p.2]

Sn−1 ≃ Spin(n)/Spin(n−1)
standard,
e.g. [BS53, 17.1]S2n−1 ≃ SU(n)/SU(n−1)

S4n−1 ≃ Sp(n)/Sp(n−1)

S7 ≃ Spin(7)/G2 [Va01, Thm. 3]

S7 ≃ Spin(6)/SU(3) by Spin(6)≃ SU(4)

S7 ≃ Spin(5)/SU(2)
by Spin(5)≃ Sp(2)
and SU(2)≃ Sp(1)
[ADP83][DNP83]

S6 ≃ G2/SU(3) [FI55]
Table S. Coset space structures on topological n-spheres.

(iii) Assembling these for the case of the 7-sphere, we interpret the result in terms of special holonomy and G-
structures corresponding to consecutive reductions.

Using this, the following construction is a rich source of twisted Cohomotopy cocycles:
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Lemma 2.10 (Classifying maps to normal bundles via twisted Cohomotopy). Let Y be a manifold, n ∈N a natural

number and Y N // BO(n+1) a classifying map.

(i) If X π
! Y denotes the n-spherical fibration classified by N, hence, by Remark 2.9, the homotopy pullback in the

following diagram:

X c
//

(pb)

TY X

,,

π

��

Sn�O(n+1) ≃
//

��

BO(n)

xx
Y

N
// BO(n+1)

(51)

then the total top horizontal map is equivalently the classifying map for the vertical tangent bundle TY X, of X over
Y , as shown.
(ii) In particular, if Y := Σ×R>0 is the Cartesian product of some manifold Σ with a real ray, so that each fiber of
π over Σ is identified with the Cartesian space Rn+1 with the origin removed

Sn ×R>0 ≃ Rn+1 \{0}

then the pullback map c in (51) is a cocycle in N ◦π-twisted Cohomotopy on X, according to Def. 2.1:

Sn�O(n+1)

��
X N◦π //

T X
**

c

44

BO(n+1)

��
BO(dim(Σ)+n+1)

(52)

2.3 Twisted Cohomotopy in degrees 4 and 7 combined

We discuss here twisted Cohomotopy in degree 4 and 7 jointly, related by the quaternionic Hopf fibration hH. This
requires first determining the space of twists that are compatible with hH, which is the content of Prop. 2.20 and
Prop. 2.22 below. This yields the scenario of incremental G-structures shown in Figure T. The twists that appear
are subgroups of Spin(8) related by triality (Prop. 2.17 below), and in fact the classifying space for the C-field
implied by Hypothesis H comes out to be the homotopy-fixed locus of triality.

It will be useful to have the following notation for a basic but crucial operation on Spin groups:

Definition 2.11 (Central product of groups). Given a tuple of groups G1,G2, · · · ,Gn, each equipped with a central
Z2-subgroup inclusion Z2 ≃ {1,−1} ⊂ Z(Gi)⊂ Gi, we write

G1 ·G2 · · · · ·Gn−1 ·Gn :=
(
G1 ×G2 ×·· ·×Gn

)
/diagZ2 (53)

for the quotient group of their direct product group by the corresponding diagonal Z2-subgroup:

{(1,1, · · · ,1), (−1,−1, · · · ,−1)} �
� // G1 ×G2 ×·· ·×Gn .

Just to save space we will sometimes suppress the dots and write G1G2 := G1 ·G2, etc.
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Example 2.12 (Central product of symplectic groups). The notation in Def. 2.11 originates in [Ale68][Gra69] for
the examples

Sp(n) ·Sp(1) :=
(
Sp(n)×Sp(1)

)
/{(1,1),(−1,−1)}. (54)

For n ≥ 2 this is such that a Sp(n)·Sp(1)-structure on a 4n-dimensional manifold is equivalently a quaternion-
Kähler structure [Sal82]. Specifically, for n = 2 there is a canonical subgroup inclusion

Spin(8)

����
Sp(2) ·Sp(1)

& �

33

� � // SO(8)≃ SO(H2)

(A,q) � // (x 7! A · x ·q)

(55)

given by identifying elements of Sp(2) as quaternion-unitary 2×2-matrices A, elements of Sp(1) as multiples of
the 2× 2 identity matrix by unit quaternions q, and acting with such pairs by quaternionic matrix conjugation on
elements x ∈ H2 ≃R R8 as indicated. This lifts to an inclusion into Spin(8) through the defining double-covering
map (see [CV97, 2.]). Notice that reversing the Sp-factors gives an isomorphic group, but a different subgroup
inclusion

Spin(8)

����
Sp(1) ·Sp(2)

% �

33

� � // SO(8)≃ SO(H2)

(q,A) � // (x 7! q · x ·A)

(56)

For more on this see Prop. 2.17 below.

Example 2.13 (Central product of Spin groups). For n1,n2 ∈ N, we have the central product (Def. 2.11) of the
corresponding Spin groups

Spin(n1) ·Spin(n2) :=
(
Spin(n1)×Spin(n2)

)
/{(1,1),(−1,−1)} . (57)

(This notation is used for instance in [McI99, p. 9] [HN12, Prop. 17.13.1].) Here the canonical subgroup inclusions
of Spin groups Spin(n)

ιn
↪−! Spin(n+ k) induce a canonical subgroup inclusion of (57) into Spin(n1 +n2):

(α,β ) � // ιn1(α) · ιn2(β )(
Z2
)

diag
� � ker // Spin(n1)×Spin(n2) //

quot
��

Spin(n1 +n2) .

Spin(n1) ·Spin(n2)
& �

33

(58)

Notice that these groups sit in short exact sequences as follows:

1 // Spin(n1)
� � ιn1 // Spin(n1) ·Spin(n2)

prn2 // // SO(n2) // 1 . (59)

For low values of n1,n2 there are exceptional isomorphisms between the groups (54) and (57) as abstract
groups, but as subgroups under the inclusions (55) and (58) these are different. This is the content of Prop. 2.17
below. First we record the following, for later use:

Definition 2.14 (Universal class of central products). For n1,n2 ∈ N, write

ϖ ∈ H2(B(Spin(n1) ·Spin(n2)); Z2
)

for the universal characteristic class on the classifying space of the central product Spin group (Def. 2.13) which
is the pullback of the second Stiefel-Whitney class w2 ∈ H2

(
BSO(n2),Z2

)
from the classifying space of the un-

derlying SO(n2)-bundles, via the projection (59):

ϖ := (Bprn2
)∗(w2) . (60)
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See also [Sal82, Def. 2.1], following [MR76].

Lemma 2.15 (Obstruction to direct product structure). For n1,n2 ∈ N, let X τ
−! B

(
Spin(n1) · Spin(n2)

)
be a

classifying map for a central product Spin structure (Def. 2.13). Then the following are equivalent:
(i) The class ϖ from Def. 2.14 vanishes:

ϖ(τ) = 0 ∈ H2(X ;Z2) .

(ii) The classifying map τ has a lift to the direct product Spin structure:

B
(
Spin(n1)×Spin(n2)

)
��

X
τ

//

τ̂

44

B
(
Spin(n1)·Spin(n2)

)
.

(iii) The underlying SO(n2)-bundle admits Spin structure:

BSpin(n2)

��
X

Bprn2
◦τ

//

B̂prn2
◦τ

33

BSO(n2) .

Proof. By (57) and (59) we have the following short exact sequence of short exact sequences of groups:

1� _

��

� � // Spin(5)� _

��

Spin(5)� _

��
Z2
� � // Spin(5)×Spin(3)

����

// // Spin(5)·Spin(3)

pr3
����

Z2
� � // Spin(3) // // SO(3)

Since the bottom left morphism is an identity, it follows that also after passing to classifying spaces and forming
connecting homomorphisms, the corresponding morphism on the bottom right in the following diagram is a weak
homotopy equivalence:

BZ2 // B
(
Spin(5)×Spin(3)

)
��

// B
(
Spin(5)·Spin(3)

)
ϖ //

Bpr3
��

B2Z

BZ2 // BSpin(3) // BSO(3)
w2 // B2Z

By the top homotopy fiber sequence, this exhibits ϖ as the obstruction to the lift from central product Spin structure
to direct product Spin structure.

Example 2.16. Applying Def. 2.11 to three copies of Sp(1) yields the group

Sp(1) ·Sp(1) ·Sp(1) :=
(
Sp(1)×Sp(1)×Sp(1)

)
/
{
(1,1,1),(−1,−1,−1)

}
. (61)

The notation appears for instance in [OP01][BM14].
• Observe that, due to the exceptional isomorphisms Spin(3)≃ Sp(1) and Spin(4)≃ Spin(3)×Spin(3) there

are isomorphisms

Spin(4) ·Spin(3) ≃ Spin(3) ·Spin(3) ·Spin(3) ≃ Sp(1) ·Sp(1) ·Sp(1) . (62)
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• The group (61) is acted upon via automorphisms interchange the three dot-factors by the symmetric group
on three elements:

S3 <<
(
Sp(1) ·Sp(1) ·Sp(1)

)
(63)

• Beware that the central product of groups with central Z2-subgroup (Def. 2.11) is not a binary associative
operation: for instance, we have

Sp(1) ·Sp(1) ≃ Spin(3) ·Spin(3) ≃ SO(4) , (64)

which does not even contain the Z2-subgroup anymore that one would diagonally quotient out in (62), hence
the would-be iterated binary expression “

(
Sp(1) ·Sp(1)

)
·Sp(1)” does not even make sense. Instead we have

Sp(1) ·Sp(1) ·Sp(1) ≃
(
Sp(1)×Sp(1)

)
·Sp(1) . (65)

But it is useful to observe that

Sp(1) ≃ Sp(1) ·Z2 and Sp(1)×Sp(1) ≃ Sp(1) ·Z2 ·Sp(1) . (66)

All of the above will play a role in Prop. 2.22 below.

Proposition 2.17 (Triality of quaternionic subgroups of Spin(8)). The subgroup inclusions into Spin(8) of Sp(2)·
Sp(1) via (55), Sp(1)·Sp(2) via (56), and Spin(5)·Spin(3) via (58), represent three distinct conjugacy classes of
subgroups, and under the defining projection to SO(8) they map to subgroups of SO(8) as follows:

Sp(1) ·Sp(2) {�
ι ′

,, Spin(8)

�� ��

Spin(3) ·Spin(5)

$$ $$

? _ιoo

Sp(2) ·Sp(1)
# �

ι ′′
22

Sp(1) ·Sp(2)
y� ι ′

,, SO(8) SO(3)×SO(5).? _ιoo

Sp(2) ·Sp(1)
% �

ι ′′
22

Moreover, the triality group Out(Spin(8)) acts transitively by permutation on the set of these three conjugacy
classes.

Spin(8)
DD

≃

��

ss
≃

tri

""

Sp(2)·Sp(1)
DD

≃

��

0 P

``

rr ≃

$$
Sp(1)·Sp(1)·Sp(1)

OO

≃
��

4 T

gg

kk ≃
++

Sp(1)·Sp(1)·Sp(1) �
� // Spin(5)·Spin(3) �

� // Spin(8) .

Sp(1)·Sp(1)·Sp(1)
jJ

ww

ss
≃ 33

Sp(1)·Sp(2) ll ≃

::

nN

~~
Spin(8) kk

≃

<<
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Proof. This follows by analysis of the action of triality on the corresponding Lie algebras; see [CV97, Sec. 2],
[Kol02, Prop. 3.3 (3)].

Remark 2.18 (Subgroups). (i) For emphasis, notice that the subgroups appearing in Prop. 2.17 are all isomorphic
as abstract groups

Sp(1) ·Sp(2) ≃ Sp(2) ·Sp(1) ≃ Spin(5) ·Spin(3) ≃ Spin(3) ·Spin(5)

due to the classical exceptional isomorphisms

Sp(1) ≃ Spin(3) , Sp(2) ≃ Spin(5)

and via the evident automorphisms that permutes central product factors. However, when each is equipped with its
canononical subgroup inclusion into Spin(8), via (55), (56) and (58), then these are distinct subgroups. Moreover,
Prop. 2.17 says that the first three of these are even in distinct conjugacy classes of subgroups, while the two
Spin(3)·Spin(5) and Spin(5)·Spin(3) are in the same conjugacy class.

(ii) In the following, when considering these subgroup inclusions and their induced morphisms on classifying
spaces, we will always mean that canonical inclusion of the subgroup of that name. When we need to refer to
another, non-canonical embedding of any of these groups G, then we will always make this explicit as a triality
automorphism G ≃

! G′ followed by the canonical inclusion of G′. See for instance (111) below for an example.

For the development in §3 we need to know in particular how universal characteristic classes behave under the
triality automorphisms:

Lemma 2.19 (Pullback of classes along triality). The integral cohomology ring of BSpin(8) is

H•(BSpin(8);Z) ≃ Z
[1

2 p1,
1
4

(
p2 −

(1
2 p1
)2)− 1

2
χ, χ8, β (w6)

]/(
2β (w6)

)
, (67)

where pk are Pontrjagin classes, χ8 is the Euler class, w6 is a Stiefel-Whitney class, β is the Bockstein homomor-
phism, so that W7 := β (w6) is an integral Stiefel-Whitney class.

(i) Under the delooping of the triality automorphism from Prop. 2.17 to classifying spaces

B
(
Sp(2) ·Sp(1)

) ≃ //

��

B
(
Spin(5) ·Spin(3)

)
��

BSpin(8) ≃
Btri

// BSpin(8)

(68)

these classes pull back as follows:

(
Btri
)∗ :

1
2 p1 7−! 1

2 p1

χ8 7−! −1
4

(
p2 −

(1
2 p1
)2)

+ 1
2
χ8

1
4

(
p2 −

(1
2 p1
)2)− 1

2
χ8 7−! −χ8

(69)

(ii) Notice that, in particular, (
(Btri)∗

)−1
= (Btri)∗ .

and
(Btri)∗ : 1

4 p2 7−! −χ8 +
(1

4 p1
)2 − 1

2

(
1
4

(
p2 −

(1
2 p1
)2)− 1

2
χ
)
. (70)

Proof. This follows by combining [CV97, Lemmas 2.5, 4.1, 4.2], following [GG70, Thm. 2.1], and using the
property (tri∗)−1 = tri∗, recalled in [CV97, 2.].
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Now we may have a closer look at the quaternionic Hopf fibration S7 ≃ S(H2)
hH // HP1 ≃ S4 :

Proposition 2.20 (Symmetries of the quaternionic Hopf fibration).
(i) The symmetry group of hH and hence the group of twists for Cohomotopy jointly in degrees 4 and 7, is the group
(54),

Sp(2)·Sp(1) ↪−! O(8) , (71)

with its canonical action (55), in that this is the largest subgroup of O(8)≃ O(H2) under which hH is equivariant.

(ii) The corresponding action on the codomain 4-sphere S4 ≃ S
(
R5
)

is via the canonical projection (59) to SO(5)

Sp(2)·Sp(1) ≃ // Spin(5)·Spin(3)
pr5 // // SO(5) . (72)

Proof. This statement essentially appears as [GWZ86, Prop. 4.1] and also, somewhat more implicitly, in [Po95,
p. 263]. To make this more explicit, we may observe, with Table S, that the quaternionic Hopf fibration has the
following coset space description:

S3 fib(hH) // S7 hH // S4

Spin(4)
Spin(3) ι4

id

// Sp(2)
Sp(1) id

q 7!(q,1)

// Sp(2)
Sp(1)×Sp(1)

(73)

where ι4 : Spin(4) ↪! Spin(5) ≃ Sp(2) denotes the canonical inclusion. This can also be deduced from [HaTo09,
Table 1]. In the octonionic case the analogous statement is noticed in [OPPV12, p. 7].

The following Prop. 2.22 gives the homotopy-theoretic version of Prop. 2.20, which is the key for the discus-
sion in §3 below. In order to clearly bring out all subtleties, we first recall the following fact:

Lemma 2.21 (Spin(4)-action on quaternions). Under the exceptional isomorphism

Sp(1)×Sp(1)� _

��

≃ // Spin(4)� _
��

// // SO(4)� _
��

Sp(2) ≃
// Spin(5) // // SO(5)

the action of Sp(1)× Sp(1) on R4 ≃R H is the conjugation action of pairs (q1,q2) of unit quaternions on any
quaternion x:

Spin(4)×R4

≃
��

// R4

≃
��(

Sp(1)×Sp(1)
)
×H

conj(−,−)(−) // H(
(q1,q2),x

) � // q1 · x ·q2

(74)

Proposition 2.22 (The Sp(2) · Sp(1)-parametrized quaternionic Hopf fibration). The homotopy quotient of the
quaternionic Hopf fibration hH by its equivariance group (Prop. 2.20) is equivalently the map of classifying
spaces

S7�Sp(2)·Sp(1)

hH�Sp(2)·Sp(1)

��

oo ≃ // B
(
Sp(1) ·Sp(1)

)
B([q1,q2]7![q1,q2,q2])

��
S4�Sp(2)·Sp(1) oo ≃

// B
(
Sp(1)·Sp(1)·Sp(1)

)
which is induced by the following inclusion of central product groups from Example 2.16:

Sp(1) ·Sp(1) �
� // Sp(1) ·Sp(1) ·Sp(1)

[q1, q2]
� //

[
q1, q2, q2

] (75)
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Proof. Consider the following diagram:

S7

hH

++

quot

��

Sp(2)
Sp(1)

fib

��

id
(id, e)

// Sp(2)
Sp(1)×Sp(1)

fib

��

S4

quot

��
S7�

(
Sp(2)·Sp(1)

)
hH�(Sp(2)·Sp(1))

22
B
(
Sp(1) ·Sp(1)

)

  

B([q1,q2]7![q1,q2,q2]) // B
(
Sp(1)·Sp(1)·Sp(1)

)

||

S4�
(
Sp(2)·Sp(1)

)

B
(
Sp(2)·Sp(1)

)
The outer rectangle exhibits the homotopy quotient of hH that we are after, and so we need to show this factors as
a pasting of homotopy commutative inner squares as shown.

First, the factorization of the top horizontal map follows as the right half of diagram (73) in Prop. 2.20.
Moreover, the bottom triangle exhibits the delooping of the factorization

Sp(1) ·Sp(1) �
� // Sp(1) ·Sp(1) ·Sp(1) �

� // Sp(2) ·Sp(1)

[q1,q2]
� // [q1,q2,q2]

� //
[(

q1 0
0 q2

)
,q2

] (76)

and hence commutes by construction. This implies, by functoriality of homotopy fibers, that also the square of
homotopy fibers commutes, and hence the whole diagram commutes as soon as these squares have top horizontal
morphisms as shown. Hence it remains to see that the induced morphism of homotopy fibers is indeed as shown,
and hence is indeed the quaternionic Hopf fibration.

For this, we invoke Lemma 2.7, which says that the homotopy fibers here are the coset spaces of the corre-
sponding group inclusions, and hence the morphism of homotopy fibers is the corresponding induced morphism
of coset spaces. With this we are reduced to showing that we have a commuting top square as follows

Sp(2)·Sp(1)
Sp(1)·Sp(1)

id
[q1 ,q2 ]7![q1 ,q2 ,q2 ] // Sp(2)·Sp(1)

Sp(1)·Sp(1)·Sp(1)

Sp(2)
Sp(1)

id
q 7!(q,1) // Sp(2)

Sp(1)×Sp(1)

S7 hH // S4

(77)

because the bottom square already commutes by Prop. 2.20.
For this, we observe that the groups Sp(1) ·Sp(1) and Sp(1) ·Sp(1) ·Sp(1) are the stabilizer subgroups under

the respective Sp(2) ·Sp(1)-actions from Prop. 2.20 on S7 and S4, of any one point on S7 and S4, respectively: For
definiteness we consider the points[

0
1

]
∈ S7 ≃ S

(
H
⊕
H

)
and

[
0
1

]
∈ S4 ≃ S

(
H
⊕
R

)
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for which one sees by direct inspection of the matrix multiplications involved that their stabilizer subgroups under
the actions of Prop. 2.20 are as follows:

Sp(1) ·Sp(1)

≃
��

// Sp(1) ·Sp(1) ·Sp(1)

≃
��{[(

q1 0
0 q2

)
,q2

]
| qi ∈ Sp(1)

}
[q1,q2] 7! [q1,q2,q2] //

≃
��

{[
conj(q1,q2),q3

]
| qi ∈ Sp(1)

}
≃
��

StabSp(2)·Sp(1)

([
0
1

]
∈

H
⊕
H

)
� v

))

StabSp(2)·Sp(1)

([
0
1

]
∈

H
⊕
R

)
hH

uu
Sp(2) ·Sp(1)

Here on the left we used the defining action by quaternionic matrix multiplication from (55), while on the right we
used the quaternionic conjugation action conj(−,−) (74) of Spin(4)≃ Sp(1)×Sp(1) by Lemma 2.21.

That our groups are thus stabilizer subgroups implies the existence of top vertical isomorphisms in (77). Mak-
ing these explicit and chasing a coset through the top square in (77) makes manifest that the square indeed com-
mutes:

Sp(1) ·Sp(1) �
�[q1 ,q2 ]7![diag(q1 ,q2),q2 ]

// Sp(2) ·Sp(1) quot // // Sp(2)·Sp(1)
Sp(1)·Sp(1)

id
[q1 ,q2 ]7![q1 ,q2 ,q2 ]

//
OO

≃

Sp(2)·Sp(1)
Sp(1)·Sp(1)·Sp(1)OO

≃

Sp(2) ·Sp(1)quotoooo Sp(1) ·Sp(1) ·Sp(1)? _
[diag(q1 ,q2),q3 ] [[q1 ,q2 ,q3 ]

oo

Sp(1) �
�

q 7!diag(q,1)
//?�

q 7![q,1]

OO

Sp(2) quot // //?�

A 7![A,1]

OO

Sp(2)
Sp(1) id

q7!(q,1)

// Sp(2)
Sp(1)×Sp(1) Sp(2)

?�

A7![A,1]

OO

quotoooo Sp(1)×Sp(1)
?�

(q1,q2)7![q1,q2,1]

OO

? _

diag(q1 ,q2) [(q1 ,q2)

oo

[A,1] ·
(
Sp(1) ·Sp(1)

) � // [A,1] ·
(
Sp(1) ·Sp(1) ·Sp(1)

)

A ·
(
Sp(1)

) � //
_

OO

A ·
(
Sp(1) ·Sp(1)

)_

OO

This completes the proof.

2.4 Twisted Cohomotopy in degree 7 alone

If we do not require the twists of Cohomotopy in degree 7 to be compatible with the quaternionic Hopf fibration
(as we did in the previous section, §2.3) then there are more exceptional twists. We give a homotopy-theoretic
classification of these in Prop. 2.23 below. In Prop. 3.6 below we highlight how this recovers precisely the special
holonomy structures of N = 1 compactifications of M/F-theory.

Further below in §2.6, we explain how these N = 1 structures are fluxless in a precise cohomotopical sense,
which crucially enters the M2-tadpole cancellation in §3.8.
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Proposition 2.23 (G-structures induced by Cohomotopy in degree 7). We have the following sequence of homotopy
pullbacks of universal 7-spherical fibrations, hence of twists for Cohomotopy in degree 7 (see Figure D):

S7 fib // BSU(2) //

��
(pb)

BSpin(5)

��
S7 fib // BSU(3) //

��
(pb)

BSpin(6)

��
S7 fib // BG2 //

��
(pb)

BSpin(7)

Bι

��
S7 fib // BSpin(7)

Bι ′
// BSpin(8)

Proof. First, observe that there is the following analogous commuting diagram of Lie groups:

SU(2) �
� //

� _

��
(pb)

SU(3) �
� //

� _

��
(pb)

G2
� � //
� _

��
(pb)

Spin(7)� _
ι ′

��
Spin(5)

����

� � //

(pb)

Spin(6) �
� //

����
(pb)

Spin(7) �
� //

����
(pb)

Spin(8)

����
SO(5) �

� // SO(6) �
� // SO(7) �

� // SO(8) .

(78)

Here the bottom squares evidently commute and are pullback squares by the definition of Spin groups, while the
three total vertical rectangles commute and are pullback squares by [On93, Table 2, p. 144]. By the pasting
law, 5 this implies that also the top squares are pullbacks, hence exhibiting intersections of subgroup inclusions.
Notice that the top right vertical inclusion ι ′ is not the canonical inclusion of Spin(7) in Spin(8), but is a subgroup
inclusion in a distinct Spin(7)-conjugacy class, of which there are three [Va01, Thm. 5 on p. 6]. The intersection in
the top right square is also proven in [Va01, Thm. 5 on p. 13], and that of the middle square in [Va01, Lem. 9 on p.
10]. Again, by the pasting law, this implies that also the top squares are pullbacks, hence exhibiting intersections
of subgroup inclusions.

Applying delooping (passage to classifying spaces) to these top squares, this shows that we have a homotopy
commuting diagram as follows:

S7

fib

��

S7

fib

��

S7

fib

��

S7

fib

��
S3

fib
((

S5
fib
((

S6
fib
((

S7
fib
((

∗ //

��

BSU(2) //

��

(pb)

BSU(3) //

��

(pb)

BG2 //

��

(pb)

BSpin(7)

Bι ′

��
BSpin(4) // BSpin(5) // BSpin(6) // BSpin(7) // BSpin(8)

S4 fib

66

S5 fib

66

S6 fib

66

S7 fib

66

(79)

5 Recall that this says that if
A //

��
B //

�� (pb)

C
��

D // E // F
is a commuting diagram, where the right square is a pullback, then the left square is a pullback precisely if the full outer rectangle is a
pullback. The same holds for homotopy-commutative diagrams and homotopy-pullback squares.
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The spherical homotopy fibers shown in this diagram follow by using Lemma 2.7 with classical results about coset
space structures of topological spheres, as summarized in Table S.

In order to see that each square in the diagram of classifying spaces is a homotopy pullback, we now use the
following basic fact from homotopy theory (see e.g. [CPS05, 5.2]): Assume that Y1,Y2 are connected spaces, and
we are given a homotopy-commutative square as on the right in the following diagram

fib( f1) //

≃
��

X1
f1 //

��
(pb)

Y1

��
fib( f2) // X2

f2 // Y2 .

Then the square is a homotopy pullback square if and only if the induced left vertical morphism between hori-
zontal homotopy fibers is a weak homotopy equivalence; as indicated. To see that in our case these induced left
vertical morphisms are indeed weak homotopy equivalences, we first observe that for each of the squares above
the horizontal homotopy fibers are n-spheres of the same dimension n:

S7 ≃ Spin(7)
G2

//

≃
��

BG2 //

��

BSpin(7)

��
S7 ≃ Spin(8)

Spin(7)
// BSpin(7) // BSpin(8)

and
S6 ≃ G2

SU(3)
//

≃
��

BSU(3) //

��

BG2

��
S6 ≃ Spin(7)

Spin(6)
// BSpin(6) // BSpin(7)

(for the coset realization of S6 on the top left see [FI55]) and

S5 ≃ SU(3)
SU(2)

//

≃
��

BSU(2) //

��

BSU(3)

��
S5 ≃ Spin(6)

Spin(5)
// BSpin(5) // BSpin(6) .

To see in detail that the homotopy fibers on the left are not only pairwise weakly homotopy equivalent, but that
the universally induced dashed morphism exhibits such a weak homotopy equivalence, we proceed as follows.
For G := Spin(n) one of the Spin groups appearing above, pick any one topological space EG modelling the total
space of the universal G bundle (hence any weakly contractible topological space equipped with a free continuous
G-action). Then for G′ ι

↪! G any subgroup, we have that the projection (EG)/G′! (EG)/G is a Serre fibration
modelling BG′ Bι

−! BG (e.g. [Mi11, 11.4]). Since ordinary pullbacks of Serre fibrations are already homotopy
pullbacks, this means that the above homotopy pullback squares are represented by actual pullback squares of
topological spaces in the following diagram:

Sn ≃ G′

G′∩G′′
//

≃
��

(pb)

(EG)/(G′∩G′′) //

��

(pb)

(EG)/G′

��
Sn ≃ G

G′′
// (EG)/G′′ // (EG)/G .
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Here the dashed morphism is the canonical continuous function induced by the given group inclusions, so that it is
now sufficient to observe that this is a homeomorphism.

While this does not follow for general subgroup intersections, it does follow as soon as the given coset spaces
are homeomorphic, as is the case here. Namely, pick any point x ∈ Sn and observe that we have a commuting
square of continuous functions as follows.

Sn oo [g′]7!g′(x)
≃homeo

G′

G′∩G′′

��
Sn oo

[g]7!g(x)

≃homeo G
G′′ .

Since in this diagram the top, bottom and left maps are homeomorphisms, it follows that the right map is also a
homeomorphism.

Remark 2.24 (Twisted generalized cohomotopy). One may also consider twisted Cohomotopy with coefficients
in fibrations of pairs of spheres:

(
Sp ×Sq

)
�
(
O(p)×O(q)

)
��

X

55

T X
// BO(n)


/

∼

(i) Corresponding twists arise from “doubly exceptional geometry”, in that we have the following pasting diagram
of homotopy pullbacks, further refining those of Prop. 2.23:

S7 ×S7

(pb)

//

��

BG2

iG2

��
S7

��

//

(pb)

BSpin(7)

iSpin(7)

��
∗ // BSpin(8)

equivalently

S7 ×S7 //

��
(pb)

S7�Spin(7)

iG2

��
S7

��

//

(pb)

S7�Spin(8)

iSpin(7)

��
∗ // BSpin(8)

This follows analogously as in Prop. 2.23, with [On93, p. 146].

(ii) Further twists for Cohomotopy with coefficients in Sp × Sp arise from topological G-structure for rotation
groups O(p, p) in split signature, and hence from generalized geometry (e.g. [Hul07]). This is because indefinite
orthogonal groups are homotopy equivalent to their maximal compact subgroups via the polar decomposition

O(p, p) ≃wh O(p)×O(p)

(see, e.g., [HN12, Sec. 17.2]) and similarly for higher connected covers (see [SS19]). Therefore, we might call
Cohomotopy with coefficients in Sp × Sp, and twisted by generalized geometry, generalized Cohomotopy (not to
be confused with older terminology [Ja62]). We will discuss the details elsewhere.

2.5 Twisted Cohomotopy via Poincaré-Hopf

We characterize here the T X-twisted Cohomotopy of compact orientable smooth manifolds X in terms of the
“Cohomotopy charge” carried by a finite number of point singularities in X . This is the content of Prop. 2.25
below. The proof is a cohomotopical restatement of the classical Poincaré-Hopf (PH) theorem (see e.g. [DNF85,
Sec. 15.2]), but the perspective of twisted Cohomotopy is noteworthy in itself and is crucial for the discussion of
M2-brane tadpole cancellation in §3.8 below.
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Proposition 2.25 (Twisted cohomotopy and the Euler characteristic). Let X be an orientable compact smooth
manifold. Then:
(i) A cocycle in the T X-twisted Cohomotopy of X (Def. 2.1) exists if and only if the Euler characteristic of X
vanishes:

π
T X(X) ̸= ∅ ⇐⇒ χ[X ] ̸= 0 .

(ii) Generally, there exists a finite set of points {xi ∈ X} such that the operation of restriction to open neighbour-
hoods of these points exhibits an injection of the T X-twisted Cohomotopy of their complement πT X

(
X \∏

i
{xi}

)
(Def. 2.1) into the product of untwisted Cohomotopy sets (34) πdim(X)

(
Uxi \{xi}

)
of these pointed neighborhoods.

Moreover, the latter are integers which sum to the Euler characteristic χ[X ] of X:

πT X
(
X \∏

i
{xi}

)
��

� � restr. // ∏
i

πdim(X)−1
(
Uxi \{xi}

) ≃ // ∏
i
Z

∑
i��

∗
χ[X ] // Z

(80)

Proof. This follows with the classical Poincaré-Hopf theorem, (83) below. We recall the relevant terminology:

(i) For v a vector field on X , a point x ∈ X is called an isolated zero of v if there exists an open contractible
neighborhood Ux ⊂ X such that the restriction v|Ux of v to this neighborhood vanishes at x and only at x.

(ii) This means that on Ux \{x} the vector field v induces a map to the (dim(X)−1)-sphere

v/|v| : Ux \{x}
v/|v| // S(TxX)≃ Sdim(X)−1 . (81)

Here the equivalence on the right is to highlight that the sphere arises as the fiber of the unit sphere bundle of
the tangent bundle TUx, which may be identified with the unit sphere in TxX , by the assumed contractibility
of Ux.

(iii) Given an isolated zero x, the Poincaré-Hopf index of v at that point is the degree of the associated map (81)
to the sphere, for any choice of local chart:

indexx(v) := deg
(
Ux \{x}

v/|v| // S(TxX)≃ Sdim(X)−1
)
. (82)

Now for X orientable and compact, the Poincaré-Hopf theorem (e.g. [DNF85, Sec. 15.2]) says that for any
vector field v ∈ Γ(T X) with a finite set {xi ∈ X} of isolated zeros, the sum of the indices (82) of v equals the Euler
characteristic χ[X ] of X :

∑
isolated zero

xi∈X

indexxi(v) = χ[X ] . (83)

To conclude, observe that the maps to spheres in (81) are but the restriction of the corresponding cocycle in the
T X-Cohomotopy of X \∏

i
{xi}:

Sdim(X)�SO(dim(X))

��
X \∏

i
{xi}

v/|v|
33

T X
// BSO(dim(X))

Finally, the identification of the PH-index with an integer is via the Hopf degree theorem (35), now understood as
the characterization of untwisted Cohomotopy in (35).
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We may equivalently use the differential form data that underlies a cocycle in twisted Cohomotopy, by Prop.
2.5, to re-express the cohomotopical PH-theorem, Prop. 2.25, via Stokes’ theorem. Let X be an orientable compact
smooth manifold of even dimension dim(X) = 2n+2, for n ∈N and let v ∈ T X be a vector field with isolated zeros
{xi ∈ X}. For any fixed choice of Riemannian metric on X and any small enough positive real number ε , write

Dε
xi

:=
{

x ∈ X | d(x,xi)< ε
}
⊂ X

for the open ball of radius ε around xi. The complement of these open balls is hence a manifold with boundary a
disjoint union of (2n+1)-spheres:

∂
(
X \

∏

i
{xi}

)
≃

∏

i
S2n+1.

Then, by Prop. 2.5, the cocycle in twisted Cohomotopy on X \∏

i
{xi} which corresponds to the vector field v has

underlying it a differential (2n+1)-form G2n+1 which satisfies

dG2n+1 = −χ2n+2(∇) .

By Stokes’ theorem we thus have
χ[X ] = lim

ε!0

∫
X\∏

i
Dε

xi

χ

=− lim
ε!0

∑
i

∫
∂Dε

xi

G2n+1

We may summarize the above by the following.

Lemma 2.26 (Cohomological PH-theorem). In the above setting, the Euler characteristic is given by the integral
of −G2n+1 over the boundary components around the zeros of v:

−∑
i

∫
S2n+1

i

G2n+1 = χ[X ] . (84)

2.6 Twisted Cohomotopy via Pontrjagin-Thom

We recall the unstable Pontrjagin-Thom theorem relating untwisted Cohomotopy to normally framed submani-
folds, (85) below. Then we show that twisted Cohomotopy jointly in degrees 4 and 7 (as per §2.3) knows about
calibrated submanifolds in 8-manifolds, Prop. 2.27 below. Finally we observe that in this case vanishing subman-
ifolds under a twisted Pontrjagin-Thom construction means, equivalently, a factorization through the quaternionic
Hopf fibration, (91) below.

Framed submanifolds from untwisted Cohomotopy. One striking aspect of Hypothesis H, is that unstable Co-
homotopy of a manifold X is exactly the cohomology theory which classifies (cobordism classes of) submanifolds
Σ ⊂ X , subject to constraints on the normal bundle NX Σ of the embedding.

In the case of vanishing twist, this is the statement of the classical unstable Pontrjagin-Thom isomorphism (e.g.
[Kos93, IX.5])

πn(X)
oo PTn

fib0 ◦ reg

≃ // FrSubMfdcodim=n(X)/
∼bord

. (85)

For a closed smooth manifold X and any degree n ∈ N, this identifies degree n cocycles[
X c
−! Sn] ∈ π

n(X)
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in the untwisted unstable Cohomotopy (34) of X with the cobordism classes of normally framed submanifolds Σ

of codimension n (
Σ ↪! X , NX Σ

fr
≃
// Σ×Rn , dim(Σ) = dim(X)−n

)
given as the preimage of a chosen base point

pt ∈ Sn (86)

under a smooth function representative c of [c] for which pt is a regular value c−1
(
{pt}

)
=: Σ ⊂ X .

As advocated in [Sa13], we may naturally think of the submanifolds Σ⊂X appearing in the unstable Pontrjagin-
Thom isomorphism (85) as branes whose charge is given by the Cohomotopy class [c]. This reveals Cohomotopy
as the canonical cohomology theory for measuring charges of branes given as (cobordism classes of) submanifolds.
To see this in full detail one needs to consider the refinement of (85) to twisted and equivariant Cohomotopy. In
the rational approximation this is discussed in [HSS18], the full non-rational theory of M-branes at singularities
classified by equivariant Cohomotopy will be discussed elsewhere [SS19a][BSS19b].

Here we content ourselves with highlighting two related facts, which are needed for the discussion in §3.

Calibrated submanifolds from twisted Cohomotopy. The manifold R8 carries an exceptional calibration by
the Cayley 4-form Φ ∈ Ω4(R8) [HL82], which singles out 4-dimensional submanifold embeddings Σ4 ↪! R8 as
the corresponding calibrated submanifolds. The space of all such Cayley 4-planes, canonically a subspace of the
Grassmannian space Gr(4,8) of all 4-planes in 8 dimensions, is denoted

CAY ⊂ Gr(4,8) (87)

in [BH89, (2.19)][GMM95, (5.20)]. We will write

CAYsL ⊂ CAY ⊂ Gr(4,8) (88)

for the further subspace of those Cayley 4-planes which are also special Lagrangian submanifolds. There are
canonical symmetry actions of Spin(7) and of Spin(6), respectively, on these spaces [HL82, Prop. 1.36]:

CAY

Spin(7)

��
and CAYsL

Spin(6)

��
. (89)

Hence the corresponding homotopy quotients

CAY�Spin(7) and CAYsL�Spin(6) (90)

are the moduli spaces for Cayley 4-planes and for special Lagrangian Cayley 4-planes, respectively: for X a
Spin(7)-manifold, a dashed lift in

CAY�Spin(7)

��
X

33

// BSpin(7)

CAYsL�Spin(6)

��
X

33

// BSpin(6)

is a distribution on X by tangent spaces to (special Lagrangian) calibrated submanifolds.

Proposition 2.27 (Calibrations from twisted cohomotopy). The moduli spaces of (special Lagrangian) Cayley 4-
planes (90) are compatibly weakly homotopy equivalent to the coefficient spaces for twisted Cohomotopy jointly in
degrees 4 and 7, according to Prop. 2.20:

CAYsL�Spin(6) ≃

��

S7�
(
Sp(2) ·Sp(1)

)
��

CAY�Spin(7) ≃ S4�
(
Sp(2) ·Sp(1)

)
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Proof. By [HL82, Theorem 1.38] (see also [BH89, (3.19)], [GMM95, (5.20)]) we have a coset space realization

CAY ≃ Spin(7)/
(
Spin(4) ·Spin(3)

)
.

and by [BBMOOY96, p. 7] we have a coset space realization

CAYsl ≃ Spin(6)/
(
Spin(3) ·Spin(3)

)
≃ SU(6)/SO(4) .

By Lemma 2.7 this means equivalently that there are weak homotopy equivalences

CAY�Spin(7) ≃ B
(
Spin(4) ·Spin(3)

)
≃ B

(
Sp(1) ·Sp(1) ·Sp(2)

)
and

CAYsL�Spin(6) ≃ B
(
Spin(3) ·Spin(3)

)
≃ B

(
Sp(1) ·Sp(1)

)
.

This then implies the claim by Prop. 2.22.

Vanishing PT-charge in twisted Cohomotopy. Even without discussing a full generalization of the untwisted
Pontrjagin-Thom theorem (85) to the case of twisted Cohomotopy (Def. 2.1), we may say what it means for a
cocycle in twisted Cohomotopy to correspond to the empty submanifold, hence to correspond to vanishing brane
charge in the sense discussed above. This is all that we will need to refer to below in §3.3 and §3.8:

(i) In the case of untwisted cohomotopy it is immediate that the zero-charge cocycle is simply the one represented
by any function that does not meet the given base point pt ∈ Sn (86).

(ii) In the case of twisted Cohomotopy according to Def. 2.1, this chosen point must be a chosen section of the
given spherical fibration corresponding to the given twist τ:

Sn�O(n+1)

��
X

pt
77

τ
// BO(n+1)

which serves over each x ∈ X as the point ptx ∈ Ex ≃ S4 at which we declare to form the inverse image of
another given section, under a parametrized inverse Pontrjagin-Thom construction.

(iii) With that section pt chosen, any other twisted Cohomotopy cocycle [c0] ∈ πτ(X) which will yield the empty
submanifold under parametrized Pontrjagin-Thom must be represented by a section c0 which is everywhere
distinct from pt,

c0(x) ̸= ptx

so that c−1
0 (pt(x)) =∅ for all x ∈ X .

(iv) But such a choice of a pair of pointwise distinct sections is equivalently a reduction of the structure group not
just along O(4) ↪! O(5) as in Remark 2.8, but is rather a reduction all the way along O(3) ↪! O(5).

Specified to the Sp(2) ·Sp(1)-twisted Cohomotopy jointly in degrees 4 and 7, from §2.3 this says that vanishing
of the brane charge seen by degree 4 Cohomotopy cocycle via a putative parameterized PT theorem is witnessed
by a lift from B

(
Spin(5) ·Spin(3)

)
all the way to B

(
Spin(3) ·Spin(3)

)
. But comparison with Prop. 2.22 (see also

Figure T) shows the following:

Lemma 2.28 (Vanishing of Cohomotopy charge means factorization through hH). The vanishing of cohomotopi-
cal brane charge of Sp(2) ·Sp(1)-twisted Cohomotopy in degree 4 (§2.3), in the sense of the above parametrized
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Pontrjagin-Thom construction of corresponding branes, is exhibited by factorizations of the degree-4 cocycle
through degree-7 Cohomotopy, via the equivariant quaternionic Hopf fibration hH of Prop. 2.22:

S7�
(
Sp(2)·Sp(1)

)
hH�(Sp(2)·Sp(1))

��

≃ // B
(
Spin(3) ·Spin(3)

)

��
S4�

(
Sp(2)·Sp(1)

)

��

≃ // B
(
Spin(4)·Spin(3)

)

��
X

τ
//

cocycle in
twisted

Cohomotopy
in degree 4

22

PT-vanishing of
cocycle in

twisted Cohomotopy
in degree 4

44

B
(
Sp(2)·Sp(1)

)
Btri
≃ // B

(
Spin(5)·Spin(3)

)
.

(91)

We come back to this in Prop. 3.14 and Prop. 3.20 below.

This concludes our discussion of general properties of twisted Cohomotopy theory. Now we turn, in §3, to
discussing how, under Hypothesis H, these serve to yield anomaly cancellation in M-theory.

3 C-field charge-quantized in twisted Cohomotopy

We consider now the setup of M-theory on 8-manifolds:

Remark 3.1. For M-Theory on 8-manifolds [Wi95b][BB96][SVW96], spacetime is of the form R2,1 ×X8, corre-
sponding to a background of parallel M2-branes which appear as singular points in the 8-dimensional space X8, or
else as points that would be singular were they included in X8. See also [Ts06] [CMP13][PT13][BL14a][Sh15][BL14b]
[BL14c][BL14d].

M-theory on 8-manifolds with Sp(2) ·Sp(1)-structure (as in Def. 3.5 below), specifically on the quaternionic
projective plane HP2 [MV19, 4.3] (see also Example 3.2 below), has been argued in [AW03, pp. 75] to be dual to
4d M-theory on G2-manifolds in three different ways, such as to plausibly yield proof of confinement in 4d gauge
theory.

If the 8-manifold X8 is elliptically fibered then M-theory on X8 has been argued to be T-dual to phenomeno-
logically interesting F-theory compactifications on spacetimes of the form R3,1 × X̃8 [CMP13][BGPP13]:

M-theory
on 8-manifolds

R2,1 ×X8 T-duality
 −−−−−−!

F-theory on
8-manifolds

R3,1 × X̃8

In particular, for X8 of Spin(7)-structure, the resulting N = 1 supersymmetry in 3d on the left is argued [Wi95b][Wi95c,
3][Va96, 4.3][Wi00, p. 7] to be dual to a peculiar “N = 1/2” supersymmetry in 4d on the right, which does enforce
a vanishing cosmological constant, but does not constrain the finite energy particle spectrum to be supersymmetric.
This is developed in [BGP13][BGPP13][HLLZ19][HLLSZ19].

For our purposes, the following is concretely the data in question:

Definition 3.2 (The 8-manifold X8). We consider X8 to be a smooth 8-dimensional spin-manifold, possibly with
boundary, which is connected and simply connected. Let ∇ be any affine connection on the tangent bundle T X8.
We assume that H2(X8,Z2) = 0.

Remark 3.3 (Role of technical assumptions on the 8-manifold). We highlight the following:
(i) The assumption in Def. 3.2 that X8 be connected is convenient but immaterial and easily dropped.
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(ii) The assumption that X8 be simply connected should also be immaterial, but is not so easily dropped: All proofs
invoking Sullivan models in the following should generalize at least to nilpotent fundamental groups, but will be
much harder without this assumption.
(iii) The choice of affine connection ∇ in Def. 3.2 is just to bring in Chern-Weil theory and only affects the explicit
representatives of characteristic forms in the following, not any of the gauge/homotopy invariant statements.
(iv) The assumption H2(X ,Z2) = 0 bluntly ensures that any specific obstruction classes that could appear in this
group vanishes. This is used only in §3.2 and §3.4 below, and in §3.4 we only need that the specific obstruction
class ϖ ∈ H2(X ,Z2) to direct product Sp(2)×Sp(1)-structure vanishes (from Prop. 2.15). With this class thus
assumed to vanish, there is no essential loss of generality in assuming Sp(2)-structure.

Example 3.4. The quaternionic projective plane X8 =HP2 satisfies the assumptions of Def. 3.2. To see this, it is
sufficient to observe that it is homotopy equivalent to the result of gluing an 8-cell to a 4-cell (with attaching map
being the quaternionic Hopf fibration)

S7

(po)

hH //

��

S4

��
D8 // HP2

This cell structure immediately implies vanishing of all cohomology in degree ≤ 3.

Definition 3.5 (Hypothesis H for M-theory on 8-manifolds). Given an 8-manifold X8 (Def. 3.2) we say that a pair
of differential forms (G4,G7) on X8 satisfies Hypothesis H if it is in the image of the non-abelian Chern character
map (Def. 2.4) from J-twisted 4-Cohomotopy

π i7◦τ
(
X8
)

h∗ ��
π i4◦τ

(
X8
) LR // π i4◦τ

(
X8
)
R
oooo

{
(G4,G7) | · · ·

}
�� // Ω4(X8)×Ω7(X8)[

c
] � //

[
(G4,G7)

]
for twists compatible with the quaternionic Hopf fibration, which by Prop. 2.20 means that τ is a topological
Sp(2) ·Sp(1)-structure on X8, via (55).

We now discuss some consequences of Hypothesis H, as summarized in Table 1.

3.1 Special G-structures

We discuss how Hypothesis H implies N = 1 G-structure as in (14).

Parallel spinors and G-structure. Conditions on a compactification manifold to admit suitably parallel spinor
sections and hence preserve some amount of supersymmetry have commonly been phrased in terms of special
holonomy metrics (see e.g. [Gu02]). But more generally, in the potential presence of flux, an alternative character-
ization is in terms of G-structure, i.e. reductions of the structure group of the tangent/frame bundle. This was used
already in the classical [IPW88] but received more attention after it was re-amplified in the context of flux compact-
ifications in [GMPW04, Sec. 2], see also [Koe11, Sec. 2][Ga11][DDG14]. Discussion of G-structure specifically
in the context of M-theory on 8-manifolds (Remark 3.1) includes [Ts06][CMP13][PT13][BL14a][Sh15][BL14b]
[BL14c][BL14d].

Proposition 3.6. Let Xd be a spin-manifold of dimension d ∈ {5,6,7,8}. Then cocycles in J-twisted 7-Cohomotopy
(Def. 2.1) are equivalent to topological G-structures on Xd as follows:

Xd ∃ //

T X ��

S7�Spin(d)

||
BSpin(d)

v~

 ∈ π
i7◦T X(Xd) ⇔ topological

G-structure
for G =


Spin(7) | d = 8
G2 | d = 7
SU(3) | d = 6
SU(2) | d = 5

(92)
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hence are equivalent precisely to those G-structures that correspond to N = 1 compactifications of F-theory,
M-theory, and string theory, respectively. (e.g. [AG4][BBS10][GSZ14]).

Proof. This is Prop. 2.23 used in Prop. 2.8

3.2 DMW anomaly cancellation

We prove that Hypothess H implies the DMW anomaly cancellation condition (13):

Proposition 3.7. Let X8 be an 8-manifold as in Def. 3.2. Then existence of topological Sp(2) ·Sp(1)-structure on
X8, as in Hypothesis H (Def. 3.5) implies the following:

(i) The Euler class of the tangent bundle is proportional to the one-loop anomaly polynomial (X8 in [DLM95,
(1.2)], cf. [Wi96b, (5.5)]):

1
24

χ8(T X8) = I8(T X8) := 1
48

(
p2(T X8)− 1

4

(
p1(T X8)

)2) ∈ H8(X8,R
)
. (93)

(ii) The degree-6 Stiefel-Whitney class vanishes:

w6
(
T X8)= 0 ∈ H6(X8,Z2

)
, (94)

and hence so does the degree-7 integral Stiefel-Whitney class W7 := β (w6):

W7
(
T X8)= 0 ∈ H7(X8,Z

)
. (95)

Proof. This follows by applying [CV98b, Thm. 8.1 & Rem. 8.2].

3.3 Curvature-corrected Bianchi identity

We prove that Hypothesis H implies the higher curvature corrected Bianchi identities (19) (20).

Proposition 3.8 (Higher curvature corrections via Cohomotopy). Let X8 be an 8-manifold as in Def. 3.2. Then:

(i) The general form of the rationally twisted rational Cohomotopy sets in degrees 4 and 7 is as in (19) and (20).

(ii) If the differential forms (G4,G7) moreover satisfy Hypothesis H (Def. 3.5), then the Cohomotopy set is con-
cretely given as follows:

π i4◦τ(X8)R ≃

{
d G4 = 0

d G7 =−1
2 G̃4 ∧

(
G̃4 − 1

2 p1(∇)
)
− 12 · I8(∇)

}
/
∼

oooo
{

G4,G7 | · · ·
} � � // Ω4(X8)×Ω7(X8) ,

where G̃4 := G4 +
1
4 p1(∇) from (108) and I8 =

1
48

(
p2 − 1

4 p2
1
)

from (93).

Proof. The first statement is the specialization of Prop. 2.5 to degrees 4&7. For the second statement it then
remains to re-express the class 1

4 p2 of the effective O(5)-twist (42) to the corresponding class of the given tangential
Sp(2)-twist as we pass through triality (Prop. 2.17)

BSp(2)

��

≃ // BSpin(5)

��
X8

T X8
//

τ

44

BSpin(8) ≃
Btri

// BSpin(8) ,

(96)
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with the delooped triality automorphism (68) shown on the right. We claim that this is the difference between the
Euler class and the squared first fractional Pontrjagin class of X8:

1
4 p2
(
Btri∗(τ)

)
=
(

1
4 p1
(
T X8))2

−χ8
(
T X8). (97)

This follows by combining (70) from Prop. 2.19 with the Sp(2)-structure relation (93)

1
2

(
p2 −

(1
4 p1
)2)

= χ8 on BSp(2) (98)

from Prop. 3.7. Inserting this in (42) yields the claim by completing the square on the right of the Bianchi identity:

d G7 =−1
2 G4 ∧G4 +

1
2

1
4 p2(Btri∗∇)

=−1
2 G4 ∧G4 +

1
2

1
4 p1(∇)∧ 1

4 p1(∇)− 1
2
χ8(∇)

=−1
2

(
G4 +

1
4 p1(∇)

)︸ ︷︷ ︸
=G̃4

∧
(
G4 − 1

4 p1(∇)
)︸ ︷︷ ︸

=G̃4− 1
2 p1(∇)

− 1
2
χ8(∇)︸ ︷︷ ︸

=12·I8(∇)

.

(Recalling that under the braces we use (108) and (93).)

3.4 Shifted 4-flux quantization

We prove that Hypothesis H implies the shifted flux quantization condition (109). The result is Prop. 3.13 below.
The basic observation that makes this work is highlighted in Remark 3.10 below. To put this to full use we need to
go into some technicalities in Lemma 3.11 and Lemma 3.12 below.

First we recall some classical facts about the integral cohomology of BSpin(n) for low n:

Lemma 3.9. (i) The integral cohomology ring of BSO(3) is

H•(BSO(3);Z) ≃ Z
[
p1,W3

]
/(2W3) , (99)

and the integral cohomology of BSpin(3) is free on one generator

H•(BSpin(3);Z
) ∼= Z

[1
4 p1
]
, (100)

while the integral cohomology ring of BSpin(4) is free on two generators

H•(BSpin(4);Z
)
≃ Z

[1
2 p1,

1
2
χ4︸︷︷︸

=:Γ4

+ 1
4 p1

︸ ︷︷ ︸
=:Γ̃4

]
, (101)

where p1 is the first Pontrjagin class and χ4 the Euler class.

(ii) Under the exceptional isomorphism ϑ : Spin(3)×Spin(3) ≃
−! Spin(4) these classes are related by

ϑ
∗ (1

2 p1
)
= 1

4 p1 ⊗1+1⊗ 1
4 p1 ,

ϑ
∗(1

2
χ + 1

4 p1
)
= 1

4 p1 ⊗1 ,

hence ϑ
∗(χ) = 1

4 p1 ⊗1−1⊗ 1
4 p1 .

(102)

Proof. This follows from classical results [Pi91]. More explicitly, (99) is a special case of [Br82, Thm. 1.5],
recalled for instance as [RS17, Thm. 4.2.23 with Remark 4.2.25]. The other statements are recalled for instance in
[CV98a, Lemma 2.1].
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Remark 3.10 (Universal avatar of the integral C-field). We highlight from (101), under the braces, the universal
integral class

Γ̃4 := 1
2
χ4︸︷︷︸

=:Γ4

+ 1
4 p1 ∈ H4(BSpin(4);Z) (103)

for use below. Prop. 3.13 below says that, under Hypothesis H, these universal characteristic classes are the
avatars of the half-integral shifted C-field flux G̃4. Since Γ̃4 is an integral cohomology class, its pullback to any
given spacetime is an integral class, and such that its image in de Rham cohomology is [G4+

1
4 p1(∇)]. This integral

lift is what implements the shifted C-field flux quantization condition in M-theory §3.4.

We now trace the integral generator Γ̃4 in (103) to the larger group Spin(5) ·Spin(3).

Lemma 3.11 (Cohomology of the central group). The integral cohomology in degree 4 of the classifying space of
the central product group (62)

Spin(4) ·Spin(3) ≃ Spin(3) ·Spin(3) ·Spin(3)

is the free lattice
H4(B(Spin(4) ·Spin(3));Z

)
≃ Z

〈 1
4 p(1)

1
+ 1

4 p(2)
1

+ 2
4 p(3)

1
,

1
4 p(1)

1
+ 2

4 p(2)
1

+ 1
4 p(3)

1
,

2
4 p(1)

1
+ 1

4 p(2)
1

+ 1
4 p(3)

1

〉
(104)

where p(k)
1

:= (Bprk)
∗(p1) is the pullback of the first Pontrjagin class along the projection (59)

B
(
Spin(4) ·Spin(3)

)
≃ B

(
Spin(3) ·Spin(3) ·Spin(3)

) Bprk−−! BSO(3) .

Proof. The defining short exact sequence of groups (Def. 2.11)

1−! Z2 −! Spin(3) ·Spin(3) ·Spin(3)−! Spin(3)×Spin(3)×Spin(3)−! 1

induces a homotopy fiber sequence of classifying spaces (e.g. [Mi11, 11.4])

BZ2 // B
(
Spin(3)×Spin(3)×Spin(3)

)
// B
(
Spin(3) ·Spin(3) ·Spin(3)

)
.

The corresponding Serre spectral sequence shows that

H4(B(Spin(3) ·Spin(3) ·Spin(3));Z
) � � // H4(B(Spin(3)×Spin(3)×Spin(3)),Z

)
≃ Z

〈1
4 p(1)

1
, 1

4 p(2)
1
, 1

4 p(3)
1

〉
is a sublattice of index 4. This sublattice must include the integral class 1

2 p1 pulled back along the inclusion into
Spin(7), which by Lemma 3.9 is

B
(
Spin(4) ·Spin(3)

)
// BSpin(7) .

1
4 p(1)

1
+ 1

4 p(2)
1

+ 2
4 p(3)

1
1
2 p1
�oo

(105)

But then it must also contain the images of this element under the delooping of the S3-automorphisms (63). This
yields the other two elements shown in (104). Finally, it is clear that the sublattice spanned by these three elements
already has full rank and index 4:

Z

〈 1
4 p(1)

1
+ 1

4 p(2)
1

+ 2
4 p(3)

1
,

1
4 p(1)

1
+ 2

4 p(2)
1

+ 1
4 p(3)

1
,

2
4 p(1)

1
+ 1

4 p(2)
1

+ 1
4 p(3)

1

〉
≃
{

a
4 p(1)

1
+ b

4 p(2)
1

+ c
4 p(3)

1
| a,b,c ∈ Z, a+b+ c = 0 mod4

}
(106)

which means that there are no further generators.
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As a direct consequence we obtain the following identification.

Lemma 3.12 (Integral classes). The following cohomology class on the classifying space of the group Spin(4) ·
Spin(3) (62), which a priori is in rational cohomology, is in fact integral:

1
2
χ4 +

1
4 p1︸ ︷︷ ︸

=:Γ̃4

+ 1
2 p(3)

1
∈ H4(Spin(4)·Spin(3);Z

)

and hence so is its image on the classifying space of Sp(1)·Sp(1)·Sp(1) (61) under the delooping of the triality
isomorphism from Prop. 2.17, which we will denote by the same symbols:

1
2
χ4 +

1
4 p1︸ ︷︷ ︸

=:Γ̃4

+ 1
2 p(3)

1
∈ H4(Sp(1)·Sp(1)·Sp(1);Z

)
≃ H4(Spin(4)·Spin(3),Z

)
. (107)

Here 1
2
χ4 is the Euler class pulled back back from the left BSO(4) factor and p(3)

1
is the first Pontrjagin class pulled

back from the right BSO(3) factor, both along the respective projections (59), while p1 is the first Pontrjagin class
pulled back from the ambient BSpin(8) along the canonical inclusion (58):

B
(
Spin(4)·Spin(3)

)
Bpr4

ww

Bpr3

''
Bι8

��
BSO(4) BSpin(8) BSO(3)

χ4 p1 p(3)
1

Proof. In terms of the contributions from the three factors under the identification Spin(4) ·Spin(3) ≃ Spin(3) ·
Spin(3) ·Spin(3) the class in question is

1
8 p(1)

1
− 1

8 p(2)
1︸ ︷︷ ︸

=
1
2

χ4

+ 1
8 p(1)

1
+ 1

8 p(2)
1

+ 1
4 p(3)

1︸ ︷︷ ︸
=

1
4 p1

+ 2
4 p(3)

1
= 1

4 p(1)
1

+ 3
4 p(3)

1
,

where under the braces we used Lemma 3.9 as in (105). The equivalent expression on the right makes manifest
that this is in the sublattice (106). Therefore, Lemma 3.11 implies the claim.

Now we may finally state and prove the main result of this section.

Proposition 3.13 (Integrality of the shifted class). Let X8 be a 8-manifold as in Def. 3.2. If a differential 4-form
G4 on X8 satisfies Hypothesis H (Def. 3.5), then its shift by 1/4th the first Pontrjagin form

G̃4 := G4 + 1
4 p1(∇) (108)

is integral: [
G4 +

1
4 p1(∇)

]
= [G4]+

1
4 p1
(
T X8) ∈ H4(X8;Z

)
! H4(X8;R

)
. (109)

Proof. Notice that, by the assumption H2(X8,Z2) = 0 in Def. 3.2, it follows in particular that the characteristic
class ϖ , from Def. 2.14, vanishes:

ϖ(τ) ∈ H2(X8;Z2
)
= 0 . (110)
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With this, the proof proceeds by considering the following diagram, which we will discuss below in stages:

Γ̃4︷ ︸︸ ︷
1
2
χ4 +

1
4 p1 + 1

2 p(3)1

�

��

B
(
Sp(1)·Sp(1)·Sp(1)

) ≃ //

��

B
(
Spin(4)·Spin(3)

)
��

Bpr4 // BSO(4)

��
B
(
Sp(2)·Sp(1)

) ≃ //

��

B
(
Spin(5)·Spin(3)

)
��

Bpr5 // BSO(5)

��
[G4]+

1
4 p1(T X8)

X T X //

τ

55
cocycle in
τ-twisted

Cohomotopy

c
55

BSpin(8) ≃
Btri // BSpin(8) // BSO(8)

p1
(
T X8

)
p1
�oo p1

�oo

(111)

Here the vertical maps are the deloopings of the canonical group inclusions (Remark 2.18) and the horizontal
equivalences Btri are the deloopings (68) of the respective triality automorphism from Prop. 2.17, while the
horizontal maps Bprn are the deloopings of the canonical projections (59). On the left we used that, by Def. 2.1,
an element

[c] ∈ π
τ
(
X8)

in the τ-twisted Cohomotopy of X8 is the homotopy class of a section c of the S4-bundle classified by Bpr5◦Btri◦τ:

S4 // E

π

��

//

(pb)

BSO(4)≃ S4�SO(5)

��
X8

c

<<

Bpr5 ◦ Btri ◦ τ

// BSO(5)

and we used Prop. 2.22 to identify various homotopy quotients of S4 with classifying spaces, as shown. This shows
that E is the unit sphere bundle of a rank 5 real vector bundle V classified by Bpr5 ◦Btri ◦ c. Therefore, by Prop.
2.5 we have

π
∗[G4] =

1
2
χ4
(
V̂ ) ,

where V̂ is defined by the splitting π∗V = RE ⊕ V̂ determined by the tautological section of π∗V over E, i.e., it is
the rank 4 real vector bundle on E classified by E! BSO(4). Hence, by (107) in Lemma 3.12, we have that

π
∗
(
[G4]+

1
4 p1
(
Btri◦T X8)+ 1

2 p(3)1

(
Btri◦ τ

)︸ ︷︷ ︸
=:K

)
∈ H4(E;Z)

is an integral class.
We now claim that the class K is integral already before the pullback, as a class on X . For this, consider the

commutative diagram

· · · // H4
(
X8;Z

)
//

π∗

��

H4
(
X8;R

) q //

π∗

��

H4
(
X8;R/Z

)
//

π∗

��

· · ·

· · · // H4
(
E;Z

)
// H4
(
E;R

) q // H4
(
E;R/Z

)
// · · ·

induced by the short exact sequence 0! Z! R! R/Z! 0. From the Serre spectral sequence for the fibration
π : E! X one sees that the vertical maps in the above diagram are injective. Consequently, from

π
∗q(K) = qπ

∗(K)

= 0
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it follows that already q(K) = 0, which means that K itself is integral:

[G4]+
1
4 p1
(
Btri◦T X8)+ 1

2 p(3)1 (Btri◦ τ) ∈ H4(X8;Z) . (112)

Now observe that the third summand in (112) is the first fractional Pontrjagin class of the underlying SO(3)-bundle.
By the assumption (110) this admits Spin structure, by Lemma 2.14. This in turn implies that its first Pontrjagin
class is divisible by two, hence that the last summand in (112) is integral by itself

1
2 p(3)1 (Btri◦ τ) ∈ H4(X8;Z

)
,

and hence that also the remaining summand

[G4]+
1
4 p1
(
Btri◦T X8) ∈ H4(X8;Z

)
(113)

is integral by itself. Finally, pullback along the triality automorphism preserves the first Pontrjagin class, by Lemma
2.19

p1(Btri◦ τ) = p1
(
T X8) (114)

and hence (113) indeed becomes [G4]+
1
4 p1
(
T X8

)
∈ H4

(
X8;Z

)
.

3.5 Background charge

We prove that Hypothesis H implies the background charge (24) of the 4-flux.

Proposition 3.14 (Cohomotopically vanishing 4-flux form). Let X8 be a smooth 8-manifold which is simply con-
nected (Remark 2.6) and equipped with topological Sp(2)-structure τ (Example 2.12). Then, if a cocycle in τ-
twisted Cohomotopy (Def. 2.1) has a factorization through the quaternionic Hopf fibration, exhibiting its vanishing
PT-charge according to (91) in §2.6, it follows that the differential 4-form G4 by Def. 3.5 has value

G4 = 1
4 p1
(
∇τ

)
.

Consequently, the corresponding integral 4-form G̃4 (109) from Prop. 3.13 has class 1
2 p1:

S7�Sp(2)

hH�Sp(2)
��

S4�Sp(2)

��
X8

∃

22

c
11

τ //

T X8
**

BSp(2)

��
BSpin(8)

=⇒ [G̃4] =
1
2 p1(T X8) ∈ H4(X8;R) .

Proof. By Prop. 2.22, the cocycle c in degree 4 twisted Cohomotopy itself is equivalently further reduction of τ

to topological Sp(1)·Sp(1)·Z2-structure (Example 2.16). Similarly, the assumed factorization through degree-7
Cohomotopy is equivalently existence of yet further reduction to topological Sp(1) ·Z2-structure, via inclusion of
the first factor

S7�Sp(2) ≃ //

hH�Sp(2)

��

B
(
Sp(1) ·Z2

)
B([q,1]7![q,1,1])

��

≃ BSp(1)

B(q7!(q,1))

��
S4�Sp(2) ≃

// B
(
Sp(1) ·Sp(1) ·Z2

)
≃ B

(
Sp(1)×Sp(1)

)
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This means that the pullback along the equivariant quaternionic Hopf fibration is given by projection to the first
component p(1)1 (in the notation of Lemma 3.11). But, by (102) in Lemma 3.9, the difference between the universal
avatar class Γ̃4 of the half integral shifted flux (Prop. 3.13 and Remark 3.10) and the class 1

2 p1 has no such first
component:

Γ̃4 − 1
2 p1 = −1

4 p(2)1
� (hH�Sp(2))∗ // 0 .

With this, the statement follows from (111) in the proof of Prop. 3.13.

3.6 Integral equation of motion

We prove that Hypothesis H implies the C-field’s “integral equation of motion” (23).

Proposition 3.15 (Sq2-closedness of shifted 4-flux). If G4 is a differential 4-form on an 8-manifold X8 as in Def.
3.2 and satisfying Hypothesis H (Def. 3.5), then the class of the shifted form G̃4 := G4 +

1
4 p1(∇), which is integral

by Prop. 3.13, is annihilated by (mod 2 reduction followed by) the second Steenrod operation:

Sq2([G̃4]
)
= 0 . (115)

Proof. By Prop. 2.22 and under triality (Prop. 2.17) the τ-twisted Cohomotopy cocycle exhibits reduction to
Spin(4)-structure:

S4�Sp(2)

��

≃ // BSpin(4)

��
BSp(2)

��

≃ // BSpin(5)

��
X8

c

cocycle in
τ-twisted

Cohomotopy

66

τ

55

T X8
// BSpin(8) ≃

Btri
// BSpin(8)

But, by Prop. 3.13, the class of G̃4 is the pullback of the class Γ̃4 ∈ H4(BSpin(4);Z) (101) along this reduction:

[G̃4] = (Btri◦ c)∗
(
Γ̃4
)
∈ H4(X8;Z) .

Under these identifications, the statement follows upon using [CV98a, Cor. 4.2 (1)], where the element corre-
sponding to Γ̃4 is denoted s, while the class [G̃4] is denoted S.

3.7 7-Flux quantization

We prove that Hypothesis H implies integrality (29) of the Page 7-flux (27).

The main result is Theorem3.21 below. In order to formulate this, the key ingredient in the expression for the
page charge is a 3-flux H3 which locally trivializes the C-field 4-flux G4. The homotopy-theoretic manifestation of
this local trivialization is the homotopy pullback of the quaternionic Hopf fibration. We first introduce this now in
Def. 3.16, and then prove a few technical lemmas about it.

Definition 3.16 (Extended spacetime). Let X8 be an 8-manifold as in Def. 3.2, equipped with topological Sp(2)-
structure τ and with a cocycle in c in τ-twisted Cohomotopy as in Def. 3.5. Then we say that the corresponding
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extended spacetime is the fibration X̂8!X8 arising as the homotopy pullback of the Sp(2)-equivariant quaternionic
Hopf fibration (Prop. 2.22) along c:

X̂7

(pb)c∗(hH�Sp(2))
��

// S7�Sp(2)

hH�Sp(2)
��

X8 c //

τ
""

S4�Sp(2)

yy
BSp(2)

(116)

Remark 3.17 (Nature of the extended spacetime).

(i) The extended spacetime X̂8 in Def. 3.16 is an S3-fibration over X8, since the homotopy fiber of hH�Sp(2) over
any point is S3, by the pasting law for homotopy pullbacks:

S3

(pb)

��

// S7 //

hH
��

(pb)

S7�Sp(2)

hH�Sp(2)
��

∗ // S4

��

//

(pb)

S4�Sp(2)

��
∗ // BSp(2)

As such, this is the incarnation in non-rational parameterized homotopy theory of the rational superspace S3-
fibration over 11-dimensional super-spacetime discussed in detail in [FSS18b][SS18], which is classified by the
bifermionic component µM2 of the C-field super flux form [FSS13, p. 12][FSS15, (2.1)][FSS19d]:

T̂10,1|32
µM5 + h3∧µM2 //

��

(pb)

S7
R

(hH)R

��
T10,1|32 (µM2 , µM5 ) //

τ ''

S4
R

yy
K(R,4)

(117)

(ii) By the universal property of homotopy pullbacks, the extended spacetime X̂ in Def. 3.16 is the classifying
space for maps φ to X equipped with a cocycle ĉ in degree 7 twisted Cohomotopy that exhibits the degree 4
twisted Cohomotopy cocycle φ ∗(c) as factoring through the quaternionic Hopf fibration, via a homotopy H3:

Q̂M5 ĉ

**

φ

&&

(φ ,ĉ,H3)

&&
X̂8

��

// S7�Sp(2)

hH�Sp(2)
��

X8 c //

τ
''

S4�Sp(2)

vv
BSp(2)

H3

ow

(118)
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By Lemma 2.28 and Prop. 3.14, factorization through the quaternionic Hopf fibration is the intrinsic coho-
motopical meaning of the concept of “vanishing 4-flux”, and here this is reflected by the trivializing homotopy
H3. But this means that, under Hypothesis H, the extended spacetime of Def. 3.16 is really the classifying space
for fundamental M5-brane sigma-model configurations in X with extended worldvolume Q̂M5 Hence the extended
spacetime X̂8 is the classifying space space for the fluxed M5-brane sigma model in the M2-brane background X8.
This is discussed in detail in [FSS19c]. For the super-rational analog (117) this was discussed in in [FSS13, Rem.
3.11][FSS15, p. 4].

Next we characterize, in Prop. 3.20 below, the differential form data encoded in (118). For that we need the
following two lemmas. The statement of Lemma 3.18 is standard but rarely made fully explicit. We spell it out
since it is crucial for our new result, Lemma 3.19. For background on Sullivan models see e.g. [FHT00, Sec. 12].

Lemma 3.18 (Sullivan model of the Hopf fibration). The Sullivan model of the quaternionic Hopf fibration hH,
with explicit normalization of its generators, is:

S7

hH

��

R[ω7]/(dω7 = 0 )
OO

(hH)∗
ω4 7! 0

ω7 7! ω7

〈
ω7, [S7]

〉
= 1

S4 R[ω4,ω7]
/(dω4 = 0

dω7 =−ω4 ∧ω4

) 〈
ω4, [S4]

〉
= 1

Proof. One way to see this is with [AA78, Theorem 6.1], by which, under the identification of Sullivan generators
with linear duals of homotopy groups, the co-binary component of the Sullivan differential equals the linear dual
of the Whitehead product, [ · , · ]Wh: [

dω
]
|∧2 = −

[
· , ·

]∗
Wh(ω) .

Note that both the Whitehead product gives a factor of 2[
[idS4 ], [idS4 ]

]
Wh = 2 · [hH]

as does the evaluation ⟨ · , · ⟩ of the wedge square of ω4 (by [AA78, top of p. 976]):〈
ω4 ∧ω4,S4 ∧S4〉 = (−1)2·2〈

ω4,S4〉2
+
〈
ω4,S4〉2

= 2 ,

which hence cancel out. See also [FHT00, Example 1 on p. 178].
Alternatively, this follows by considering the homotopy cofiber of hH, whose Sullivan model is the fiber productdω4 = 0

dω7 = h ·ω4 ∧ω4 +ω8

dω8 = 0

ω4 7! ω4

ω7 7! ω7

ω8 7! 0

ss

ω4 7! 0

ω7 7! ω7

ω8 7! ω8

**
(

dω4 = 0

dω7 = h ·ω4 ∧ω4

)
ω4 7! 0

ω7 7! ω7

,,

(
dω7 = ω8

dω8 = 0

)
ω7 7! ω7

ω8 7! 0
rr(

dω7 = 0
)

and then using the Hopf invariant one theorem [Ada60] which implies that h =±1.
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Lemma 3.19 (Sullivan model of Sp(2)-equivariant Hopf fibration). The Sullivan model of the Sp(2)-parametrized
quaternionic Hopf fibration hH�Sp(2) (Prop. 2.22) is as shown here:

S7�Sp(2)

hH�Sp(2)

��

""

CE
(
lBSp(2)

)
⊗R[ω7]

/(
dω7 =−χ8

)
OO

ω4 7!
1
4 p1

ω7 7! ω7
(hH�Sp(2))∗

〈
ω7, [S7]

〉
= 1

BSp(2)

S4�Sp(2)

AA

CE
(
lBSp(2)

)
⊗R[ω4,ω7]

/dω4 = 0

dω7 =−ω4 ∧ω4

−χ8 +
(1

4 p1
)2

 〈
ω4, [S4]

〉
= 1

(119)

where CE
(
lBSp(2)

)
denotes the Sullivan model of the classifying space of Sp(2).

Proof. That the domain and codomain Sullivan algebras are as shown follows by [FHT00, Sec. 15, Example 4]
as in the proof of Prop. 2.5, where the normalization of the generators is from Lemma 3.18. Here in the bottom
right we translated, the summand 1

4 p2 (49) from the Spin(5)-structure for which Prop. 2.5 applies, to the given
Sp(2)-structure, by pullback along Btri (68), using (97)(

Btri
)∗(1

4 p2
)
= −χ8 +

(1
4 p1
)2
. (120)

Now to see that the map (hH�Sp(2))∗ in (119) is given on generators as claimed, we use that over any base point of
BSp(2) the parameterized quaternionic Hopf fibration restricts to the ordinary quaternionic Hopf fibration, making
the following diagram homotopy commutative:

S7

hH

��

//

��

S7�Sp(2)

hH�Sp(2)

��

$$
∗ // BSp(2) .

S4

DD

// S4�Sp(2)

::

This means that the Sullivan model of hH � Sp(2) must be a dashed homomorphism that makes the following
diagram of dg-algebras commute:

R[ω7]
/(

dω7 = 0
)
oo

OO

ω4 7! 0

ω7 7! ω7

CE
(
lBSp(2)

)
⊗R[ω7]

/(
dω7 = χ8

)
OO

ω4 7!
1
4 p1

ω7 7! ω7

R[ω4,ω7]
/(dω4 = 0

dω7 =−ω4 ∧ω4

)
oo CE

(
lBSp(2)

)
⊗R[ω4,ω7]

/
dω4 = 0

dω7 =−ω4 ∧ω4

−χ8 +
(1

4 p1
)2︸ ︷︷ ︸

=(Btri)∗( 1
4 p2)


where the horizontal morphisms project away the base algebra CE

(
lBSp(2)

)
.

The commutativity of this diagram requires that the dashed morphism sends ω7 7! ω7. and by degree reasons
it must send ω4 7! c · p1, for some c ∈ R. The unique choice for c that makes the map respect the differentials, in
that the second summand in (120) cancels out, is clearly c = 1

4 . Alternatively, this follows also by Prop. 3.14.
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Proposition 3.20 (Differential form data on extended spacetime). Let X8 be an 8-manifold as in Def. 3.2 equipped
with differential forms (G4.G7) that satisfy Hypothesis H (Def. 3.5), hence equipped with topological Sp(2)-
structure τ (55) and equipped with a cocycle c in τ-twisted Cohomotopy (Def. 2.1) with underlying differential
forms (G4,2G7) according to Def. 3.5

X
(G4,2G7) //

τ %%

S4�Sp(2) .

vv
BSp(2)

Then the pullback of these differential forms to the corresponding extended spacetime X̂ from Def. 3.16 satisfies

d Huniv
3 = G̃4 − 1

2 p1(∇) , (121)

d G̃7 = −1
2
χ8(∇) , (122)

where Huniv
3 is the universal 3-form Huniv

3 (118) on X̂, and where G̃7 the shifted 7-flux form or Page flux

G̃7 := G7 +
1
2 Huniv

3 ∧ G̃4 . (123)

Proof. To extract the differential form data we may compute the defining homotopy pullback (116) in rational
homotopy theory and read off the resulting assignment of generators in the Sullivan model. By general facts of
rational homotopy theory (recalled e.g. in [FSS16a, A]) the Sullivan model for X̂8 is given as the pushout along
the map corresponding to (G4,2G7) of a minimal cofibration resolution of the Sullivan model for the equivariant
quaternionic Hopf fibration hH�Sp(2). The latter was obtained in Lemma 3.19. By direct inspection one sees that
the minimal cofibration resolution is given as shown on the right of the following diagram:

CE
(
lBSp(2)

)
⊗R[ω7]

/
(dω7 =−χ8 )

OO

≃

h3 7! 0

ω4 7!
1
4 p1

ω7 7! ω7

EE

(hH�Sp(2))∗

CE
(
lX̂
)

(po)

OO
oo

ω4 7! G4

ω7 7! 2G7

h3 7! Huniv
3

CE
(
lBSp(2)

)
⊗R[h3,ω4,ω7]

/
dh3 = ω4 − 1

4 p1

dω4 = 0

dω7 =−dh3 ∧ (ω4 +
1
4 p1)

−χ8


OO

ω4 7! ω4

ω7 7! ω7

� ?

CE
(
lX
)
oo ω4 7! G4

ω7 7! 2G7dd

τ∗

CE
(
lBSp(2)

)
⊗R[ω4,ω7]

/(
dω4 = 0

dω7 =−ω4 ∧ω4 +
(1

4 p1
)2 −χ8

)
33

CE
(
lBSp(2)

)
The differential relations appearing on the right now immediately imply the claim.

Proposition 3.21 (Integrality of Page charge). Let X8 be an 8-manifold as in Def. 3.2, equipped with differential
forms (G4,G7) that satisfy Hypothesis H, Def. 3.5 with respect to a topological Sp(2)-structure τ and a cocycle in
c in τ-twisted Cohomotopy. Then for every map

i : S7 −! X̂8
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from the 7-sphere to the corresponding extended spacetime (Def. 3.16), the integration of the pullback of the Page
flux (123) over the 7-sphere is half-integral:

2
∫

S7

i∗G̃7 ∈ Z .

Proof. This is proven as [FSS19c, Theorem 4.6].

3.8 Tadpole cancellation

We discuss here how Hypothesis H implies the fluxless C-field tadpole cancellation condition (33).

The key point is to see what precisely “4-fluxless” is to mean. For this, recall that we discussed Cohomotopy
cocycles at four levels of approximation, from the coarse approximation of rational/de Rham cohmology on the
left to full non-abelian Cohomotopy on the right:

Cohomology
theory

Rational
cohomology

Integral
cohomology

Stable
Cohomotopy

Non-abelian
Cohomotopy

Cocycle G4 G̃4 Σ∞c c

On the far left, for rational and integral cohomology we had found in Prop. 3.14 that cohomotopical fluxlessness is
reflected by any factorization of the 4-cocycle through 7-Cohomotopy via the quaternionic Hopf fibration hH, and
that this means that the differential flux 4-form takes its background charge value: G4 =

1
4 p1(∇).

But stable Cohomotopy theory is finer than its approximation by de Rham cohomology. Indeed, not every fac-
torization through hH gives zero in 4-Cohomotopy, instead there are in general torsion side effects which disappear
only in de Rham cohomology, as shown in (8): It is only those factorizations through hH which occur in multiples
of 24 that are strictly 4-fluxless as seen in stable Cohomotopy. Together with the 7-flux quantization of Prop. 3.21
this means that the cohomotopically normalized 7-flux, measuring the number of M2-branes, is as in (32). With
this we have:

Proposition 3.22 (C-field tadpole cancellation via Cohomotopy). Let X8 be an 8-manifold as in Def. 3.2 which is
(a) the complement of a tubular neighborhood around a finite number of points in a closed 8-manifold (the M2-
brane loci) as in (30), and
(b) equipped with a twisted 7-Cohomotopy cocycle as in (3.16), hence with a section i of the corresponding ex-
tended spacetime (Def. 3.16).
Then the fluxless C-field tadpole cancellation condition (33) holds:

NM2 = I8
[
X8] .

Proof. By definition of the cohomotopically normalized 7-flux (32), we compute as follows:

NM2 =
−1
12

∫
∂X8

i∗G̃7

= −1
12

∫
X8

i∗dG̃7

= −1
12

∫
X8

−1
2

χ8(∇)

=
∫

X8

I8(∇)

= I8
[
X8] .

Here the third step is by (122) from Prop. 3.20 and the fourth step by (93) from Prop. 3.7.
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4 Conclusion

Perturbative string theory has a precise definition via 2d worldsheet SCFT. In contrast, the formulation of its non-
perturbative completion to M-theory and of the brane physics this subsumes (see [Du99][BBS06]), remains an
open problem (e.g. [Du96, 6][HLW97, p. 2][NH98, p. 2] [Du98, p. 6] [Du99, p. 330] [Mo14, 12][CP18, p.
2][Wi19] 6 ). The lack of an actual set of fundamental laws of non-perturbative brane physics has recently surfaced
in a debate on the extent of validity of the brane uplifts that have been widely discussed for 15 years [DvR18][Ba19,
p. 14-22].

Besides the field of gravity, the only other field in M-theory at low-energy is the C-field [CJS78]. A list of
cohomological conditions on the C-field, including those shown in Table 1, have been derived as plausible con-
sistency conditions in various expected limiting cases of M-theory (effective field theory limits, decoupling limits
etc.) assuming the conjectural string dualities to hold. One imagines that if M-theory exists then thereby it must be
consistent, and hence ought to imply all these expected consistency conditions. In order to make this actually hap-
pen, the first step in formulating M-theory ought to be the identification of the generalized cohomology theory that
charge-quantizes the C-field, just as the first step in formulating a quantum consistent theory of electromagnetism
was Dirac’s charge quantization of the electromagnetic field: as a cocycle in (differential) ordinary cohomology
(see [Fr00]),

The string theory literature has mostly regarded the M-theory C-field as a cocycle in ordinary 4-cohomology,
with extra constraints imposed on it by hand. A proposal to build at least one of these conditions, the shifted
flux quantization condition (§3.4), into the definition of the cohomology theory (making it a “mildly generalized
cohomology theory”) has been considered in [DFM03][HS05][SSS12][FSS14a]. Another condition, the “integral
equation of motion” (§3.6) has been argued in [DMW03a][DMW03b] to be in correspondence with one differential
of specific degree in the Atiyah-Hirzebruch spectral sequence for K-theory. In reaction to this state of affairs, it
has been suggested [Sa05a][Sa05b][Sa06][Sa10] that the C-field should be regarded as a cocycle in some genuine
generalized cohomology theory, such as Cohomotopy theory [Sa13, 2.5]. Indeed, if M-theory is as fundamental to
physics as it should be, one may expect the generalized cohomology theory that charge quantizes the C-field to be
more fundamental to mathematics than ordinary cohomology with some modifications.

In order to derive what this generalized cohomology theory actually is, we had initiated a systematic analysis
of the bifermionic super p-brane charges from the point of view of super rational homotopy theory [FSS13]; see
[FSS19a] for review. We proved in this fully super-geometric setting, albeit in rational approximation, that the
expected charge quantization of the RR-field in twisted K-theory follows from systematic analysis of the D-brane
super WZW terms [FSS16a][FSS16b][BSS18]. Then we showed that the exact same logic applies to the super
WZW terms of the M-branes [FSS15]. The analysis in this case reveals their cohomology theory to be [FSS15,
3][FSS16a, 2]: Cohomotopy cohomology theory in compatible degrees (4,7), related by the quaternionic Hopf
fibration; see [FSS19a, 7] for review of this super rational analysis. This proves that if full M-theory retains the
super-space structure of its low-energy limit, then the cohomology theory that charge-quantizes the C-field must
be such that its rationalization coincides with that of Cohomotopy cohomology theory in degrees (4,7). While
there are many different cohomology theories with the same rationalization as Cohomotopy theory, one of these is
minimal in number of CW-cells: This is Cohomotopy theory itself.

What we have shown in this article is that assuming, with Hypothesis H, that Cohomotopy cohomology theory
in compatible degrees (4,7) indeed encodes the charge-quantization of the C-field even beyond the rational ap-
proximation, then the list in Table 1 of expected consistency conditions is implied. Further checks of Hypothesis
H are presented in [SS19a][BSS19b] (for the case of M-theory orbifolds) and in [SS19c] (for intersecting branes).
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6[Wi19] at 21:15: “I actually believe that string/M-theory is on the right track toward a deeper explanation. But at a very fundamental
level it’s not well understood. And I’m not even confident that we have a good concept of what sort of thing is missing or where to find it.”
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