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Abstract

We show that all the expected anomaly cancellations in M-theory follow from charge-quantizing the C-field
in the non-abelian cohomology theory twisted Cohomotopy. Specifically, we show that such cocycles exhibit all
of the following:

(1) the half-integral shifted flux quantization condition,
(2) the cancellation of the total M5-brane anomaly,
(3) the M2-brane tadpole cancellation,
(4) the cancellation of the W7 spacetime anomaly,
(5) the C-field integral equation of motion, and
(6) the C-field background charge.

Along the way, we find that the calibrated N = 1 exceptional geometries (Spin(7), G2, SU(3), SU(2)) are all
induced from the classification of twists in Cohomotopy. Finally we show that the notable factor of 1/24 in the
anomaly polynomial reflects the order of the 3rd stable homotopy group of spheres.
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1 Introduction

The general open problem. One of the key open problems in theoretical high energy physics remains the actual
formulation of the non-perturbative completion of string theory, with working title “M-theory” (see [Moo14, Sec.
12][HSS18, Sec. 2][BSS18, Sec. 1]). A plethora of indications and plausibility arguments about the elusive
M-theory exist ([Wi95]; see [Du99][BBS06] for overviews), constituting a tantalizing but informal folklore.

The open problem of C-field charge quantization. A core sub-problem is the identification of the cohomological
nature of the higher gauge field in M-theory: the “C-field”. In generalization of Dirac’s seminal identification of the
electromagnetic field with a cocycle in differential cohomology, known as Dirac charge quantization (see [Fr00])
one expects that an analogous charge quantization of the M-theory C-field reveals it as a cocycle in cohomology
with some extra structure [DFM03][HS05][FSS14a][FSS14b].

Accounting for all anomaly cancellation. However, it has long been argued [Sa05a][Sa05b][Sa06][Sa10] that
the C-field should not just be in ordinary cohomology, albeit shifted, but in some generalized cohomology theory.
Indeed, the M-theory folklore knows not just one, but a whole list of subtle anomaly cancellation constraints on
the C-field. Any candidate cohomology theory charge-quantizing the C-field, should imply all of these conditions
(reviewed below in §2):

Anomaly cancellation condition folklore Hypothesis H

Half-integral flux quantization
[

G4 +
1
4 p1︸ ︷︷ ︸

=: G̃4 integral flux

]
∈ H4(X ,Z) §2.2 §4.2

Background charge q(G̃4)︸ ︷︷ ︸
quadratic form

= G̃4
(
G̃4− 1

2 p1︸︷︷︸
=(G̃4)0

)
§2.4 §4.4

DMW-anomaly cancellation W7
(
T X
)
= 0 §2.1 §4.1

Integral equation of motion Sq3︸︷︷︸
=βSq2

(
G̃4
)
= 0 §2.3 §4.3

M5-brane anomaly cancellation IM5
ferm︸︷︷︸
chiral

fermion

+ IM5
sd︸︷︷︸

self-dual
3-flux

+ Ibulk
infl︸︷︷︸
bulk

inflow

= 0 §2.5 §4.5

M2-brane tadpole cancellation NM2︸︷︷︸
number of
M2-branes

+q(G̃4) = I8 §2.6 §4.6

All previous proposals [DFM03][HS05][FSS14a][FSS14b] deal with the first of these conditions – enforcing it
essentially “by hand”. But one would hope the identification of the fundamental cohomological nature of the C-
field to inform us about the unknown fundamental nature of M-theory, instead of just partially encoding existing
folklore into complex mathematics.

First principles. To provide a solid ground, we initiated a program to exhibit M-theoretic structure emerging from
first principles – and carried it out successfully in the rational approximation [FSS13][FSS15][FSS16a][FSS16b]
[HS17][BSS18][HSS18]; see [FSS19c] for review. One obtains a rigorous derivation in rational homotopy theory
showing that, in the same way that the NS/RR fields of string theory are quantized in twisted K-theory, the C-field
in M-theory is quantized in Cohomotopy cohomology theory [Bo36][Sp49], as originally proposed in [Sa13, 2.5].
See Figure R. This now leads us to study:

Hypothesis H. The C-field is charge-quantized in Cohomotopy theory, even non-rationally. (Def. 4.4)

Results. We lay out twisted Cohomotopy theory in §3; see Figure T. Then we prove in §4 that C-field charge
quantization in twisted Cohomotopy implies all of the above anomaly cancellation conditions.
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The emergence of rational Cohomotopy. We recall in more detail how Hypothesis H is motivated: in the approx-
imation of rational homotopy theory (e.g. [FHT00]), i.e., ignoring torsion subgroups in cohomology and working
super-tangent space wise, the charge quantization of M-brane charge in Cohomotopy follows by systematic analysis
(see [FSS19c] for review):

First of all, as observed in [Sa13, Sec. 2.5], the equations of motion for the C-field flux forms G4 and G7 in
plain 11-dimensional supergravity [CJS78], which are

dG4 = 0 and dG7 = −1
2 G4∧G4 , (1)

have the same form as the differential relations that define the Sullivan model for the 4-sphere in rational homotopy
theory ( see [FSS16a, Appendix A] for review, and see Lemma 4.29 and Remark 4.32 below for the normalization
factor). This means that the pair (G4,G7) constitutes a cocycle in rational Cohomotopy in degree 4, namely a map
from spacetime to the rationalized (equivalently “real-ified”) 4-sphere [FSS15] (see [FSS16a, Sec. 2])

X
(G4,G7) // S4

R . (2)

This appearance of rational Cohomotopy in 11d supergravity becomes yet more pronounced in the superspace
formulation which is fully controlled ([D’AF82, Table 3], see [CDF91, III.8 and V.4-V.11]) by an iterated pair
of invariant super-cocycles µM2 and µM5 on D = 11, N = 1 super Minkowski spacetime. In the super homotopy-
theoretic formulation [FSS13, p. 12] [FSS15, (2.1)] this appears as a system of maps

K(R,7)

T̂10,1|32

fib(µM2 ) ��

µM5
55

T10,1|32 µM2 // K(R,4)

µM5 =
1
5!

(
ψΓa1···a5ψ

)
ea1 ∧·· ·∧ ea5

+h3∧µM2

µM2 =
i
2

(
ψΓa1a2ψ

)
ea1 ∧ ea2

(3)

which are the super-flux forms to which the M2-brane and M5-brane couple, in their incarnation as Green-Schwarz-
type sigma models [FSS13][FSS16a][FSS16b]. Here T̂10,1|32 = m2brane arises as the homotopy fiber of µM2

[FSS13, p. 12] and is the extended super Minkowski spacetime that can be traced back to [CdAIB99] or the
M2-brane super Lie 3-algebra [SSS09, p. 54]. This is crucial for the following discussion, as it means that:

• µM2 is the super-form component of the magnetic flux sourced by charged M5-branes, while
• µM5 is the super-form component of the electric flux source by charged M2-branes.

Hence these cocycles are avatars of M-brane charge/flux at the level of super rational homotopy theory. But they
unify to a single cocycle in rational Cohomotopy:

The rational quaternionic Hopf fibration. We showed in [FSS15] that unification of the rational super-cocycles
in (3) to a single cocycle (2) in rational Cohomotopy is induced via the quaternionic Hopf fibration hH:

super rational
C-field in terms of rational

Cohomotopy

S7
R

hH
��

T̂10,1|32

fib
��

µM5 ,,

S4
R

c2ww
T10,1|32 µM2 //

µM2/M5 ..

K(R,4)

Figure R – The C-field in rational Cohomotopy.
The incarnation of the C-field in rational super homo-
topy theory – hence its bifermionic differential form com-
ponent on super Minkowski spacetime – may systemat-
ically be derived from first principles [FSS13] [FSS15]
[FSS16a] [FSS16b] [HS17] [BSS18][HSS18], as re-
viewed in [FSS19c]: it is given by the curvatures µM2 and
µM5 of the WZW-terms of the GS-sigma model for the M2-
and the M5-brane (3), but unified to form one single cocy-
cle µM2/M5 in super rational Cohomotopy theory.
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The diagram in Figure R teaches us that, in the rational approximation:

(i) The M2/M5-brane charge is jointly quantized in Cohomotopy theory in degree 4;

(ii) the electric charge sourced by M2-branes factors through the quaternionic Hopf fibration.

This is amplified by the result of [BSS18], that the double dimensional reduction of rational M-brane superco-
cycles (µM2 ,µM5) is indeed the tuple of F1/Dp-brane supercocycles (µF1 µD0 ,µD2 ,µD4 ,µD6 ,µD8) in rational twisted
K-theory, which folklore demands to be the rational image of a cocycle in actual twisted K-theory (see [GS19] for
general treatment of twisted differential cocycles for Ramond-Ramond fields)

Objects Cohomology theory

M-branes
twisted

Cohomotopy
hh

double dimensional
reduction/oxidationvvD-branes

twisted
K-theory

Hence our goal must be to lift this gauge quantization of M-brane charge in Cohomotopy beyond the rational
approximation.
Beyond the rational approximation. One lift of rational Cohomotopy stands out as being minimal in number
of cells: this is actual Cohomotopy. In general this will be twisted, but by (ii) the twists need to respect the
quaternionic Hopf fibration hH. We prove in §3 that this implies Figure T:

topological
C-field in terms of: twisted

Cohomotopy,
calibrated

submanifolds,
topological
G-structure.

S7�
(
Sp(2)·Sp(1)

)
hH�(Sp(2)·Sp(1))

��

CAYsL�Spin(6)

��

B
(
Sp(1) ·Sp(1)

)
((

��

BSpin(6)

��

S4�
(
Sp(2)·Sp(1)

)

��

CAY�Spin(7) B
(
Sp(1)·Sp(1)·Sp(1)

)
''

��

̂R2,1×X8

��

G7+H3∧G4

77

BSpin(7)

��

∗�
(
Sp(2)·Sp(1)

)
B
(
Sp(2)·Sp(1)

)
((

R2,1×X8
NQM2

QM5 ·NX QM5

55

NX QM2 //

(G4,G7)

::

BSpin(8)

Figure T – The C-field in twisted Cohomotopy. The established rational situation shown in Figure R suggests that
the C-field is also topologically a cocycle in Cohomotopy, in degrees 4 and 7 related by the quaternionic Hopf fibration hH –
this is Hypothesis H. We prove in §3.3 (Prop. 3.22) that this implies the twist structure as displayed here, and then show in
§4 that this implies anomaly cancellation. Characterization in terms of topological G-structures is given in §3.2 and in terms
of calibrated submanifolds in §3.6.
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Compactifications to D = 4, N = 1 from twisted Cohomotopy in degree 7. Conversely, this says that the fluxless
sector, where G4 vanishes but M2-branes may be present, is controlled by twisted Cohomotopy in degree 7 alone
(we discuss in §3.6 and §2.6 the precise formulation of fluxlessness in Cohomotopy). We show in §3.4 that, under
the relation of Cohomotopy to topological G-structures discussed in §3.2, there is a hierarchy of exceptional twists
of degree 7 Cohomotopy given by iterated homotopy pullback, which reproduces precisely the special holonomy
structures well-known to correspond to the D= 4, N = 1 compactifications of M/F-theory (see [AcGu04][BBS10]).

S7�Spin(8)

��

BSpin(7)

��
X //

::

BSpin(8) BSpin(8)

S7�Spin(7)

��

BG2

��
X //

::

BSpin(7) BSpin(7)

S7�Spin(6)

��

BSU(3)

��
X //

::

BSpin(6) BSpin(6)

S7�Spin(5)

��

BSU(2)

��
X //

::

BSpin(5) BSpin(5)

Figure D. Twisted Cohomotopy in degree 7 systematically induces the special holonomy structures that correspond to
D = 4, N = 1 compactifications of M/F-theory. We discuss this in §3.4, based on §3.2.

This corresponds, in particular, to the sequence of exceptional coset space realizations of the 7-sphere:

S7 '

reduction of structure group //
8−manifolds︷ ︸︸ ︷
Spin(8)
Spin(7)

=

7−manifolds︷ ︸︸ ︷
Spin(7)

G2
=

6−manifolds︷ ︸︸ ︷
Spin(6)
SU(3)

=

5−manifolds︷ ︸︸ ︷
Spin(5)
SU(2)

reduction of holonomy group
//

(4)

We find this remarkable in several ways. First, the fact that the topological 7-sphere admits these various de-
scriptions as a coset space G/K. Second, the fact that the ‘numerator groups’ G form the sequence of reductions
Spin(8)⊃ Spin(7)⊃ Spin(6)⊃ Spin(5) of the structure groups of manifolds of dimensions eight, seven, six, and
five, respectively, as internal spaces. Third, the fact that the ‘denominator groups’ K form the sequence of reduc-
tions Spin(7) ⊃ G2 ⊃ SU(3) ⊃ SU(2) of holonomy groups in the corresponding dimensions, with the latter two
associated with Calabi-Yau structures for complex threefolds and twofolds. Finally, homotopy theory shows that
this sequence of reductions arises as an iterated homotopy pullback of 7-sphere fibrations classifying the corre-
sponding twisted Cohomotopy theories (Prop. 3.23 below).

Four-spheres and Seven-spheres in 11d supergravity spacetimes. While Figure R, Figure T, and Figure D dis-
cover the 4-sphere and 7-sphere in various coset space realizations as coefficients for M-brane charge, of course
these same spheres have long been known to prominently appear in spacetime solutions of 11-dimensional super-
gravity – we have discussed in [HSS18, Sec. 2] that this confluence between shapes of near horizon spacetime
geometries and Cohomotopy coefficients is not a coincidence.

The importance of the 7-sphere in supergravity goes back to it being the first example of a consistent Kaluza-
Klein reduction from eleven to four dimensions on a curved manifold, giving rise to maximal N = 8 gauged SO(8)
supergravity [DP83]. After the round sphere, a family of squashed seven-spheres appeared which can be described
in several ways, including the distance sphere in the quaternionic projective space HP2 or a single-instanton SU(2)
bundle over S4. The squashed S7 is famously a coset space

S7 ' Sp(2)/Sp(1)' SO(5)/SO(3) (5)

with isometry group SO(5)×SO(3) [ADP83][DP83][DNP83][Du83]. The breaking of the symmetry from SO(8)
to the latter has been used to study the standard model [DKN84]. See [DNP86] for an early survey. More recently,
these cosets have been part of the classification of (super)symmetric solutions to 11-dimensional supergravity
[FOS04][FO13] and their geometry has been discussed in detail in [HLP18]. The quaternionic Hopf fibration
[NP84] will also play a central and subtle role.

While these are spacetime phenomena, once again we find below in §3.3 that the coset space realization (5)
controls also the coefficient of M-brane charge, and it does so in twisted Cohomotopy.
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Incarnations of Cohomotopy. We observe that twisted Cohomotopy unifies several classical theorems in differ-
ential topology.

Table C. Twisted Cohomotopy, introduced in §3.1,
has interesting mathematical properties, independent of
its role in Hypothesis H. We may think of it as a grand
unified theory of classical results in differential topol-
ogy.

Incarnations of Cohomotopy
via the Hopf degree theorem (30)
via topological G-structure §3.2
via the Poincaré-Thom theorem §3.5
via the Pontrjagin-Thom theorem §3.6
via Whitehead integrals/homotopy periods [FSS19c]

Specifically, the cohomotopical formulation of the Poincaré-Hopf theorem relates to the presence of M2-branes and
their cancellation of the C-field tadpole, by identifying the Cohomotopy charge around codimension 8-singularities
with a fraction of the Euler characteristic χ[X ]; this is discussed in §4 below.
The I8 anomaly polynomials. An Sp(2)·Sp(1)-structure implies that this multiple of the Euler class equals the M-
theory one-loop anomaly polynomial I8 (18) introduced in [DLM95][VW95]: 1

24
χ = I8. This is Prop. 4.6 below.

The topological structures associated with I8 have been studied from the point of view of generalized cohomology
in [Sa08], used for mathematical consistency for the NS5-brane partition function in [Sa11b] where analogous
anomaly conditions arise as for the M5-brane, and used for anomalies on String manifolds in [Sa11a], as well as
for the study of the non-abelian higher gauge theory for multiple M5-branes [FSS14b]. In hindsight, one can revisit
early results [IP88][IPW88] on spinors and triality automorphisms, based on the constructions of [GG70], and use
them to interpret I8 as an obstruction related to Spin(8). Furthermore, it was already pointed out in [Sa13] that I8
can detect G2 holonomy, by defining a new Z24-valued invariant, the “I8-defect” for 8-manifolds whose boundary
admits a G2-structure, and which is related to the Z48-valued ν-invariant introduced in [CN15].

The factor of 24. Further consequences of our proposed approach and setting is that they provide a natural and
fundamental interpretation of the factor of 24 appearing in the anomaly formulas. We show that this can be traced,
via the Pontrjagin-Thom construction, to the stable homotopy group of degree 3, i.e., πs

3
∼= Z24. Note that a similar

factor associated with the M2-brane viewed through the lens of Chern-Simons theory allows for an interpretation
of the factor of 24, the framing anomaly, via String cobordism in dimension 3, which is equivalent to the above
stable homotopy group [Sa10]. Thus our current discussion can be viewed as an analogue for the M5-brane.

Organization of the paper. The paper is organized in the following very simple form.

– In §2 we review the existing informal literature on the various anomaly cancellations in M-theory.
– In §3 we introduce our topological setting, which is twisted Cohomotopy theory, and prove some fundamen-

tal facts about it.
– In §4 we use the results of §3 to prove that Hypothesis H implies the anomaly cancellation conditions from §2.
– We conclude in Remark 4.34.

Outlook. The ideas, constructions, and results in this paper lead naturally to several topics which deserve discus-
sion in the future, including the following:

◦ Generalized Riemannian geometry. One may also consider generalized Cohomotopy with coefficients
products of spheres Sn×Sn; see Remark 3.24. Twists for such generalized Cohomotopy arise from topolog-
ical G-structure for Spin groups in split signature. We will discuss this elsewhere.
◦ Equivariant Cohomotopy. While here we explicitly consider only the plain topological sector of the C-

field, hence its charge quantization in plain homotopy theory, the natural form of the charge quantization
formulation in Figure T immediately generalizes to global equivariant and differential Cohomotopy (in the
sense of [HSS18] and [FSS15][FSS16a]). Specifically, the enhancement to global equivariant Cohomotopy
yields a definition of C-field charge quantization on orbifold spacetimes. Elsewhere in [RSS19] we show that
this generalization correctly captures further statements from the folklore, such as the tadpole cancellation
for M5-branes at MO5-planes, according to [Wi96a, Sec. 2.3][Ho99].
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2 M-theory anomaly cancellation in the folklore

For precise reference and complete discussion, in this section we review the state of the art on anomaly cancellation
conditions in M-theory. These conditions all revolve around the C-field.

Folklore. A note on string theory folklore is in order. For a reasonable discussion of the open problem of for-
mulating M-theory, it is necessary to distinguish established facts from plausibility arguments. The latter in the
string theory literature, remarkably, do form a tantalizingly tight web, which is quite undoubtedly pointing to the
existence of an actual underlying theory. Consequently, various conjectured phenomena of M-theory have become
folklore statements that much of the string theory literature treats as established facts. But there remain problems
with this (see §2.5). Ultimately, progress on foundations of M-theory will only be possible if one disentangles
plausible assumptions from established facts.

For instance, the all-important shifted flux quantization condition of the C-field (reviewed in §2.2) is introduced
in [Wi96a] by stating that it is “motivated” by the expected M/heterotic duality (in [Wi96a, Sec. 2.1]) and that there
is “belief” in a more conclusive argument from M2-brane anomalies (in [Wi96a, Sec. 2.2]). When other authors
consider other plausibility arguments, the common base is not readily established, e.g. [Ts04, p. 3].

Hence when we refer to such arguments as “folklore”, this is not to doubt them, but to clarify what it means
when we rigorously derive these conditions in a systematic fashion from first principles, below in §4.

2.1 DMW anomaly cancellation

In the comparison to type IIA string theory, Diaconescu, Moore and Witten [DMW03a] consider M-theory space-
time Y 11 to be a product X10×S1 and the C-field lifted from the type IIA base (see [MS04] for generalizing these
conditions). The phase of the partition function of the C-field is given by Φa = (−1) f (a), where a is the integral
class characterizing the E8 bundle over 11-dimensional Spin manifolds Y 11 = X10× S1 and f (a) is Z2-invariant
which satisfies:

• f (a) = 0 for a = 0,

• for a,b ∈ H4(X10;Z), there is a bilinear relation f (a+ b) = f (a)+ f (b)+
∫

X10 a∪Sq2(ρ2(b)), where ρ2 is
mod 2 reduction.

For torsion classes, the torsion pairing T : H4
tor(X

10;Z)×H7(X10;Z)!U(1) is given by T (a,b) =
∫

X a∪ c with
β (c) = b where β is the Bockstein corresponding to the exponential sequence Z! R! R/Z. In terms of this,
f (2b) = T (b,Sq3(ρ2(

1
2 p1))). Nondegeneracy requires that the third Steenrod operation Sq3 annihilates the (mod

2 reduction of) the first fractional Pontrjagin class of the Spin tangent bundle [DMW03a]: Sq3(ρ2(
1
2 p1(T X))) = 0.

But the expression on the left is equal to the integral Stiefel-Whitney class W7 of the tangent bundle, hence the
DMW anomaly cancellation condition is the following condition (see [DMW03b, p. 14])

W7(T X) = 0 . (6)

The DMW anomaly cancellation is interpreted in [KS04] as an orientation condition for a connected closed Spin
10-dimensional spacetime with respect to second integral Morava K-theory K̃(2) and E-theory E(2) at the prime
2. Twisted and differential versions were developed in [SW15] and [GS17], respectively. These results also mean
that the corresponding expressions should take values in the above generalized cohomology theories (see [Sa10]),
but we will not take that route here.

We show in §4.1 that Hypothesis H, implies the DMW anomaly cancellation condition. This will require a
cohomological characterization of Spin(5) ·Spin(3)-structures, which we establish in Prop. 4.6 below.

7



2.2 Half-integral flux quantization

In the approximation of M-theory by 11-dimensional supergravity, the C-field flux/field strength G4 is simply
a higher-degree analogue of the Faraday tensor of electromagnetism, hence a closed differential 4-form on 11-
dimensional spacetime. Regarded as a representative in de Rham cohomology this is equivalently, via the classical
de Rham theorem, a cocycle in the singular real cohomology of spacetime:

G4 ∈ Z4(X ;R) , [G4] ∈ H4(X ;R) . (7)

In [Wi96a], three arguments are given that this 4-form must have integral or half-integral periods, depending on
whether the rational class 1

4 p1 of the tangent bundle has integral or half-integral periods, respectively:

[G4]+
1
4 p1(T X)︸ ︷︷ ︸

=: [G̃4]

∈ H4(X ;Z) . (8)

Notice that these arguments rely on some assumptions: the argument in [Wi96a, 2.2] considers an M2-brane
spacetime of the form R2,1×X8 such that the space X8 transverse to an M2-brane locus has a circle factor, and
hence in particular that the structure group is reduced along

Spin(7) ↪−! Spin(10,1) . (9)

The argument in [Wi96a, 2.3] considers an M5-brane spacetime of the form R5,1×X5, and hence in particular that
the structure group is reduced along

Spin(5) ↪−! Spin(10,1) . (10)

Beware that these folklore arguments, while plausible and interesting, they are circumstantial. The condition
is “motivated” by the expected M-theory/heterotic duality in [Wi96a, Sec. 2.1] and there is “belief” in a more
conclusive argument from M2-brane anomalies in [Wi96a, Sec. 2.2], and in [Wi96b, (3.5)] this is “suggested”. A
more rigorous derivation has been missing; however, see [Sa10].

We show below in §4.2 how Hypothesis H implies the half-integral flux quantization (8).

2.3 Integral equation of motion

According to [DMW03a], the class of the shifted C-field flux [G̃4] := [G4]+
1
4 p1 (which is an integral cohomology

class according to §2.2) must satisfy the “integral equation of motion”

Sq3(G̃4) = 0 , (11)

where Sq3 (mod 2 reduction followed by) the degree three Steenrod square operation acting on integral cohomol-
ogy. From the point of view of M-theory this is argued to come about from the M-theoretic path integral over
the torsion component of G̃4 acting like a projection operator on those elements satisfying this condition; see
[DMW03b, Sec. 5].

But condition (11) also implies, or is implied by (depending on perspective) the argument that after Kaluza-
Klein (KK)-compactification to type IIA string theory, the 4-class of G̃4, which then is interpreted as the Ramond-
Ramond (RR) 4-flux, has to lift to complex K-theory KU [MMS01, p. 11 (12 of 45)], [ES06]. This is of course itself
another famous piece of string theory folklore [Wi98] (see [Ev06] for a survey and [GS19] for a mathematically
solid treatment), whose relation to Hypothesis H has been discussed in [BSS18].

We show below in §4.3 how Hypothesis H implies the integral equation of motion (11).
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2.4 Background charge

Naively, the C-field flux G4 seems to appear via its plain cup square (G4)
2 when sourcing its own charge, via the

self-interaction term in the supergravity equations of motion (1), dG7 =−1
2(G4)

2, and hence in the Chern-Simons
term for the 7-dimensional Chern-Simons theory dual to the self-dual field sector on the M5-brane. But [Wi96b,
3.4] argued argued that this naive square needs to be refined to a quadratic form

q(G4) := 1
2

(
(G4)

2−
(1

4 p1
)2)

= 1
2

(
(G̃4)

2− G̃4
1
2 p1
) (12)

with a non-trivial shift away from zero, in order to imply divisibility by two of the Chern class of the prequantum
line bundle of the 7d Chern-Simons theory. Here in the second line we re-expressed in terms of the integral shifted
expression G̃4 = G4 +

1
4 p1 from (8). For more review see [FSS14a, 3.2], where the moduli space relevant space of

C-field configurations is refined to a smooth moduli stack.
In the course of formalizing and proving this divisibility statement, [HS05, 1.1] amplified that this quadratic

form is a quadratic refinement of the intersection pairing, in that

q
(
G̃4 + G̃′4

)
−q
(
G̃4
)
−q
(
G̃′4
)
+q(0) = G̃4G̃′4 . (13)

This quadratic refinement was also studied via Spin bundles and their K-theory in [Sa08].
The center of such a quadratic refinement is the value

(
G̃4
)

0 such that reflecting the field value around this
center leaves the quadratic form invariant

q
(
(G̃4)0− G̃4

)
= q(G̃4) .

The physics interpretation is that
(
G̃4
)

0 is the true background charge of the field, in the sense explained in [Fr00]
[Fr09, p. 11]. In the present case of (12) the center/background charge of the C-field is given by the first fractional
Pontrjagin class

(G̃4)0 = 1
2 p1 . (14)

We show below in §4.4 how Hypothesis H leads to the quadratic form (12) and implies the C-field background
charge (14). This then appears also in the fluxed tadpole cancellation formula in Prop. 4.31, §4.6.

.

2.5 M5-brane anomaly cancellation

We review here the approaches and results leading to the traditional picture of gravitational M5-brane anomaly
cancellation.

The worldvolume QFT on the M5-brane. A fundamental aspect of string theory folklore is that the worldvolumes
of D-branes are supposed to carry quantum gauge field theories of Yang-Mills type (in this context, see [BSS18, p.
3] for review and pointers to the literature). This and other arguments lead to the expectation that the worldvolume
of the M5-brane in M-theory should carry a 6-dimensional quantum field theory of a self-dual higher gauge field
(see [Moo12] for an extensive review).

M5-brane worldvolume anomaly. However, by itself such a quantum field theory would exhibit a gravitational
quantum anomaly, making it inconsistent: the presence of the self-dual higher gauge field implies an anomaly
term IM5

SD and the presence of chiral fermions implies an anomaly term IM5
ferm, and the resulting total worldvolume

anomaly of the M5-brane
IM5 := IM5

SD + IM5
ferm (15)

is in general non-vanishing.
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Meaning of anomaly cancellation. Here these “anomaly terms” are meant to be classes of degree 8 differential
cohomology on a universal moduli stack of field configurations (“in families”). This implies that their transgression
to the worldvolume 6-manifold Σ6 of the 5-brane is a class in degree 2 differential cohomology on the moduli stack
of fields on Σ6, hence the class of a complex line bundle with connection. The action functional which defines the
worldvolume quantum field theory is generally a covariantly constant section of such an anomaly line bundle. But,
traditionally, in order to potentially make sense of the path integral over the action functional (which famously
has not actually been made sense of) the action functional must be a genuine complex-valued function, hence the
anomaly line bundle must trivialize, as a line bundle with connection, hence as a class in differential cohomology.
A choice of such trivialization is then called anomaly cancellation (see [Fr00, p. 4]). Now, full-blown differential
cohomology on universal moduli stacks of fields is a demanding subject, and doing full justice to this requires
considerable technology, as exemplified in [HS05][FSS14b][FSS14a] already in a small sub-sector of the expected
5-brane theory. Collecting all available ideas on the full “global” M5-brane anomaly is taken up in [Mo14][Mo15].

Local anomaly in rational/de Rham cohomology. However, by the definition of differential cohomology and by
the nature of rational homotopy theory, the image of these anomaly terms in rational/real cohomology, equivalently
in de Rham cohomology, is the primary obstruction to anomaly cancellation: vanishing of the anomaly terms in
rational/de Rham cohomology is in general not sufficient to deduce anomaly cancellation, but is always necessary.
This image is essentially what is called the “local anomaly”, namely the anomaly curvature form.1 This is what the
literature has mostly concentrated on and is most sure about. For instance, the M5-brane worldvolume anomaly
terms recorded in [Wi96b, Sec. 5] are really (only) such local anomaly terms in rational/de Rham cohomology.
This is what we focus on for the remainder of this section.

Anomaly inflow from the bulk. Since the M5-brane is not meant to exist abstractly by itself, but to propagate,
within M-theory, in an ambient (“bulk”) 11-dimensional spacetime, there is supposed to be a “bulk anomaly inflow”
which contributes a further term Ibulk|M5 to the 5-brane anomaly. The folklore argues roughly that

(i) if M-theory exists it should be consistent and hence anomaly-free,

(ii) both the 5-brane worldvolume QFT as well as the ambient supergravity should be limiting cases of M-theory,
hence,

(iii) the sum of the worldvolume anomaly and the “bulk anomaly inflow” should vanish:

IM5 + Ibulk|M5
!?
= 0 . (16)

Now, at least at the level of rational or de Rham cohomology, the relevant part of the bulk action functional is
supposed to be the integral of

Ibulk := −1
6 G4∧G4∧G4︸ ︷︷ ︸

Ibulk
Sugra

+G4∧ I8 (17)

over a 12-dimensional manifold cobounding the given 11-dimensional spacetime. Here the first summand Ibulk
Sugra is

the contribution visible in plain classical supergravity. The second contribution is called the “one-loop anomaly
term” ([VW95, Sec. 3][DLM95, (3.10) with (3.14)]) proportional to a combination of Pontrjagin classes:

I8 = 1
48

(
p2− 1

4 p2
1
)
. (18)

First consideration of M5-brane anomaly cancellation. The traditional idea was that the I8 term alone is to
be regarded as the bulk anomaly [Wi96b, p. 32], hence that M5-brane anomaly cancellation should mean the
vanishing of IM5 + I8. However, straightforward computation showed that this sum is instead proportional to the

1 Given an anomaly line bundle with connection, its curvature form is called the “local anomaly”, while its holonomies are called the
“global anomaly” [Fr86, p.1]. But the holonomies completely characterize a line bundle with connection [Ba91][CP94], and hence the
corresponding cocycle in differential cohomology, so that the “global anomaly” is equivalently the full differential cocycle, including its
class in integral cohomology, as opposed to just in rational/de Rham cohomology.
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second Pontrjagin class p2 of the normal bundle N of the M5-brane [Wi96b, (5.7)] (which we will denote NX QM5
below in §4):

IM5 + I8 = 1
24 p2

(
N) . (19)

In view of the expected cancellation (16), this result was felt to be “somewhat puzzling” [Wi96b, p. 35], since this
term does not generally vanish; and arguments for conditions to impose under which it would vanish were “not
clear” [Wi96b, p. 37].

Second refinement. In reaction to this state of affairs, it was argued in [FHMM98] that the computation in [Wi96b]
overlooked the fact that the 4-flux G4 must be required to have a singularity at the locus of the M5-brane, and that
taking this singular behavior into account reveals an extra contribution to the anomaly term of exactly − 1

24 p2, thus
cancelling the anomaly after all.

Third refinement. In further reaction to this, [Mo15, Sec. 2.3] argued that,

1. First, the mathematical setup should be revisited by
(i) removing the M5-brane locus from spacetime (just as in Dirac’s original argument on magnetic monopoles),

thereby doing away with any singularities in G4 and instead regarding a non-singular field configuration
on an S4-fibered spacetime X11 (the 4 = (11−6−1)-sphere being the unit sphere around a 5-dimensional
submanifolds inside an 11-dimensional manifold

S4 � � // X π // Xbase (20)

where typically
Xbase ' QM5×R>0×U

is the product of the abstract M5-brane worldvolume QM5, the positive distances R>0 away from it, and
an auxiliary finite-dimensional manifold U over which the situation is parametrized in families (see also
Remark 4.22 below),

(ii) and declaring that “restriction to the 5-brane (−)|M5” (which does not literally make sense, as the actual
singular M5-brane locus is not part of the space X) should really be fiber integration

∫
S4 over the 4-sphere

fibration:

Ibulk|M5 :=
∫

S4
Ibulk := π∗

(
Ibulk). (21)

2. Second, [Mo15, Sec. 3.3] asserted that the “bulk anomaly inflow” should be induced not just by the I8 term, as
traditionally assumed, but by the whole supergravity term (17). This statement later appears also in [BBMN18,
(5)] and [BBMN19, (2.9)], with more detailed argument provided in [BBMN19, A.4, A.5].

Accepting these two points, a straightforward and rigorous computation of the bulk inflow contribution, using
[BC97, Lemma 2.1] (which already played the central role in the argument of [FHMM98]), yields

Ibulk|M5 := −
∫

S4

1
6 G4∧G4∧G4︸ ︷︷ ︸

1
24 p2(N) + 1

2 (G
basic
4 )2

+
∫

S4
G4∧ I8︸ ︷︷ ︸

I8

. (22)

Here G4 has been assumed (see Def. 4.20 below for details) to be the sum of the unit half-Euler class 1
2
χ on the

4-sphere fiber (reflecting the unit flux/charge associated with a single 5-brane, just as in Dirac’s old argument) plus
the pullback π∗

(
Gbasic

4

)
of a form on the base of the fibration, not contributing to the flux through the 4-sphere. As

shown under the braces, this proposal implies a contribution of− 1
24 p2(N) appearing as “anomaly inflow” from the

previously neglected supergravity term, which thus cancels the “puzzling” remainder of [Wi96b] in (19), along the
lines of [FHMM98].

State of the folklore. However, there is a second term appearing under the first brace in (22). Therefore, in
summary at this point of the development, the conclusion of the folklore argument is that the total anomaly of the
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M5-brane is
IM5
tot = IM5 + I8︸ ︷︷ ︸

1
24 p2(N)

− Ibulk
Sugra|M5︸ ︷︷ ︸

1
24 p2(N)+ 1

2 (G
basic
4 )2

=−1
2(G

basic
4 )2.

(23)

This still does not vanish – the refined proposal (21), (22) for the bulk anomaly inflow has, at this point, served
to replace the residual 5-brane anomaly 1

24 p2 of [Wi96b, (5.7)] not with zero, as argued in [FHMM98], but with
−1

2

[
(Gbasic

4 )2
]
. In order to make this residual term disappear, in accord with the expected result (16), [Mo15, (3.7)]

gives an alternative formula for the worldvolume anomaly contribution IM5
SD (15) of the self-dual higher gauge field,

by adding to it a summand proportional to
[
(Gbasic

4 )2
]
, with opposite sign.

But this does not seem to be completely justifiable: while, by the discussion above, it is true that there is
ambiguity in the torsion components of this term not visible to rational/de Rham cohomology, which are explored
in [Mo14, Sec. 4], the term 1

2(G
basic
4 )2 is not in general a torsion class, hence adding it to IM5

SD would in general
violate the known form [Wi96b, (5.4)] of this local anomaly in real/de Rham cohomology.

Later, [Mo19] interprets the vanishing of this term as an incarnation of the cancellation of gauge anomalies
according to [Wi96b, Sec. 3].

Conclusion. In summary, the M5-brane anomaly is, a priori, given by (23). Hence, in view of (16), a coherent
formulation of M-theory as a consistent theory should systematically imply the remaining cancellation condition[

Gbasic
4 ∧Gbasic

4
]
= 0 (24)

at least in real/de Rham cohomology.
We discuss in §4.5 how this follows from Hypothesis H and derive (24) in Prop. 4.21 below.

2.6 M2-brane tadpole cancellation

Compactifications of M-theory on 8-manifolds X8 and with vanishing C-field flux were argued in [SVW96]
[Wi96a, Sec. 3] to require that the number of M2-branes NM2 equals the integral of the I8-class (18)

NM2 = I8([X8]) (25)

in order to cancel a tadpole anomaly. If X8 is assumed to have Spin(7)-structure then I8 is related to the Euler
8-class χ8 via

I8 =
1
24

χ8 . (26)

For Calabi-Yau 4-folds CY4, hence for SU(4) ' Spin(6)-structures, this is [BB96, (2.22)][SVW96, p. 2], while
more generally for Spin(7)-structure this is discussed in [GST02] following [IP88]. We notice below in expression
(92) of Prop. 4.6 that relation (26) is also implied by G-structure for G = Sp(2)·Sp(1), defined in (49).

In any case, in applications, relation (26) typically holds and hence implies that the tadpole cancellation condi-
tion becomes equivalently the condition that the number of M2-branes is the Euler characteristic of the compacti-
fication manifold:

NM2 = 1
24

χ8([X8]) . (27)

At the same time, [BB96, (2.58)] gave a complementary argument that in the absence of any M2-branes but in the
presence of possibly non-vanishing squared C-field flux G4, the tadpole cancellation condition is

− 1
2

∫
X8

G4∧G4 = 1
24

χ8([X8]) . (28)

In reaction to this situation, [DM96, (1)] assumed that there is a sign error in [BB96, (2.58)] and that, in the general
situation, when neither the number of M2-branes nor the squared C-field-flux is taken to vanish, equations (27)
and (28) should be jointly generalized to the equation

NM2 +
1
2

∫
X8

G4∧G4 = 1
24

χ8[X8] . (29)
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In support of this assumption, [DM96, p. 3] offered a consistency check in the special case where X8 = K3×K3,
arguing that under the expected duality between M-theory and both the heterotic as well as the type IIA-string,
equation (29) is compatible with similar formulas expected in these theories. From here on, starting with [GVW99,
(2.1)] and [DRS99, (2.1)], the string theory literature takes (29) for granted. These days condition (29) plays a
prominent role also in string model building; see for instance [CHLLT19, (9)].

We discuss how these M2-brane tadpole cancellation conditions appear from Hypothesis H, below in §4.6.
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3 Cohomotopy theory

We introduce J-twisted Cohomotopy theory, the twisted generalization of Cohomotopy theory, in §3.1. In §3.2
we discuss how twisted Cohomotopy is equivalently a special sector in the theory of G-structures hence a special
sector of Cartan geometry: every coset space realization of the n-sphere reflects an exceptional sector of twisted
Cohomotopy in degree n. Using this, we turn to analyze particularly the twists of Cohomotopy in degree 7 and
4: in §3.3 we discuss how twisted Cohomotopy in degrees 4 and 7 combined, respecting the quaternionic Hopf
fibration, singles out Sp(2)·Sp(1)-structure and Spin(5)·Spin(3)-structure, related by triality. In §3.4 we show how
exceptional twists of Cohomotopy in degree 7 alone isolates the exceptional G-structures which happen to control
N = 1 compactifications of F-theory, M-theory, and type IIA string theory. In §3.5 we observe that the classical
Poincaré-Hopf theorem expresses twisted Cohomotopy in terms of the Euler characteristic, while in §3.6 we com-
ment on how the classical Pontrjagin-Thom theorem relates Cohomotopy to cobordism classes of submanifolds
(branes) with normal structure.

In summary, we may say that twisted Cohomotopy theory by itself is a grand unified theory of differential
topology. Below in §4 we discuss how with its physics interpretation under Hypothesis H, twisted Cohomotopy
theory implies anomaly cancellation in M-theory.

3.1 Twisted Cohomotopy

The non-abelian cohomology theory (see [NSS12], following [SSS12]) represented by the n-spheres is called
Cohomotopy, going back to [Bo36][Sp49]. Hence for X a topological space, its Cohomotopy set in degree n is

π
n(X) = π0Maps

(
X ,Sn) =

{
X

cocycle in
Cohomotopy // Sn

}/
∼
. (30)

A basic class of examples is Cohomotopy of a manifold X in the same degree as the dimension dim(X) of that
manifold. The classical Hopf degree theorem (see, e.g., [Ko93, IX (5.8)], [Kob16, 7.5]) says that for X connected,
orientable and closed, this is canonically identified with the integral cohomology of X , and hence with the integers

πn(X)
'

Sn!K(Z,n)
// Hn(X ;Z)' Z , for n = dim(X). (31)

In its generalization to the equivariant Hopf degree theorem this becomes a powerful statement about equivariant
Cohomotopy theory and thus, via Hypothesis H, about brane charges at orbifold singularities [HSS18]. We discuss
this in detail elsewhere [RSS19].

Here we generalize ordinary Cohomotopy (30) to twisted Cohomotopy (Def. 3.1 below), following the general
theory of non-abelian (unstable) twisted cohomology theory [NSS12, Sec. 4]. 2 Generally, Cohomotopy in degree
n may by twisted by Aut(Sn)-principal ∞-bundles, for Aut(Sn) ⊂Maps(Sn,Sn) the automorphism ∞-group of Sn

inside the mapping space from Sn to itself.

A well-behaved subspace of twists comes from O(n + 1)-principal bundles, or their associated real vector
bundles of rank n+1, under the inclusion

Ĵn : O(n+1) �
� // Aut(Sn) �

� // Maps(Sn,Sn) , (32)

2All constructions here are homotopical, in particular all group actions, principal bundles, etc. are “higher structures up to coherent
homotopy”, in a sense that has been made completely rigorous via the notion of ∞-groups, and their ∞-actions on ∞-principal bundles
[NSS12]. But the pleasant upshot of this theory is that when homotopy coherence is systematically accounted for, then higher structures
behave in all general ways as ordinary structures, for instance in that homotopy pullbacks satisfy the same structural pasting laws as
ordinary pullbacks. Beware, this means in particular that all our equivalences are weak homotopy equivalences (even when we denote them
as equalities), and that all our commutative diagrams are commutative up to specified homotopies (even when we do not display these).
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which witnesses the canonical action of orthogonal transformations in Euclidean space Rn+1 on the unit sphere
Sn = S(Rn+1). The restriction of these to O(n)-actions

Jn : O(n) �
� // O(n+1) �

� Ĵn // Maps(Sn,Sn)

are known as the unstable J-homomorphisms [Wh42] (see [Ko93][Mat12] for expositions). By general principles
[NSS12], the homotopy quotient Sn �O(n+1) of Sn by the action via Ĵn is canonically equipped with a map J̃n to
the classifying space BO(n+1), such that the homotopy fiber is Sn:

Sn // Sn �O(n+1)

��
BO(n+1) .

One may think of this as the universal spherical fibration which is the Sn-fiber ∞-bundle associated to the universal
O(n+1)-principal bundle via the homotopy action Ĵn.

Definition 3.1 (Twisted Cohomotopy). Given a map τ : X ! BO(n+1), we define the τ-twisted cohomotopy set
of X to be

π
τ(X) :=


Sn�O(n+1)

J̃O(n+1)
��

X

cocycle in
twisted

Cohomotopy
44

τ

twist
// BO(n+1)

{�


/
∼

=


E

��

//

(pb)

Sn�O(n+1)

J̃O(n+1)
��

X

cocycle in
twisted

Cohomotopy

66

X τ

twist
// BO(n+1)
y�


/
∼

(33)

Here in the second line, E ! X denotes the n-spherical fibration classified by τ and the universal property of
the homotopy pullback shows that cocycles in τ-twisted equivariant Cohomotopy are equivalently sections of this
n-spherical fibration.

Remark 3.2 (Notation). Here the notation πτ
(
X
)

is motivated, as usual in twisted cohomology, from thinking of
the map τ as encoding, in particular, also the degree n ∈ N.

Remark 3.3 (Cohomotopy twist by Spin structure). In applications, the twisting map τ is often equipped with a
lift through some stage of the Whitehead tower of BO(n+1), notably with a lift through BSO(n+1) or further to
BSpin(n+1)

X

τ

55
τ̂ // BSpin(n+1) // BO(n+1) .

In this case, due to the homotopy pullback diagram

Sn�Spin(n+1) //

��
(pb)

Sn�O(n+1)

J̃O(n+1)
��

BSpin(n+1) // BO(n+1)

the twisted cohomotopy set from Def. 3.1 is equivalently given by

π
τ(X) '


Sn�Spin(n+1)

J̃Spin(n+1)
��

X

cocycle in
twisted

Cohomotopy
44

τ̂

twist
// BSpin(n+1)

z�


/
∼

(34)
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Most of the examples in §3.3 and §4 arise in this form.

In order to extract differential form data (“flux densities”) from cocycles in twisted Cohomotopy, in Prop. 3.5
below, we consider rational twisted Cohomotopy (Def. 3.4) below. A standard reference on the rational homotopy
theory involved in [FHT00]. Reviews streamlined to our context can be found in [FSS16a, Appendix A][BSS18].

Definition 3.4 (Rationalizing twisted Cohomotopy). We write πτ(X)
(−)Q // πτ

Q(X) for the rationalization of
twisted Cohomotopy to rational twisted Cohomotopy, given by applying rationalization to all spaces and maps
involved in a twisted Cohomotopy cocycle.

We now characterize cocycles in rational twisted Cohomotopy in terms of differential form data (which will be
the corresponding “flux density” in §4).

Proposition 3.5 (Differential form data underlying twisted Cohomotopy). Let X be a smooth manifold which is
simply connected (see Remark 3.6 below) and τ : X! BO(n+1) a twisting for Cohomotopy in degree n, according
to Def. 3.1. Let ∇τ be any connection on the real vector bundle V classified by τ with Euler form χ2k+2(∇τ) (see
[MQ86, below (7.3)][Wu06, 2.2]).

(i) If n = 2k+1 is odd, n ≥ 3, a cocycle defining a class in the rational τ-twisted Cohomotopy of X (Def. 3.4) is
equivalently given by a differential 2k+1-form G2k+1 ∈Ω2k+1(X) on X which trivializes the negative of the Euler
form

π
τ
Q(X) '

{
G2k+1 | d G2k+1 = −χ2k+2(∇τ)

}/
∼
. (35)

(ii) If n = 2k is even, n ≥ 2, a cocycle defining a class in the rational τ-twisted Cohomotopy of X (Def. 3.4) is
given by a pair of differential forms G2k ∈Ω2k(X) and G4k−1 ∈Ω4k−1(X) such that

dG2k = 0; π
∗G2k =

1
2
χ2k(∇τ̂) (36)

dG4k−1 =−G2k∧G2k +
1
4 pk(∇τ), (37)

where pk(∇τ) is the k-th Pontrjagin form of ∇τ , π : E ! X is the unit sphere bundle over X associated with τ ,
τ̂ : E ! BO(n) classifies the vector bundle V̂ on E defined by the splitting π∗V = RE ⊕ V̂ associated with the
tautological section of π∗V over E, and ∇τ̂ is the induced connection on V̂ . That is,

π
τ
Q(X) '

{(
G2k,G4k−1

) ∣∣∣ d G2k = 0 , π
∗G2k =

1
2
χ2k(∇τ̂)

d G4k−1 =−G2k∧G2k +
1
4 pk(∇τ)

}/
∼
.

Proof. By the assumption that the smooth manifold X is simply connected, it has a Sullivan model dgc-algebra
CE
(
lX
)

and we may compute the rational twisted Cohomotopy by choosing a Sullivan model lE for the spherical
fibration classified by τ . By definition of rational twisted Cohomotopy, we are interested in the set of homotopy
equivalence classes of dgca morphisms CE(lE)! CE(lX) that are sections of the morphism CE(lX)! CE(lE)
corresponding to the projection E ! X . The Sullivan model model for E is well known. We recall from [FHT00,
Sec. 15, Example 4]:

(I). The Sullivan model for the total space of a 2k+1-spherical fibration E! X is of the form

CE(lE) = CE(lX)⊗R[ω2k+1]/(d ω2k+1 =−c2k+2) , (38)

where

(a) c2k+2 ∈ CE
(
lX
)

is some element in the base algebra, which by (38) is closed and so it represents a
rational cohomology class

[c2k+2] = H2k+2(X ;Q).
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This class classifies the spherical fibration, rationally. Moreover, if the spherical fibration E ! X
happens to be the unit sphere bundle E = S(V ) of a real vector bundle V ! X , then the class of c2k+2
is the rationalized Euler class χ2k+2(V ) of V :

[c2k+2] = χ2k+2(V ) ∈ H2k+2(X ;Q) . (39)

(b) and in this case, under the quasi-isomorphism CE(lE)!Ω•dR(E) the new generator ω2k+1 corresponds
to a differential form that evaluates to the unit volume on each (2k+1)-sphere fiber:〈

ω2k+1, [S2k+1]
〉
= 1 . (40)

(This is not stated in [FHT00, Sec. 15, Example 4], but follows with [Che44], see [Wa04, Ch. 6.6,
Thm. 6.1].)

The morphism CE(lX)! CE(lE) is the obvious inclusion, so a section is completely defined by the image
of ω2k+1 in CE(lX). This image will be an element g2k+1 ∈ CE(lX) such that dg2k+1 = c2k+2, and every
such element defines a section CE(lE)! CE(lX) and so a cocycle in rational twisted cohomotopy. Under
the quasi-isomorphism CE(lX)! Ω•dR(X) defining CE(lX) as a Sullivan model of X , the element c2k+2 is
mapped to a closed differential form χ2k+2(∇τ) representing the Euler class χ2k+2(V ) of V , and so g2k+1
corresponds to a differential form G2k+1 on X with dG2k+1 = χ2k+2(∇τ).

(II). The Sullivan model for the total space of 2k-spherical fibration E! X is of the form3

CE(lE) = CE(lX)⊗R
[
ω2k,ω4k−1

]/( d ω2k = 0
dω4k−1 =−ω2k ∧ω2k + c4k

)
, (41)

where

(a) c4k ∈ CE(lX) is some element in the base algebra, which by (41) is closed and represents the rational
cohomology class of the cup square of the class of ω4k:

[c4k] = [ω2k]
2 ∈ H4k(X ;Q).

This class classifies the spherical fibration, rationally.

(b) under the quasi-isomorphism CE(lE)! Ω•dR(E) the new generator ω2k corresponds to a closed dif-
ferential form that restricts to the volume form on the 2k-sphere fibers S2k ' Ex ↪! E over each point
x ∈ X : 〈

ω2k, [S2k]
〉
= 1 . (42)

Note that the element [ω2k]
2 is a priori an element in H4k(E,Q). By writing [c4k] = [ω2k]

2 ∈ H4k(X ;Q)
we mean that [ω2k]

2 is actually the pullback of the element [c4k] via the projection π : E! X .

Moreover, if the spherical fibration π : E ! X happens to be the unit sphere bundle E = S(V ) of a real
vector bundle V ! X , then the tautological section of π∗V defines a splitting π∗V = RE ⊕V̂ and

(a) the class of ω2k is half the rationalized Euler class χ2k(V̂ ) of V̂ :

[ω2k] =
1
2
χ(V̂ ) ∈ H2k(E;Q) . (43)

(b) the class of c4k is one fourth the rationalized k-th Pontrjagin class pk(V ) of V :

[c4k] =
1
4 pk(V ) ∈ H4k(X ;Q) . (44)

3 There is an evident sign typo in the statement (but not in the proof) of [FHT00, Sec. 15, Example 4] with respect to equation (38):
The standard fact that the Euler class squares to the top Pontrjagin class means that there must be the relative minus sign in (38), which is
exactly what the proof of [FHT00, Sec. 15, Example 4] actually concludes.
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The second equation is actually a consequence of the first one and of the naturality and multiplicativity of the total
rational Pontrjagin class:

π
∗pk(V ) = pk(RE ⊕V̂ ) = pk(V̂ ) = χ2k(V̂ )2.

Reasoning as in the odd sphere bundles case, a section of CE(lX)! CE(lE), and so a cocycle in rational twisted
cohomotopy, is the datum of elements g2k,g4k−1 ∈ CE(lX) such that dg2k = 0 and dg4k−1 = −g2k ∧ g2k + c4k.
Under the quasi-isomorphism CE(lE)! Ω•dR(E), the element g2k, seen as an element in CE(lE), is mapped to a
closed differential form 1

2
χ2k(∇τ̂) representing 1/2 the Euler class χ2k(V̂ ) of V̂ , while under the quasi-isomorphism

CE(lX)! Ω•dR(X) the element c4k is mapped to a closed differential form 1
4 pk

(
∇τ̂

)
representing 1/4 the k-th

Pontrjagin class 1
4 pk(V ) of V . Therefore, the quasi-isomorphism CE(lX)! Ω•dR(X) turns the elements g2k and

g4k−1 into differential forms G2k and G4k−1 on X , subject to the identities dG2k = 0, π∗G2k = 1
2
χ2k(∇τ̂), and

dG4k−1 =−G2k∧G2k +
1
4 pk(∇τ̂).

Remark 3.6 (Simply-connectedness assumption). The assumption in Prop. 3.5 that X be simply connected is just
to ensure the existence of a Sullivan model for X , as used in the proof. (It would be sufficient to assume, for that
purpose, that the fundamental group is nilpotent). If X is not simply connected and not even nilpotent, then a
similar statement about differential form data underlying twisted Cohomotopy cocycles on X will still hold, but
statement and proof will be much more involved. Hence we assume simply connected X here only for convenience,
not for fundamental reasons. A direct consequence of this assumption, which will play a role in §4, is that, by the
Hurewicz theorem and the universal coefficient theorem, the degree 2 cohomology of X with coefficients in Z2 is
given by:

H2(X ;Z2) ' HomAb
(
H2(X ,Z), Z2

)
. (45)

3.2 Twisted Cohomotopy via topological G-structure

We discuss how cocycles in J-twisted Cohomotopy are equivalent to choice of certain topological G-structures
(Prop. 3.8 below).

The following fact plays a crucial role throughout:

Lemma 3.7 (Homotopy actions and reduction of structure group). Let G be a topological group and V any topo-
logical space.
(i) Then for every homotopy-coherent action of G on V , the corresponding homotopy quotient V �G forms a
homotopy fiber sequence of the form

V // V �G // BG

and, in fact, this association establishes an equivalence between homotopy V -fibrations over BG and homotopy
coherent actions of V on G.
(ii) In particular, if ι : H ↪! G is an inclusion of topological groups, then the homotopy fiber of the induced map
Bι of classifying spaces is the coset space G/H:

G/H fib // BH Bι // BG

thus exhibiting the weak homotopy equivalence
(
G/H

)
�G ' BH.

Proof. This equivalence goes back to [DDK80]. A modern account which generalizes to geometric situations
(relevant for refinement of all constructions here to differential cohomology) is in [NSS12, Sec. 4]. When the
given homotopy-coherent action of the topological group G on V happens to be given by an actual topological
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action we may use the Borel construction to represent the homotopy quotient. For the case of H ↪!G a topological
subgroup inclusion, we may compute as follows:

BH ' ∗×H EH

' ∗×H EG

' ∗×H (G×G EG)

' (∗×H G)×G EG

' (G/H)×G EG

' (G/H)�G .

Here the first weak equivalence is the usual definition of the classifying space, while the second uses that one may
take a universal H-bundle EH, up to weak homotopy equivalence, any contractible space with free H-action, hence
in particular EG. The third line uses that G is the identity under Cartesian product followed by the quotient by the
diagonal G-action.

Proposition 3.8 (Twisted cohomotopy cocycle is reduction of structure group). Cocycles in twisted Cohomotopy
(Def. 3.1) are equivalent to choices of topological G-structure for G = O(n) ↪! O(n+1):

π
τ(X) =


BO(n)

��
X

cocycle in
twisted

Cohomotopy

55

τ

twist
// BO(n+1)

/∼

Moreover, if the twist is itself is factored through BSpin(n+ 1) as in Remark 3.3, then τ-twisted Cohomotopy is
equivalent to reduction along Spin(n) ↪! Spin(n+1):

π
τ(X) =


BSpin(n)

��
X

cocycle in
twisted

Cohomotopy
44

τ̂

twist
// BSpin(n+1)

/∼

Generally, if there is a coset realization of an n-sphere Sn ' G/H and the twist is factored through G-structure,
then τ-twisted Cohomotopy is further reduction to topological H-structure:

π
τ(X) =


BH

��
X

cocycle in
twisted

Cohomotopy

55

τ̂

twist
// BG

/∼

Proof. This follows by applying Lemma 3.7 and using the fact that Sn ' O(n+1)/O(n).

Remark 3.9 (Cohomotopy twists from coset space structures on spheres).

(i) Prop. 3.8 say that for each topological coset space structure on an n-sphere Sn ' G/H the corresponding
G-twisted Cohomotopy (Def. 3.1) classifies reduction to topological H-structure.
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(ii) Coset space structures on n-spheres come in three infinite series and a few exceptional cases:

Spherical coset spaces [MS43], see [GG70, p.2]

Sn−1 ' Spin(n)/Spin(n−1)
standard,
e.g. [BS53, 17.1]S2n−1 ' SU(n)/SU(n−1)

S4n−1 ' Sp(n)/Sp(n−1)

S7 ' Spin(7)/G2 [Va01, Thm. 3]

S7 ' Spin(6)/SU(3) by Spin(6)' SU(4)

S7 ' Spin(5)/SU(2)
by Spin(5)' Sp(2)
and SU(2)' Sp(1)
[ADP83] [DNP83]

S6 ' G2/SU(3) [FI55]
Table S. Coset space structures on topological n-spheres.

(iii) Assembling these for the case of the 7-sphere, we interpret the result in terms of special holonomy and G-
structures as in Figure D and as the sequence (4) corresponding to consecutive reductions.

Using this, the following construction is a rich source of twisted Cohomotopy cocycles:

Lemma 3.10. Let Y be a manifold, n ∈ N a natural number and Y N // BO(n+1) a classifying map.

i) If X π
! Y denotes the n-spherical fibration classified by N, hence, by Remark 3.9, the homotopy pullback in

the following diagram:

X c //

(pb)

TY X
++

π

��

Sn�O(n+1) '
//

��

BO(n)

��
Y

N
// BO(n+1)

(46)

then the total top horizontal map is equivalently the classifying map for the vertical tangent bundle TY X, of X over
Y , as shown.

ii) In particular, if
Y := Σ×R>0

is the Cartesian product of some manifold Σ with a real ray, so that each fiber of π over Σ is identified with the
Cartesian space Rn+1 with the origin removed

Sn×R>0 ' Rn+1 \{0}

then the pullback map c in (46) is a coycle in N ◦π-twisted Cohomotopy on X, according to Def. 3.1:

Sn�O(n+1)

��
X N◦π //

T X
))

c
55

BO(n+1)

��
BO(dim(Σ)+n+1)

(47)
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3.3 Twisted Cohomotopy in degrees 4 and 7 combined

We discuss here twisted Cohomotopy in degree 4 and 7 jointly, related by the quaternionic Hopf fibration hH. This
requires first determining the space of twists that are compatible with hH, which is the content of Prop. 3.20 and
Prop. 3.22 below. This yields the scenario of incremental G-structures shown in Figure T. The twists that appear
are subgroups of Spin(8) related by triality (Prop. 3.17 below), and in fact the classifying space for the C-field
implied by Hypothesis H comes out to be the homotopy-fixed locus of triality.

It will be useful to have the following notation for a basic but crucial operation on Spin groups:

Definition 3.11 (Central product of groups). Given a tuple of groups G1,G2, · · · ,Gn, each equipped with a central
Z2-subgroup inclusion Z2 ' {1,−1} ⊂ Z(Gi)⊂ Gi, we write

G1 ·G2 · · · · ·Gn−1 ·Gn :=
(
G1×G2×·· ·×Gn

)
/diagZ2 (48)

for the quotient group of their direct product group by the corresponding diagonal Z2-subgroup:

{(1,1, · · · ,1), (−1,−1, · · · ,−1)} �
� // G1×G2×·· ·×Gn .

Just to save space we will sometimes suppress the dots and write G1G2 := G1 ·G2, etc.

Example 3.12 (Central product of symplectic groups). The notation in Def. 3.11 originates in [Ale68, Gra69] for
the examples

Sp(n) ·Sp(1) :=
(
Sp(n)×Sp(1)

)
/{(1,1),(−1,−1)}. (49)

For n ≥ 2 this is such that a Sp(n)·Sp(1)-structure on a 4n-dimensional manifold is equivalently a quaternion-
Kähler structure [Sal82]. Specifically, for n = 2 there is a canonical subgroup inclusion

Spin(8)

����
Sp(2) ·Sp(1)

& �

33

� � // SO(8)' SO(H2)

(A,q) � // (x 7! A · x ·q)

(50)

given by identifying elements of Sp(2) as quaternion-unitary 2×2-matrices A, elements of Sp(1) as multiples of
the 2× 2 identity matrix by unit quaternions q, and acting with such pairs by quaternionic matrix conjugation on
elements x ∈ H2 'R R8 as indicated. This lifts to an inclusion into Spin(8) through the defining double-covering
map (see [CV97, 2.]). Notice that reversing the Sp-factors gives an isomorphic group, but a different subgroup
inclusion

Spin(8)

����
Sp(1) ·Sp(2)

% �

33

� � // SO(8)' SO(H2)

(q,A) � // (x 7! q · x ·A)

(51)

For more on this see Prop. 3.17 below.

Example 3.13 (Central product of Spin groups). For n1,n2 ∈ N, we have the central product (Def. 3.11) of the
corresponding Spin groups

Spin(n1) ·Spin(n2) :=
(
Spin(n1)×Spin(n2)

)
/{(1,1),(−1,−1)} . (52)

(This notation is used for instance in [McI99, p. 9] [HN12, Prop. 17.13.1].) Here the canonical subgroup inclusions
of Spin groups Spin(n)

ιn
↪−! Spin(n+ k) induce a canonical subgroup inclusion of (52) into Spin(n1 +n2):

(α,β ) � // ιn1(α) · ιn2(β )(
Z2
)

diag
� � ker // Spin(n1)×Spin(n2) //

quot
��

Spin(n1 +n2) .

Spin(n1) ·Spin(n2)
& �

33

(53)
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Notice that these groups sit in short exact sequences as follows:

1 // Spin(n1)
� � ιn1 // Spin(n1) ·Spin(n2)

prn2 // // SO(n2) // 1 . (54)

For low values of n1,n2 there are exceptional isomorphisms between the groups (49) and (52) as abstract
groups, but as subgroups under the inclusions (50) and (53) these are different. This is the content of Prop. 3.17
below. First we record the following, for later use:

Definition 3.14 (Universal class of central products). For n1,n2 ∈ N, write

ϖ ∈ H2(B(Spin(n1) ·Spin(n2)); Z2
)

for the universal characteristic class on the classifying space of the central product Spin group (Def. 3.13) which
is the pullback of the second Stiefel-Whitney class w2 ∈ H2

(
BSO(n2),Z2

)
from the classifying space of the un-

derlying SO(n2)-bundles, via the projection (54):

ϖ := (Bprn2
)∗(w2) . (55)

See also [Sal82, Def. 2.1], following [MR76].

Lemma 3.15 (Obstruction to direct product structure). For n1,n2 ∈ N, let X τ
−! B

(
Spin(n1) · Spin(n2)

)
be a

classifying map for a central product Spin structure (Def. 3.13). Then the following are equivalent:

(i) the class ϖ from Def. 3.14 vanishes:

ϖ(τ) = 0 ∈ H2(X ;Z2) ,

(ii) τ has a lift to the direct product Spin structure:

B
(
Spin(n1)×Spin(n2)

)
��

X
τ

//

τ̂

44

B
(
Spin(n1)·Spin(n2)

)
.

(iii) the underlying SO(n2)-bundle admits Spin structure:

BSpin(n2)

��
X

Bprn2
◦τ

//

B̂prn2
◦τ

33

BSO(n2) .

Proof. By (52) and (54) we have the following short exact sequence of short exact sequences of groups:

1� _

��

� � // Spin(5)� _

��

Spin(5)� _

��
Z2
� � // Spin(5)×Spin(3)

����

// // Spin(5)·Spin(3)

pr3
����

Z2
� � // Spin(3) // // SO(3)
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Since the bottom left morphism is an identity, it follows that also after passing to classifying spaces and forming
connecting homomorphisms, the corresponding morphism on the bottom right in the following diagram is a weak
homotopy equivalence:

BZ2 // B
(
Spin(5)×Spin(3)

)
��

// B
(
Spin(5)·Spin(3)

)
ϖ //

Bpr3

��

B2Z

BZ2 // BSpin(3) // BSO(3)
w2 // B2Z

By the top homotopy fiber sequence, this exhibits ϖ as the obstruction to the lift from central product Spin structure
to direct product Spin structure.

Example 3.16. Applying Def. 3.11 to three copies of Sp(1) yields the group

Sp(1) ·Sp(1) ·Sp(1) :=
(
Sp(1)×Sp(1)×Sp(1)

)
/
{
(1,1,1),(−1,−1,−1)

}
. (56)

The notation appears for instance in [OP01][BM14].
• Observe that, due to the exceptional isomorphisms Spin(3)' Sp(1) and Spin(4)' Spin(3)×Spin(3) there

are isomorphisms

Spin(4) ·Spin(3) ' Spin(3) ·Spin(3) ·Spin(3) ' Sp(1) ·Sp(1) ·Sp(1) . (57)

• The group (56) is acted upon via automorphisms interchange the three dot-factors by the symmetric group
on three elements:

S3 <<
(
Sp(1) ·Sp(1) ·Sp(1)

)
(58)

• Beware that the central product of groups with central Z2-subgroup (Def. 3.11) is not a binary associative
operation: for instance, we have

Sp(1) ·Sp(1) ' Spin(3) ·Spin(3) ' SO(4) , (59)

which does not even contain the Z2-subgroup anymore that one would diagonally quotient out in (57), hence
the would-be iterated binary expression “

(
Sp(1) ·Sp(1)

)
·Sp(1)” does not even make sense. Instead we have

Sp(1) ·Sp(1) ·Sp(1) '
(
Sp(1)×Sp(1)

)
·Sp(1) . (60)

But it is useful to observe that

Sp(1) ' Sp(1) ·Z2 and Sp(1)×Sp(1) ' Sp(1) ·Z2 ·Sp(1) (61)

All this plays a role in Prop. 3.22 below.

Proposition 3.17 (Triality of quaternionic subgroups of Spin(8)). The subgroup inclusions into Spin(8) of Sp(2)·
Sp(1) via (50), Sp(1)·Sp(2) via (51), and Spin(5)·Spin(3) via (53), represent three distinct conjugacy classes of
subgroups, and under the defining projection to SO(8) they map to subgroups of SO(8) as follows:

Sp(1) ·Sp(2) {�
ι ′

,, Spin(8)

�� ��

Spin(3) ·Spin(5)

$$ $$

? _ιoo

Sp(2) ·Sp(1)
# �

ι ′′
22

Sp(1) ·Sp(2)
y� ι ′

,, SO(8) SO(3)×SO(5).? _ιoo

Sp(2) ·Sp(1)
% �

ι ′′
22
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Moreover, the triality group Out(Spin(8)) acts transitively by permutation on the set of these three conjugacy
classes.

Spin(8)
DD

'

��

ss
'

tri

""

Sp(2)·Sp(1)
DD

'

��

0 P

``

rr '

$$
Sp(1)·Sp(1)·Sp(1)

OO

'
��

4 T

gg

kk '
++

Sp(1)·Sp(1)·Sp(1) �
� // Spin(5)·Spin(3) �

� // Spin(8) .

Sp(1)·Sp(1)·Sp(1)
jJ

ww

ss
' 33

Sp(1)·Sp(2) ll '

::

nN

~~
Spin(8) kk

'

<<

Proof. This follows by analysis of the action of triality on the corresponding Lie algebras; see [CV97, Sec. 2],
[Ko02, Prop. 3.3 (3)].

Remark 3.18 (Subgroups). (i) For emphasis, notice that the subgroups appearing in Prop. 3.17 are all isomorphic
as abstract groups

Sp(1) ·Sp(2) ' Sp(2) ·Sp(1) ' Spin(5) ·Spin(3) ' Spin(3) ·Spin(5)

due to the classical exceptional isomorphisms

Sp(1) ' Spin(3) , Sp(2) ' Spin(5)

and via the evident automorphisms that permutes central product factors. However, when each is equipped with its
canononical subgroup inclusion into Spin(8), via (50), (51) and (53), then these are distinct subgroups. Moreover,
Prop. 3.17 says that the first three of these are even in distinct conjugacy classes of subgroups, while the two
Spin(3)·Spin(5) and Spin(5)·Spin(3) are in the same conjugacy class.

(ii) In the following, when considering these subgroup inclusions and their induced morphisms on classifying
spaces, we will always mean that canonical inclusion of the subgroup of that name. When we need to refer to
another, non-canonical embedding of any of these groups G, then we will always make this explicit as a triality
automorphism G '

! G′ followed by the canonical inclusion of G′. See for instance (105) below for an example.

For the development in §4 we need to know in particular how universal characteristic classes behave under the
triality automorphisms:

Lemma 3.19 (Pullback of classes along triality). The integral cohomology ring of BSpin(8) is

H•(BSpin(8);Z) ' Z
[1

2 p1,
1
4

(
p2−

(1
2 p1
)2)− 1

2
χ, χ8, β (w6)

]/(
2β (w6)

)
, (62)

where pk are Pontrjagin classes, χ8 is the Euler class, w6 is a Stiefel-Whitney class, β is the Bockstein homomor-
phism, so that W7 := β (w6) is an integral Stiefel-Whitney class.
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(i) Under the delooping of the triality automorphism from Prop. 3.17 to classifying spaces

B
(
Sp(2) ·Sp(1)

) ' //

��

B
(
Spin(5) ·Spin(3)

)
��

BSpin(8) '
Btri

// BSpin(8)

(63)

these classes pull back as follows:

(
Btri
)∗ :

1
2 p1 7−! 1

2 p1

χ8 7−! −1
4

(
p2−

(1
2 p1
)2)

+ 1
2
χ8

1
4

(
p2−

(1
2 p1
)2)− 1

2
χ8 7−! −χ8

(64)

(ii) Notice that, in particular, (
(Btri)∗

)−1
= (Btri)∗ .

and
(Btri)∗ : 1

4 p2 7−! −χ8 +
(1

4 p1
)2− 1

2

(
1
4

(
p2−

(1
2 p1
)2)− 1

2
χ
)
. (65)

Proof. This follows by combining [CV97, Lemmas 2.5, 4.1, 4.2], following [GG70, Thm. 2.1], and using the
property tri−1 = tri, recalled in [CV97, 2.].

Now we may have a closer look at the quaternionic Hopf fibration S7 ' S(H2)
hH // HP1 ' S4 :

Proposition 3.20 (Symmetries of the quaternionic Hopf fibration).

(i) The symmetry group of hH and hence the group of twists for Cohomotopy jointly in degrees 4 and 7, is the group
(49),

Sp(2)·Sp(1) ↪−! O(8) , (66)

with its canonical action (50), in that this is the largest subgroup of O(8)'O(H2) under which hH is equivariant.

(ii) The corresponding action on the codomain 4-sphere S4 ' S
(
R5
)

is via the canonical projection (54) to SO(5)

Sp(2)·Sp(1) ' // Spin(5)·Spin(3)
pr5 // // SO(5) . (67)

Proof. This statement essentially appears as [GWZ86, Prop. 4.1] and also, somewhat more implicitly, in [Po95,
p. 263]. To make this more explicit, we may observe, with Table S, that the quaternionic Hopf fibration has the
following coset space description:

S3 fib(hH) // S7 hH // S4

Spin(4)
Spin(3) ι4

id

// Sp(2)
Sp(1) id

q 7!(q,1)

// Sp(2)
Sp(1)×Sp(1)

(68)

where ι4 : Spin(4) ↪! Spin(5) ' Sp(2) denotes the canonical inclusion. This can also be deduced from [HaTo09,
Table 1]. In the octonionic case the analogous statement is noticed in [OPPV12, p. 7].

The following Prop. 3.22 gives the homotopy-theoretic version of Prop. 3.20, which is the key for the discus-
sion in §4 below. In order to clearly bring out all subtleties, we first recall the following fact:
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Lemma 3.21 (Spin(4)-action on quaternions). Under the exceptional isomorphism

Sp(1)×Sp(1)� _

��

' // Spin(4)� _

��

// // SO(4)� _

��
Sp(2) '

// Spin(5) // // SO(5)

the action of Sp(1)× Sp(1) on R4 'R H is the conjugation action of pairs (q1,q2) of unit quaternions on any
quaternion x:

Spin(4)×R4

'
��

// R4

'
��(

Sp(1)×Sp(1)
)
×H

conj(−,−)(−) // H(
(q1,q2),x

) � // q1 · x ·q2

(69)

Proposition 3.22 (The Sp(2) · Sp(1)-parametrized quaternionic Hopf fibration). The homotopy quotient of the
quaternionic Hopf fibration hH by its equivariance group (Prop. 3.20) is equivalently the map of classifying
spaces

S7�Sp(2)·Sp(1)

hH�Sp(2)·Sp(1)

��

oo ' // B
(
Sp(1) ·Sp(1)

)
B
(
[q1,q2]7![q1,q2,q2]

)
��

S4�Sp(2)·Sp(1) oo '
// B
(
Sp(1)·Sp(1)·Sp(1)

)
which is induced by the following inclusion of central product groups from Example 3.16:

Sp(1) ·Sp(1) �
� // Sp(1) ·Sp(1) ·Sp(1)

[q1, q2]
� //

[
q1, q2, q2

] (70)

Proof. Consider the following diagram:

S7

hH

++

quot

��

Sp(2)
Sp(1)

fib

��

id
(id, e)

// Sp(2)
Sp(1)×Sp(1)

fib

��

S4

quot

��
S7�

(
Sp(2)·Sp(1)

)
hH�(Sp(2)·Sp(1))

22
B
(
Sp(1) ·Sp(1)

)

  

B
(
[q1,q2]7![q1,q2,q2]

)
// B
(
Sp(1)·Sp(1)·Sp(1)

)

||

S4�
(
Sp(2)·Sp(1)

)

B
(
Sp(2)·Sp(1)

)
The outer rectangle exhibits the homotopy quotient of hH that we are after, and so we need to show this factors as
a pasting of homotopy commutative inner squares as shown.
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First, the factorization of the top horizontal map follows as the right half of diagram (68) in Prop. 3.20.
Moeover, the bottom triangle exhibits the delooping of the factorization

Sp(1) ·Sp(1) �
� // Sp(1) ·Sp(1) ·Sp(1) �

� // Sp(2) ·Sp(1)

[q1,q2]
� // [q1,q2,q2]

� //
[(

q1 0
0 q2

)
,q2

] (71)

and hence commutes by construction. This implies, by functoriality of homotopy fibers, that also the square of
homotopy fibers commutes, and hence the whole diagram commutes as soon as these squares have top horizontal
morphisms as shown. Hence it remains to see that the induced morphism of homotopy fibers is indeed as shown,
and hence is indeed the quaternionic Hopf fibration.

For this, we invoke Lemma 3.7, which says that the homotopy fibers here are the coset spaces of the corre-
sponding group inclusions, and hence the morphism of homotopy fibers the corresponding induced morphism of
coset spaces. With this we are reduced to showing that we have a commuting top square as follows

Sp(2)·Sp(1)
Sp(1)·Sp(1)

id
[q1 ,q2 ]7![q1 ,q2 ,q2 ] // Sp(2)·Sp(1)

Sp(1)·Sp(1)·Sp(1)

Sp(2)
Sp(1)

id
q 7!(q,1) // Sp(2)

Sp(1)×Sp(1)

S7 hH // S4

(72)

because the bottom square already commutes by Prop. 3.20.
For this, we observe that the groups Sp(1) ·Sp(1) and Sp(1) ·Sp(1) ·Sp(1) are the stabilizer subgroups under

the respective Sp(2) ·Sp(1)-actions from Prop. 3.20 on S7 and S4, of any one point on S7 and S4, respectively: For
definiteness we consider the points[

0
1

]
∈ S7 ' S

(
H
⊕
H

)
and

[
0
1

]
∈ S4 ' S

(
H
⊕
R

)

for which one sees by direct inspection of the matrix multiplications involved that their stabilizer subgroups under
the actions of Prop. 3.20 are as follows:

Sp(1) ·Sp(1)

'
��

// Sp(1) ·Sp(1) ·Sp(1)

'
��{[(

q1 0
0 q2

)
,q2

]
| qi ∈ Sp(1)

}
[q1,q2] 7! [q1,q2,q2] //

'
��

{[
conj(q1,q2),q3

]
| qi ∈ Sp(1)

}
'
��

StabSp(2)·Sp(1)

([
0
1

]
∈

H
⊕
H

)
� v

))

StabSp(2)·Sp(1)

([
0
1

]
∈

H
⊕
R

)
hH

uu
Sp(2) ·Sp(1)

Here on the left we used the defining action by quaternionic matrix multiplication from (50), while on the right we
used the quaternionic conjugation action conj(−,−) (69) of Spin(4)' Sp(1)×Sp(1) by Lemma 3.21.
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That our groups are thus stabilizer subgroups implies the existence of top vertical isomorphisms in (72). Mak-
ing these explicit and chasing a coset through the top square in (72) makes manifest that the square indeed com-
mutes:

Sp(1) ·Sp(1) �
�[q1 ,q2 ]7![diag(q1 ,q2),q2 ]

// Sp(2) ·Sp(1) quot // // Sp(2)·Sp(1)
Sp(1)·Sp(1)

id
[q1 ,q2 ]7![q1 ,q2 ,q2 ]

//
OO

'

Sp(2)·Sp(1)
Sp(1)·Sp(1)·Sp(1)OO

'

Sp(2) ·Sp(1)quotoooo Sp(1) ·Sp(1) ·Sp(1)? _
[diag(q1 ,q2),q3 ] [[q1 ,q2 ,q3 ]

oo

Sp(1) �
�

q 7!diag(q,1)
//?�

q 7![q,1]

OO

Sp(2) quot // //?�

A 7![A,1]

OO

Sp(2)
Sp(1) id

q7!(q,1)

// Sp(2)
Sp(1)×Sp(1) Sp(2)

?�

A7![A,1]

OO

quotoooo Sp(1)×Sp(1)
?�

(q1,q2)7![q1,q2,1]

OO

? _

diag(q1 ,q2) [(q1 ,q2)

oo

[A,1] ·
(
Sp(1) ·Sp(1)

) � // [A,1] ·
(
Sp(1) ·Sp(1) ·Sp(1)

)

A ·
(
Sp(1)

) � //
_

OO

A ·
(
Sp(1) ·Sp(1)

)_

OO

This completes the proof.

3.4 Twisted Cohomotopy in degree 7 alone

If we do not require the twists of Cohomotopy in degree 7 to be compatible with the quaternionic Hopf fibration
(as we did in the previous section, §3.3) then there are more exceptional twists. We give a homotopy-theoretic
classification of these in Prop. 3.23 below. In Remark 3.25 below we highlight how this recovers precisely the
special holonomy structures of N = 1 compactifications of M/F-theory.

Further below in §3.6, we explain how these N = 1 structures are fluxless in a precise cohomotopical sense,
which crucially enters the M2-tadpole cancellation in §4.6.

Proposition 3.23 (G-structures induced by Cohomotopy in degree 7). We have the following sequence of homotopy
pullbacks of universal 7-spherical fibrations, hence of twists for Cohomotopy in degree 7 (see Figure D):

S7 fib // BSU(2) //

��
(pb)

BSpin(5)

��
S7 fib // BSU(3) //

��
(pb)

BSpin(6)

��
S7 fib // BG2 //

��
(pb)

BSpin(7)

Bι

��
S7 fib // BSpin(7)

Bι ′
// BSpin(8)

Proof. First, observe that there is the following analogous commuting diagram of Lie groups:

SU(2) �
� //

� _

��
(pb)

SU(3) �
� //

� _

��
(pb)

G2
� � //
� _

��
(pb)

Spin(7)� _
ι ′

��
Spin(5)

����

� � //

(pb)

Spin(6) �
� //

����
(pb)

Spin(7) �
� //

����
(pb)

Spin(8)

����
SO(5) �

� // SO(6) �
� // SO(7) �

� // SO(8) .

(73)
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Here the bottom squares evidently commute and are pullback squares by the definition of Spin groups, while the
three total vertical rectangles commute and are pullback squares by [On93, Table 2, p. 144]. By the pasting
law, 4 this implies that also the top squares are pullbacks, hence exhibiting intersections of subgroup inclusions.
Notice that the top right vertical inclusion ι ′ is not the canonical inclusion of Spin(7) in Spin(8), but is a subgroup
inclusion in a distinct Spin(7)-conjugacy class, of which there are three [Va01, Thm. 5 on p. 6]. The intersection in
the top right square is also proven in [Va01, Thm. 5 on p. 13], and that of the middle square in [Va01, Lem. 9 on p.
10]. Again, by the pasting law, this implies that also the top squares are pullbacks, hence exhibiting intersections
of subgroup inclusions.

Applying delooping (passage to classifying spaces) to these top squares, this shows that we have a homotopy
commuting diagram as follows:

S7

fib

��

S7

fib

��

S7

fib

��

S7

fib

��
S3

fib
((

S5
fib
((

S6
fib
((

S7
fib
((

∗ //

��

BSU(2) //

��

(pb)

BSU(3) //

��

(pb)

BG2 //

��

(pb)

BSpin(7)

Bι ′

��
BSpin(4) // BSpin(5) // BSpin(6) // BSpin(7) // BSpin(8)

S4 fib

66

S5 fib

66

S6 fib

66

S7 fib

66

(74)

The spherical homotopy fibers shown in this diagram follow by using Lemma 3.7 with classical results about coset
space structures of topological spheres, as summarized in Table S.

In order to see that each square in the diagram of classifying spaces is a homotopy pullback, we now use the
following basic fact from homotopy theory (see e.g. [CPS05, 5.2]): Assume that Y1,Y2 are connected spaces, and
we are given a homotopy-commutative square as on the right in the following diagram

fib( f1) //

'
��

X1
f1 //

��
(pb)

Y1

��
fib( f2) // X2

f2 // Y2 .

Then the square is a homotopy pullback square if and only if the induced left vertical morphism between hori-
zontal homotopy fibers is a weak homotopy equivalence; as indicated. To see that in our case these induced left
vertical morphisms are indeed weak homotopy equivalences, we first observe that for each of the squares above
the horizontal homotopy fibers are n-spheres of the same dimension n:

S7 ' Spin(7)
G2

//

'
��

BG2 //

��

BSpin(7)

��
S7 ' Spin(8)

Spin(7)
// BSpin(7) // BSpin(8)

4 Recall that this says that if
A //

��
B //

�� (pb)

C
��

D // E // F

is a commuting diagram, where the right square is a pullback, then the left square is a pullback precisely if the full outer rectangle is a
pullback. The same holds for homotopy-commutative diagrams and homotopy-pullback squares.
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and
S6 ' G2

SU(3)
//

'
��

BSU(3) //

��

BG2

��
S6 ' Spin(7)

Spin(6)
// BSpin(6) // BSpin(7)

(for the coset realization of S6 on the top left see [FI55]) and

S5 ' SU(3)
SU(2)

//

'
��

BSU(2) //

��

BSU(3)

��
S5 ' Spin(6)

Spin(5)
// BSpin(5) // BSpin(6) .

To see in detail that the homotopy fibers on the left are not only pairwise weakly homotopy equivalent, but that
the universally induced dashed morphism exhibits such a weak homotopy equivalence, we proceed as follows.
For G := Spin(n) one of the Spin groups appearing above, pick any one topological space EG modelling the total
space of the universal G bundle (hence any weakly contractible topological space equipped with a free continuous
G-action). Then for G′

ι
↪! G any subgroup, we have that the projection (EG)/G′! (EG)/G is a Serre fibration

modelling BG′ Bι
−! BG (e.g. [Mi11, 11.4]). Since ordinary pullbacks of Serre fibrations are already homotopy

puyllbacks, this means that the above homotopy pullback squares are represented by actual pullback squares of
topological spaces in the following diagram:

Sn ' G′
G′∩G′′

//

'
��

(pb)

(EG)/(G′∩G′′) //

��

(pb)

(EG)/G′

��
Sn ' G

G′′
// (EG)/G′′ // (EG)/G .

Here the dashed morphism is the canonical continuous function induced by the given group inclusions, so that it is
now sufficient to observe that this is a homeomorphism.

While this does not follow for general subgroup intersections, but it does follow as soon as the given coset
spaces are homeomorphic, as is the case here. Namely, pick any point x∈ Sn and observe that we have a commuting
square of continuous functions as follows.

Sn oo [g′]7!g′(x)
'homeo

G′
G′∩G′′

��
Sn oo

[g]7!g(x)

'homeo G
G′′ .

Since in this diagram the top, bottom and left maps are homeomorphisms, it follows that the right map is also a
homeomorphism.

Remark 3.24 (Twisted generalized cohomotopy). One may also consider twisted Cohomotopy with coefficients
in fibrations of pairs of spheres:

(
Sp×Sq

)
�
(
O(p)×O(q)

)
��

X

55

T X
// BO(n)


/
∼
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(i) Corresponding twists arise from “doubly exceptional geometry”, in that we have the following pasting diagram
of homotopy pullbacks, further refining those of Prop. 3.23:

S7×S7

(pb)

//

��

BG2

iG2

��
S7

��

//

(pb)

BSpin(7)

iSpin(7)

��
∗ // BSpin(8)

equivalently

S7×S7 //

��
(pb)

S7�Spin(7)

iG2

��
S7

��

//

(pb)

S7�Spin(8)

iSpin(7)

��
∗ // BSpin(8)

This follows analogously as in Prop. 3.23, with [On93, p. 146].

(ii) Further twists for Cohomotopy with coefficients in Sp× Sp arise from topological G-structure for rotation
groups O(p, p) in split signature, and hence from generalized geometry (e.g. [Hul07]). This is because indefinite
orthogonal groups are homotopy equivalent to their maximal compact subgroups via the polar decomposition

O(p, p) 'wh O(p)×O(p)

(see, e.g., [HN12, Sec. 17.2]) and similarly for higher connected covers (see [SS19]). Therefore, we might call
Cohomotopy with coefficients in Sp× Sp, and twisted by generalized geometry, generalized Cohomotopy (not to
be confused with older terminology [Ja62]). We will discuss the details elsewhere.

Remark 3.25 (N = 1 structures via exceptional twists of Cohomotopy).

(i) The types of G-structures that appear in the vertical columns in the diagram in Prop. 3.23 happen to be precisely
those that, famously, correspond to D = 4, N = 1 compactifications of F-theory, M-theory, and string theory,
respectively. See e.g. [AcGu04][BBS10].
(ii) The horizontal relations in the rows of that diagram encode the well-known relation between these compact-
ifications, where, for instance, an elliptically fibered Spin(7)-compactification of F-theory first reduces to a G2-
compactification of M-theory on a circle and then to a CY3-reduction of type IIA string theory. See, e.g., [GSZ14].
(iii) In view of this, it may be worth re-emphasizing that in Prop. 3.23 all these structures, and their relation to
each other, are entirely induced by Cohomotopy in degree 7.
(iv) Supergravity in 11 dimensions admits SU(4)-invariant compactifications [PW85]. Since the one-loop term
takes a special form on CY4s (see §2.6), this will allow Cohomotopy to reduce an SU(4)-structure to SU(3)-
structure. This should be relevant, for instance, for elliptically fibered CY4s [KLRY98].

3.5 Twisted Cohomotopy via Poincaré-Hopf

We characterize here the T X-twisted Cohomotopy of compact orientable smooth manifolds X in terms of the
“Cohomotopy charge” carried by a finite number of point singularities in X . This is the content of Prop. 3.26
below. The proof is a cohomotopical restatement of the classical Poincaré-Hopf (PH) theorem (see e.g. [DNF85,
Sec. 15.2]), but the perspective of twisted Cohomotopy is noteworthy in itself and is crucial for the discussion of
M2-brane tadpole cancellation in §4.6 below.

Proposition 3.26 (Twisted cohomotopy and the Euler characteristic). Let X be an orientable compact smooth
manifold. Then:
(i) A cocycle in the T X-twisted Cohomotopy of X (Def. 3.1) exists if and only if the Euler characteristic of X
vanishes:

π
T X(X) 6= ∅ ⇐⇒ χ[X ] 6= 0 .
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(ii) Generally, there exists a finite set of points {xi ∈ X} such that the operation of restriction to open neighbour-
hoods of these points exhibits an injection of the T X-twisted Cohomotopy of their complement πT X

(
X \∏

i
{xi}

)
(Def. 3.1) into the product of untwisted Cohomotopy sets (30) πdim(X)

(
Uxi \{xi}

)
of these pointed neighborhoods.

Moreover, the latter are integers which sum to the Euler characteristic χ[X ] of X:

πT X
(
X \∏

i
{xi}

)
��

� � restr. // ∏
i

πdim(X)−1
(
Uxi \{xi}

) ' // ∏
i
Z

∑
i��

∗
χ[X ] // Z

(75)

Proof. This follows with the classical Poincaré-Hopf theorem, (78) below. We recall the relevant terminology:

(i) For v a vector field on X , a point x ∈ X is called an isolated zero of v if there exists an open contractible
neighborhood Ux ⊂ X such that the restriction v|Ux of v to this neighborhood vanishes at x and only at x.

(ii) This means that on Ux \{x} the vector field v induces a map to the (dim(X)−1)-sphere

v/|v| : Ux \{x}
v/|v| // S(TxX)' Sdim(X)−1 . (76)

Here the equivalence on the right is to highlight that the sphere arises as the fiber of the unit sphere bundle of
the tangent bundle TUx, which may be identified with the unit sphere in TxX , by the assumed contractibility
of Ux.

(iii) Given an isolated zero x, the Poincaré-Hopf index of v at that point is the degree of the associated map (76)
to the sphere, for any choice of local chart:

indexx(v) := deg
(
Ux \{x}

v/|v| // S(TxX)' Sdim(X)−1
)
. (77)

Now for X orientable and compact, the Poincaré-Hopf theorem (e.g. [DNF85, Sec. 15.2]) says that for any
vector field v ∈ Γ(T X) with a finite set {xi ∈ X} of isolated zeros, the sum of the indices (77) of v equals the Euler
characteristic χ[X ] of X :

∑
isolated zero

xi∈X

indexxi(v) = χ[X ] . (78)

To conclude, observe that the maps to spheres in (76) are but the restriction of the corresponding cocycle in the
T X-Cohomotopy of X \∏

i
{xi}:

Sdim(X)�SO(dim(X))

��
X \∏

i
{xi}

v/|v|
33

T X
// BSO(dim(X))

Finally, the identification of the PH-index with an integer is via the Hopf degree theorem (31), now understood as
the characterization of untwisted Cohomotopy in (31).

We may equivalently use the differential form data that underlies a cocycle in twisted Cohomotopy, by Prop.
3.5, to re-express the cohomotopical PH-theorem, Prop. 3.26, via Stokes’ theorem. Let X be an orientable compact
smooth manifold of even dimension dim(X) = 2n+2, for n∈N and let v∈ T X be a vector field with isolated zeros
{xi ∈ X}. For any fixed choice of Riemannian metric on X and any small enough positive real number ε , write

Dε
xi

:=
{

x ∈ X | d(x,xi)< ε
}
⊂ X
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for the open ball of radius ε around xi. The complement of these open balls is hence a manifold with boundary a
disjoint union of (2n+1)-spheres:

∂
(
X \

∏

i
{xi}

)
'

∏

i
S2n+1.

Then, by Prop. 3.5, the cocycle in twisted Cohomotopy on X \∏

i
{xi} which corresponds to the vector field v has

underlying it a differential (2n+1)-form G2n+1 which satisfies

dG2n+1 = −χ2n+2(∇) .

By Stokes’ theorem we thus have
χ[X ] = lim

ε!0

∫
X\∏

i
Dε

xi

χ

=− lim
ε!0

∑
i

∫
∂Dε

xi

G2n+1

We may summarize the above by the following.

Lemma 3.27 (Cohomological PH-theorem). In the above setting, the Euler characteristic is given by the integral
of −G2n+1 over the boundary components around the zeros of v:

−∑
i

∫
S2n+1

i

G2n+1 = χ[X ] . (79)

3.6 Twisted Cohomotopy via Pontrjagin-Thom

We recall the unstable Pontrjagin-Thom theorem relating untwisted Cohomotopy to normally framed submani-
folds, (80) below. Then we show that twisted Cohomotopy jointly in degrees 4 and 7 (as per §3.3) knows about
calibrated submanifolds in 8-manifolds, Prop. 3.28 below. Finally we observe that in this case vanishing subman-
ifolds under a twisted Pontrjagin-Thom construction means, equivalently, a factorization through the quaternionic
Hopf fibration, (86) below.

Framed submanifolds from untwisted Cohomotopy. One striking aspect of Hypothesis H, is that unstable Co-
homotopy of a manifold X is exactly the cohomology theory which classifies (cobordism classes of) submanifolds
Σ⊂ X , subject to constraints on the normal bundle NX Σ of the embedding.

In the case of vanishing twist, this is the statement of the classical unstable Pontrjagin-Thom isomorphism (e.g.
[Ko93, IX.5])

πn(X)
oo PTn

fib0 ◦ reg

' // FrSubMfdcodim=n(X)/
∼bord

. (80)

For a closed smooth manifold X and any degree n ∈ N, this identifies degree n cocycles[
X c
−! Sn] ∈ π

n(X)

in the untwisted unstable Cohomotopy (30) of X with the cobordism classes of normally framed submanifolds Σ

of codimension n (
Σ ↪! X , NX Σ

fr
'
// Σ×Rn , dim(Σ) = dim(X)−n

)
given as the preimage of a chosen base point

pt ∈ Sn (81)

under a smooth function representative c of [c] for which pt is a regular value c−1
(
{pt}

)
=: Σ⊂ X .
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As advocated in [Sa13], we may naturally think of the submanifolds Σ⊂X appearing in the unstable Pontrjagin-
Thom isomorphism (80) as branes whose charge is given by the Cohomotopy class [c]. This reveals Cohomotopy
as the canonical cohomology theory for measuring charges of branes given as (cobordism classes of) submanifolds.
To see this in full detail one needs to consider the refinement of (80) to twisted and equivariant Cohomotopy. In
the rational approximation this is discussed in [HSS18], the full non-rational theory of M-branes at singularities
classified by equivariant Cohomotopy will be discussed elsewhere [RSS19].

Here we content ourselves with highlighting two related facts, which are needed for the discuss in §4.

Calibrated submanifolds from twisted Cohomotopy. The manifold R8 carries an exceptional calibration by
the Cayley 4-form Φ ∈ Ω4(R8) [HL82], which singles out 4-dimensional submanifold embeddings Σ4 ↪! R8 as
the corresponding calibrated submanifolds. The space of all such Cayley 4-planes, canonically a subspace of the
Grassmannian space Gr(4,8) of all 4-planes in 8 dimensions, is denoted

CAY ⊂ Gr(4,8) (82)

in [BH89, (2.19)][GMM95, (5.20)]. We will write

CAYsL ⊂ CAY ⊂ Gr(4,8) (83)

for the further subspace of those Cayley 4-planes which are also special Lagrangian submanifolds. There are
canonical symmetry actions of Spin(7) and of Spin(6), respectively, on these spaces [HL82, Prop. 1.36]:

CAY

Spin(7)

��
and CAYsL

Spin(6)

��
. (84)

Hence the corresponding homotopy quotients

CAY�Spin(7) and CAYsL�Spin(6) (85)

are the moduli spaces for Cayley 4-planes and for special Lagrangian Cayley 4-planes, respectively: for X a
Spin(7)-manifold, a dashed lift in

CAY�Spin(7)

��
X

33

// BSpin(7)

CAYsL�Spin(6)

��
X

33

// BSpin(6)

is a distribution on X by tangent spaces to (special Lagrangian) calibrated submanifolds.

Proposition 3.28 (Calibrations from twisted cohomotopy). The moduli spaces of (special Lagrangian) Cayley 4-
planes (85) are compatibly weakly homotopy equivalent to the coefficient spaces for twisted Cohomotopy jointly in
degrees 4 and 7, according to Prop. 3.20:

CAYsL�Spin(6) '

��

S7�
(
Sp(2) ·Sp(1)

)
��

CAY�Spin(7) ' S4�
(
Sp(2) ·Sp(1)

)
Proof. By [HL82, Theorem 1.38] (see also [BH89, (3.19)], [GMM95, (5.20)]) we have a coset space realization

CAY ' Spin(7)/
(
Spin(4) ·Spin(3)

)
.
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and by [BBMOOY96, p. 7] we have a coset space realization

CAYsl ' Spin(6)/
(
Spin(3) ·Spin(3)

)
' SU(6)/SO(4) .

By Lemma 3.7 this means equivalently that there are weak homotopy equivalences

CAY�Spin(7) ' B
(
Spin(4) ·Spin(3)

)
' B

(
Sp(1) ·Sp(1) ·Sp(2)

)
and

CAYsL�Spin(6) ' B
(
Spin(3) ·Spin(3)

)
' B

(
Sp(1) ·Sp(1)

)
.

This then implies the claim by Prop. 3.22.

Vanishing PT-charge in twisted Cohomotopy. Even without discussing a full generalization of the untwisted
Pontrjagin-Thom theorem (80) to the case of twisted Cohomotopy (Def. 3.1), we may say what it means for a
cocycle in twisted Cohomotopy to correspond to the empty submanifold, hence to correspond to vanishing brane
charge in the sense discussed above. This is all that we will need to refer to below in §4.4 and §4.6:

(i) In the case of untwisted cohomotopy it is immediate that the zero-charge cocycle is simply the one represented
by any function that does not meet the given base point pt ∈ Sn (81).

(ii) In the case of twisted Cohomotopy according to Def. 3.1, this chosen point must be a chosen section of the
given spherical fibration corresponding to the given twist τ:

Sn�O(n+1)

��
X

pt
77

τ
// BO(n+1)

which serves over each x ∈ X as the point ptx ∈ Ex ' S4 at which we declare to form the inverse image of
another given section, under a parametrized inverse Pontrjagin-Thom construction.

(iii) With that section pt chosen, any other twisted Cohomotopy cocycle [c0] ∈ πτ(X) which will yield the empty
submanifold under parametrized Pontrjagin-Thom must be represented by a section c0 which is everywhere
distinct from pt,

c0(x) 6= ptx

so that c−1
0 (pt(x)) =∅ for all x ∈ X .

(iv) But such a choice of a pair of pointwise distinct sections is equivalently a reduction of the structure group not
just along O(4) ↪! O(5) as in Remark 3.8, but is rather a reduction all the way along O(3) ↪! O(5).

Specified to the Sp(2) ·Sp(1)-twisted Cohomotopy jointly in degrees 4 and 7, from §3.3 this says that vanishing
of the brane charge seen by degree 4 Cohomotopy cocycle via a putative parameterized PT theorem is witnessed
by a lift from B

(
Spin(5) ·Spin(3)

)
all the way to B

(
Spin(3) ·Spin(3)

)
. But comparison with Prop. 3.22 (see also

Figure T) shows the following:

Lemma 3.29 (Vanishing of Cohomotopy charge means factorization through hH). The vanishing of cohomotopi-
cal brane charge of Sp(2) ·Sp(1)-twisted Cohomotopy in degree 4 (§3.3), in the sense of the above parametrized
Pontrjagin-Thom construction of corresponding branes, is exhibited by factorizations of the degree-4 cocycle
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through degree-7 Cohomotopy, via the equivariant quaternionic Hopf fibration hH of Prop. 3.22:

S7�
(
Sp(2)·Sp(1)

)
hH�(Sp(2)·Sp(1))

��

' // B
(
Spin(3) ·Spin(3)

)

��
S4�

(
Sp(2)·Sp(1)

)

��

' // B
(
Spin(4)·Spin(3)

)

��
X

τ
//

cocycle in
twisted

Cohomotopy
in degree 4

33

PT-vanishing of
cocycle in

twisted Cohomotopy
in degree 4

55

B
(
Sp(2)·Sp(1)

)
Btri
' // B

(
Spin(5)·Spin(3)

)
.

(86)

We come back to this in Prop. 4.18 and Prop. 4.31 below, see Remark 4.19 and Remark 4.28 below, respec-
tively.

This concludes our discussion of general properties of twisted Cohomotopy theory. Now we turn, in §4, to
discussing how, under Hypothesis H, these serve to yield anomaly cancellation in M-theory.
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4 M-theory anomaly cancellation via twisted Cohomotopy

In this section we show how Hypothesis H implies all the M-theory anomaly cancellation conditions reviewed in
§2. Concretely, we have shown in §3 that Cohomotopy jointly in degrees 4 and 7, related by the quaternionic
Hopf fibration, is Sp(2)·Sp(1)-twisted Cohomotopy, hence, under Triality (Prop. 3.17) is Spin(5)·Spin(3)-twisted
Cohomotopy (by Prop. 3.20 and Prop. 3.22). Hence we have the following.

Corollary 4.1 (C-Field Cocycles in twisted Cohomotopy). Assume with Hypothesis H, that the C-field is a cocycle
in twisted Cohomotopy (Def. 3.1), twisted by the tangent bundle of spacetime via the Jn-homomorphism (32),
compatibly in joint degree 4 and (for the dual C-field) degree 7, related via the quaternionic Hopf fibration hH.
Then the equivariance property of the latter (Prop. 3.20 and Prop. 3.22) require that C-field configurations be
dashed morphisms as in the following homotopy-commutative diagram (showing part of the diagram in Figure T):

topological
C-field in terms of: twisted

Cohomotopy,

S7�
(
Sp(2) ·Sp(1)

)
hH�(Sp(2)·Sp(1))

��

'
// S7�

(
Spin(5) ·Spin(3)

)
hH�(Spin(5)·Spin(3))

��
S4�

(
Sp(2) ·Sp(1)

)

��

'
// S4�

(
Sp(2) ·Sp(1)

)

��

X̂11

��

G7+H3∧G4

44

B
(
Sp(2) ·Sp(1)

)
'

//

��

B
(
Spin(5) ·Spin(3)

)
��

X11︸︷︷︸
R2,1×X8

− τ

NQM2
QM5 ·N

X11QM5

11

N
X11 QM2

33

| //

T X11

,,

(G4,G7)

77

BSpin(8)

((

tri
'

// BSpin(8)

uu
BSpin(10,1)

(87)
where

1. NX11QM2 denotes topological G-structure for G = Sp(2) ·Sp(1) (50)

2. NQM2QM5 ·NX11QM2 denotes topological G-structure for G = Spin(5) ·Spin(3) (53)

(see Remark 4.2 below for the notation) and where (G4,G7) denotes the Cocycle in the correspondingly twisted
Cohomotopy (see Def. 4.4 below). The horizontal equivalences on the right are those induced from the triality
automorphism tri (Prop. 3.17). and hence the dotted triangle on the bottom does not commute but indicates that
the lift is along either of the dotted arrows.
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Remark 4.2 (M-brane configurations). (i) The emergence of Spin(5) ·Spin(3)-twisted Cohomotopy in Corollary
4.1 implies that the frame bundle of 11d spacetime is incrementally equipped with topological Spin(2,1) ·Spin(3) ·
Spin(5)-structure as shown in diagram (87), which is, locally, the topological structure corresponding to configu-
rations of M2-branes inside M5-branes:

R10,1 ' R2,1

Spin(2,1)

		
⊕ R3 ⊕

Spin(3)

		
R5

Spin(5)

		

M5 × × −
M2 × − −

In the folklore literature such M2-M5 bound state configurations are known to control key aspects of M-theory
on 8-manifolds [ILPT96, p. 22][GLPT96, p. 13][HO00, Sec . 5.1][Ha01, Sec. 3.1][CR02, Sec. 1][PT03, p.
19][ANO19, Sec. 2].

Similarly, the emergence of Sp(2) · Sp(1)-structure in Corollary 4.1 is compatible with the normal bundle
structure for ≥ 1/4-BPS M2-branes, according to the classification of [MFGM09] [HSS18, Thm. 4.3]

(iii) It is in this sense that we are labelling the classifying maps of the bundles in diagram (87), by suggestive abuse
of notation:

• NX QM2 and NX QM5 refer to the normal bundle of an M2-brane or M5-branes, respectively, relative to all of
the ambient 11d spacetime X ;

• NQM5QM2 refers to the normal bundle of an M2-brane (only) relative to the ambient M5-brane worldvolume.

Beware that we are abusing notation here, in that actual normal bundles are supported only on the corresponding
submanifold locus Qp ↪! X , while in diagram (87) we are showing bundles that extend over all of spacetime, as
the dashed map here:

Qp
T Qp·NX11 Qp //

� _

��

B
(
Spin(p,1) ·Spin(d− p)

)
X11

22
.

However, in relevant examples it is indeed the case that normal bundles to brane inclusions extend to all of space-
time, notably in M5-brane anomaly cancellation, see (117) in Prop. 4.21 below. Moreover, further below in §4.6
we discover actual M2-branes appear as point singularities in X8, and then this setup ensures that wherever these
points appear, the restriction of NX QM2 to these points will be the actual normal bundle to the M2-brane at that
point.

Remark 4.3 (M-theory on Sp(2) ·Sp(1)-manifolds and confinement). By Prop. 3.22, as shown in Figure T, any
choice of cocycle in Sp(2) ·Sp(1)-twisted Cohomotopy (Def. 3.1) in Corollary 4.1 — hence, via Hypothesis H,
any choice of C-field configuration — reduces the topological G-structure further to Spin(7). Consequently, actual
Sp(2) ·Sp(1)-structure — which, geometrically, is quaternion Kähler structure (Example 3.12) — appears only
as a conceptually transient phenomenon here. But notice that the archetypical example of a quaternion-Kähler
8-manifold, the quaternionic projective space HP2 (see [PS91, Thm 1.1]), was prominently considered as an M-
theory compactification space in [AW03, p. 75 onwards], where it was argued to geometrize a duality between
three different M-theory compactifications on G2-manifolds (embedded in three different ways in the 8d space)
that potentially serves to prove confinement [Gr11], hence the mass gap problem [ClayMP], in the corresponding
effective 4d gauge theory [AW03, p. 85 onwards].

By Prop. 3.5 there are differential form data G4 and G7 associated with such a cocycle in twisted Cohomotopy,
as in diagram (87). For reference, and since this is the key that connects twisted Cohomotopy to flux denisty data,
we make this explicit:
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Definition 4.4 (Differential forms underlying cocycles in degree 4 twisted Cohomotopy). Let X11 :=R2,1×X8 be
a spacetime manifold equipped with topological Sp(2) ·Sp(1)-structure (Def. 3.12) as in Corollary 4.1

B(Sp(2) ·Sp(1))

��

'
// B(Spin(5) ·Spin(3))

��

Bpr5 // BSO(5)

R2,1×X8

τ

))

NX11 QM2 //

NX11 QM5·NQM5 QM2

33

T X11
++

BSpin(8)

��

'
Btri

// BSpin(8)

BSpin(10,1)

(88)

where we are displaying also composition with the delooping of the triality automorphism tri from Prop. 3.17 and
of the projection pr5 of (54). Now Prop. 3.20 implies that the composite structure

τ :=
(
B(pr5 ◦ tri)

)
∗
(
NQM5QM2 ·NX11QM5

)
, (89)

serves as a twist for Cohomotopy in degree 4 (Def. 3.1) and thus Prop. 3.5 provides a function

πτ
(
X11
)
' πτ(X8) //

{
(G4,G7) ∈ Ω4

cl(X
8)×Ω7(X8)

}/
∼

(90)

which extracts out of a full cocycle in τ-twisted Cohomotopy a pair of differential forms in degree 4 and 7,
satisfying

dG4 = 0 ,

dG7 =
1
4 p2(∇τ)−G4∧G4 , (91)

for ∇τ a chosen connection on the rank 5 vector bundle classified by τ (89).

Remark 4.5 (Detailed form of Hypothesis H). With these concepts in hand we may now state Hypothesis H more
formally: Hypothesis H says concretely that the differential forms G4 and G7 (90) underlying a cocycle in twisted
Cohomotopy as in Cor. 4.1 are identified with the C-field flux density and its dual as in the 11d supergravity/M-
theory literature, but their refinement through the map (90) to a cocycle in Sp(2)·Sp(1)-twisted Cohomotopy is
the actual nature of the C-field, and should, in particular, incorporate/imply the M-theory anomaly cancellation
conditions.

We will now turn to a detailed elaboration and unpacking of this.

4.1 DMW anomaly cancellation

We show here that Hypothesis H, as in (87), implies the DMW anomaly cancellation condition (§2.1). The key
argument is a cohomological characterization of Spin(5) · Spin(3)-structures, Prop. 4.6 below. We provide a
conclusion in Remark 4.7 below.

Proposition 4.6 (Consequences of central product structure). Let X8 be a closed connected smooth Spin manifold
of dimension 8.

(i) The existence of topological G-structure on X8, for G = Sp(2) ·Sp(1) (Def. 3.11) canonically included (50) as
in Def. 4.4

B
(
Sp(2) ·Sp(1)

)
��

X8
NX11 QM2

//

NQM5 QM2·NX11 QM5

44

BSpin(8)
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implies that the one-loop anomaly polynomial I8 (18) is proportional to the Euler class as:

I8(NX11QM2) =
1
24

χ8(NX11QM2) . (92)

(ii) If in addition H2(X8;Z2) = 0, then also the sixth Stiefel-Whitney class vanishes:

w6
(
NX11QM2

)
= 0 . (93)

Proof. This follows by [CV98b, Thm. 8.1 with Rem. 8.2] and using the definition of I8 (18).

Remark 4.7 (Deriving the DMW-anomaly cancellation from Hypothesis H). In the situation (87), where T X11 '
NX11QM2, the condition (93) w6(NX11QM2) = 0 found in Prop. 4.6 becomes w6(T X11) = 0, and directly implies the
weaker condition

W7(T X11) = β
(
w6(T X11)

)
= 0 ,

where β is the Bockstein homomorphism, and W7 := β ◦w6 by definition of integral Stiefel-Whitney classes. This
is manifestly the DMW-anomaly cancellation (6) from §2.1.

4.2 Half-integral flux quantization

We show here that the topological charge quantization of the C-field in twisted Cohomotopy, as in diagram (87),
implies the half-integral flux quantization of the C-field (8). The key argument is Prop. 4.12 below. We conclude
in Remark 4.13 below. The basic observation here is Remark 4.9 below, but to put this to full use we need to go
into some technicalities in Lemma 4.10 and Prop. 4.11 below.

First we need to recall some classical facts about the integral cohomology of BSpin(n) for low n:

Lemma 4.8. (i) The integral cohomology ring of BSO(3) is

H•(BSO(3);Z) ' Z
[
p1,W3

]
/(2W3) , (94)

and the integral cohomology of BSpin(3) is free on one generator

H•
(
BSpin(3);Z

) ∼= Z
[1

4 p1
]
, (95)

while the integral cohomology ring of BSpin(4) is free on two generators

H•
(
BSpin(4);Z

)
' Z

[1
2 p1,

1
2
χ4︸︷︷︸

=:Γ4

+ 1
4 p1

︸ ︷︷ ︸
=:Γ̃4

]
, (96)

where p1 is the first Pontrjagin class and χ4 the Euler class.

(ii) Under the exceptional isomorphism ϑ : Spin(3)×Spin(3) '
−! Spin(4) these classes are related by

ϑ
∗ (1

2 p1
)
= 1

4 p1⊗1+1⊗ 1
4 p1 ,

ϑ
∗(1

2
χ + 1

4 p1
)
= 1⊗ 1

4 p1 ,

hence ϑ
∗(χ) =−1

4 p1⊗1+1⊗ 1
4 p1 .

(97)

Proof. This follows from classical results [Pi91]. More explicitly, (94) is a special case of [Br82, Thm. 1.5],
recalled for instance as [RS17, Thm. 4.2.23 with Remark 4.2.25]. The other statements are recalled for instance in
[CV98a, Lemma 2.1].
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Remark 4.9 (Universal avatar of the integral C-field). We highlight from (96), under the braces, the universal
integral class

Γ̃4 := 1
2
χ4︸︷︷︸

=:Γ4

+ 1
4 p1 ∈ H4(BSpin(4);Z) (98)

for use below. Prop. 4.12 below says that, under Hypothesis H, these universal characteristic classes are the avatars
of the half-integral shifted C-field flux G̃4. Since Γ̃4 is an integral cohomology class, its concrete realization on
any given spacetime is an integral class. This is what implements the half-integral flux quantization condition in
M-theory; see Remark 4.13 below.

We now trace the integral generator Γ̃4 in (98) to the larger group Spin(5) ·Spin(3).

Lemma 4.10 (Cohomology of the central group). The integral cohomology in degree 4 of the classifying space of
the central product group (57)

Spin(4) ·Spin(3) ' Spin(3) ·Spin(3) ·Spin(3)

is the free lattice
H4(B(Spin(4) ·Spin(3));Z

)
' Z

〈 1
4 p(1)

1
+ 1

4 p(2)
1

+ 2
4 p(3)

1
,

1
4 p(1)

1
+ 2

4 p(2)
1

+ 1
4 p(3)

1
,

2
4 p(1)

1
+ 1

4 p(2)
1

+ 1
4 p(3)

1

〉
(99)

where p(k)
1

:= (Bprk)
∗(p1) is the pullback of the first Pontrjagin class along the projection (54)

B
(
Spin(4) ·Spin(3)

)
' B

(
Spin(3) ·Spin(3) ·Spin(3)

) Bprk−−! BSO(3) .

Proof. The defining short exact sequence of groups (Def. 3.11)

1−! Z2 −! Spin(3) ·Spin(3) ·Spin(3)−! Spin(3)×Spin(3)×Spin(3)−! 1

induces a homotopy fiber sequence of classifying spaces (e.g. [Mi11, 11.4])

BZ2 // B
(
Spin(3)×Spin(3)×Spin(3)

)
// B
(
Spin(3) ·Spin(3) ·Spin(3)

)
.

The corresponding Serre spectral sequence shows that

H4(B(Spin(3) ·Spin(3) ·Spin(3));Z
) � � // H4(B(Spin(3)×Spin(3)×Spin(3)),Z

)
' Z

〈1
4 p(1)

1
, 1

4 p(2)
1
, 1

4 p(3)
1

〉
is a sublattice of index 4. This sublattice must include the integral class 1

2 p1 pulled back along the inclusion into
Spin(7), which by Lemma 4.8 is

B
(
Spin(4) ·Spin(3)

)
// BSpin(7) .

1
4 p1 +

1
4 p1 +

2
4 p1

1
2 p1

�oo

(100)

But then it must also contain the images of this element under the delooping of the S3-automorphisms (58). This
yields the other two elements shown in (99). Finally, it is clear that the sublattice spanned by these three elements
already has full rank and index 4:

Z

〈 1
4 p(1)

1
+ 1

4 p(2)
1

+ 2
4 p(3)

1
,

1
4 p(1)

1
+ 2

4 p(2)
1

+ 1
4 p(3)

1
,

2
4 p(1)

1
+ 1

4 p(2)
1

+ 1
4 p(3)

1

〉
'
{

a
4 p(1)

1
+ b

4 p(2)
1

+ c
4 p(3)

1
| a,b,c ∈ Z, a+b+ c = 0 mod4

}
(101)

which means that there are no further generators.
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As a direct consequence we obtain the following identification.

Proposition 4.11 (Integral classes). The following cohomology class on the classifying space of the group Spin(4) ·
Spin(3) (57), which a priori is in rational cohomology, is in fact integral:

1
2
χ4 +

1
4 p1︸ ︷︷ ︸

=:Γ̃4

+ 1
2 p(3)

1
∈ H4(Spin(4)·Spin(3);Z

)

and hence so is its image on the classifying space of Sp(1)·Sp(1)·Sp(1) (56) under the delooping of the triality
isomorphism from Prop. 3.17, which we will denote by the same symbols:

1
2
χ4 +

1
4 p1︸ ︷︷ ︸

=:Γ̃4

+ 1
2 p(3)

1
∈ H4(Sp(1)·Sp(1)·Sp(1);Z

)
' H4(Spin(4)·Spin(3),Z

)
. (102)

Here 1
2
χ4 is the Euler class pulled back back from the left BSO(4) factor and p(3)

1
is the first Pontrjagin class pulled

back from the right BSO(3) factor, both along the respective projections (54), while p1 is the first Pontrjagin class
pulled back from the ambient BSpin(8) along the canonical inclusion (53):

B
(
Spin(4)·Spin(3)

)
Bpr4

uu

Bpr3

))
Bι8
��

BSO(4) BSpin(8) BSO(3)

χ4 p1 p(3)
1

Proof. In terms of the contributions from the three factors under the identification Spin(4) ·Spin(3) ' Spin(3) ·
Spin(3) ·Spin(3) the class in question is

−1
8 p(1)

1
+ 1

8 p(2)
1︸ ︷︷ ︸

=
1
2

χ4

+ 1
8 p(1)

1
+ 1

8 p(2)
1

+ 1
4 p(3)

1︸ ︷︷ ︸
=

1
4 p1

+ 2
4 p(3)

1
= 1

4 p(2)
1

+ 3
4 p(3)

1
,

where under the braces we used Lemma 4.8 as in (100). The equivalent expression on the right makes manifest
that this is in the sublattice (101). Therefore, Lemma 4.10 implies the claim.

Now we may finally state and prove the main result of this section.

Proposition 4.12 (Integrality of the shifted class). Let X8 be a 8-manifold which is simply connected (Remark 3.6)
and equipped with topological Sp(2)·Sp(1)-structure (Def. 49)

B
(
Sp(2)·Sp(1)

)
��

X8 T X8
//

τ

66

BSpin(8)

such that its characteristic class ϖ , from Def. 3.14, vanishes:

ϖ(τ) ∈ H2(X8;Z2
)
= 0 . (103)

Then the closed differential 4-form G4 ∈Ω4
cl(X

8) which comes, via Def. 4.4, with a cocycle in τ-twisted Cohomo-
topy πτ

(
X8
)

(Def. 3.1), is such that the cohomology class [G4]+
1
4 p1(T X8) — which a priori is an element in the

cohomology of X with real coefficients — is actually an integral class:

[G4]+
1
4 p1
(
T X8) ∈ H4(X8;Z

)
. (104)
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Proof. The proof proceeds by considering the following diagram, which we will discuss below in stages:

Γ̃4︷ ︸︸ ︷
1
2
χ4 +

1
4 p1 + 1

2 p(3)1

�

��

1
2 p(3)1

�oo

B
(
Sp(1)·Sp(1)·Sp(1)

) ' //

��

B
(
Spin(4)·Spin(3)

)
��

Bpr4 // BSO(4)

��
B
(
Sp(2)·Sp(1)

) ' //

��

B
(
Spin(5)·Spin(3)

)
��

Bpr5 // BSO(5)

��
[G4]+

1
4 p1(T X8)

X T X //

τ

55
cocycle in
τ-twisted

Cohomotopy

c
55

BSpin(8) '
Btri // BSpin(8) // BSO(8)

p1
(
T X8

)
p1

�oo p1
�oo

(105)

Here the vertical maps are the deloopings of the canonical group inclusions (Remark 3.18) and the horizontal
equivalences Btri are the deloopings (63) of the respective triality automorphism from Prop. 3.17, while the
horizontal maps Bprn are the deloopings of the canonical projections (54). On the left we used that, by Def. 3.1,
an element

[c] ∈ π
τ
(
X8)

in the τ-twisted Cohomotopy of X8 is the homotopy class of a section c of the S4-bundle classified by Bpr5◦Btri◦τ:

S4 // E

π

��

//

(pb)

BSO(4)' S4�SO(5)

��
X8

c

<<

Bpr5 ◦ Btri ◦ τ

// BSO(5)

and we used Prop. 3.22 to identify various homotopy quotients of S4 with classifying spaces, as shown. This shows
that E is the unit sphere bundle of a rank 5 real vector bundle V classified by Bpr5 ◦Btri ◦ c. Therefore, by Prop.
3.5 we have

π
∗[G4] =

1
2
χ4
(
V̂ ) ,

where V̂ is defined by the splitting π∗V = RE ⊕ V̂ determined by the tautological section of π∗V over E, i.e., it is
the rank 4 real vector bundle on E classified by E! BSO(4). Hence, by (102) in Prop. 4.11, we have that

π
∗
(
[G4]+

1
4 p1
(
Btri◦T X8)+ 1

2 p(3)1

(
Btri◦ τ

)︸ ︷︷ ︸
=:K

)
∈ H4(E;Z)

is an integral class.
We now claim that the class K is integral already before the pullback, as a class on X . For this, consider the

commutative diagram

· · · // H4
(
X8;Z

)
//

π∗

��

H4
(
X8;Q

) q //

π∗

��

H4
(
X8;Q/Z

)
//

π∗

��

· · ·

· · · // H4
(
E;Z

)
// H4
(
E;Q

) q // H4
(
E;Q/Z

)
// · · ·

induced by the short exact sequence 0! Z!Q!Q/Z! 0. From the Serre spectral sequence for the fibration
π : E! X one sees that the vertical maps in the above diagram are injective. Consequently, from

π
∗q(K) = qπ

∗(K)

= 0
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it follows that already q(K) = 0, which means that K itself is integral:

[G4]+
1
4 p1
(
Btri◦T X8)+ 1

2 p(3)1 (Btri◦ τ) ∈ H4(X ;Z) . (106)

Now observe that the third summand in (106) is the first fractional Pontrjagin class of the underlying SO(3)-bundle.
By the assumption (103) this admits Spin structure, by Lemma 3.14. This in turn implies that its first Pontrjagin
class is divisible by two, hence that the last summand in (106) is integral by itself

1
2 p(3)1 (Btri◦ τ) ∈ H4(X8;Z

)
,

and hence that also the remaining summand

[G4]+
1
4 p1
(
Btri◦T X8) ∈ H4(X8;Z

)
(107)

is integral by itself. Finally, pullback along the triality automorphism preserves the first Pontrjagin class, by Lemma
3.19

p1(Btri◦ τ) = p1
(
T X8) (108)

and hence (107) indeed becomes [G4]+
1
4 p1
(
T X8

)
∈ H4

(
X8;Z

)
.

Remark 4.13 (Deriving the shifted flux quantization from Hypothesis H). Under Hypothesis H the statement
(104) of Prop. 4.12 is manifestly the shifted flux quantization condition (8). Notice that the assumption of Spin(5)-
structure (10) made in [Wi96a, 2.3], implies the assumption ϖ = 0 (103) in Prop. 4.12.

4.3 Integral equation of motion

We now show how Hypothesis H implies the “integral equation of motion” for the C-field (§2.3). The key argument
is Prop. 4.14 below, and the conclusion is stated in Remark 4.15.

Proposition 4.14 (Sq2-closedness of twisted cohomotopy 4-cocycles). Let X be a closed Spin 8-manifold which is
simply connected (Remark 3.6) and equipped with topological Sp(2)-structure

BSp(2)

��
X8

τ
55

T X8
// BSpin(8) .

Then the closed differential 4-form G4 ∈Ω4
cl

(
X8
)

which comes, via Def. 4.4, with a cocycle in τ-twisted Cohomo-
topy πτ(X) (Def. 3.1), is such that the cohomology class

[G4]+
1
4 p1(T X8) ∈ H4(X8;Z) ,

which is integral by Prop. 4.12, is annihilated by (mod 2 reduction followed by) the second Steenrod operation:

Sq2([G̃4]
)
= 0 . (109)

Proof. By Prop. 3.22 and under triality (Prop. 3.17) the τ-twisted Cohomotopy cocycle exhibits reduction to
Spin(4)-structure:

S4�Sp(2)

��

' // BSpin(4)

��
BSp(2)

��

' // BSpin(5)

��
X8

c

cocycle in
τ-twisted

Cohomotopy

66

τ

55

T X8
// BSpin(8) '

Btri
// BSpin(8)
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But, by Prop. 4.12, the class of G̃4 is the pullback of the class Γ̃4 ∈ H4(BSpin(4);Z) (96) along this reduction:

[G̃4] = (Btri◦ c)∗
(
Γ̃4
)
∈ H4(X8;Z) .

Under these identifications, the statement follows upon using [CV98a, Cor. 4.2 (1)], where the element corre-
sponding to Γ̃4 is denoted s, while the class [G̃4] is denoted S.

Remark 4.15 (Deriving the integral equation of motion from Hypothesis H).

(i) The condition (109) in Prop. 4.14 directly implies the weaker condition Sq3([G̃4]
)
= 0, since, by the Adem re-

lations, we have Sq3 = β ◦Sq2, with β being the Bockstein homomorphism. Under Hypothesis H this is manifestly
the integral equation of motion (11) for the C-field.

(ii) Notice that the stronger condition (109) also has the interpretation as the vanishing of an obstruction to lifting to
K-theory, but this stronger condition arises for lifting not to complex K-theory KU as in §2.3, but to orthogonal K-
theory KO (see [GS18] for an extensive treatment). This stronger lift is necessary for string/M-theory on orientifold
spacetimes [Wi98, Sec. 5][Gu00], and these in turn are thought to be crucially necessary for further cancellation
of tadpole anomalies. We discuss elsewhere that this also follows from Hypothesis H.

4.4 Background charge

We discuss how Hypothesis H leads to the C-field background charge, according to §2.4. The key derivations are
Prop. 4.17 below, which exhibits the quadratic form, and Prop. 4.18 which gives cohomotopical meaning to its
center. We conclude in Remark 4.19 below.

First we record the following Lemma, which is key for identifying the correct characteristic classes involved
in the following:

Lemma 4.16. Let X8 be an 8-manifold equipped with topological Sp(2)-structure (Example 3.12) along the canon-
ical inclusion (50)

BSp(2)

��

' // BSpin(5)

��
X8

T X8
//

τ

44

BSpin(8) '
Btri

// BSpin(8) .

(110)

Then fractional Pontrjagin class 1
4 p2 of the Spin(5)-structure corresponding to this under triality (Prop. 3.17) is

the difference between the Euler class and the squared first fractional Pontrjagin class of X8:

1
4 p2
(
Btri∗(τ)

)
=
(

1
4 p1
(
T X8))2

−χ8
(
T X8) (111)

Proof. This follows by combining (65) from Prop. 3.19 and the Sp(2)-structure relation (92)

1
4 p2 =

(1
4 p1
)2

+ 1
2
χ8 (112)

from Prop. 4.6.

Proposition 4.17 (Quadratic flux form via twisted Cohomotopy). Let X8 be a closed smooth Spin 8-manifold
which is simply connected (Remark 3.6) and equipped with topological G-structure for G = Sp(2) (Def. 3.11)
along the canonical inclusion (50) as in (110). Then the differential forms G4,G7 which are associated via Def.
4.4 to a cocycle in τ-twisted Cohomotopy (Def. 3.1) satisfy

dG7 = −χ8
(
T X8)− (G̃4∧ G̃4− G̃4∧ 1

2 p1(∇T X8)
)︸ ︷︷ ︸

=:2q(G4)

, (113)
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where ∇T X8 is the connection chosen on the Sp(2)-principal bundle in Def. 4.4 (via Prop. 3.5), χ8(∇T X8) is its
Euler form, and

G̃4 := G4 +
1
4 p1(∇T X8) (114)

is the corresponding differential form representative, of the class [G̃4] from Prop. 4.12.

Proof. Using Lemma 4.16 in the general equation (91) satisfied by G4 according to Prop. 3.5 we directly compute
as follows:

dG7 =
1
4 p2
(
Btri∗(τ)

)
+
(1

4 p1
)2 −G4∧G4

=−χ8(T X8)+
(1

4 p1
)2−G4∧G4

=−χ8(T X8)−
(
G4 +

1
4 p1(T X8)

)
∧
(
G4− 1

4 p1(T X8)
)

=−χ8(T X8)− G̃4∧
(
G̃4− 1

2 p1(T X8)
)

=−χ8(T X8)− G̃4∧ G̃4 + G̃4∧ 1
2 p1(T X8) .

(115)

Proposition 4.18 (PT-vanishing flux via Cohomotopy). Let X8 be a smooth 8-manifold which is simply connected
(Remark 3.6) and equipped with topological Sp(2)-structure τ (Example 3.12). Then, if a cocycle in τ-twisted
Cohomotopy (Def. 3.1) has a factorization through the quaternionic Hopf fibration, exhibiting its vanishing PT-
charge according to (86) in §3.6, it follows that the differential 4-form G4 (90) which is associated to it by Def. 4.4
has value

G4 = 1
4 p1
(
∇τ

)
.

Consequently, the corresponding integral 4-form G̃4 (104) from Prop. 4.12 has class 1
2 p1:

S7�Sp(2)

hH�Sp(2)
��

S4�Sp(2)

��
X8

∃

22

c
11

τ //

T X8
**

BSp(2) =

��
BSpin(8)

=⇒ [G̃4] =
1
2 p1(T X8) ∈ H4(X8;R) .

Proof. By Prop. 3.22, the cocycle c in degree 4 twisted Cohomotopy itself is equivalently further reduction of τ

to topological Sp(1)·Sp(1)·Z2-structure (Example 3.16). Similarly, the assumed factorization through degree-7
Cohomotopy is equivalently existence of yet further reduction to topological Sp(1) ·Z2-structure, via inclusion of
the first factor

S7�
(
Sp(2) ·Sp(1)

) ' //

hH�Sp(2)

��

BSp(1)

φ :=B([q,1]7![q,1,1])

��
S4�Sp(2) '

// B
(
Sp(1) ·Sp(1) ·Z2

)
This means, with (97) in Lemma 4.8, that the pullback along the equivariant quaternionic Hopf fibration is given by
projection to the first component p(1)1 (in the notation of Lemma 4.10). But, by (97) in Lemma 4.8, the difference
between the universal avatar class Γ̃4 of the half integral shifted flux (Prop. 4.12 and Remark 4.9) and the class
1
2 p1 has no such first component:

Γ̃4− 1
2 p2 = 1

4 p(2)1
� (hH�Sp(2))∗ // 0 .

With this, the statement follows from (105) in the proof of Prop. 4.12.
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Remark 4.19 (Deriving the background charge from Hypothesis H). Equation (113) exhibits the quadratic flux
form (12) as expected by the folklore reviewed in §2.4, while Prop. 4.18 reveals the cohomotopical meaning of the
center of this quadratic form, and hence of what makes the C-field have a background charge

(
G̃4
)

0 = 1
2 p1 .

(i) By Lemma 3.29, this is precisely what corresponds to vanishing brane charge under the parametrized Pontrjagin-
Thom construction, as explained in §3.6.

(ii) Notice that a general quadratic form q may have, in addition to a non-trivial center, also a non-trivial offset
q(0). This offset does not appear in the quadratic form (12) considered in the literature, even though its presence
still gives a quadratic refinement of the intersection pairing (13).

(iii) Expression (113) suggests that the Euler class χ8 should be regarded as this offset. The full meaning of this
quadratic form equation (113) will be obtained in §4.6, where we demonstrate that this encodes the fluxed tadpole
cancellation condition; see Prop. 4.31 and Remark 4.32 below.

4.5 M5-brane anomaly cancellation

We now discuss how Hypothesis H relates to the folklore of M5-brane anomaly cancellation, reviewed in §2.5.
The relevant computation is Prop. 4.21 below. We conclude in Remark 4.22.

In order to formalize the situation with a single unit of M5-brane charge, we consider the following definition
(see also [Mo15, (3.12)]):

Definition 4.20 (Form with unit flux through 4-sphere fibrations). Consider a smooth manifold X which is exhib-
ited as an S4-fibration S4 // X π // Ybase over a base manifold Ybase. Then a flux density with unit 4-flux through
the 4-sphere is a differential 4-form which, up to an exact term, is the sum

G4 = 1
2
χ(∇π)+π

∗(Gbasic
4 )+dγ (116)

of half the Euler form of the connection ∇τ̂ , as in Prop. 3.5, with any closed differential 4-form pulled back from
the base of the fibration.

Now we may state the main result of this section:

Proposition 4.21 (Triviality of square of basic flux). Let X be a manifold which is simply connected (Remark 3.6)
and which is a 4-spherical fibration associated to a Spin(5) ·Spin(n)-principal bundle NX QM5 ·T . Write τ for its
canonically associated Cohomotopy twist, as in the following diagram (shown for the special case that n = 3 and
T = NQM5QM2):

S4�SO(4)

(pb)

//

��

S4�SO(5)

��

M5 near-horizon
spacetime

being
4-sphere fibration

X //

π

��

(pb)

N̂QM5

,,

τ

))

cocycle in
twisted

Cohomotopy ++

S4�
(
Spin(5)·Spin(3)

)
//

��

(pb)

S4�SO(5)

(pb)

��

BSO(4)

Bι

��

Bι // BSO(5)

Ybase

NQM5

33
NQM5·NQM2 QM5 // B

(
Spin(5)·Spin(3)

) Bpr5 // BSO(5) BSO(5)

(117)
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If a differential 4-form G4 which is associated to a cocycle in τ-twisted Cohomotopy πτ(X), via Def. 4.4, is a
unit flux form according to Def. 4.20 then the wedge square of its basic component (116) has trivial class in
cohomology: [

Gbasic
4 ∧Gbasic

4
]
= 0 ∈ H8(Ybase;R) . (118)

Proof. By Prop. 3.5 the class of the wedge square of the full 4-form G4 associated with the cocycle in τ-twisted
Cohomotopy satisfies equation (91) [

G4∧G4
]
=
[1

4 p2
(
τ
)]
∈ H8(X ;R) . (119)

Consequently, under cup product with 1
2 [G4], it in particular satisfies also the following equation:

1
2 [G4∧G4∧G4] =

1
8 [G4∧ p2(τ)] ∈ H12(X ;R) . (120)

As τ = Bι ◦ N̂QM5 = NQM5 ◦π , we have p2(τ) = π∗p2(NQM5) and so

1
2 [G4∧G4∧G4] =

1
8 [G4∧π

∗p2(NQM5)] ∈ H12(X ;R) . (121)

We now consider the image of this equation under fiber integration

π∗ : H•(X ;R)−! H•−4(Ybase;R) (122)

along the fibers of the given 4-spherical fibration S4 // X π // Ybase . By [BC97, Lemma 2.1], the fiber integration
of the odd cup powers χ2k+1 of the Euler class χ ∈ H4(X ;R) of the fibration π are proportional to cup powers of
the second Pontrjagin class of the SO(5)-principal bundle to which it is associated:

π∗(χ
2k+1) = 2

(
p2(NQM5)

)k ∈ H4k(Ybase;R) , (123)

while the fiber integration of the even cup powers of the Euler class vanishes for all k ∈ N:

π∗(χ
2k) = 0 ∈ H8k−1(Ybase;R) . (124)

Using these relations (123) and (124) together with the unit flux assumption (116)

[G4] =
1
2 [

χ]+π
∗([Gbasic

4 ]
)

in the image of equation (120) under fiber integration (122), a direct computation, making use of the projection
formula 5 yields the following:

0 = π∗
[
− 1

2 G4∧G4∧G4 +
1
8 G4∧π

∗p2(NQM5)
]

= π∗

[
− 1

16
χ3− 3

4
χ ∧π

∗(Gbasic
4 ∧Gbasic

4 )+ 1
16 χ ∧π

∗p2(NQM5)
]

=
[
− 1

8 p2
(
NX QM5

)
− 3

2 Gbasic
4 ∧Gbasic

4 + 1
8 p2
(
NX QM5

)]
=−3

2

[
Gbasic

4 ∧Gbasic
4

]
.

Here in the second line the identification under the brace is manifest from the diagram in the statement of the
proposition.

Remark 4.22 (Deriving M5-brane anomaly cancellation from Hypothesis H).

(ii) Under Hypothesis H, condition (118) following by Prop. 4.21 is, in view of Lemma 3.10, manifestly the
remaining M5-brane anomaly cancellation condition (24) as discussed in §2.5.

5See [FSS18a] for extensive illustrations.
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(ii) Notice that in these considerations, as in (20), the base manifold in Prop. 4.21 is to be taken as a product
manifold

Ybase = QM5×R>0×U ,

where QM5 is the given 5-brane worldvolume (a 6-manifold), R>0 is the positive real line, representing the radial
direction away from the 5-brane locus (see [HSS18, Sec. 2.2] for review), and U is any finite-dimensional manifold,
which serves to parameterize a family of 4-sphere fibered spacetimes equipped with cocycle data. In a more high-
brow discussion than we need here, the above forms would be understood on the moduli stack of cocycle data
on QM5×R>0 and U would be any given object in the site of manifolds on which these may be evaluated (see
[FSS14c] for cocycles on moduli stacks etc.).

4.6 M2-brane tadpole cancellation

We discuss here how Hypothesis H implies the M2-brane tadpole cancellation condition from §2.6. We first explain
and then formally define the concepts of “number of M2-branes in a fluxless background” (Def. 4.23 below) and
of “fluxless C-field configurations” (Def. 4.24 below) under Hypothesis H. Then we prove the cancellation of
C-field tadpoles in the fluxless case, Prop. 4.25 below. We conclude the fluxless situation in Remark 4.26. Finally
we generalize this result to the general fluxed case, by considering the extended spacetimes (Def. 4.27 below)
on which the flux is universally trivialized by the higher gauge field on the M5-brane worldvolume; Remark 4.28
below. This introduces a flux correction term to the number of M2-branes (Prop. 4.31) below which, via the
cohomological PH-theorem (Lemma 3.27), yields the general fluxed C-field tadpole cancellation formula. We
provide our conclusion in Remark 4.32.

So to start with, consider the scenario found in (87), specified to the fluxless case. By the discussion in §3.6
and Prop. 4.18, in this fluxless case Hypothesis H implies that the (dual) C-field is exhibited by a cocycle in twisted
Cohomotopy of degree 7:

S7�Spin(8)

��
R2,1× X8

c
11

τ=T X8
// BSpin(8) .

(125)

But for this situation, the first clause of Prop. 3.26 asserts that for such a cocycle

[c] ∈ π
T X(R2,1×X8) ' π

T X8
(X8)

to even exist, it is necessary that the Euler characteristic of X8 vanishes, χ[X8] = 0.

On the other hand, the second clause of Prop. 3.26 says that in general a cocycle will exist if a finite set
{xi ∈ X8}i of singular points is removed from the “compactification” space X8. This corresponds to removing
from spacetime X a finite set of submanifolds of the form

R2,1×{xi} ↪−! R2,1×X8 .

These are naturally interpreted as the worldvolumes of M2-branes, which are removed from spacetime in just the
same way as the worldlines of magnetic monopoles are removed from spacetime in the classical argument for Dirac
charge quantization. If we do adopt this interpretation, then Hypothesis H implies that the number of M2-branes
at each locus xi separately is proportional to the restriction of the cocycle c to the vicinity of xi, as a cocycle in
untwisted Cohomotopy (30). We record this conclusion formally as follows:

Definition 4.23 (Number of M2-branes). Let X8 be a closed smooth Spin manifold of dimension 8, equipped with
a finite set {xi ∈ X8}i of points, to be called the loci of M2-branes. For

[c] ∈ π
T X8(

X8 \∏

i
{xi}

)
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a cocycle in degree 7 Cohomotopy twisted by the tangent bundle (Def. 3.1) and for

k ∈ R (126)

a number, we say that the total Cohomotopical M2-brane charge in units of k is the integer NM2 which is the image
of [c] under restriction to the vicinity Uxi of the points xi, followed by forming Hopf degrees (31):

πT X8(
X8 \∏

i
{xi}

) � � restr. // ∏
i

π7
(
Uxi \{xi}

) ' // ∏
i
Z ∑i // Z

[c] � // k ·NM2

(127)

To determine the minimal proportionality constant k in (126), hence to determine which Cohomotopy charge
in degree 7 is to count as unit charge of an M2-brane, we have a closer look at the meaning of fluxlessness under
Hypothesis H. So far we used that under the coarse approximation to Cohomotopy given by ordinary cohomology,
fluxlessness means factorization through Cohomotopy in degree 7, by Prop. 4.18. But Cohomotopy is finer
than ordinary cohomology. In between full non-abelian Cohomotopy and abelian ordinary cohomology is stable
Cohomotopy, represented not by actual spheres, but by their stabilization to the sphere spectrum (see [BSS18]):

Cohomology
theory

Rational
cohomology

Integral
cohomology

Stable
Cohomotopy

Non-abelian
Cohomotopy

Cocycle G4 G̃4 Σ∞c c

Table 2 – Incremental approximations to full non-abelian Cohomotopy.

Observe that it makes no sense to interpret fluxlessness in full non-abelian Cohomotopy. Since the quaternionic
Hopf fibration represents the non-torsion generator of

π7(S4) = π
4(S7) ' Z⊕Z12 ,

there is no non-trivial way in which a cocycle in full non-abelian degree 7 Cohomotopy could induce a trivial, hence
fluxless, cocycle in degree 4 Cohomotopy. This means that the stronger consistent formalization of fluxlessness for
C-field charge in Cohomotopy is via stable Cohomotopy.

Definition 4.24 (Fluxless Cohomotopy cocycles). Let X8 be an 8-manifold equipped with topological G-structure
τ for

G :=
(
Sp(2) ·Sp(1)

)
∩ Spin(7) ⊂ Spin(8)

the intersection of the subgroups of (50) and (73). Then we say that a fluxless cocyle in τ-twisted Cohomotopy on
X :=R2,1×X8 (87) is a cocycle [c] ∈ πτ(X8) in τ-twisted Cohomotopy in degree 7 (Def. 3.1 ) such that its image
in τ-twisted Cohomotopy in degree 4, under the equivariant quaternionic Hopf fibration (Prop. 3.20) is trivial after
fiberwise stabilization [BSS18, 2.1], hence trivial in τ-twisted stable Cohomotopy:

Σ
∞
X
(
hH(c)

)
' 0 ∈ π

τ
st(X

8) .

With the concepts of number of M2-branes and of fluxless cocycles formalized in terms of Cohomotopy this
way, we may now state the main result of this section:

Proposition 4.25 (M2-brane tadpole cancellation from Poincaré-Hopf). Let X8 be an 8-manifold equipped with
topological G-structure τ for

G :=
(
Sp(2) ·Sp(1)

)
∩ Spin(7) ⊂ Spin(8)

the intersection of the subgroups of (50), and (73), and equipped with a set {xi ∈ X8} of M2-brane loci (Def. 4.23).
Then:
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(i) The smallest k (126) such that for all pairs [c], [c′] ∈ πτ
(
X
)

of fluxless cocycles (Def. 4.24) on X8 \∏

i
{xi}, the

difference of number of M2-branes (127) is integer N′M2−NM2 ∈ Z is:

k = 24 . (128)

(ii) With this minimal unit of cohomotopical M2-brane charge we have for [c] ∈ πτ
(
X
)

any fluxless cocycle (Def.
4.24), that the number of M2-branes (Def. 4.23) equals 1

24 times the Euler characteristic of X8:

NM2 = 1
24

χ[X8] . (129)

Proof. Since the third stable homotopy group of spheres is Z24, generated from the stabilization of the quaternionic
Hopf fibration hH

π7
(
S4
) stabilization // πstab

3

(
S
)

24Z⊕Z12
ker // Z⊕Z12 mod24⊕ 0

// Z24

〈hH〉 � // 〈Σ∞hH〉

this means that k = 24. We now spell out this derivation more explicitly, specializing to the untwisted case for ease
of presentation. We start with a cocycle c in Cohomotopy of degree 7, whose image under the quaternionic Hopf
fibration in stable Cohomotopy of degree 4 is some value (G4)0 interpreted as vanishing flux, up to, possibly, a
background charge:

X8 \∏

i
{xi} cs

//

(G4)0

**
S7

hH
// S4

ω4
// Ω∞Σ∞S4 .

Since X8 is 8-dimensional, the stable homotopy class of c is fully determined by its Hopf degree in Z.
We would like to know if we may increase this degree by some n ∈ Z while keeping the total G4-flux fixed at

the given value (G4)0:

X8 \∏

i
{xi}

(G4,G7) + n
//

(G4)0 (?)

**
S7

hH
// S4

ω4
// Ω∞Σ∞S4 .

But since the final coefficient is now stable, we may equivalently stabilize all the way through

Σ∞
+

(
X \∏

i
{xi}

)
Σ∞

(
(G4,G7) + n

) //

(G4)0 (?)

**
Σ∞S7

Σ∞hH
// Σ∞S4

ω4
// Σ∞S4 .

This shows that n∈Z ↪! π7(S4) contributes to the total G4-flux seen in stable Cohomotopy only via its stabilization
in π7(Σ

∞S4) = πS
3 = Z24. Hence all n of the form n = 24k lead to the the same G4-flux:

Σ∞
+

(
X \∏

i
{xi}

)
Σ∞

(
(G4,G7) + 24k

) //

(G4)0

++
Σ∞S7

Σ∞hH
// Σ∞S4

ω4
// Σ∞S4 .

This says that the Cohomotopy charge of the M2-branes must change by multiples of 24 if no M5-brane charge is to
be generated, and hence that 24 units of Cohomotopy charge should be thought of as one unit of M2-brane charge.
With this, the statement of (129) follows from the Poincaré-Hopf theorem, in its cohomotopical formulation of
Prop. 3.26.
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Remark 4.26 (Deriving M2-brane tadpole cancellation in fluxless background from Hypothesis H). Under Hy-
pothesis H, relation (129) is manifestly the M2-brane tadpole cancellation condition (27) in fluxless backgrounds,
discussed in §2.6.

Now we generalize this discussion to non-vanishing flux. This proceeds by passage to the extension of spacetime
by the universal classifying space for flux trivializations (Def. 4.27 below) and then applying the previous argument
there; we explain in Remark 4.28 what this means conceptually and prove in Prop. 4.31 how it encodes the flux
trivialization condition

dHuniv
3 = G̃4− 1

2 p1

for Huniv
3 , the universal M5-brane worldvolume flux form, of which any actual M5-brane worldvolume flux is a

pullback along the corresponding sigma-model embedding map. To prove this, and since this extended spacetime
is the homotopy pullback of the equivariant quaternionic Hopf fibration, we compute the minimal rational model
for the Sp(2)-equivariant quaternionic Hopf fibration. This is Lemma 4.29 below, which turns out to deeply depend
on the triality of symplectic subgroups of Spin(8) discussed in §3.3.

Definition 4.27 (Extended spacetime). Let X be a smooth manifold which is simply connected (Remark 3.6),
equipped with topological Sp(2)-structure τ , from diagram (50), and equipped with a cocycle c in τ-twisted Co-
homotopy (Def. 3.1). Then we say that the corresponding extended spacetime is the fibration X̂ ! X arising as the
homotopy pullback of the Sp(2)-equivariant quaternionic Hopf fibration (Prop. 3.22) along c:

X̂

(pb)

��

// S7�Sp(2)

hH�Sp(2)
��

X c //

τ
""

S4�Sp(2)

yy
BSp(2)

(130)

Remark 4.28 (Nature of extended spacetime in parametrized super homotopy theory).
(i) The extended spacetime X̂ in Def. 4.27 is an S3-fibration over X , since the homotopy fiber of hH � Sp(2) over
any point is S3:

S3

(pb)

��

// S7 //

hH
��

(pb)

S7�Sp(2)

hH�Sp(2)
��

∗ // S4

��

//

(pb)

S4�BSp(2)

��
∗ // BSp(2)

As such, this is the incarnation in non-rational parameterized homotopy theory of the rational superspace S3-
fibration (3) over 11-dimensional superspacetime from Figure R, discussed in detail in [FSS18b][SS18], which is
classified by the bifermionic component µM2 of the C-field super flux form [FSS13, p. 12] [FSS15, (2.1)]:

m2brane ' T̂10,1|32
µM5 + h3∧µM2 //

��

(pb)

S7
R

(hH)R

��
T10,1|32 (µM2 , µM5 ) //

τ ''

S4
R

yy
K(R,4)
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(ii) By the universal property of homotopy pullbacks, the extended spacetime X̂ in Def. 4.27 is the classifying
space for maps φ to X equipped with a cocycle ĉ in degree 7 twisted Cohomotopy that exhibits the degree 4
twisted Cohomotopy cocycle φ ∗(c) as factoring through the quaternionic Hopf fibration, via a homotopy H3:

Q̂M5 ĉ

**

φ

&&

(φ ,ĉ,H3)

&&
X̂

��

// S7�Sp(2)

hH�Sp(2)
��

X c //

τ

''

S4�Sp(2)

vv
BSp(2)

H3

ow

(131)

But by Lemma 3.29 factorization through the quaternionic Hopf fibration is the intrinsic cohomotopical meaning
of the concept of“vanishing flux”; and by Prop. 4.18 with Remark 4.19, this intrinsic meaning does reproduce the
folklore §2.4 of what the background flux should be.

But this means that, under Hypothesis H, the extended spacetime of Def. 4.27 is really the classifying space
for the classifying space for fundamental M5-brane sigma-model configurations in X with extended worldvolume
Q̂M5 carrying a twisted 3-form field strength H3, which exhibits the trivialization of the C-field flux, as explained
in [FSS13, Rem. 3.11][FSS15, p. 4]. Indeed, Prop. 4.31 below shows that the homotopy in (131) encodes, at
the level of differential forms, the expected 4-flux trivialization on the M5-worldvolume [To96, (3.3)][BLNPST97,
(4)]:

dH3 = G4|Q̂M5
+ · · · . (132)

Next we characterize, in Prop. 4.31 below, the differential form data encoded in (131). For that we need the
following two lemmas. The statement of Lemma 4.29 is standard but rarely made fully explicit. We spell it out
since it is crucial for our new result, Lemma 4.30. For background on Sullivan models see e.g. [FHT00, Section
12].

Lemma 4.29 (Sullivan model of the Hopf fibration). The Sullivan model of the quaternionic Hopf fibration, with
explicit normalization of its generators, is:

S7

hH

��

R[ω7]/(dω7 = 0 )
OO

(hH)∗
ω4 7! 0

ω7 7! ω7

〈
ω7, [S7]

〉
= 1

S4 R[ω4,ω7]
/(dω4 = 0

dω7 =−ω4∧ω4

) 〈
ω4, [S4]

〉
= 1

Proof. One way to see this is with [AA78, Theorem 6.1], by which, under the identification of Sullivan generators
with linear duals of homotopy groups, the co-binary component of the Sullivan differential equals the linear dual
of the Whitehead product, [−,−]Wh: [

dω
]
|∧2 = −

[
−,−

]∗
Wh(ω) .

Note that both the Whitehead product gives a factor of 2[
[idS4 ], [idS4 ]

]
Wh = 2 · [hH]

as does the evaluation 〈−,−〉 of the wedge square of ω4 (by [AA78, top of p. 976]):〈
ω4∧ω4,S4∧S4〉 = (−1)2·2〈

ω4,S4〉2
+
〈
ω4,S4〉2

= 2 .
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See also [FHT00, Example 1 on p. 178].
Alternatively, this follows by considering the homotopy cofiber of hH, whose Sullivan model is the fiber productdω4 = 0

dω7 = h ·ω4∧ω4 +ω8

dω8 = 0

ω4 7! ω4

ω7 7! ω7

ω8 7! 0

ss

ω4 7! 0

ω7 7! ω7

ω8 7! ω8

**
(

dω4 = 0

dω7 = h ·ω4∧ω4

)
ω4 7! 0

ω7 7! ω7

,,

(
dω7 = ω8

dω8 = 0

)
ω7 7! ω7

ω8 7! 0
rr(

dω7 = 0
)

and then using the Hopf invariant one theorem [Ada60] which implies that h =±1.

Lemma 4.30 (Sullivan model of Sp(2)-equivariant Hopf fibration). The Sullivan model for the Sp(2)-equivariant
quaternionic Hopf fibration (Prop. 3.22) is as shown here:

S7�Sp(2)

hH�Sp(2)

��

""

CE
(
lBSp(2)

)
⊗R[ω7]

/(
dω7 =−χ8

)
OO

ω4 7!
1
4 p1

ω7 7! ω7
(hH�Sp(2))∗

〈
ω7, [S7]

〉
= 1

BSp(2)

S4�Sp(2)

AA

CE
(
lBSp(2)

)
⊗R[ω4,ω7]

/dω4 = 0

dω7 =−ω4∧ω4

−χ8 +
(1

4 p1
)2

 〈
ω4, [S4]

〉
= 1

(133)

where CE
(
lBSp(2)

)
denotes the Sullivan model of the classifying space of Sp(2).

Proof. That the domain and codomain Sullivan algebras are as shown follows by [FHT00, Sec. 15, Example 4]
as in the proof of Prop. 3.5, where the normalization of the generators is from Lemma 4.29. Here in the bottom
right we translated, in accord with Def. 4.4, the summand 1

4 p2 (44) from the Spin(5)-structure for which Prop. 3.5
applies, to the given Sp(2)-structure, by pullback along Btri (89): By Lemma 4.16 this pullback is(

Btri
)∗(1

4 p2
)
= −χ8 +

(1
4 p1
)2
. (134)

Now to see that the map (hH�Sp(2))∗ in (133) is given on generators as claimed, we use that over any base point of
BSp(2) the parameterized quaternionic Hopf fibration restricts to the ordinary quaternionic Hopf fibration, making
the following diagram homotopy commutative:

S7

hH

��

//

��

S7�Sp(2)

hH�Sp(2)

��

$$
∗ // BSp(2) .

S4

DD

// S4�Sp(2)

::
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This means that the Sullivan model of hH � Sp(2) must be a dashed homomorphism that makes the following
diagram of dg-algebras commute:

R[ω7]
/(

dω7 = 0
)
oo

OO

ω4 7! 0

ω7 7! ω7

CE
(
lBSp(2)

)
⊗R[ω7]

/(
dω7 = χ8

)
OO

ω4 7!
1
4 p1

ω7 7! ω7

R[ω4,ω7]
/(dω4 = 0

dω7 =−ω4∧ω4

)
oo CE

(
lBSp(2)

)
⊗R[ω4,ω7]

/
dω4 = 0

dω7 =−ω4∧ω4

−χ8 +
(1

4 p1
)2︸ ︷︷ ︸

=(Btri)∗( 1
4 p2)


where the horizontal morphisms project away the base algebra CE

(
lBSp(2)

)
.

The commutativity of this diagram requires that the dashed morphism sends ω7 7! ω7. and by degree reasons
it must send ω4 7! c · p1, for some c ∈ R. The unique choice for c that makes the map respect the differentials, in
that the second summand in (134) cancels out, is clearly c = 1

4 . Alternatively, this follows also by Prop. 4.18.

Proposition 4.31 (Differential form data on extended spacetime). Let X be a smooth manifold which is simply
connected (Remark 3.6), equipped with topological Sp(2)-structure τ (50) and equipped with a cocycle c in τ-
twisted Cohomotopy (Def. 3.1) with underlying differential forms (G4,G7) according to Def. 4.4

X
(G4,G7) //

τ %%

S4�Sp(2) .

vv
BSp(2)

Then the pullback of these differential forms to the corresponding extended spacetime X̂ (Def. 4.27) satisfies

dHuniv
3 = G̃4− 1

2 p1(∇) (135)

d
(
G7 +Huniv

3 ∧ G̃4
)
= χ8(∇) (136)

where Huniv
3 is the universal 3-form Huniv

3 (131) on X̂.

Proof. To extract the differential form data following Def. 4.4 we may compute the defining homotopy pullback
(130) in rational homotopy theory and read off the resulting assignment of generators in the Sullivan model. By
general facts of rational homotopy theory (recalled e.g. in [FSS16a]) the Sullivan model for X̂ is given as the
pushout along the map corresponding to (G4,G7) of a minimal cofibration resolution of the Sullivan model for the
equivariant quaternionic Hopf fibration hH � Sp(2). The latter was obtained in Lemma 4.30. By direct inspection
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one sees that the minimal cofibration resolution is given as shown on the right of the following diagram:

CE
(
lBSp(2)

)
⊗R[ω7]

/
(dω7 =−χ8 )

OO

'

h3 7! 0

ω4 7!
1
4 p1

ω7 7! ω7

EE(
hH�Sp(2)

)∗

CE
(
lX̂
)

(po)

OO
oo

ω4 7! G4

ω7 7! G7

h3 7! Huniv
3

CE
(
lBSp(2)

)
⊗R[h3,ω4,ω7]

/
dh3 = ω4− 1

4 p1

dω4 = 0

dω7 =−dh3∧ (ω4 +
1
4 p1)

−χ8


OO

ω4 7! ω4

ω7 7! ω7

� ?

CE
(
lX
)
oo ω4 7! G4

ω7 7! G7dd

τ∗

CE
(
lBSp(2)

)
⊗R[ω4,ω7]

/(
dω4 = 0

dω7 =−ω4∧ω4 +
(1

4 p1
)2−χ8

)
33

CE
(
lBSp(2)

)
Therefore, the differential relations appearing on the right imply the claim.

Remark 4.32 (Deriving fluxed M2-brane tadpole cancellation from Hypothesis H). To conclude, we just need to
observe now that, due to the self-interaction of the C-field according to the supergravity equation of motion (1),
a contribution of −1

2 G4 ∧G4 to dG7 is not due to M2-brane charge, so that the flux-corrected M2-brane number
density (i.e., PH-index density, via the cohomological PH-theorem, Lemma3.27) in the presence of G4-flux is,
in the topologically trivial case, G7 +

1
2 G4 ∧G4. With this and the cohomological PH-theorem (Lemma 3.27),

equation (136) from Prop. 4.31 generalizes the fluxless tadpole cancellation condition (129) from Prop. 4.25 to
read

NM2 = 1
2

∫
X

G̃4∧
(
G̃4− 1

2 p1
)
+ 1

24
χ[X ] .

This corresponds to the general fluxed tadpole cancellation condition (29), discussed in §2.6.

Remark 4.33 (Twisted String structure). Underlying the differential form relation dHuniv
3 = G̃4− 1

2 p1(∇) (135)
from Prop. 4.31 is the integral cohomological structure called twisted String structure [Wa08][Sa11c] [SSS12] as
the structure exhibiting shifted trivialization of the M-theory C-field (see [FSS14a, 4.3] [FSS14b, 3.8] for details).

Remark 4.34 (The global picture). In conclusion, we have considered, with Hypothesis H (see also Remark 4.5),
a single mathematically clean unifying picture of the C-field in M-theory with flux and M2-brane sources, and
have proven that with this hypothesis a plethora of situations and effects considered informally in the string theory
literature follow by rigorous mathematical analysis. Besides informing us about the plausibility, interrelation and
fine print of the notoriously subtle anomaly cancellation conditions in M-theory, we suggest that the main impact
of this result is that it indicates that Hypothesis H does indeed seem to capture the fundamental nature of the C-field
in M-theory.
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