
Twistorial Cohomotopy implies Green-Schwarz anomaly cancellation

Domenico Fiorenza, Hisham Sati, Urs Schreiber

January 30, 2022

Abstract

We characterize the integral cohomology and the rational homotopy type of the maximal Borel-equivariantization
of the combined Hopf/twistor fibration, and find that subtle relations satisfied by the cohomology generators are
just those that govern Hořava-Witten’s proposal for the extension of the Green-Schwarz mechanism from het-
erotic string theory to heterotic M-theory. We discuss how this squares with the Hypothesis H that the elusive
mathematical foundation of M-theory is based on charge quantization in tangentially twisted unstable Cohomo-
topy theory.
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1 Introduction and overview

The Green-Schwarz mechanism in heterotic M-theory. At the heart of M-theory (the conjectural non-perturbative
completion of type IIA string theory, see [Du96][Du98][Du99]) is the proposal [Wi97a, (1.2)][Wi97b, (1.2)] that
the difference of the classes of:

(i) the flux density G4 of the higher gauge field of M-theory (the C-field, or 3-index A-field [CJS78]),
(ii) 1/4th of the Pontrjagin form of the spin connection ω on spacetime Y 11 (e.g. [KN63, §XII.4][GSa18, p. 10]),

lifts to an integral class:
C-field

4-flux density

[G4] −

1/2 gravitational
instanton density[1

4 p1(ω)
]
∈

integral cohomology of
11-d spacetime

H4
(
Y 11; Z

) rationalization //

real cohomology of
11-d spacetime

H4
(
Y 11; R

)
. (1)

One motivation for this proposal [Wi97a, §2.1] comes from heterotic M-theory (Hořava-Witten theory [HW95]
[Wi96][HW96][DOPW99][DOPW00][Ov02], the conjectural non-perturbative completion of heterotic string the-
ory [GHMR85][GHMR86][AGLP12]). Here the celebrated (“first superstring revolution”, see [Schw07]) Green-
Schwarz anomaly cancellation mechanism [GSc84][CHSW85] (review in [Wi99, §2.2][Fr00]) in heterotic string
theory, which in itself is understood clearly, is argued to imply, upon lift to heterotic M-theory, that the restriction
of the 4-flux G4 to an MO9-plane X10 inside 11-dimensional spacetime Y 11 satisfies this relation [HW96, (1.13)]:1

C-field 4-flux density
restricted to X10[

G4
]
|X10 =

1/2 gravitational
instanton density[1

4 p1(ω)
]
|X10 −

gauge instanton
density on X10

[c2(A)] ∈

integral cohomology
of 10d MO9-plane

H4
(
X10; Z

) rationalization //

real cohomology
of 10d MO9-plane

H4
(
X10; R

)
, (2)

where A (the gauge field) is a connection on an E8-principal bundle over X10, and c2(A) is its second Chern-form.
But the summand [c2(A)] is integral by itself: it is the real image of the second Chern class of the E8-bundle. There-
fore, (2) implies that (1) holds at least upon restriction to MO9-planes; and it suggests [DMW00][ES03][DFM03]
[Sa06b][FSS14a] that the integral 4-class in (1) is to be thought of as the second Chern class of an extension Ã of
the E8-gauge field from X10 to all of Y 11:

C-field
4-flux density

[G4] −

1/2 gravitational
instanton density[1

4 p1(ω)
]
=

gauge instanton density of
auxilary gauge field on X11

−
[
c2
(

Ã
)]︸ ︷︷ ︸

=:a

∈

integral cohomology of
11-d spacetime

H4
(
Y 11; Z

) rationalization //

real cohomology of
11-d spacetime

H4
(
Y 11; R

)
. (3)

Open problem. Despite the tight web of hints and consistency checks like these, actually formulating M-theory
remains an open problem (e.g., [Du96, 6][HLW98, p. 2][Du98, p. 6][NH98, p. 2][Du99, p. 330][Mo14, 12][CP18,
p. 2][Wi19, @21:15][Du19, @17:14]). In particular:

(i) The conditions (1) and (2) had not actually been derived from any theory (see the comments around [HW96,
(1.13)] and [Wi97a, (2.1)]).

(ii) The ontology of the gauge field on Y 11 in (3) has remained mysterious, as no such gauge field is seen
in 11-dimensional supergravity [CJS78][D’AF82][CDF91], which, however, is famously argued to be the
low-energy limit of M-theory [Wi95].

By Charge quantization in generalized cohomology? On the other hand, the Green-Schwarz mechanism in per-
turbative string theory is well understood as an index-theoretic phenomenon, resulting from charge quantization
in a generalized cohomology theory, namely in K-theory [Fr00][Cl05][Bu11]. This mathematical understanding
has been most fruitful, spawning understanding of elliptic genera (e.g. [HLZ07][CHZ11]), twisted higher bun-
dles/gerbes (e.g. [SSS09b][Wa13]), Hermitian and generalized geometry (e.g. [GF16]), and more.

There have been various proposals for lifting this situation to heterotic M-theory, understanding also the shifted
integrality condition (3) as an effect of charge quantization in some generalized cohomology theory [DFM03][HS05]
[Sa05a][Sa05b][Sa06a][Sa10][FSS14a][FSS14b], which then would control M-theory in generalization of how K-
theory controls string theory (for the latter, see [GSa19] and references therein). However, while advancements in
understanding have certainly been made, the situation had remained inconclusive.

1Our normalization convention for G4 absorbs a factor of −1/2π compared to [Wi96].

2



Non-abelian characters. Our strategy is to invoke the further generalization of generalized cohomology to non-
abelian cohomology [To02][RS12][SSS12][NSS12a][NSS12b][FSS19b][SS20b]. In §3.1 below we discuss how
the Chern-Dold character in generalized cohomology ([Bu70], see [LSW16, §2.1]) extends to non-abelian cohmol-
ogy theories, where it is given by passage to rational homotopy theory, here over the real numbers [FSS20c, §3.2]2:

E-cohomology

E•(X)'

Non-abelian character map //
Non-abelian real cohomology

H•
(
X ; LRE

)

'

π−•Maps
(
X , E︸︷︷︸
classifying space

)
R-rationalization

// π−•Maps
(
X , LRE︸︷︷︸

R-rationalized classifying space

) (4)

For X a smooth manifold, the right hand side of (4) is a subquotient of the set of differential forms on X
(Prop. 3.3); thus the image of the nonabelian character identifies equivalence classes of differential forms satisfying
certain conditions. If these forms are interpreted as flux densities, then these are non-abelian charge-quantization
conditions. For example, in the abelian case E = KU,KO, the Chern-Dold character (4) reduces to the traditional
Chern character in K-theory [FSS20c, Ex. 4.13, 4.14], and the corresponding charge quantization condition is that
thought to hold for RR-fields/D-brane charges in type II/I string theory (for more discussion see [GSa18][GSa19]).

Charge quantization in J-twisted Cohomotopy. The most fundamental non-abelian cohomology theory is Co-
homotopy theory [Bo36][Sp49][Pe56][Ta09][KMT12] whose classifying spaces are the n-spheres Sn ' B(ΩSn).
Accordingly, twisted Cohomotopy is classified by spherical fibrations, and we say J-twisted Cohomotopy [FSS19b]
[FSS19c] for twisting by the unit sphere fibration in the tangent bundle. The main theorem of [FSS19b, 3.9] says
that the Chern-Dold character (4) in J-twisted 4-Cohomotopy encodes Witten’s shifted C-field flux quantization
condition (1):

J-twisted
4-Cohomotopy

πτ
(
X
)

manifold
with

tangential Sp(2)-structure τ

Non-abelian
character map

ch
//


G4,
G7
∈Ω•(X)

∣∣∣∣∣∣∣∣∣∣
d

C-field
4-flux

G4 = 0 ,
shifted flux quantization (1)

[G4]− [1
4 p1(ω)] ∈ H4(X ; Z

)
d 2G7 =−

(
G4− 1

4 p1(ω)
)
∧
(
G4 +

1
4 p1(ω)

)
dual

7-flux − 1
2

(
p2(ω)− 1

4

(
p1(ω)

)2)

 (5)

In fact, further constraints are implied, matching a whole list of further topological conditions expected in
M-theory (see [FSS19b, Table 1]). This motivates, following [Sa13, §2.5], Hypothesis H: Charge quantization
in M-theory happens in J-twisted Cohomotopy theory [FSS19b][FSS19c][SS19a][BSS19][SS19b][SS20b]. While
J-twisted Cohomotopy in degree 4 alone (5) does not reflect the appearance of a heterotic gauge field as in (2), its
lifting to 7-Cohomotopy, through the quaternionic Hopf fibration hH, does encode structure expected on heterotic
M5-branes [FSS19c][FSS19d][FSS20a][FSS20b]. Therefore we turn attention to an intermediate lift:

Charge quantization in Twistorial Cohomotopy. In between J-twisted Cohomotopy in degrees 4 and 7, when
lifting along the quaternionic Hopf fibration, we find Twistorial Cohomotopy (§3.2): The twisted non-abelian
cohomology theory classified by the Borel-equivariantized twistor space CP3 (§2.1). Our main Theorem 2.14,
illustrated in Figure I, implies (Corollary 3.11) that charge quantization in Twistorial Cohomotopy
(i) makes the class of an S

(
U(1)2

)
-gauge field Ã appear, hence a “heterotic line bundle” [AGLP12][BBL17], and

(ii) enforces on this gauge field Hořava-Witten’s Green-Schwarz mechanism (3) in heterotic M-theory:

Twistorial
Cohomotopy

T τ
(
X
)

manifold
with

tangential Sp(2)-structure τ

Twisted Non-abelian
character map

ch
//


F2,
G4,
G7

∈Ω•(X)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

d

1st Chern form of
heterotic line bundle

F2 = 0 ,

2nd Chern class of corresponding
S
(
U(1)2)-gauge field Ã

−[F2∧F2] ∈ H4(X ; Z
)

d
C-field 4-flux

G4 = 0 ,
Hořava-Witten’s Green-Schwarz mechanism (3)

[G4]− [1
4 p1(ω)] = [F2∧F2] ∈ H4(X ; Z

)
d 2G7 =−

(
G4− 1

4 p1(ω)
)
∧
(
G4 +

1
4 p1(ω)

)
dual

7-flux − 1
2

(
p2(ω)− 1

4

(
p1(ω)

)2)


(6)

2For general introduction and review of rational homotopy theory [Qu69] and its Sullivan models [Su77] see for instance
[FHT00][He07], for brief discussion in our context see [FSS16a, §A][FSS17, §2.2] and for extensive details see the companion arti-
cle [FSS20c]. As in all applications to differential geometry and physics, we consider rational homotopy theory over the real numbers
[FSS20c, Rem. 3.64], as in [DGMS75][GM13]. Notice that in the supergravity literature these real Sullivan models are known as “FDA”s
(following [vN82][D’AF82]); for details and translation see [FSS13][FSS16a][FSS16b][HSS18][BMSS19] with review in [FSS19a].
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Here X (6) denotes a spacetime manifold with Sp(2) ↪! Spin(8)-structure (65), as befits backgrounds expected
in M-theory compactified on 8-manifolds (see [FSS19b, Rem. 3.1] for pointers). This reduction is a require-
ment/prediction of Hypothesis H by Prop. 2.2 below. Besides the GS-anomaly cancellation presented here and in
[SS20c], this turns out to imply several M5-brane consistency conditions [FSS19c][FSS20a][SS20a].

The crux of the proof of (6) is this cohomological analysis of the Sp(2)-equivariantized Hopf/twistor fibration (§2):

S7�Sp(2)

Borel-equivariant
complex

Hopf fibration
hC �Sp(2)

��

Borel-equivariant
quaternionic

Hopf fibration
hH �Sp(2)

��

oo
'

coset space
realization // BSp(1)

��

oo
'

exceptional
isomorphism// BSU(2)L × ∗

Be

��
CP3�Sp(2)

Borel-equivariant
twistor fibration

tH �Sp(2)

��

oo '
coset space
realization

// B
(
Sp(1)×U(1)

)

��

oo
'

exceptional
isomorphism// BSU(2)L × BU(1)R

B(c 7!diag(c,c))

~~

'

��
BS
(
U(1)2

)
� _

��
S4�Spin(5) oo

'

coset space
realization // BSpin(4) oo

'

exceptional
isomorphism// BSU(2)L × BSU(2)R

H4
(
CP3�Sp(2);Z

)
OO

pullback in
cohomology along
Borel-equivariant
twistor fibration(

tH �Sp(2)
)∗

oo ' // H4
(
BSp(1)×U(1);Z

)
oo ' // H4(BSU(2);Z)⊕H4(BU(1);Z)

universal gauge instanton density
in heterotic M-theory
−aOO

Hořava-Witten’s Green-Schwarz mechanism
in heterotic M-theory

_

= c1∪ c1 = cR
1∪ cR

1
2nd Chern class of

S
(
U(1)2)-fieldOO

(
B(c7!diag(c,c̄))

)∗
_

shifted integral C-field flux
relative to background flux

Γ̃4− Γ̃vac
4 = 1

2
χ4− 1

4 p1 = −cR
2

right
2nd Chern class

universal
shifted integral C-field flux

Γ̃4 = 1
2
χ4 +

1
4 p1 = cL

2 left 2nd Chern class [FSS19b, 3.9]

C-field background flux

Γ̃vac
4 = 1

2 p1 = cL
2 + cR

2
total

2nd Chern class

H4
(
S4�Spin(5);Z

)
oo ' // H4

(
BSpin(4);Z

)
oo ' // H4(BSp(1);Z)⊕H4(BSp(1);Z)

(7)

Figure I. Integral cohomology of Borel-equivariant Hopf/twistor fibration and its interpretation under Hypothesis H.
(i) The top part shows the equivalent incarnations of the Borel-equivariant Hopf/twistor fibration (Def. 2.5) according to Prop. 2.7.

(ii) The bottom part shows the corresponding identifications of the integral cohomology generators (32) according to [FSS19b, 3.9].
(iii) This makes manifest, shown in the middle of the diagram, how these generators pull back along the fibration (Theorem 2.9), which
(iv) allows to normalize the generators in the Sullivan model for the rational homotopy type of the fibrations, below in Theorem 2.14.
(v) Blue labels indicate the interpretation of the bottom generators as universal fluxes in M-theory, according to [FSS19b][FSS20a];

(vi) while orange label indicate the interpretation of the new top generators as universal fluxes in heterotic M-theory, discussed in §3.
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Conclusion and Outlook.

The heterotic gauge field. It is remarkable that the class of a gauge field Ã, which had remained mysterious in
(3), does appear from charge-quantization in Twistorial Cohomotopy, according to (6).

(i) Missing generality? Of course, the gauge field in (6) has the abelian structure group G = S
(
U(1)2

)
instead of

the non-abelian structure group G=E8 that could be expected to apply to (3). In terms of characteristic classes, this
means that charge quantization in Twistorial Cohomotopy constrains the class a = [c2(Ã)] ∈ H4

(
X11;Z

)
, which

for G = E8 may be any element in degree four integral cohomology (since τ11BE8 'whe τ11K(Z;4), e.g. [DFM03,
3.2]), to factor as minus a cup square of an element in degree two integral cohomology. This might indicate that
Twistorial Cohomotopy as presented does not capture full heterotic M-theory; or that one should look for other
factorizations of the quaternionic Hopf fibration, or for variants of the construction presented here.

(ii) Or predictive constraint? On the other hand, it is curious to notice that in heterotic string phenomenology the
reduction of the heterotic gauge bundle along the inclusions(

U(1)
)n−1 ' S

(
U(1)n) ⊂ SU(n) ⊂ E8 , for 2≤ n≤ 5 , (8)

has led to a little revolution in string phenomenology [AGLP11][AGLP12]. These heterotic line bundle models turn
out to be an abundant source of low energy theories with the exact field content of the (minimally supersymmetric)
standard model of particle physics (up to decoupled and ultra-heavy fields), amenable to effective computational
classification [ACGLP14][HLLS13][BBL17][GW19] (used for n = 4,5 in the observable sector, while our n = 2
is used in the hidden sector [ADO20a, §4.2][ADO20b, §2.2][DM21][DM22]). Before considering the reduction
(8), only a small handful of hand-crafted semi-realistic models were known.

Notice that this works because the structure group of the heterotic gauge bundle is part of what breaks E8
down to the low-energy gauge group: the latter is within the commutant of the former in E8. Therefore, realistic
phenomenology does not require Ã in (3) to be in a non-abelian GUT-group – in fact it must instead be comple-
mentary to (be in the commutant within E8 of) the low-energy gauge group (Ã is a background field/vev, not the
dynamical gauge field fluctuating about it); and analysis of heterotic line bundle models indicates that restricting Ã
to be reduced along (8) narrows in heterotic M-theory onto its phenomenologically realistic sector.

This might indicate that Hypothesis H captures not only mathematical but also phenomenological constraints
of M-theory.

The degree-8 polynomial. Beyond encoding the shifted heterotic flux quantization in the first two lines of (6),
the third line there shows that charge-quantization in Twistorial Cohomotopy also enforces (Corollary 3.10) the
trivialization of this 8-class:

IH
8 :=

(
[G4]− 1

4 p1
)
∪
(
[G4]+

1
4 p1
)
+ 1

2

(
p2− 1

4 p1∪ p1
)

=
(
[F2∧F2]+

1
2 p1
)
∪ [F2∧F2] +

1
2

(
p2− 1

4 p1∪ p1
)
∈ H8(X ,R) .

(9)

In the form of the first line of (9), the condition IH
8 = 0 is inherited from charge-quantization in J-twisted Cohomo-

topy (5). We had shown previously that this condition guarantees the vanishing under general conditions 3 of
(a) the anomaly in the Hopf-WZ term on the M5-brane [FSS19c],
(b) the total remaining anomaly of the M5-brane [SS20a].

In the form of the second line in (9) – now equivalently re-expressed in terms of the emergent heterotic gauge
flux instead of the G4-flux – this class is seen to be closely related to the 8-class denoted Î8 in [HW96, (1.10)]: Up
to global and relative rescaling of Î8 (as on the bottom of [HW96, p. 15]) both are related by

IH
8 = Î8− 1

4 p1∪ p1 . (10)

It might be interesting to understand the potential significance of this relation. Notice that
(i) in [HW96] there is no condition that Î8 should vanish;
(ii) the shift in (10) is what makes IH

8 an integral class (using (41) and (76));
(iii) it is expected [Mos08] that Î8 is just approximate: it receives an infinite but unknown tower of corrections;
(iv) while Hypothesis H suggests that IH

8 = 0 is a statement about fully-fledged M-theory.
3Both cancellations had previously been discussed only subject to tacit assumptions on the C-field; see [FSS19b, p. 2] and [SS20a, (6)].
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2 Borel-equivariant Hopf/twistor fibration

The twistor fibration S2 // CP3

��
S4

(due to [At79, §III.1], see also, e.g., [Br82, §1][AS13][ABS19, §6]) or Penrose fibration (as in [ES85]), is the
canonical map CP3! HP1 (under the identification HP1 ' S4, recalled below as Prop. 2.1) that sends complex
lines to the quaternionic lines which they span [At79, §III (1.1)]. While, as the name suggests, this is traditionally
motivated from the role of CP3 as a twistor space (a division-algebraic account is in [BC88]), our interest in
the twistor fibration here comes from its appearance as an intermediate stage of the quaternionic Hopf fibration
[GWY83, §6]. We observe that it is given by the following iterative quotienting by multiplicative groups in the
four real normed division algebras (reals R, complex numbers C, quaternions H, octonions O):

S1 '

++

C×/R×+
++

for
v 6= 0∈

S7

hC

��

'
(
R8\{0}

)
/R×+

��

3
{

v · t
∣∣ t ∈ R×+

}
_

��

R8

'
RS2 '

,,

H×/C×

,,

7d complex
Hopf fibration

CP3 '

tH

��

(
C4\{0}

)
/C×

��

3
{

v · z |z ∈ C×
}

_

��



quaternionic
H

opffibration
hH

C4

'
RS4 '

'
,,

O×/H×

,,

twistor fibration

HP1 '

��

(
H2\{0}

)
/H×

��

3
{

v ·q |q ∈H×
}

_

��

H2

'
R

∗ '
(
O1\{0}

)
/O× 3

{
v ·o |o ∈O×

}
O

(11)

Alternatively, in its coset-space realization
SU(4)/U(2) // SO(5)/U(2)

��
SO(5)/SO(4)

the twistor fibration is also called Calabi-Penrose fibration (following [La85, §3], see also [Lo89] and see [No08,
2.31] for a review of Calabi’s construction [Ca67][Ca68]). We observe that the Sp(2)-coset realization ([On60,
Table 1], see [GO93, Table 3]) of the Hopf/twistor fibrations is given as follows (see also [FSS19b, (73)]):

S7 '

hC
7d complex

Hopf fibration
��

quaternionic
Hopf fibration hH

��

Sp(2)/ Sp(1)L

CP3 '

tH
Calabi-Penrose
twistor fibration

��

Sp(2)/
(
Sp(1)L×U(1)R

)

S4 ' Sp(2)/
(
Sp(1)L×Sp(1)R

)
(12)

where the maps are induced by the canonical subgroup inclusions (recalled in Example A.4).

We discuss in this paper the enhancement (Prop. 2.2 below) of these classical fibrations (11) (12) to Borel-
equivariant parametrized fibrations (Def. 2.5 below) over the classifying space of the group Sp(2) (recalled as Def.
A.3 below), generalizing the analogous discussion for just the quaternionic Hopf fibration in [FSS19b][FSS19c].
The main results are Theorem 2.9 and Theorem 2.14 below, which characterize the integral cohomology and the
rational homotopy type of the Borel-equivariant Hopf/twistor fibrations (29) (generalizing the result for just the
quaternionic Hopf fibration from [FSS19b, 3.19]).
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2.1 Construction

Here we determine the maximal symmetry group of the joint Hopf/twistor fibrations (Prop. 2.2, Remark 2.3),
construct the corresponding Borel-equivariantization (Def. 2.5) and characterize its integral cohomology (Theorem
2.9).

The following isomorphisms (Prop. 2.1) are classical, but since the third of these is rarely made explicit in the
literature, we spell out a proof:

Proposition 2.1 (Equivariant identification of 4-sphere with quaternionic projective space). There are canonical
isomorphisms
(i) of topological spaces: S4 α

'
// HP1 ; (13)

(ii) of topological groups: Spin(5)
γ

'
// Sp(2) ; (14)

(iii) of canonical topological group actions:

Spin(5) y S4 (γ,α)

'
// Sp(2) y HP1 . (15)

Proof. Quaternionic 2-component spinor formalism provides an isomorphism of real quadratic vector spaces
([KT82], streamlined review in [BH09][VB20][FSS20b, §3.2])(

R5,1,η
) ' //

(
Matherm(2×2,H

)
,−det

)


x0,
x1,
x2,
...

x5

 7−!

(
x0− x1 x2 + ix3 + jx4 +kx5

x2− ix3− jx4−kx5 x0 + x1

)
(16)

from (a) 6d Minkowski spacetime R5,1 with metric η := diag(−1,+1, · · · ,+1) to (b) the vector space of 2-by-2
quaternionic matrices which are hermitian, A† = A, with quadratic form the negative of the determinant operation.
Under this identification, the canonical action of Spin(5,1) on R5,1 (through that of SO(5,1)) translates to the
conjugation action of SL(2,H) (79):

Spin(5,1) y R5,1 ' // SL(2,H) y Matherm(2×2,H
)

A 7! G ·A ·G†

(17)

Now consider the restriction of this situation to the Euclidean spatial slice R5 ↪!R5,1 determined by x0 = 0. Under
the isomorphism (16), this clearly corresponds to restriction to the traceless hermitian matrices:(

R5,g
) ' //

(
Matherm

trless
(
2×2,H

)
,−det

)
(18)

Notice here, from direct inspection (see also [BH09, Prop. 5]), that

A ∈ Matherm
trless

(
2×2,H

)
⇒ A ·A = −det(A) · I . (19)

Morever, the subgroup Spin(5)⊂ Spin(5,1) which fixes this subspace corresponds under (17) to that subgroup of
SL(2,H) whose conjugation operation preserves traceless matrices. Since this means, equivalently, to act trivially
on their orthogonal complement, given by the pure trace matrices, i.e. the real multiples of the 2-by-2 identity
matrix I := IdH2 :

G · I ·G† = I ⇔ G ·G† = I ,

we see, using (85), that this is the quaternionic unitary group Sp(2) := U(2,H) (81), hence that (17) restricts as
follows:

Spin(5) y R5 ' // Sp(2) y Matherm
trless

(
2×2,H

)
. (20)

7



Analogously, the further restriction to the unit sphere in R5 corresponds, under (16) and in view of (19), to those
matrices which are all of:

(a) hermitian: A† = A
6d Minkowski spacetime

, (b) traceless: tr(A) = 0
5d Euclidean spacetime

, (c) unitary: A ·A = 1 .
4d sphere

From (c) it follows that the matrix
PA := 1

2

(
I−A

)
is a projector, PA ·PA = PA; and from (b) it follows that this projector has unit rank:

tr(PA) = 1
2

(
tr(I)︸︷︷︸
=2

− tr(A)︸︷︷︸
=0

)
= 1 .

Here a unit-rank projector is one for which there exists vA ∈H2 \{0} such that

PA = 1
‖vA‖2 vA · v†

A .

Noticing that PA, and hence A = I− 2PA, thus depends on vA exactly only through the quaternionic line that it
spans, we have thus found the following identification of the 4-sphere with quaternionic projective space:

S4 ' S(R5)
' // Matherm

trless
(
2×2,H

)
∩U(2,H) oo

' HP1

I− 2
‖v‖ v · v†  − [ [v]

(21)

Finally, under the isomorphism on the right of (21) the canonical Sp(2)-action on HP1

Sp(2)×HP1 // HP1(
A, [v]

)
7−!

[
A · v

]
is manifestly identified with the conjugation action (17). This implies the claim (iii), by (20). �

Summarizing (16), (20) & (21):

6d Minkowski
spacetime Spin(5,1) y

can
R5,1 ' SL(2,H) y

adj

relativistic quaternionic Pauli matrices{
A ∈Mat2×2(H)

∣∣A† = A
}

5d Euclidean
space Spin(5) y

can
R5
?�

OO

' U(2,H)︸ ︷︷ ︸
= Sp(2)

y

adj

quaternionic Pauli matrices{
A ∈Mat2×2(H)

∣∣A† = A , tr(A) = 0
}

4-sphere Spin(5) y

can
S4
?�

OO

'
︷ ︸︸ ︷
U(2,H) y

adj

quaternionic rank-1 projectors P = 1
2
(
I−A

){
A ∈Mat2×2(H)

∣∣A† = A , tr(A) = 0 , A† ·A = I
}︸ ︷︷ ︸

'HP1

quaternionic projective line

Of course, there is the analogous situation over the complex numbers:

4d Minkowski
spacetime Spin(3,1) y

can
R3,1 ' SL(2,C) y

adj

relativistic complex Pauli matrices{
A ∈Mat2×2(C)

∣∣A† = A
}

3d Euclidean
space Spin(3) y

can
R3
?�

OO

' SU(2,C) y

adj

complex Pauli matrices{
A ∈Mat2×2(C)

∣∣A† = A , tr(A) = 0
}

3-sphere Spin(3) y

can
S3
?�

OO

' SU(2,C) y

adj

complex rank-1 projectors P = 1
2
(
I−A

){
A ∈Mat2×2(C)

∣∣A† = A , tr(A) = 0 , A† ·A = I
}︸ ︷︷ ︸

'CP1

complex projective line
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Proposition 2.2 (Equivariance of combined Hopf/twistor fibrations).
(i) The quaternionic Hopf fibration S7 hH // S4 (Diagram (11)) is equivariant with respect to the action of Sp(2) ·

Sp(1) (Def. A.3)

(a) on S7, by
Sp(2) ·Sp(1)×S7 // S7(

[A,q′],{v · t
∣∣ t ∈ R×+ }

)
7−! {A · v · t ·q′

∣∣ t ∈ R×+ }
(22)

(b) on S4, by
Sp(2) ·Sp(1)×S4 // S4(

[A,q′],{v ·q |q ∈H× }
)

7−! {A · v ·q |q ∈H× }
(23)

(ii) Its factorization hH = tH ◦ hC through the combined Hopf/twistor fibrations retains equivariance under the
subgroup Sp(2) �

� // Sp(2) ·Sp(1) (86) with action on CP3 given by

Sp(2)×CP3 // CP3(
A,{x · z |z ∈ C× }

)
7−! {A · x · z |z ∈ C}

(24)

In summary:

S7

Sp(2) ·Sp(1)

		
hH // S4

Sp(2) ·Sp(1)

		
and S7

Sp(2)

		
hC //

hH

33CP3

Sp(2)

		
tH // S4

Sp(2)

		

Proof. This is essentially immediate from the presentation of the fibrations in (11) (12):
(ii) Diagram (11) makes manifest that all maps here are equivariant with respect to left action by GL(8,R), hence
in particular under left action by Sp(2), which is also manifest from (12):

{A · v · t
∣∣ t ∈ R×+ }

� hC // {A · v · z |z ∈ C× } � tH // {A · v ·q |q ∈H× }. (25)

(i) We see that the total quaternionic Hopf fibration is also equivariant under the right Sp(1)-action, due to the fact
that the reals commute with the quaternions:

{v · t ·q′
∣∣ t ∈ R×+ } = {v ·q′ · t

∣∣ t ∈ R×+ }
� hH // {A ·q′ ·q |q ∈H× } = {A ·q |q ∈H× }. (26)

Moreover, since the left multiplication action by Sp(2) evidently commutes with the right multiplication action by
Sp(1) and since −1 ∈ Sp(n) is central, this generates the claimed Sp(2) ·Sp(1)-action. (In fact, this is the maximal
symmetry group of hH [GWZ86, 4.1][FSS19b, 2.20].) �

Remark 2.3 (Twistor space breaks equivariance to Sp(2)). Notice that the factorization of the quaternionic Hopf
fibration through CP3 is not equivariant under the further right Sp(1)-action from (22) and (23), Indeed, the com-
putation analogous to (26) now gives

{v · t ·q′
∣∣ t ∈ R×+ } = {v ·q′ · t

∣∣ t ∈ R×+ }
� hC // {A ·q′ · z |z ∈ C× } 6=

in general
{A · z ·q′ |z ∈ C× }

since the complex numbers do not commute with the quaternions. Therefore, factoring the quaternionic Hopf
fibration through the twistor fibration (11) breaks its symmetry from Sp(2) ·Sp(1) to Sp(2) (86).

Remark 2.4 (Homotopy quotients and Borel construction). For X a topological space equipped with a continuous
action by a topological group G, the homotopy quotient X�G is the homotopy type which is represented by the
Borel space

(
X×EG

)
/diagG, where EG denotes the universal G-principal bundle:

homotopy quotient

X�G 'whe

Borel construction(
X×EG

)
/diagG . (27)
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(i) This construction is clearly functorial: On the right this is a 1-functor on the category of topological spaces
equipped with group actions, while on the left this is an ∞-functor on the ∞-category Groupoids∞ equipped with
∞-actions, see [NSS12a, §4][SS20b, §2.2].
(ii) In the special case when X = ∗ is the point, the Borel space is the classifying space BG. With (i), this means

that topological group homomorphisms G1
φ
−! G2 induce maps of classifying spaces

BG1
Bφ // BG2 . (28)

Definition 2.5 (Borel-equivariant Hopf/twistor fibrations). We say that the Sp(2)-Borel-equivariant Hopf-twistor
fibrations are the image (in homotopy types of topological spaces) of the Hopf/twistor fibrations (11) under taking
the homotopy quotient (27) by their compatible Sp(2)-action of Prop. 2.2:

S7�Sp(2) hC�Sp(2)
parametrized complex Hopf fibration

//

hH�Sp(2)
parametrized quaternionic Hopf fibration

,,

//

CP3�Sp(2)

��

tH�Sp(2)
parametrized twistor fibration

// S4�Sp(2)

ooBSp(2)

(29)

Lemma 2.6 (Coset spaces as homotopy fibers [FSS19b, 2.7][SS20b, 2.79]). Let H �
� i // G be an inclusion of

topological groups.
(i) The homotopy type of the corresponding coset space G/H is, equivalently, the homotopy fiber of the induced
morphism (28) on classifying spaces.
(ii) The homotopy quotient of the coset space by G is homotopy equivalent to the classifying space of H:

G/H
hofib(Bı) // BH '

Bi
��

(
G/H

)
�G

BG

The following Prop. 2.7 is the twistorial version of [FSS19b, Prop. 2.22].

Proposition 2.7 (Borel-equivariant twistor fibration as sequence of classifying spaces). The Borel-equivariant
Hopf/twistor fibration (Def. 2.5) is homotopy equivalent to the following sequence of classifying spaces:

S7�Sp(2)
hC�Sp(2) //

'

CP3�Sp(2)
tH�Sp(2) //

'

S4�Sp(2)

'

B
(
Sp(1)L

)
// B
(
Sp(1)L×U(1)R

)
// B
(
Sp(1)L×Sp(1)R

)
where the maps on the bottom are the deloopings (28) of the canonical group inclusions (Example A.4).

Proof. With Lemma 2.6 this follows from the Sp(2)-coset space realization of the Hopf/twistor fibration in (12).
�

Lemma 2.8 (Borel-equivariant Hopf/twistor fibrations are spherical). The Borel-equivariant Hopf/twistor fibra-
tions (29) are still spherical fibrations:

S1 //

��

(pb)

S3

��

//

(pb)

S7�Sp(2)

hC�Sp(2)
��

∗ // S2

(pb)

//

��

CP3�Sp(2)

tH�Sp(2)
��

∗ // S4�Sp(2)

10



Proof. This follows on general grounds, as in [FSS19b, Remark 3.17]. More concretely, by Prop. 2.7 and using
again Lemma 2.6 we have:

fib
(
hC�Sp(2)

)
// S7�Sp(2)

hC�Sp(2)
��

CP3�Sp(2)

'
U(1) // B

(
Sp(1)L

)
��

B
(
Sp(1)L×U(1)R

)
and

fib
(
tH�Sp(2)

)
// CP3�Sp(2)

tH�Sp(2)
��

S4�Sp(2)

'
SU(2)/U(1) // B

(
Sp(1)L×U(1)R

)
��

B
(
Sp(1)L×Sp(1)R

)
�

Theorem 2.9 (Integral cohomology of Borel-equivariant Hopf/twistor-fibration).
(i) The integral cohomology of the space S4�Sp(2) in (29) is free on two generators in degree 4

H•
(
S4�Sp(2); Z

)
' Z

[
Γ̃4, Γ̃

vac
4
]

(30)

with the property that their evaluation on the fundamental class of the 4-sphere fiber S4 // S4�Sp(2) is unity
and zero, respectively: 〈

Γ̃4, S4〉 = 1 ,
〈
Γ̃

vac
4 , S4〉 = 0 . (31)

(ii) The integral cohomology of the space CP3�Sp(2) in (29) is free on two generators in degrees 4 and 2, respec-
tively:

H•
(
CP3�Sp(2); Z

)
= Z

[
cL

2 , cR
1
]
. (32)

(iii) The two are related in that pullback in integral cohomology along the Borel-equivariant twistor fibration (Def.
2.5) takes the difference of the former generators to the cup-square of the latter:

H•
(
S4�Sp(2); Z

) (
tH�Sp(2)

)∗
// H•
(
CP3�Sp(2); Z

)
Γ̃4− Γ̃vac

4 7−! −a := cR
1 ∪ cR

1

Γ̃4 7−! cL
2

(33)

Proof. Consider Diagram (7) in Figure I. The top part shows the equivalence of the Borel-equivariant Hopf/twistor
fibration to a sequence of classifying spaces, according to Prop. 2.7. On the top right we are making fully explicit
the factor-wise nature of the corresponding maps, using Example A.4 and Remark 2.4.

The bottom part of the diagram shows the corresponding identification of the cohomology generators according
to [FSS19b, 3.9]. This involves the observation that:
(a) Half the universal Euler 4-class on BSpin(4) is (e.g., [BC98, §2]) the class of the fiberwise unit volume form
on the universal S4-fibration, under the identification from Prop. 2.7:

1 · [dvol]  − [ 1
2
χ4 ∈ H4

(
BSpin(4; R

)
S4 // S4�Spin(5) ' BSpin(4)

(34)

(b) The fractional Euler class by itself is not integral, but its shift by 1
4 p1 (which is also not integral by itself) is

(the rational image of) an integral generator Γ̃4 =
1
2
χ4 +

1
4 p1 (e.g. [CV98a, Lemma 2.1]).

Together, (a) and (b) yield the claim (31), and make manifest that the pullback in question is equivalently that of

the negative of the left Chern class −cL
2 along the map on classifying space BU(1)

B(c7!diag(c,c))// BSU(2), induced

from the inclusion U(1) ' // S
(
U(1)2

) � � // SU(2) , hence is c1∪ (−c1), which yields the last claim (33). �
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2.2 Rational homotopy type

We compute (in Theorem 2.14) the relative Sullivan model for the Borel-equivariant Hopf/twistor fibration from
Def. 2.5, with generators normalized such as to match their integral pre-images from Theorem 2.9.

Notation. We use the following notation for dg-algebraic rational homotopy theory (following [FSS16a], exposi-
tion in [FSS19a, §3] full details in [FSS20c, §3]): For X a (nilpotent, e.g. simply connected) topological space, we
write CE

(
lX
)

for its Sullivan model, namely for the minimal real differential graded-commutative (dgc) algebra
(“FDA”) which is quasi-isomorphic to the piecewise polynomial de Rham complex of X (which for X a smooth
manifold is itself quasi-isomorphic to the ordinary de Rham complex).

Our notation is meant to be suggestive of the fact that this is the Chevalley-Eilenberg algebra CE(−) ([FSS19a,
Def. 3.25], in generalization of classical CE-algebras computing Lie algebra cohomology [FSS19a, Ex. 3.24]) of
an L∞-algebra ([FSS19a, Rem. 3.45]), namely of the real Whitehead L∞-algebra lX of X ([FSS19a, Prop. 3.67]):4

rational
topological

X
space

 !

higher
Whitehead

lX
L∞-algebra

 !

Sullivan

CE(lX)
dgc-algebra

'
qi

Ω•PL(X) (35)

Moreover, we give these minimal dgc-algebras by their polynomial generators ωn in some degree n, quotiented out
by their differential relations dωn = P(...) for P some polynomial in generators of lower degree.

For example (e.g. [Me13][FSS19a, Ex. 3.71-2]), the Sullivan models of Eilenberg-MacLane spaces and of
spheres are:

CE
(
BnZ

)
' R[n]

/
(d = 0) '

n=2k+1
CE(lS2k+1) , CE

(
S2k) ' R[ω2k,ω4k−1]

/(
d ω4k−1 =−ω2k∧ω2k
d ω2k = 0

)
.

Lemma 2.10 (Normalized Sullivan model of spherical fibrations [FHT00, p. 202]; see [FSS19b, 2.5]). Let X be
a topological space with Sullivan model CE

(
lX
)
∈ dgcAlgebrasR (35). Then the relative minimal Sullivan model

for a Sn-fibration Y // X is of the following form:
(i) for n = 2k+1 odd:

S2k+1 // Y

��

CE
(
lX
)[

ω2k+1
]/(

d ω2k+1 = α2k+2
)

OO

� ?

X CE
(
lX
)

(36)

(ii) for n = 2k even:

S2k // Y

��

CE
(
lX
)[ ω2k,

ω4k−1

]/( d ω2k = 0

d ω4k−1 =−ω2k∧ω2k +α4k

)
OO

� ?

X CE
(
lX
)

(37)

for some closed α ∈ CE
(
lX
)

(which can be characterized further, see [FHT00, p. 202][FSS19b, 2.5]).
(iii) The differential in (37) is normalized so that the generators ωd restrict to the unit volume forms on the respec-
tive sphere fibers (see [FSS19b, Lemma 3.19]):

〈ω2k, S2k〉 = 1 , 〈ω4k−1, S4k−1〉 = 1 . (38)

The action of triality group automorphisms on Spin(8) famously relates three distinct conjugacy classes of
subgroup inclusions of Spin(7). Less widely appreciated is another triple of subgroups of Spin(8) that is permuted
under triality:

4This passage (35) through Whitehead L∞-algebras makes transparent how it is that dgc-algebras know about homotopy types and how
dgc-algebra homomorphisms between these encode L∞-algebra valued higher gauge fields [FSS19a, §3.3], but for the purpose of the present
article the reader may ignore L∞-algebra theory and regard the notation CE(l(−)) as a primitive for Sullivan models.

12



Lemma 2.11 (Triality on central product groups in Spin(8) [FSS19b, 2.17]). Under the triality automorphisms of
Spin(8) the canonical subgroup inclusions of the central product groups Spin(5) ·Spin(3) and Sp(2) ·Sp(1) (Def.
A.1) turn into each other:

Sp(2) ·Sp(1)
'
��

� � iSp // Spin(8)

tri'
��

Spin(5) ·Spin(3) �
� iSpin // Spin(8)

(39)

Lemma 2.12 (Sullivan model for BSpin(5) and BSp(2) [FSS19b, 2.19]). Minimal sullivan models for BSpin(5)
and BSp(2), and their relation under triality (40) are given, up to isomorphism, as follows:

BSpin(8)
BiSp //

Btri '

��

BSp(2)

'

��

R
[ 1

2 p1,χ8
]
= CE

(
lBSp(2)

)
OO

1
2 p1 −χ8+

(1
4 p1
)2

7! 7!

1
2 p1

1
4 p2

BSpin(8)
BiSpin // BSpin(5) R

[ 1
2 p1, p2

]
=: CE

(
lBSpin(5)

)
(40)

where (by [CV98b, 8.1, 8.2][FSS19b, 3.7]):

1
2
χ8 = 1

4

(
p2−

(1
2 p1
)2
)
∈ H4(BSp(2); R) . (41)

Lemma 2.13 (Normalized Sullivan model for plain Hopf/twistor fibrations). The minimal relative Sullivan model
for the plain Hopf/twistor fibrations (11) is as follows:

S7

hC

��

R


h1,
f2,
h3,
ω4,
ω7


/


d h1 = f2

d f2 = 0

d h3 = ω4− f2∧ f2

d ω4 = 0

d ω7 =−ω4∧ω4


' // R [ω7]

/(
d ω7 = 0

)

CP3

tH

��

R


f2,
h3,
ω4,
ω7

/


d f2 = 0

d h3 = ω4− f2∧ f2

d ω4 = 0

d ω7 =−ω4∧ω4



0
0

0
ω

7

7!
7!
7!
7!

f2 h
3

ω
4

ω
7

88

?�

f2 h3 ω4 ω7

7! 7! 7! 7!

f2 h3 ω4 ω7

OO

' // R
[

f2,
ω7

]/( d f2 = 0

d ω7 =−( f2)
4

)

S4 R
[

ω4,
ω7

]/(d ω4 = 0

d ω7 =−ω4∧ω4

)?�

ω4 ω7

7! 7!

ω4 ω7

OO

−
f2 ∧

f2
ω

7

7!

7!

ω
4

ω
7

77

(42)

where the generators ω4,ω7, f2,h3 are all normalized according to (38), in particular:〈
ω4,S4〉 = 1

〈
f2,S2〉 = 1. (43)

Note that on the right in (42) we are showing the minimal Sullivan models of S7 and of CP3 by themselves (which
is classical, e.g. [FHT00, p. 142, 203][Me13, 1.2, 5.3]), while on the left we are showing their Sullivan models as
fiber spaces, i.e., the relative minimal Sullivan models.
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Proof. (i) It is classical that the Sullivan model for S4 is as shown (it is also a special case of Lemma 2.10).
(ii) Since CP3! S4 is an S2-fibration (11), Lemma 2.10 implies from (i) that CP3 fibered over S4 is modeled by

CE
(
lCP3)

S4 = R
[
ω4,ω7, f2,h3

]/


d ω4 = 0

d ω7 =−ω4∧ω4

d f2 = 0

d h3 = f2∧ f2 +α4


for some closed element α4 ∈ CE

(
lS4
)
. But in the present case, due to (i), there is a unique such element, up to a

real factor, namely ω4. Below in (46) we find this factor to be unity. This yields the middle part of (42).
(iii) Since S7! CP3 is an S1-fibration (11), Lemma 2.10 implies, via (ii), that S7 fibered over CP3 is modeled by

CE
(
lS7)

CP3 = R
[
ω4,ω7, f2,h3,h1

]/


d ω4 = 0

d ω7 =−ω4∧ω4

d f2 = 0

d h3 = f2∧ f2 +ω4

d f1 = α2


for some closed degree-2 element α2 ∈ CE

(
lCP3

)
S2 . But in the present case, due to (ii), there is a unique such

element, up to a real factor, namely f2. Thus, by suitably rescaling f1, we obtain α2 = f2 and the claim follows. �

Theorem 2.14 (Normalized Sullivan model of Borel-equivariant Hopf/twistor fibrations). The iterative relative
Sullivan models for the parametrized Hopf/twistor fibrations (29) are as follows (here 1

2 p1,χ8 ∈ CE
(
lBSp(2)

)
, via

Lemma 2.12):

S7�Sp(2)

hC�Sp(2)

��





CE
(
lBSp(2)

)


h1,
f2,
h3,
ω4,
ω7


/


d h1 = f2

d f2 = 0

d h3 = ω4− 1
4 p1− f2∧ f2

d ω4 = 0

d ω7 =−ω4∧ω4 +
(1

4 p1
)2

−χ8



CP3�Sp(2)

tH�Sp(2)

��

��

CE
(
lBSp(2)

)
f2,
h3,
ω4,
ω7

/


d f2 = 0

d h3 = ω4− 1
4 p1− f2∧ f2

d ω4 = 0

d ω7 =−ω4∧ω4 +
(1

4 p1
)2

−χ8



?�

ω4 ω7 f2 h3

7! 7! 7! 7!

ω4 ω7 f2 h3

OO

BSp(2) CE
(
lBSp(2)

)) 	
66

� w

**

1�

CC

S4�Sp(2)

``

CE
(
lBSp(2)

)[ω4,
ω7

]/d ω4 = 0

d ω7 =−ω4∧ω4 +
(1

4 p1
)2

−χ8

 ,

?�

ω4 ω7

7! 7!

ω4 ω7

OO

(44)

where the generators f2 and ω4 represent the classes cR
1 and 1

2
χ4 in (7), respectively:
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[ω4] =
1
2
χ4 ∈ H4(CP3�Sp(2);R

)
, [ f2] = cR

1 ∈ H2(CP3�Sp(2);R
)
. (45)

Proof. That the composite vertical morphism, upon discarding the generators h1, f2 and h3, is the minimal relative
Sullivan model for hH�Sp(2) with the identification [ω4] =

1
2
χ4 (45) is the result of [FSS19b, 3.19].

Its factorization through CP3�Sp(2) must have minimal Sullivan model given by adjoining generators f2 and
f3, by Lemma 2.8 with Lemma 2.10. The fiberwise normalization (43) implies the identification [ f2] = cR

1 in (45),
using that cR

1 pulled back along S2 = SU(2)/U(1)! BU(1)R is the unit volume generator.
For the factorization of hH�Sp(2) through CP3�Sp(2) to reproduce on fibers over BSp(2) (hence upon dis-

carding the generators 1
2 p1 and χ8) the minimal Sullivan model for the plain Hopf/twistor fibrations from Lemma

2.13 at least those monomials in f2 shown in (44) have to appear. We just have to observe that the relative coeffi-
cients in the differential relations for h3 are as shown. But under the identification (45) we have the second logical
equivalence shown here:

dh3 = ω4− 1
4 p1− f2∧ f2 ⇔

[
ω4− 1

4 p1
]
= f2∧ f2 ⇔ Γ̃4− Γ̃

vac
4 = cR

1 ∪ cR
1 ∈ H4(CP3�Sp(2); R

)
. (46)

That the relation on the right of (46) does hold follows immediately from (33) in Theorem 2.9.
Hence to conclude it suffices now to show that no further monomials in f2 appear on the right of (44):
First, any further monomial in f2 that does appear must contain as a factor a basic generator, namely a generator

from CE(lBSp(2)), to guarantee that it vanishes on fibers (where we already have the right terms). Since, by
Lemma 2.12, the generators of CE

(
lBSp(2)

)
are in degrees 4 and 8, the only further term that could possibly

appear, by degree reasons, is the blue term in the following expression:

d ω7 = −ω4∧ω4 +
(1

2 p1
)2−χ8 +a · f2∧ f2∧ p1 (47)

for some coefficient a ∈ R. But we also know that tH �Sp(2) is an S2-fibration (by Lemma 2.8), so that Lemma
2.10 rules out the appearance of the blue term in (47) (i.e., implies a = 0). �

3 Charge quantization in Twistorial Cohomotopy

After recalling (in §3.1) general non-abelian cohomology and highlighting the non-abelian Chern-Dold character
map, we introduce (in §3.2) the twisted non-abelian cohomology to be called Twistorial Cohomotopy and use the
results from §2 to show (Corollary 3.10) that charge quantization in Twistorial Cohomotopy implies the heteoric
shifted flux quantization condition (6).

3.1 Non-abelian character map

We recall the Chern-Dold character (55) in generalized cohomology and then introduce its generalization, to a
non-abelian character map (63) on non-abelian cohomology. The full technical detail is laid out in [FSS20c].

From generalized to non-abelian cohomology. It is well-known, though perhaps under-appreciated, that coho-
mology theory is all about homotopy groups of mapping spaces into a given “coefficient space” or “classifying
space”. We recall this briefly for “bare” cohomology theories, with the domain spaces X assumed to a sufficiently
nice topological space; but the statement remains true for structured cohomology theories such as differential
and/or equivariant cohomology, when interpreted internal to suitable higher toposes, see [SS20b, p. 6].

For ordinary (e.g., singular) cohomology with coefficients in an abelian discrete group A, these classifying
spaces are the Eilenberg-MacLane spaces K(A,n) (e.g. [AGP02, §7.1, Cor. 12.1.20]):

ordinary
cohomology

Hn(X ;A) '

homotopy classes of maps to
Eilenberg-MacLane space

π0 Maps
(
X , K(A,n)

)
. (48)

These happen to be based loop spaces of each other, K(A,n) 'whe ΩK(A,n+1) (e.g. [AGP02, 7.1.1]), so that each
of them is an infinite loop space (e.g. [Ad78]).
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More generally, consider a generalized cohomology theory5 E• in the sense of [Wh62] (see [Ad75][Ad78]),
such as K-theory, elliptic cohomology, tmf, stable Cobordism, stable Cohomotopy, etc. These are classified by
such sequences of (pointed) spaces which are successively equipped with weak homotopy equivalences exhibiting
them as based loop spaces of each other, called a spectrum of spaces:

{En}n∈N , s.t. En ' ΩEn+1 , (49)

in that
generalized
cohomology

En(X) '
homotopy classes of maps to

infinite loop space

π0 Maps(X , En) . (50)

This is the Brown representability theorem, see e.g. [Ad75, §III.6][Ko96, §3.4]. But the right hand side of (50)
makes sense for En any space, not necessarily part of a spectrum (49), and not necessarily even being a loop
space. It is not the notion of cohomology itself, but rather only some extra properties enjoyed by these abelian
cohomology groups (such as existence of connecting homomorphisms) which is what is reflected in the infinite
loop space structure (49).

Indeed, for G a well-behaved topological group, not necessarily abelian (such as G = U(1),SU(n),Sp(n), · · · )
the fundamental theorem of G-principal bundles ([St51, §19.3], review in [Add07, §5]) says that degree-1 non-
abelian cohomology with coefficients in G is represented by the classifying space BG of G:

non-abelian cohomology with
coefficients in topological group

H1(X ; G) '
homotopy classes of maps

to classifying space of group

π0 Maps(X , BG) . (51)

If G = A is abelian and discrete, then BA' K(A,1) and (51) reduces to (48), but not otherwise. Moreover, the May
recognition theorem implies that any connected space A is weakly homotopy equivalent to a classifying space BG,
namely for G = ΩA the based loop group of A (which may be rectified, up to weak homotopy equivalence, to an
actual topological group). Thereby, the traditional equivalence (51) is re-interpreted as an elegant general notion
of non-abelian cohomology:

non-abelian cohomology
with coefficients in A

H
(
X ; A

)
:=

homotopy-classes of
maps to A

π0 Maps
(
X , A

)
=

X

c
map/cocycle

��

c′
map/cocycle

@@A
homotopy/

coboundary

��

/
homotopy

(52)

Non-abelian cohomology in this generality is discussed in [To02][Ja09][RS12][NSS12a][NSS12b][SS20b]. For
example, for X = Sn an n-sphere, we have Sn ' B

(
ΩSn

)
and the corresponding non-abelian cohomology theory

(51) is Cohomotopy theory
π

n(X) := π0 Maps
(
X , Sn) ' H1(X ; ΩSn).

This perspective on generalized/non-abelian cohomology via classifying spaces makes many related concepts
nicely transparent, for example the notions of twisting in cohohomology and of generalized Chern characters.

Twisted non-abelian cohomology. A twist of A-cohomology (51) is what is classified by a twisted parametrization
of A over some base space B [NSS12a, §4][SS20b, §2.2][FSS20c, §2.2]: Instead of mapping into a fixed classifying
spaces, a twisted cocycle maps into a varying classifying space that may twist and turn as one moves in the domain
space. In other words, a twisting τ of A-cohomology theory on some X is a bundle over X with typical fiber A, and
a τ-twisted cocycle is a section of that bundle [NSS12a, §4][ABGHR14][SS20a, §2.2]:

5The term is widely used but somewhat unfortunate, since various further generalizations of Whitehead’s generalization of ordinary
cohomology theories are relevant, such as twisted-, sheaf-, differential-, equivariant- and nonabelian-cohomology theories, as well as all
their joint combinations.
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τ-twisted
non-abelian generalized

A-cohomology theory
Aτ(X) :=



A-fiber bundle

P

p

��

//

universal
A-fiber bundle

A�Aut(A)

��
X

continuous section
= twisted cocycle

11

X τ

classifying map for P
// BAut(A)

/
∼ homotopy

BAut(A)

'


X

twist τ
&&

continuous function // A�Aut(A)

vv
BAut(A)

|�

ho
moto

py

/
∼ homotopy

BAut(A)

(53)

Here the equivalent formulation shown in the second line follows because A-fiber bundles are themselves classified
by nonabelian Aut(A)-cohomology (see [NSS12a, 4.11][SS20b, 2.92]), as shown on the right of the first line.

With a general concept of twisted non-abelian cohomology theories in hand, we turn to discussion of their
character maps. At their core, these come from the rationalization approximation on coefficient/classifying spaces:

Rationalization. For X a connected nilpotent space, we write

X
ηR

X

rationalization
(over the real numbers)

// LRX (54)

for its rationalization (e.g. [He07, 1.4]) over the real numbers. And we write lX for the Whitehead L∞-algebra that
is the formal dual of the minimal Sullivan model for X [BFM06][BMSS19, §2.1][FSS20c, Prop. 3.61] (or in their
rectified incarnation [FRS13, §1.0.2]: dg-Lie algebras as in the original [Qu69]).

Chern-Dold character in abelian cohomology. Given an abelian generalized cohomology theory E• (50), ra-
tionalization (54) of its classifying spaces (49) induces a cohomology operation from E-cohomology theory to
ordinary cohomology with coefficients in the rationalized stable homotopy groups of E:

Chern-Dold
character

chE : En(X)
generalized
cohomology

Brown
represen-
tability
' π0 Maps

(
X , En

) rationalization

π0 Maps(X ,LR)
// π0 Maps

(
X , LREn

)
=: En

R
(
X
)

rational E-cohomology

Dold’s
equiv-
alence
'
⊕
k

Hn+k
(
X ; πk(E)⊗ZR

)
,

ordinary cohomology
with coefficients in

rationalized homotopy groups of E

(55)

where Dold’s equivalence on the far right is due to [Do65, Cor. 4], reviewed in [Rud98, §II.3.17]. This map (55)
is called the Chern-Dold character map, due to [Bu70]. The modern formulation above is made fully explicit in
[LSW16, §2.1]; see also [HS05, §4.8][BN14, p. 17][GS17]. For example:

(i) When E• = H•(−;Z) is ordinary integral cohomology, its rationalization is E•R = H•(−;R) and the Chern-
Dold character (55) reduces to extension of scalars from integral to real cohomology, as in (1), (2).

(ii) When E• = KU• is complex topological K-theory, its rationalization is KU0,1
R ' Heven,odd(−;R) and the

Chern-Dold character (55) reduces to the ordinary Chern character (see [GSa18][GSa19] for extensive dis-
cussions).

Character map in twisted non-abelian cohomology.

Definition 3.1 (Non-abelian de Rham cohomology [SSS09a, §6.5][FSSt10, §4.1][FSS20c, Def. 3.82]). The non-
abelian de Rham cohomology of a smooth manifold X with coefficients in an L∞-algebra g of finite type is the
quotient of the set of dg-algebra homomorphism from the Chevalley-Eilenberg algebra CE(g) of g (which is the
Sullivan model of a rational space) to the de Rham dg-algebra Ω•dR of differential forms on X , quotiented by
dg-algebra homotopies:
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non-abelian
de Rham cohomology
with coefficients in lA

HdR
(
X ; lA

)
:= Hom

(Sullivan model/
Chevalley-Eilenberg

dg-algebra

CE(lA) ,

de-Rham
dg-algebra

Ω
•
dR(X)

)/
∼

=


Ω•dR(X)

xx
A

dg-algebra homomorphism/
flat lA-valued differential form

ff

A′
dg-algebra homomorphism/

flat lA-valued differential form

CE
(
lA
)

dga-homotopy/
coboundary
��

/
homotopy

(56)

Example 3.2 (Recovering ordinary de Rham cohomology [FSS20c, Prop. 3.84]). In the case that g = R[n] is the
line L∞-algebra concentrated in degree n, its Chevalley-Eilenberg algebra is the free graded-commutative algebra
on a single generator in degree n+1 with vanishing differential; which is also the Sullivan model of the Eilenberg-
MacLane space (48) in that degree:

CE
(
R[n]

)
= R

[
cn1

]/(
d cn+1 = 0

)
' CE

(
lK(n+1,Z)

)
. (57)

Hence dg-algebra homomorphisms out of this into a de Rham algebra are equivalently closed differential (n+1)-
forms:

Hom
(
CE(R[1]), Ω

•
dR(X)

)
' Ω

n(X)cl , (58)

and dg-algebra homotopies between these are equivalently de Rham coboundaries. Therefore, the non-abelian de
Rham cohomology (56) with these coefficients reduces to ordinary de Rham cohomology in that degree:

HdR
(
X ; R[n]

)
' Hn+1

dR (X) . (59)

Proposition 3.3 (Non-abelian de Rham theorem [FSS20c, Thm. 3.95]). Let X be a smooth manifold and A a
nilpotent topological space of finite rational homotopy type, hence with a minimal Sullivan model CE

(
lA
)

for its
rationalization lA (54). Then the non-abelian cohomology (52) of X with real coefficients lA is equivalent to the
non-abelian de Rham cohomology (56) with coefficient in lA:

non-abelian
real cohomology

H(X ; LRA) '
non-abelian

de Rham cohomology

HdR(X ; lA) . (60)

Proof. Unwinding the definitions, the equivalence (60) reduces to the fundamental theorem of rational homotopy
theory [BG76, §9.4] (reviewed as [BMSS19, Prop. 2.11]; see also [He07, Cor. 1.26]) which identifies the hom-
sets in the homotopy categories of a) nilpotent and finite-type rational topological spaces, and b) the opposite of
dgc-algebras. �

Proposition 3.4 (Non-abelian de Rham theorem for stable coefficients [FSS19a, Ex. 3.75]). Let X be a smooth
manifold, and E an infinite-loop space (49). Then non-abelian de Rham cohomology (56) of X with coefficients in
lE is equivalent to the real cohomology of X with coefficients in the rationalized homotopy groups of E:

HdR
(
X ; lE

)
'

⊕
k

Hk(X ; πk(E)⊗Z R
)
. (61)

Proof. The minimal Sullivan model of an infinite loop space is the free graded algebra generated by its rationalized
homotopy groups, with vanishing differential (see [FHT00, p. 143], or, from a broader perspective of rational
spectra, [BMSS19, Lemma 2.25, Prop. 2.30]). This implies the claim by Example 3.2, via the ordinary de Rham
theorem (e.g. [FHT00, 10.15]). �

In conclusion:

Proposition 3.5 (Non-abelian de Rham theorem recovers Dold’s equivalence [FSS20c, Prop. 4.6]). Let X be a
smooth manifold, and E (the connective spectrum of) an infinite-loop space (49). Then Dold’s equivalence is
equivalent to the restriction of the non-abelian de Rham theorem (Prop. 3.3) to stable coefficients (Prop. 3.4):
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En
R(X)

Dold’s equivalence

'
//⊕

k
Hn+k

(
X ; πn+k(E)⊗Z R

)
OO

' (61)

H(X ; LREn) non-abelian
de Rham theorem

Prop. 3.3

' // HdR
(
X ; lEn

)
(62)

Therefore, we obtain the following generalization of the Chern-Dold character (55):

Definition 3.6 (Character map in non-abelian cohomology [FSS20c, Def. 4.3]). Let X be a smooth manifold and A
a nilpotent space of finite rational type. Then the non-abelian Chern-Dold character on non-abelian cohomology
theory (52) represented by A is the composite of
(a) the rationalization map (54) on coefficients
(b) the non-abelian de Rham theorem 3.3:

non-abelian
Chern-Dold character

chA : H(X ;A)
non-abelian
cohomology

with coefficients in A

:= π0 Maps(X , A)
rationalization

π0 Maps(X ,ηR
A )

// π0 Maps(X , LRA) =: H(X ; LRA)
non-abelian cohomology

with coefficients in lA

non-abelian
de Rham
theorem
' HdR(X ; lA) .

non-abelian
de Rham cohomology
with coefficients in lA

(63)

Character map in twisted non-abelian cohomology. The above constructions immediately generalize to twisted
nonabelian cohomology (53) to yield the twisted non-abelian Chern character cohomology operation:

Definition 3.7 (Character in twisted non-abelian cohomology [FSS20c, Def. 5.4]). The twisted non-abelian char-
acter map is the non-abelian character (Def. 3.6) in the slice over BAut(A):

twisted non-abelian
Chern-Dold character

chτ
A : Hτ(X ;A)

τ-twisted non-abelian
cohomology

with coefficients in A

:= π0 Maps
BAut(A)

(X , A)
rationalization

// π0 Maps
/LRBAut(A)

(X , LRA) =: HLRτ
(
X ; LRA

)
LRτ-twisted non-abelian cohomology

with coefficients in LRA

twisted non-abelian
de Rham
theorem
' HτdR

dR (X ; lA)
lτ-twisted non-abelian
de Rham cohomology
with coefficients in lA

(64)
X

τ

��

c // A�Aut(A)

||
BAut(A)

/
∼

� //


Ω•dR(X)

__

τ∗

oo A CE
(
lBAut(A)

(
A�Aut(A)

))

CE
(
l
(
BAut(A)

))�+
88

/
∼

This means that the twisted character on A-cohomology is the plain character on A�Aut(A)-cohomology fibered
over BAut(A), hence is the fiberwise A-character on an A-fiber ∞-bundle. (The notation lB(−) in (64) denotes the
relative Whitehead L∞-algebra over a base B [FSS20c, Prop. 3.80], such that CE

(
lB(−)

)
denotes the Sullivant

minimal model relative to that of the base B ([FSS20c, Prop. 3.0.49]), thus ensuring that the domain on the right
is still cofibrant in the co-sliced model structure, as in [FSS20c, proof of Prop. 3.115].)

Remark 3.8 (Charge quantization by lift through character map). Just as for the traditional Chern character on K-
theory (see [GSa18] for a detailed account), the Chern-Dold character (55) is generally far from being surjective,
and the same is true for its non-abelian (63) and its twisted non-abelian generalization (64).
(i) The obstruction to lifting de Rham form data through the Chern-Dold character maps are integrality conditions
that disappear upon rationalization, hence are “quantization” conditions (in the original sense of Bohr-Sommerfeld
quantization).
(ii) Therefore, if any given differential form data lifts through the Chern-Dold character of some twisted non-
abelian A-cohomology theory, we say that that it is quantized in A-theory.
(iii) In typical examples the differential forms in question are flux densities, encoding charges of physical fields, and
hence we speak of charge-quantization in A-theory. (For abelian cohomology this is discussed in [Fr00][GSa19].)
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3.2 Twistorial Cohomotopy theory

We now identify and study the twisted non-abelian cohomology theory whose classifying space is the Borel-
equivariant twistor fibration (Def. 2.5). The main result of this section is Theorem 3.11, which shows that charge-
quantization (Remark 3.8) in this Twistorial Cohomotopy (Prop. 3.9) imposes a shifted integrality condition (78)
on Chern-Dold character forms (Corollary 3.11) matching that of (6).

Tangential Sp(2)-structure. Consider smooth spin 8-manifolds X that are equipped with tangential Sp(2)-
structure (e.g. [SS20b, 4.48]), hence with a homotopy-lift6 of the classifying map of their tangent bundle to
the classifying space BSp(2) of the quaternionic unitary group (Def. A.3) along its canonical inclusion iSp (39):

8-manifold

X

""

tangential
Sp(2)-structure

τ //

classifying map
of tangent bundle T X ""

BSp(2)

BiSpzz
BSpin(8)

{�

(65)

In the intended applications, this spin 8-manifold (65) is one factor in an 11-dimensional spacetime of the form
R2,1×X (see [FSS19b, §3]). We write ω for any affine connection on T X (“spin connection”) and write

pi(ω) ∈ H2i
dR(X) ' H2i(X ;R) . (66)

for the induced Pontrjagin forms (e.g. [GSa18, p. 10]).

Associated twistor-space fibration. By Prop. 2.2, a tangential Sp(2)-structure (65) induces, via pullback of the
parametrized Hopf/twistor fibration from Def. 2.5, an S4-fibration E and a CP3-fibration Ẽ over X , connected by a
morphism of fibrations over X which is fiberwise the plain twistor fibration tH (11):

CP3

tH
twistor

fibration

!!

��

� � //

CP3-fibration
over spacetime

Ẽ �
� //

��

��

CP3�Sp(2) CP3-fibration over
classifying space

��

tH�Sp(2) universal fiberwise
twistor fibration

%%
S4

��

//

(pb)

S4-fibration
over spacetime

E //

��

(pb)

S4�Sp(2) S4-fibration over
classifying space

��
{x} �

� // X
spacetime

T X
&&

τ
Sp(2)-structure

// BSp(2)
classifying space

vv
BSpin(8)

(67)

Twistorial Cohomotopy theory. A section (c,a) of the CP3-fibration Ẽ is a cocycle in a twisted non-abelian
cohomology theory (53), which we call Twistorial Cohomotopy theory 7 of X . Notice that, as in (53), such a
section is equivalently a lift of the classifying map τ to the parametrized twistor space:

Ẽ //

��

(pb)

CP3�Sp(2)

��
X

section of
τ-associated

twistor fibration
(c,a)

==

τ // BSp(2)

⇔
CP3�Sp(2)

��
X

lift of τ to
universally parametrized

twistor space
(c,a) 66

τ // BSp(2)

6All diagrams in the following are filled with such homotopies, but for ease of presentation we mostly suppress them, notationally.
7Not to be confused with twistor cohomology (see, e.g., [EPW81]). The latter is abelian cohomology of twistor space, while Twistorial

Cohomotopy is non-abelian cohomology with coefficients in (Borel-equivariantized) twistor space, hence with cocycles being maps into
twistor space.
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We write

Twistorial Cohomotopy
of tangentially Sp(2)-structured

manifold
T τ(X) :=



universally parametrized
twistor space

CP3�Sp(2)

��
X

cocycle
(c,a)

44

τ

Sp(2)-structure

// BSp(2)

/
∼

(68)

for the set of homotopy classes (relative X) of such sections, and call this the cohomology set of Twistorial Coho-
motopy, when evaluated on spin-8 manifolds with tangential Sp(2)-structure τ (65).

Twistor fibration as cohomology operation. Notice the direct analogy of Twistorial Cohomotopy theory (68) to
J-twisted Cohomotopy theory [FSS19b, 2.1]:

J-twisted 4-Cohomotopy
of tangentially

Sp(2)-structured
manifold

π
τ(X) :=



universally parametrized
4-sphere

S4�Sp(2)

��
X

cocycle
c

44

τ

Sp(2)-structure

// BSp(2)

/
∼

(69)

and the fact that postcomposition with the parametrized twistor fibration (Def. 2.5) constitutes a cohomology
operation (a natural transformation of cohomology sets) between the two:

Twistorial
Cohomotopy

T τ (
tG�Sp(2)

)
∗

cohomology operation by
parametrized twistor fibration //

J-twisted
Cohomotopy

πτ (70)

Chern-Dold character in Twistorial Cohomotopy. The Chern-Dold character (64) in J-twisted 4-Cohomotopy
(69) is discussed in some detail [FSS19b]. The following Prop. 3.9 is its generalization to Twistorial Cohomotopy:

Proposition 3.9 (Character map in Twistorial Cohomotopy theory). The twisted non-abelian character (64) in
Twistorial Cohomotopy (68) is of the following form:

Twistorial
Cohomology

T τ(X)
chT

twisted non-abelian
Chern-Dold character

//


F2,
H3,
G4,
G7

∈Ω•(X)

∣∣∣∣∣∣∣∣∣∣
d F2 = 0

d H3 = G4− 1
4 p1(ω)−F2∧F2

d G4 = 0

d G7 =−1
2

(
G4− 1

4 p1(ω)
)
∧
(
G4 +

1
4 p1(ω)

)
− 1

4

(
p2− (1

2 p1(ω))2)

/
∼

(c,a) � // (c,a)∗


f2,
h3,
ω4,
ω7

 (71)

Proof. By Theorem 2.14 the class of a section of the parametrized twistor fibration in rational homotopy theory is
given equivalently by a dg-algebra homomorphism shown as the dashed arrow in the following diagram:
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CP3�Sp(2)

tH�Sp(2)

��

CE
(
lBSp(2)

)
f2,
h3,
ω4,
ω7

/


d f2 = 0

d h3 = ω4− 1
4 p1− f2∧ f2

d ω4 = 0

d ω7 =−
(
ω4− 1

4 p1
)
∧
(
ω4 +

1
4 p1
)

− 1
2

(
p2− (1

2 p1)
2)


OO

ω4 ω7

7! 7!

ω4 ω7

rational dg-model
for cocycle in

twistorial Cohomotopy
F2 [ f2

H3 [ h3

G4 [ ω4

2G7 [ ω7

yy
X

cocycle in
twisted Cohomotopy

c
//

cocycle in
twistorial Cohomotopy

(c,a)

CC

τ

��

T X

��

S4�Sp(2)

��

Ω•(X) oo
YY

1
2 p1(ω) χ8(ω)

7! 7!

1
2 p1 χ8

CE
(
lBSp(2)

)[ω4,
ω7

]/d ω4 = 0

d ω7 =−
(
ω4− 1

4 p1
)
∧
(
ω4 +

1
4 p1
)

− 1
2

(
p2− (1

2 p1)
2)


55

( �

BSpin(8) BSp(2) CE
(
lBSp(2)

)
(72)

Here the dg-algebras on the right are the Sullivan model for the Borel-equivariant twistor fibration (44) from
Theorem 2.14. These being Sullivan models means that they are cofibrant as dg-algebras, which implies that all
homotopy classes of rational sections are indeed represented this way. Therefore, a rational section is specified by
the differential forms on X to which it pulls back the generators on the right. The condition for any such set of
differential forms to arise this way is that it satisfies the same differential relations as the generators, now in the de
Rham dg-algebra Ω•(X). This way the relation d f2 = 0 in the Sullivan model pulls back to the relation dF2 = 0 in
Ω•(X) in (72), etc. �

For use below, we record the de Rham-cohomological relations implied by the differential relations (71):

Corollary 3.10 (Cohomological relations in Twistorial Cohomotopy). For X an 8-manifold with tangential Sp(2)-
structure (65), let F2,H3,G4,G7 ∈Ω•(X) be differential form components in the image of the Chern-Dold character
in Twistorial Cohomotopy on X (Def. 3.9). Then the real/de Rham cohomology classes these represent satisfy the
following relations:

[G4]− 1
4 p1 = [F2∧F2] ∈ H4(X ,R) , (73)

0 =
(
[F2∧F2]+

1
2 p1
)
∪ [F2∧F2] +

1
2

(
p2− 1

4 p1∪ p1
)
∈ H8(X ,R) . (74)

Proof. Equation (73) is the direct consequence of the second line in (71). From the fourth line of (71) we similarly
get the relation

− [G4∧G4]+
1

16 p1∪ p1−χ8 = 0 (75)

Plugging (73) and (41) into (75) yields (74). �

Charge quantization in Twistorial Cohomotopy. Finally we obtain the claimed result (6):

Corollary 3.11 (Shifted integrality of G4, F2 in Twistorial Cohomotopy). Let X be a spin 8-manifold with tangen-
tial Sp(2)-structure τ (65). Then differential form data (F2,H3,G4,G7) ∈Ω•(X) which is in the image (71) of the
Chern-Dold character from Prop. 3.9, hence which is charge-quantized (Remark 3.8) in Twistorial Cohomotopy
(68), satisfies the following integrality conditions:
(i) The class of G4 shifted by 1

4 p1(ω) is integral, hence is the image in real cohomology of a class in integral
cohomology:

[G4 +
1
4 p1(ω)] ∈ H4

(
X ,Z

)
// H4(X ,R) . (76)
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(ii) The class of F2 is integral:
[F2] ∈ H2(X ,Z) // H2(X ,R) . (77)

(iii) Hence the relation (73) is the image of such a relation in integral cohomology:

[G4− 1
4 p1(ω)] = [F2∧F2] ∈ H4

(
X ,Z

)
// H4(X ,R) . (78)

Proof. By Prop. 3.9 these de Rham classes are pullbacks of the generators in the Sullivan model from Theorem
2.14. By the normalization (45) there, the statement hence follows with Theorem 2.9. �

In fact, we have a stronger statement:

Remark 3.12 (Cochain-level model of the C-field). While Corollary 3.11 produces Hořava-Witten’s identity (6)
between the cohomology classes related to the C-field in heterotic M-theory, the twistorial character map from
Prop. 3.9 gives a little more information, namely an explicit differential form (cochain) model for these cohomol-
ogy classes. Incidentally, this cochain expression for the C-field,

G4 = 1
4 p1(ω)− c2(A)+dH3

as obtained from twistorial Cohomotopy in the second line of (71) (and from differential twistorial Cohomotopy
in [FSS20c, (296)]), coincides with the proposed model for the C-field in [DFM03, (3.9)] (under identifying our
H3 with minus their c and our G4 with minus their G).

A Quaternion-linear groups

For reference, we record some basics of quaternion-linear groups:

Definition A.1 (Special quaternion-linear group). The special quaternion-linear group

SL(2,H) :=
{

G ∈ Mat(2×2,H) | detDi(G) = 1
}

(79)

is the group of 2×2 quaternionic matrices with unit Dieudonné determinant [Di43] (review in [As96][VB20, §1]).

Remark A.2 (Size of SL(2,H)). When restricted along the inclusion of complex matrices into quaternionic ma-
trices

Mat(2×2,C) �
� iC // Mat(2×2,H)

the Dieudonné determinant does not reduce to the ordinary determinant, but to its absolute value:

detDi
(
iC(A)

)
= ‖det(A)‖ . (80)

Accordingly, SL(2,H) (Def. A.1) is larger than the notation might suggest: For instance, it follows immediately
from (80) that all complex unitary matrices have unit Dieudonné determinant. In fact, Example A.4 says that
the full quaternion-unitary group (Def. A.3) is contained in SL(2,H) (85) (and hence coincides with what would
otherwise be called SU(2,H)).

Definition A.3 (Unitary quaternion-linear groups). Let n ∈ N.
(i) The n×n quaternionic unitary group is

Sp(n) := U(n,H) :=
{

G ∈ GL(n,H) | G ·G† = 1
}
, (81)

where (−)† denotes matrix transpose combined with quaternionic conjugation.

(ii) The central product group of Sp(n1) with Sp(n2) is

Sp(n1) ·Sp(n2) :=
(
Sp(n1)×Sp(n2)

)
/{(1,1),(−1,−1)}︸ ︷︷ ︸

'Z2

(82)
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Example A.4 (Subgroups of quaternion-linear groups). We have the following canonical subgroup inclusions into
special quaternion-linear (Def. A.1) and unitary quaternion-linear groups (Def. A.3):
(i) The algebra inclusion of the complex numbers into the quaternions induces:

C � � // H

U(n,C)

=

� � // U(n,H)

=

U(n) �
� // Sp(n)

(83)

(ii) We write
Sp(1)L×Sp(1)R

� � // Sp(2)
(qL,qR)

� // diag(qL,qR)

(84)

for the subgroup of Sp(2) given by the diagonal matrices with coefficients in unit-norm quaternions q, hence the
direct product group of two copies of Sp(1), equipped with their left and right factor embedding, as indicated.
(iii) The unitary quaternion-linear 2× 2-matrices (Def. A.3) have Dieudonné-determinant (Def. A.1) equal to 1
[CDL00, 6.4] and hence include into the special quaternion-linear group:

Sp(2) = U(2,H) ⊂ SL(2,H) . (85)

(iv) There is the canonical subgroup inclusion of symplectic-unitary groups into their central product groups (82)

Sp(n1)
� � // Sp(n1) ·Sp(n2)

A � // [A,1]
(86)
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[numdam:PMIHES 1977 47 269 0].
[Sw75] R. Switzer, Algebraic Topology - Homotopy and Homology, Springer, 1975,

[doi:10.1007/978-3-642-61923-6].
[Ta09] L. Taylor, The principal fibration sequence and the second cohomotopy set, Proceedings of the Freedman

Fest, Geom. & Topol. Monogr. 18 (2012), 235-251, [arXiv:0910.1781].
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