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Abstract

We formulate differential cohomology and Chern-Weil theory - the theory of connections on bundles
and of gauge fields - abstractly in the context of a certain class of ∞-toposes that we call cohesive.
Cocycles in this differential cohomology classify principal ∞-bundles equipped with cohesive structure
(topological, smooth, synthetic differential, supergeometric, etc.) and equipped with∞-connections. We
discuss various models and a list of applications revolving around fundamental notions and constructions
in prequantum field theory and string theory.

This document, and accompanying material, is kept online at

http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
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We formulate differential cohomology and Chern-Weil theory - the theory of connections on bundles and
of gauge fields - abstractly in the context of a certain class of ∞-toposes that we call cohesive. Cocycles
in this differential cohomology classify principal ∞-bundles equipped with cohesive structure (topological,
smooth, synthetic differential, etc.) and equipped with ∞-connections.

We construct the cohesive ∞-topos of smooth ∞-groupoids and ∞-Lie algebroids and show that in this
concrete context the general abstract theory reproduces ordinary differential cohomology (Deligne cohomol-
ogy/differential characters), ordinary Chern-Weil theory, the traditional notions of smooth principal bundles
with connection, abelian and nonabelian gerbes/bundle gerbes with connection, principal 2-bundles with
2-connection, connections on 3-bundles, etc. and generalizes these to higher degree and to base spaces that
are orbifolds and generally smooth ∞-groupoids, such as smooth realizations of classifying spaces/moduli
stacks for principal ∞-bundles and configuration spaces of gauge theories.

We exhibit a general abstract ∞-Chern-Weil homomorphism and observe that it generalizes the La-
grangian of Chern-Simons theory to ∞-Chern-Simons theory. For every invariant polynomial on an ∞-Lie
algebroid it sends principal ∞-connections to Chern-Simons circle (n+ 1)-bundles (n-gerbes) with connec-
tion, whose higher parallel transport is the corresponding higher Chern-Simons Lagrangian. There is a
general abstract formulation of the higher holonomy of this parallel transport and this provides the action
functional of ∞-Chern-Simons theory as a morphism on its cohesive configuration ∞-groupoid. Moreover,
to each of these higher Chern-Simons Lagrangian is canonically associated a differentially twisted looping,
which we identify with the corresponding higher Wess-Zumino-Witten Lagrangian.

We show that, when in interpreted in smooth∞-groupoids and their variants, these intrinsic constructions
reproduce the ordinary Chern-Weil homomorphism, hence ordinary Chern-Simons functionals and ordinary
Wess-Zumino-Witten functionals, and generalize these to a fairly extensive list of action functionals of
quantum field theories and string theories, some of them new. All of these appear in their refinement from
functionals on local differential form data to global functionals defined on the full moduli ∞-stacks of field
configurations/∞-connections. We show that these moduli ∞-stacks naturally encode fermionic σ-model
anomaly cancellation conditions, such as given by higher analogs of Spin-structures and of Spinc-structures.

We moreover show that higher symplectic geometry is naturally subsumed in higher Chern-Weil theory,
such that the passage from the unrefined to the refined Chern-Weil homomorphism induced from higher
symplectic forms implements geometric prequantization of the above higher Chern-Simons and higher Wess-
Zumino-Witten functionals.

We think of these results as providing a further ingredient of the recent identification of the mathemat-
ical foundations of quantum field and perturbative string theory [SaSch11]: while the cobordism theorem
[LurieTQFT] identifies topological quantum field theories with a universal construction in higher category
theory (representations of free symmetric monoidal (∞, n)-categories), our results indicate that the geomet-
ric structures that these arise from under quantization originate in a universal construction in higher topos
theory: cohesion.

This work has grown out of and subsumes the author’s previous work, such as [ScWaI] [ScWaII] [ScWaIII]
[BCSS07] [RoSc08] [SSS09a] [SSS09b] [SSS09c] [FSS10] [FRS11a] [FRS11b].
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In 1 we motivate our discussion, give an informal introduction to the main concepts involved and survey
various of our constructions and applications. This introduction roughly parallels the sections to follow in
an expository and more elementary way and may be all that some readers want to see, while other readers
may want to skip it entirely.
In 2 we review aspects of homotopy type theory, the theory of ∞-categories and ∞-toposes, in terms of
which all of the following is formulated.
In 3 we introduce cohesive homotopy type theory, a general abstract theory of differential cohomology and
Chern-Weil theory in terms of canonical constructions in ∞-topos theory. This is in the spirit of Lawvere’s
proposals [Lawv07] for axiomatic characterizations of those gros toposes that serve as contexts for abstract
geometry in general and differential geometry in particular: cohesive toposes. We claim that the decisive role
of these axioms is realized when generalizing from topos theory to ∞-topos theory [LuHTT] and we discuss
a fairly long list of geometric structures that is induced by the axioms in this case. Notably we show that
every ∞-topos satisfying the immediate analog of Lawvere’s axioms – every cohesive ∞-topos– comes with
a good intrinsic notion of differential cohomology and Chern-Weil theory.
In 4 we discuss models of the axioms. The main model of interest for our applications is the cohesive ∞-
topos Smooth∞Grpd as well as its infinitesimal thickening SynthDiff∞Grpd, which we construct. Then we
go step-by-step through the list of general abstract structures in cohesive ∞-toposes and unwind what these
amount to in this model for higher differential geometry. We demonstrate that these subsume and generalize
various traditional definitions and constructions in differential geometry and differential cohomology.
In 5 we discuss applications of higher Chern-Weil theory in the context of smooth ∞-groupoids and their
synthetic-differential and super-geometric refinements. We present a fairly long list of higher Spin- and
Spinc-structures, of classes of action functionals on higher moduli stacks of higher Chern-Simons type and
functionals of higher Wess-Zumino-Witten type, that are all naturally induced by higher Chern-Weil theory.
We exhibit a higher analog of geometric prequantization that applies to these systems. Apart from the
new constructions and results, this shows that large parts of prequantum field theory are canonically and
fundamentally induced by abstract cohesion.
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1 Introduction

We present motivation for our developments in 1.1. Then we give a leisurely survey of the general abstract
theory in 1.2 and of the concrete implementations in 1.3.

1.1 Motivation

In 1.1.1 we give a heuristic motivation from considerations in gauge theory in broad terms; then in 1.1.2
and 1.1.4 a more technical motivation proceeding from natural classes of action functionals in higher gauge
theory, the problem of quantum anomaly cancellation and the inadequacy of classical Chern-Weil theory to
describe this.

Finally in 1.1.5 we offer a more formal motivation from the point of view of foundations.

1.1.1 Motivation from gauge theory

The discovery of gauge theory is effectively the discovery of groupoids in fundamental physics. The notion of
gauge transformation is close to synonymous to the notion isomorphism and more generally to equivalence
in an ∞-category. From a modern point of view, the mathematical model for a gauge field in physics is a
cocycle in (nonabelian) differential cohomology: principal bundles with connection and their higher analogs.
These naturally do not form just a set, but a groupoid and generally an ∞-groupoid, whose morphisms
are gauge transformations, and higher morphisms are gauge-of-gauge transformations. The development of
differential cohomology has to a fair extent been motivated and influenced by its application to fundamental
theoretical physics in general and gauge theory in particular.

Around 1850 Maxwell realized that the field strength of the electromagnetic field is modeled by what
today we call a closed differential 2-form on spacetime. In the 1930s Dirac observed that in the presence of
electrically charged quantum particles such as electrons, more precisely this 2-form is the curvature 2-form
of a U(1)-principal bundle with connection.

In modern terms this, in turn, means equivalently that the electromagnetic field is modeled by a degree
2-cocycle in (ordinary) differential cohomology. This is a differential refinement of the degree-2 integral
cohomology that classifies the underlying U(1)-principal bundles themselves via what mathematically is their
Chern class and what physically is the topological magnetic charge. A coboundary in degree-2 differential
cohomology is, mathematically, a smooth isomorphism of bundles with connection, hence, physically, is a
gauge transformation between field configurations. Therefore classes in differential cohomology characterize
the gauge-invariant information encoded in gauge field configurations, such as the electromagnetic field.

Meanwhile, in 1915, Einstein had identified also the field strength of the field of gravity as the so(d, 1)-
valued curvature 2-form of the canonical O(d, 1)-principal bundle with connection on a d + 1-dimensional
spacetime Lorentzian manifold. This is a cocycle in differential nonabelian cohomology: in Chern-Weil
theory.

In the 1950s Yang-Mills-theory identified the field strength of all the gauge fields in the standard model
of particle physics as the u(n)-valued curvature 2-forms of U(n)-principal bundles with connection. This is
again a cocycle in differential nonabelian cohomology.

Entities of ordinary gauge theory
Lie algebra g with gauge Lie group G — connection with values in g on G-
principal bundle over a smooth manifold X

It is noteworthy that already in this mathematical formulation of experimentally well-confirmed fun-
damental physics the seed of higher differential cohomology is hidden: Dirac had not only identified the
electromagnetic field as a line bundle with connection, but he also correctly identified (rephrased in modern
language) its underlying cohomological Chern class with the (physically hypothetical but formally inevitable)
magnetic charge located in spacetime. But in order to make sense of this, he had to resort to removing the
support of the magnetic charge density from the spacetime manifold, because Maxwells equations imply
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that at the support of any magnetic charge the 2-form representing the field strength of the electromagnetic
field is in fact not closed and hence in particular not the curvature 2-form of an ordinary connection on an
ordinary bundle.

In [Free00] Diracs old argument was improved by refining the model for the electromagentic field one
more step: Dan Freed notices that the charge current 3-form is itself to be regarded as a curvature, but for a
connection on a circle 2-bundle with connection - also called a bundle gerbe -, which is a cocycle in degree-3
ordinary differential cohomology. Accordingly, the electromagnetic field is fundamentally not quite a line
bundle, but a twisted bundle with connection, with the twist being the magnetic charge 3-cocycle. Freed
shows that this perspective is inevitable for understanding the quantum anomaly of the action functional
for electromagnetism is the presence of magnetic charge.

In summary, the experimentally verified models, to date, of fundamental physics are based on the notion
of (twisted) U(n)-principal bundles with connection for the Yang-Mills field and O(d, 1)-principal bundles
with connection for the description of gravity, hence on nonabelian differential cohomology in degree 2
(possibly with a degree-3 twist).

In attempts to better understand the structure of these two theories and their interrelation, theoretical
physicists were led to consider variations and generalizations of them that are known as supergravity and
string theory. In these theories the notion of gauge field turns out to generalize: instead of just Lie algebras,
Lie groups and connections with values in these, one finds structures called Lie 2-algebras, Lie 2-groups and
the gauge fields themselves behave like generalized connections with values in these.

Entities of 2-gauge theory
Lie 2-algebra g with gauge Lie 2-group G — connection with values in g on a
G-principal 2-bundle/gerbe over an orbifold X

Notably the string is charged under a field called the Kalb-Ramond field or B-field which is modeled by
a BU(1)-principal 2-bundle with connection, where BU(1) is the Lie 2-group delooping of the circle group:
the circle Lie 2-group. Its Lie 2-algebra Bu(1) is given by the differential crossed module [u(1) → 0] which
has u(1) shifted up by one in homological degree.

So far all these differential cocycles were known and understood mostly as concrete constructs, without
making their abstract home in differential cohomology explicit. It is the next gauge field that made Freed
and Hopkins propose [FrHo00] that the theory of differential cohomology is generally the formalism that
models gauge fields in physics:

The superstring is charged also under what is called the RR-field, a gauge field modeled by cocycles in
differential K-theory. In even degrees we may think of this as a differential cocycle whose curvature form has
coefficients in the L∞-algebra ⊕n∈NB2nu(1). Here B2nu(1) is the abelian 2n-Lie algebra whose underlying
complex is concentrated in degree 2n on R. So fully generally, one finds ∞-Lie algebras, ∞-Lie groups and
gauge fields modeled by connections with values in these.

Entities of general gauge theory
∞-Lie algebra g with gauge ∞-Lie group G — connection with values in g on
a G-principal ∞-bundle over a smooth ∞-groupoid X

Apart from generalizing the notion of gauge Lie groups to Lie 2-groups and further, structural consider-
ations in fundamental physics also led theoretical physicists to consider models for spacetime that are more
general than the notion of a smooth manifold. In string theory spacetime is allowed to be more generally
an orbifold or a generalization thereof, such as an orientifold. The natural mathematical model for these
generalized spaces are Lie groupoids or, essentially equivalently, differentiable stacks.

It is noteworthy that the notions of generalized gauge groups and the generalized spacetime models
encountered this way have a natural common context: all of these are examples of smooth ∞-groupoids.
There is a natural mathematical concept that serves to describe contexts of such generalized spaces: a
big ∞-topos. The notion of differential cohomology in an ∞-topos provides a unifying perspective on the
mathematical structure encoding the generalized gauge fields and generalized spacetime models encountered
in modern theoretical physics in such a general context.
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1.1.2 Motivation from natural action functionals

We present here a motivation for our constructions, starting from the observation that classical Chern-Weil
theory induces action functionals of Chern-Simons type, and observing that this phenomenon ought to have
certain natural generalizations.

First a brief word on the general context of quantum physics.
In recent years the notion of topological quantum field theory (TQFT) from physics has been fully formal-

ized and made accessible to strong mathematical tools and classifications. In its refined variant of fully local
or extended n-dimensional TQFT, the fundamental concept is that of a higher category, denoted Bordn,
whose (k ≤ n)-cells are k-dimensional smooth manifolds with boundary and corners, and whose composition
operation is gluing along these boundaries. The disjoint union of manifolds equips this with a symmetric
monoidal structure. Then for another symmetric monoidal n-category nVectfd, whose k-cells one thinks of
as higher order linear maps between n-categorical analogs of finite dimensional (or “fully dualizable”) vector
spaces, an n-dimensional extended TQFT is formalized as an n-functor

Z : Bordn → nVect

that respects this monoidal structure.
Here the higher order linear map Z(Σn−1) that is assigned to a closed (n−1)-dimensional manifold Σn−1

can typically canonically be identified with a vector space, and be interpreted as the space of states of the
physical system described by Z, for field configurations over a space of shape Σn−1. Then for Σn a cobordism
between two such closed (n− 1)-manifolds, Z(Σn) identifies with a linear map from the space of states over
the incoming to that over the outgoing boundary, and is interpreted as the (“time”-)propagation of states.

This idea is by now classical. A survey can for instance be found in [Ka10].
But beyond constituting a formalization of some concept motivated from physics, it is remarkable that

this construction is itself entirely rooted in a universal construction in higher category theory, and would
have eventually been discovered as such even in the absence of any motivation from physics. The notion of
extended TQFT derives from higher category theory.

Namely, according to the celebrated result of [LurieTQFT], earlier hypothesized in [BaDo95], Bordn is
a free construction – essentially the free symmetric monoidal n-category generated by just the point. This
means that symmetric monoidal maps Z : Bordn → nVectfd are equivalently encoded by n-functors from the
point Z(∗) : ∗ → nVectfd, which in turn are, of course, canonically identified simply with n-vector spaces,
the n-vector space of states assigned by Z to the point. This adjunction is both, an intrinsic characterization
of Bordn, as well as a full classification of extended TQFTs: these are entirely determined by their higher
space of states. All the assignments on higher dimensional Σ are obtained by forming higher order traces on
this single higher space of states over the point.

Here we will not further dwell on extended TQFT as such, but instead use this state of affairs to motivate
an investigation of a source of examples of natural TQFTs. Because the TQFTs that actually appear in
fundamental physics, even when including the families of theories found in the study of theory space away
from the loci of experimentally observed theories, are far from being random TQFTs allowed by the above
classification.

First of all, the TQFTs that do appear are typicaly theories that arise by a process of quantization from
a local action functional on a space of field configurations (recalled below). Secondly, even among all TQFTs
arising by quantization from local action functionals they are special, in that they have a natural formulation
in differential geometry, something that we will make precise below. The typical action functional appearing
in practice is not random, but follows some natural pattern.

One may therefore ask which principle it is that selects from a universal construction in higher category
theory – that of free symmetric monoidal structure – a certain subclass of “natural” geometric examples.
We will provide evidence here that this is another universal construction, but now in higher topos theory :
cohesion.

Below in 3.6 (specifically in 3.6.9 and 3.6.10) we show that cohesion in an ∞-topos induces, first, a
notion of differential characteristic maps, via a generalized Chern-Weil theory, and, second, from each
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such the corresponding spaces – in fact moduli ∞-stacks – of higher gauge field configurations, and, third,
canonically equips these with action functionals, via a generalized higher Chern-Simons theory. Moreover,
it induces from any such a corresponding action functional of one dimension lower, via a generalized higher
Wess-Zumino-Witten theory. And finally the process of (geometric) quantization of these functionals on
moduli stacks is itself naturally induced in a cohesive context.

1.1.2.1 Geometric quantization For completeness, we briefly recall the basic ideas of quantization in
its formalization known as geoemtric quantization (which we disccuss in abstract cohesion below in 3.6.11
and in the traditional formulation in differential geometry in 4.4.17).

The input datum is, for a given manifold of the form Σ = Σn−1× [0, 1] a smooth space Conf(Σn) of field
configurations on Σ, equipped with a suitably smooth map, called the “action functional” of the theory,

S : Conf(Σn)→ R

taking values in the real numbers.
From this input one first obtains the covariant phase space of the system, given as the variational critical

locus of S, schematically the subspace

P = {φ ∈ Conf(Σ) | (dS)φ = 0}

of field configurations on which the variational derivative dS of S vanishes. These field configurations are
said to satisfy the Euler-Lagrange equations of motion of the dynamics encoded by S.

If S is a local action functional, in that it depends on the fields φ via an integral over Σ whose integran
only depends on finitely many derivatives of φ, then this space canonically carries a presymplectic form, a
closed 2-form ω ∈ Ω2

cl(P ).
A symmetry of the system is a vector field on P which is in the kernel of ω. The quotient of P by the flows

of these symmetries is called the reduced phase space. This quotient is typically very ill-behaved if regarded
in ordinary geometry, but is a natural nice space in higher geometry (modeled by BV-BRST formalism).
The presymplectic form ω descends to a symplectic form ωred on the reduced phase space.

A geometric prequantization of the symplectic smooth space (Pred, ωred) is now, if it exists, a choice of
line bundle E → Pred with connection ∇, such that ω = F∇ is the corresponding curvature 2-form. This
becomes a geometric quantization proper when furthermore equipped with a choice of foliation of Pred by
Lagrangian submanifolds (submanifolds of maximal dimension on which ωred vanishes). This foliation is a
choice of decomposition of phase space into “canonical coordinates and momenta” of the physical system.

Finally, the quantum space of states, Z(Σn−1), that is defined by this construction is the vector space of
those sections of E that are covariantly constant along the leaves of the foliation.

The notion of fully local/extended TQFTs suggests that there ought to be an analogous fully lo-
cal/extended version of geometric quantization, which produces not just the datum Z(Σn−1), but Z(Σk)
for all 0 ≤ k ≤ n. By the above classification result it follows that the value for k = 0 alone will suffice
to define the entire quantum theory. This should involve not just line bundles with connection, but higher
analogs of these, called circle (n− k)-bundles with connection or bundle (n− k − 1)-gerbes with connection.

We discuss such a higher geometric prequantization axiomatically in 3.6.11, and discuss examples in 4.4.17
and 5.8.

1.1.2.2 Classical Chern-Weil theory and its shortcomings Even in the space of all topological local
action functionals, those that typically appear in fundamental physics are special. The archetypical example
of a TQFT is 3-dimensional Chern-Simons theory (see [Fre] for a detailed review). Its action functional
happens to arise from a natural construction in classical Chern-Weil theory. We now briefly summarize this
process, which already produces a large family of natural topological action functionals on gauge equivalence
classes of gauge fields. We then point out deficiencies of this classical theory, which are removed by lifting it
to higher geometry.
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A classical problem in topology is the classification of vector bundles over some topological space X.
These are continuous maps E → X such that there is a vector space V , and an open cover {Ui ↪→ X}, and
such that over each patch we have fiberwise linear identifications E|Ui ' Ui × V . Examples include

• the tangent bundle TX of a smooth manifold X;

• the canonical C-line bundle over the 2-sphere, S3×S1 C→ S2 which is associated to the Hopf fibration.

A classical tool for studying isomorphism classes of vector bundles is to assign to them simpler charac-
teristic classes in the ordinary integral cohomology of the base space. For vector bundles over the complex
numbers these are the Chern classes, which are maps

[c1] : VectBundC(X)/∼ → H2(X,Z)

[c2] : VectBundC(X)/∼ → H4(X,Z)

etc. natural in X. If two bundles have differing characteristic classes, they must be non-isomorphic. For
instance for C-line bundles the first Chern-class [c1] is an isomorphism, hence provides a complete invariant
characterization.

In the context of differential geometry, where X and E are taken to be smooth manifolds and the local
identifications are taken to be smooth maps, one wishes to obtain differential characteristic classes. To that
end, one can use the canonical inclusion Z ↪→ R of coefficients to obtain the map Hn+1(X,Z)→ Hn+1(X,R)
from integral to real cohomology, and send any integral characteristic class [c] to its real image [c]R. Due to
the de Rham theorem, which identifies the real cohomology of a smooth manifold with the cohomology of
its complex of differential forms,

Hn+1(X,R) ' Hn+1
dR (X) ,

this means that for [c]R one has representatives given by closed differential (n+ 1)-forms ω ∈ Ωn+1
cl (X),

[c]R ∼ [ω] .

But since the passage to real cohomology may lose topological information (all torsion group elements map
to zero), one wishes to keep the information both of the topological characteristic class [c] as well as of its
“differential refinement” ω. This is accomplished by the notion of differential cohomology Hn+1

diff (X) (see
[HoSi05] for a review). These are families of cohomology groups equipped with compatible projections both
to integral classes as well as to differential forms

Hn+1
diff (X)

uu ))
Hn+1(X,Z)

))

Ωn+1
cl (X)

uu
Hn+1(X,R) ' Hn+1

dR (X)

[ĉ]6

{{

�

##
[c]

�

##

ω7

{{
[c]R ∼ [ω]

.

Moreover, these differential cohomology groups come equipped with a notion of volume holonomy. For Σn
an n-dimensional compact manifold, there is a canonical morphism∫

Σ

: Hn+1
diff (Σ)→ U(1)

to the circle group.
For instance for n = 1, we have that H2(X,Z) classifies circle bundles / complex line bundles over X,

H2
diff(X) classifies such bundles with connection ∇, and the map

∫
Σ

: H2
diff(Σ)→ U(1) is the line holonomy

obtained from the parallel transport of ∇ over the 1-dimensional manifold Σ.
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With such differential refinements of characteristic classes in hand, it is desireable to have them classify
differential refinements of vector bundles. These are known as vector bundles with connection. We say a
differential refinement of a characteristic class [c] is a map [ĉ] fitting into a diagram

VectBundconn(X)/∼
[ĉ] //

��

Hn+1
diff (X)

��
VectBund(X)/∼

[c] // Hn+1(X,Z)

,

where the vertical maps forget the differential refinement. Such a [ĉ] contains information even when [c] = 0.
Therefore one also calls [ĉ] a secondary characteristic class.

All of this has a direct interpretation in terms of quantum gauge field theory.

• the elements in VectBundconn(X)/∼ are gauge equivalence classes of gauge fields on X (for instance
the electromagnetic field, or nuclear force fields);

• the differential class [ĉ] defines a canonical action functional S[c] on such fields, by composition with
the volume holonomy

exp(iSc(−)) : Conf(Σ)/∼ := VectBundconn(Σ)/∼
[ĉ]→ Hn+1

diff (Σ)

∫
Σ→ U(1) .

The action functionals that arise this way are of Chern-Simons type. If we write A ∈ Ω1(Σ, u(n)) for a
differential form representing locally the connection on a vector bundle, then we have

•
∫

Σ
c1 : A 7→ exp(i

∫
Σ

tr(A));

•
∫

Σ
c2 : A 7→ exp(i

∫
Σ

tr(A ∧ ddRA + 2
3 tr(A ∧A ∧A)))

• etc.

Here the second expression, coming from the second Chern-class, is the standard action functional for
3-dimensional Chern-Simons theory. The first, coming from the first Chern-class, is a 1-dimensional Chern-
Simons type theory. Next in the series is an action functional for a 5-dimensional Chern-Simons theory.
Later we will see that by generalizing here from vector bundles to higher bundles of various kinds, a host of
known action functionals for quantum field theories arises this way.

Despite this nice story, this traditional Chern-Weil theory has several shortcomings.

1. It is not local, related to the fact that it deals with cohomology classes [c] instead of the cocycles c
themselves. This means that there is no good obstruction theory and no information about the locality
of the resulting QFTs.

2. It does not apply to higher topological structures, hence to higher gauge fields that take values in higher
covers of Lie groups which are not themselves compact Lie groups anymore.

3. It is restricted to ordinary differential geoemtry and does not apply to variants such as supergeometry,
infinitesimal geometry or derived geometry, all of which appear in examples of QFTs of interest.

1.1.2.3 Formulation in cohesive homotopy type theory We discuss now these problems in slightly
more detail, together with their solution in cohesive homotopy type theory.

The problem with the locality is that every vector bundle is, by definition, locally equivalent to a trivial
bundle. Also, locally on contractible patches U ↪→ X every integral cocycle becomes cohomologous to the
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trivial cocycle. Therefore the restriction of a characteristic class to local patches retains no informstion at
all

VectBund(X)/∼
[c] //

(−)|U
��

Hn+1(X,Z)

(−)|U
��

∗ Id // ∗

.

Here we may think of the singleton ∗ as the class of the trivial bundle over U . But even though on U every
bundle is equivalent to the trivial bundle, this has non-trivial gauge automorphisms

∗ g→ ∗ g ∈ C∞(U,G := GL(V )) .

These are not seen by traditional Chern-Weil theory, as they are not visible after passing to equivalence
classes and to cohomology.

But by collecting this information over each U , it organizes into a presheaf of gauge groupoids. We shall
write

BG : U 7→
{
∗

g∈C∞(U,G) // ∗
}
∈ Funct(SmthMfdop,Grpd) .

In order to retain all this information, we may pass to the 2-category

H := LW Func(SmthMfdop,Grpd)

of such groupoid-valued functors, where we formally invert all those morphisms (natural transformations) in
the class W of stalkwise equivalences of groupoids. This is called the 2-topos of stacks on smooth manifolds.

For example we have

• H(U,BG) '
{
∗

g∈C∞(U,G) // ∗
}

• π0H(X,BG) ' VectBund(X)/∼

and hence the object BG ∈ H constitutes a genuine smooth refinement of the classifying space for rank
n-vector bundles, which sees not just their equivalence classes, but also their local smooth transformations.

The next problem of traditional Chern-Weil theory is that it cannot see beyond groupoids even in co-
homology. Namely, under the standard nerve operation, groupoids embed into simplicial sets (described in
more detail in 1.3.2 below)

N : Grpd ↪→ sSet .

But simplicial sets model homotopy theory.

• There is a notion of homotopy groups πk of simplicial sets;

• and there is a notion of weak homotopy equivalences, morphisms f : X → Y which induce isomorphisms
on all homotopy groups.

Under the above embedding, groupoids yield only (and precisely) those simplicial sets, up to equivalence,
for which only π0 and π1 are nontrivial. One says that these are homotopy 1-types. A general simplicial set
presents what is called a homotopy type and may contain much more information.

Therefore we are lead to refine the above construction and consider the simplicial category

H := LW Func(SmthMfdop, sSet)

of functors that send smooth manifolds to simplicial sets, where now we formall invert those morphisms that
are stalkwise weak homotopy equivalences of simplicial sets.

This is called the ∞-topos of ∞-stacks on smooth manifolds.
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For instance, there are objects BnU(1) in this context which are smooth refinements of higher integral
cohomology, in that

π0H(X,BnU(1)) ' Hn+1(X,Z) .

Finally, in this construction it is straightforward to change the geometry by changing the category of
geometric test spaces. For instance we many replace smooth manifolds here by supermanifolds or by formal
(synthetic) smooth manifolds. In all these cases H describes homotopy types with differential geometric
structure. One of our main statements below is the following theorem.

These H all satisfy a simple set of axioms for “cohesive homotopy types”, which were proposed for 0-types
by Lawvere. In the fully homotopical context these axioms canonically induce in H

• differential cohomology;

• higher Chern-Weil theory;

• higher Chern-Simons functionals;

• higher geometric prequantization.

This is such that it reproduces the traditional notions where they apply, and otherwise generalizes them
beyond the realm of classical applicability.

1.1.2.4 Cohesive higher Chern-Simons theory As an example, there is a unique smooth refinement
of the first Pontryagin class (discussed in detail in 5.1.4), whose homotopy fiber is a smooth version of the
string group, the 3-connected cover of the Spin-group.

BString // BSpin
1
2 p1 // B3U(1) .

This is outside the realm of classical Chern-Weil theory.
Moreover, the second Pontryagin class has a smooth refinement on this homotopy fiber (discussed in

detail in 5.1.5), whose fiber, in turn, is a smooth version of the 7-connected cover of the Spin group

BFivebrane // BString
1
6 p2 // B7U(1) .

We find, for instance, that the local Chern-Weil theory of p1 controls anomaly cancellation of the het-
erotic superstring, and that the 7-dimensional Chern-Simons theory induced by p2 appears inside the action
functional of 11-dimensional supergravity, after anomaly cancellation.

These and more examples are discussed in section 5.

1.1.3 Motivation from long fiber sequences

It is a traditionally familiar fact that short exact sequences of (discrete) groups give rise to long sequences
in cohomology with coefficients in these groups. In fact, before passing to cohomology, these long exact
sequences are refined by corresponding long fiber sequences of the homotopy types obtained by the higher
delooping of these groups: of the higher classifying spaces of these groups.

An example for which these long fiber sequences are of interest in the context of quantum field theory
is the universal first fractional Pontryagin class 1

2p1 on the classifying space of Spin-principal bundles. The
following digram displays the first steps in the long fiber sequence that it induces, together with an actual
Spin-principal bundle P → X classified by a map X → BSpin. All squares are homotopy pullback squares

19



of bare homotopy types.

BU(1) //

��

String //

BU(1)
bundle

��

P̂ //

BU(1)
−bundle

��

String
bundle

��

∗

��
∗ // Spin //

��

canonical
3−class

33P //

Spin
bundle

��

B2U(1) //

��

∗

��
∗ x // X

classifies
Spin bundle

33//

Pontryagin
class

,,

BString //

��

BSpin

1
2p1

��
∗ // B3U(1)

.

The topological group String which appears here as the loop space object of the homotopy fiber of 1
2p1 is

the String group. We discuss this in detail below in 5.1. It is a BU(1)-extension of the Spin-group.
If X happens to be equipped with the structure of a smooth manifold, then it is natural to also equip

the Spin-principal bundle P → X with the structure of a smooth bundle, and hence to lift the classifying
map X → BSpin to a morphism X → BSpin into the smooth moduli stack of smooth Spin-principal bundles
(the morphism that not just classifies but “modulates” P → X as a smooth structure). An evident question
then is: can the rest of the diagram be similarly lifted to a smooth context?

This indeed turns out to be the case, if we work in the context of higher smooth stacks. For instance there
is a smooth moduli 3-stack B2U(1) such that a morphism Spin→ B2U(1) not just classifies a BU(1)-bundle
over Spin, but “modulates” a smooth circle 2-bundle or U(1)-bundle gerbe over Spin. One then gets the
following diagram

BU(1) //

��

String //

WZW
2−bundle

��

P̂ //

BU(1)
2−bundle

��

String
2−bundle

��

∗

��
∗ // Spin //

��

modulates
WZW

2−bundle

33P //

Spin
bundle

��

B2U(1) //

��

∗

��
∗ x // X

modulates
Spin bundle

33//

modulates
Chern−Simons

3−bundle

,,

BString //

��

BSpin

1
2p1

��
∗ // B3U(1)

,
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where now all squares are homotopy pullbacks of smooth higher stacks.
Whith this smooth geometirc structure in hand, one can then go further and ask for differential refine-

ments: the smooth Spin-principal bundle P → X might be equipped with a principal connection ∇, and if so,
this will be “modulated” by a morphism X → BSpinconn into the smooth moduli stack of Spin-connections.

One of our central theorems below in 5.1 is that the universal first fractional Pontryagin class can be
lifted to this situation to a differential smooth universal morphism of higher moduli stacks, which we write
1
2 p̂1. Inserting this into the above diagram and then forming homotopy pullbacks as before yields further
differential refinements. It turns out that these now induce the Lagrangians of 3-dimensional Spin Chern-
Simons theory and of the WZW theory on Spin.

BU(1) //

��

String //

WZW
2−bundle

��

P̂

BU(1)
2−bundle

��

String
2−bundle

��

∗ // Spin //

��

WZW
Lagrangian

22P //

Spin
bundle

��

B2U(1)conn

��
∗ x // X

Spin
connection

22//

Chern−Simons
Lagrangian

,,

BStringconn
//

��

BSpinconn

1
2 p̂1

��
∗ // B3U(1)conn

.

One way to understand our developments here is as a means to formalize and then analyze this setup
and its variants and generalizations.

1.1.4 Motivation from quantum anomaly cancellation

One may wonder to which extent the higher gauge fields, that above in 1.1.1 we said motivate the theory of
higher differential cohomology, can themselves be motivated within physics. It turns out that an important
class of examples is required already by consistency of the quantum mechanics of higher dimensional fermionic
(“spinning”) quantum objects.

We indicate now how the full description of this quantum anomaly cancellation forces one to go beyond
classical Chern-Weil theory to a more comprehensive theory of higher differential cohomology.

Consider a smooth manifold X. Its tangent bundle TX is a real vector bundle of rank n = dimX. By the
classical theorem which identifies isomorphism classes of rank-n real vector bundles with homotopy classes
of continuous maps to the classifying space BO(n), for O(n) the orthogonal group,

VectBund(X)/∼ ' [X,BO] ,

we have that TX is classified by a continuous map which we shall denote by the same symbol

TX : X → BO(n) .

Notice that this map takes place after passing from smooth spaces to just topological spaces. A central
theme of our discussion later on are first smooth and then differential refinements of such maps.
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A standard question to inquire about X is whether it is orientable. If so, a choice of orienation is, in terms
of this classifying map, given by a lift through the canonical map BSO(n) → BO(n) from the classifying
space of the special orthogonal group. Further, we may ask if X admits a Spin-structure. If so, a choice
of Spin-structure corresponds to a further lift through the canonical map BSpin(n) → BO(n) from the
classifying space of the Spin-group, which is the universal simply connected cover of the special orthogonal
group. (Details on these basic notions are reviewed at the beginning of 5 below.)

These lifts of structure groups are just the first steps through a whole tower of higher group extensions,
called the Whitehead tower of BO(n), as shown in the following picture. Here String is a topological group
which is the universal 3-connected cover of Spin, and then Fivebrane is the universal 7-connected cover of
String.

BFivebrane

��

fivebrane structure

BString
1
6p2 //

��

K(Z, 8) string structure

BSpin
1
2p1 //

��

K(Z, 4) spin structure

BSO
w2 //

��

K(Z2, 2) orientation structure

Σ
φ // X

TX //

77

??

CC

EE

BO
w1 // K(Z2, 1) Riemannian structure

.

Here all subdiagrams of the form

BĜ

��
BG

c // K(A,n)

are homotopy fiber sequences. This means that BĜ is the homotopy fiber of the characteristic map c and
Ĝ itself is the homotopy fiber of the looping Ωc of c. By the universal property of the homotopy pullback,
this implies the obstruction theory for the existence of these lifts. The fist two of these are classical. For
instance the orientation structure exists if the first Stiefe-Whitney class [w1(TX)] ∈ H1(X,Z2) is trivial.
Then a Spin-structure exists if moreover the second Stiefel-Whiney class [w2(TX)] ∈ H2(X,Z2) is trivial.

Analogously, a string structure exists on X if moreover the first fractional Pontryagin class [ 1
2p1(TX)] ∈

H4(X,Z) is trivial, and if so, a fivebrane structure exists if moreover the second fractional Pontryagin class
[ 1
6p2(TX)] ∈ H8(X,Z) is trivial.

The names of these structures indicate their role in quantum physics. Let Σ be a d + 1-dimensional
manifold and assume now that also X is smooth. Then a smooth map φ : Σ → X may be thought of as
modelling the trajectory of a d-dimensional object propagating through X. For instance for d = 0 this would
be the trajectory of a point particle, for d = 1 it would be the worldsheet of a string, and for d = 5 the
6-dimensional worldvolume of a 5-brane. The intrinsic “spin” of point particles and their higher dimensional
analogs is described by a spinor bundle S → Σ equipped for each φ : Σ → X with a Dirac operato Dφ∗TX

that is twisted by the pullback of the tangent bundle of X along φ. The fermionic part of the path integral
that gives the quantum dynamics of this setup computes the analog of the determinant of this Dirac operator,
which is an element in a complex line called the Pfaffian line of Dφ∗TX . As φ varies, these Pfaffian lines
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arrange into a line bundle on the mapping space

{Pfaff(Dφ∗TX)}

��
{φ : Σ→ X} SmthMaps(Σ, X)

tgΣ(c) // K(Z, 2)

.

Since the result of the fermionic part of the path integral is therefore a section of this line bundle, the
resulting effective action functional can be a well defined function only if this line bundle is trivializable,
hence if its Chern class vanishes. Therefore the Chern class of the Pfaffian line bundle over the bosonic
configuration space is called the global quantum anomaly of the system. It is an obstruction to the existence
of quantum dynamics of d-dimensional objects with spin on X.

Now, it turns out that this Chern class is the transgression tgΣ(c) of the corresponding class c appearing
in the picture of the Whitehead tower above. Therefore the vanishing of these classes implies the vanishing
of the quantum anomaly.

For instance a choice of a spin structure on X cancels the global quantum anomaly of the quantum
spinning particle. Then a choice of string structure cancels the global quantum anomaly of the quantum
spinning string, and a choice of fivebrane structure cancels the global quantum anomaly of the quantum
spinning 5-brane.

However, the Pfaffian line bundle turns out to be canonically equipped with more refined differential
structure: it carries a connection. Moreover, in order to obtain a consistent quantum theory it needs to be
trivialized as a bundle with connection.

For the Pfaffian line bundle with connection still to be the transgression of the corresponding obstruction
class on X, evidently the entire story so far needs to be refined from cohomology to a differentially refined
notion of cohomology.

Classical Chern-Weil theory achieves this, in parts, for the first few steps through the Whitehead tower
(see [GHV] for a classical textbook reference and [HoSi05] for the refinement to differential cohomology that
we need here). For instance, since maps X → BSpin classify Spin-principal bundles on X, and since Spin is
a Lie group, it is clear that the coresponding differential refinement is given by Spin-principal connections.
Write H1(X,Spin)conn for the equivalence classes of these structures on X.

For every n ∈ N there is a notion of differential refinement of Hn(X,Z) to the differential cohomology
group Hn(X,Z)conn. These groups fit into square diagrams as indicated on the right of the following diagram.

H1
conn(X,Spin)

[ 1
2 p̂1] // H4

diff(X,Z)

curvature

xx
top. class

&&
Ω4

cl(X)

&&

H4(X,Z)

xx
H4

dR(X) ' H4(X,R)

.

As shown there, an element in Hn(X,Z) involves an underlying ordinary integral class, but also a differential
n-form on X such that both structures represent the same class in real cohomology (using the de Rham
isomorphism between real cohomology and de Rham cohomology). The differential form here is to be thought
of as a higher curvature form on a higher line bundle corresponding to the given integral cohomology class.

Finally, the refined form of classical Chern-Weil theory provides differential refinements for instance of
the first fractional Pontryagin class [ 1

2p1] ∈ H4(X,Z) to a differential class [ 1
2 p̂1] as shown in the above

diagram. This is the differential refinement that under transgression produces the differential refinement of
our Pfaffian line bundles.

But this classical theory has two problems.

23



1. Beyond the Spin-group, the topological groups String, Fivebrane etc. do not admit the structure of
finite-dimensional Lie groups anymore, hence ordinary Chern-Weil theory fails to apply.

2. Even in the situation where it does apply, ordinary Chern-Weil theory only works on cohomology
classes, not on cocycles. Therefore the differential refinements cannot see the homotopy fiber sequences
anymore, that crucially characterized the obstruction problem of lifting through the Whitehead tower.

The source of the first problem may be thought to be the evident fact that the category Top of topological
spaces does, of course, not encode smooth structure. But the problem goes deeper, even. In homotopy theory,
Top is not even about topological structure. Rather, it is about homotopies and discrete geometric structure.

One way to make this precise is to say that there is a Quillen equivalence between the model category
structures on topological spaces and on simplicial sets.

Top
oo |−|

Sing
// sSet Ho(Top) ' Ho(sSet) .

Here the singular simplicial complex functor Sing sends a topological space to the simplicial set whose k-cells
are maps from the topological k-simplex into X.

In more abstract modern language we may restate this as saying that there is an equivalence

Top
Π

'
// ∞Grpd

between the homotopy theory of topological spaces and that of ∞-groupoids, exhibited by forming the
fundamental ∞-groupoid of X.

To break this down into a more basic statement, let Top≤1 be the subcategory of homotopy 1-types,
hence of these topological spaces for which only the 0th and the first homotopy groups may be nontrivial.
Then the above equivalence resticts to an equivalence

Top≤1
Π

'
// Grpd

with ordinary groupoids. Restricting this even further to (pointed) connected 1-types, hence spaces for which
only the first homotopy group may be non-trivial, we obtain an equivalence

Top1,pt

π1

'
// Grp

with the category of groups. Under this equivalence a connected 1-type topological space is simply identified
with its first fundamental group.

Manifestly, the groups on the right here are just bare groups with no geometric structure; or rather with
discrete geometric structure. Therefore, since the morphism Π is an equivalence, also Top1 is about discrete
groups, Top≤1 is about discrete groupoids and Top is about discrete ∞-groupoids.

There is a natural solution to this problem. This solution and the differential cohomology theory that it
supports is the topic of this book.

The solution is to equip discrete ∞-groupoids A with smooth structure by equipping them with infor-
mation about what the smooth families of k-morphisms in it are. In other words, to assign to each smooth
parameter space U an ∞-groupoid of smoothly U -parameterized families of cells in A.

If we write A for A equipped with smooth structure, this means that we have an assignment

A : U 7→ A(U) =: Maps(U,A)smooth ∈ ∞Grpd

such that A(∗) = A.
Notice that here the notion of smooth maps into A is not defined before we declare A, rather it is defined

by declaring A. A more detailed discussion of this idea is below in 1.2.1.
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We can then define the homotopy theory of smooth ∞-groupoids by writing

Smooth∞Grpd := LWFunct(SmoothMfdop, sSet) .

Here on the right we have the category of contravarian functors on the category of smooth manifolds, such as
the A from above. In order for this to inform this simple construction about the local nature of smoothness,
we need to formally invert some of the morphisms between such functors, which is indicated by the symbol
LW on the left. The set of morphisms W that are to be inverted are those natural transformation that are
stalkwise weak homotopy equivalences of simplicial sets.

We find that there is a canonical notion of geoemtric realization on smooth ∞-groupoids

| − | : Smooth∞Grpd
Π→∞Grpd

|−|→ Top ,

where Π is the derived left adjoint to the embedding

Disc :∞Grpd ↪→ Smooth∞Grpd

of bare∞-groupoids as discrete smooth∞-groupoids. We may therefore ask for smooth refinements of given
topological spaces X, by asking for smooth ∞-groupoids X such that |X| ' X.

A simple example is obtained from any Lie algebra g. Consider the functor exp(g) : SmoothMfdop → sSet
given by the assignment

exp(g) : U 7→ ([k] 7→ Ω1
flat,vertU ×∆k, g) ,

where on the right we have the set of differential forms on the parameter space times the smooth k-simplex
which are flat and vertical with respect to the projection U ×∆k → U .

We find that the 1-truncation of this smooth ∞-groupoid is the Lie groupoid

τ1 exp(g) = BG

that has a single object and whose morphisms form the simply connected Lie group G that integrates g. We
may think of this Lie groupoid also as the moduli stack of smooth G-principal bundles. In particular, this is
a smooth refinement of the classifying space for G-principal bundles in that

|BG| ' BG .

So far this is essentially what classical Chern-Weil theory can already see. But smooth ∞-groupoids now go
much further.

In the next step there is a Lie 2-algebra g = string such that its exponentiation is

τ2 exp(string) = BString

is a smooth 2-groupoid, which we may think of as the moduli 2-stack of String-principal which is a smooth
refinement of the String-classifying space

|BString| ' BString .

Next there is a Lie 6-algebra fivebrane such that

τ6 exp(fivebrane) = BFivebrane

with
|BFivebrane| ' BFivebrane .

Moreover, the characteristic maps that we have seen now refine first to smooth maps on these moduli
stacks, for instance

1

2
p1 : BSpin→ B3U(1) ,
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and then further to differential refinement of these maps

1

2
p̂1 : BSpinconn → B3U(1)conn ,

where now on the left we have the moduli stack of smooth Spin-connections, and on the right the moduli
3-stack of circle n-bundles with connection.

A detailed discussion of these constructions is below in 5.1.
In addition to capturing smooth and differential refinements, these constructions have the property that

they work not just at the level of cohomology classes, but at the level of the full cocycle ∞-groupoids. For
instance for X a smooth manifold, postcomposition with 1

2 p̂ may be regarded not only as inducing a function

H1
conn(X,Spin)→ H4

conn(X)

on cohomology sets, but a morphism

1

2
p̂(X) : H1(X,Spin)→ H3(X,B3U(1)conn)

from the groupoid of smooth principal Spin-bundles with connection to the 3-groupoid of smooth circle
3-bundles with connection. Here the boldface H = Smooth∞Grpd denotes the ambient ∞-topos of smooth
∞-groupoids and H(−,−) its hom-functor.

By this refinement to cocycle ∞-groupoids we have access to the homotopy fibers of the morphism 1
2 p̂1.

Before differential refinement the homotopy fiber

H(X,BString) // H(X,BSpin)
1
2 p1 // H(X,B3U(1)) ,

is the 2-groupoid of smooth String-principal 2-bundles on X: smooth string structures on X. As we pass to
the differential refinement, we obtain differential string structures on X

H(X,BStringconn) // H(X,BSpinconn)
1
2 p̂1 // H(X,B3U(1)conn) .

A cocycle in the 2-groupoid H(X,BStringconn)is naturally identified with a tuple consisting of

• a smooth Spin-principal bundle P → X with connection ∇;

• the Chern-Simons 2-gerbe with connection CS(∇) induced by this;

• a choice of trivialization of this Chern-Simons 2-gerbe and its connection.

We may think of this as a refinement of secondary characteristic classes: the first Pontryagin curvature
characteristic form 〈F∇ ∧ F∇〉 itself is constrained to vanish, and so the Chern-Simons form 3-connection
itself constitutes cohomological data.

More generally, we have access not only to the homotopy fiber over the 0-cocycle, but may pick one cocycle
in each cohomology class to a total morphism H4

diff(X)→ H(X,B3U(1)conn) and consider the collection of
all homotopy fibers over all connected components as the homotopy pullback

1
2 p̂1Structw(X) //

��

H4
diff(X)

��
H(X,BSpinconn)

1
2 p̂1 // H(X,B3U(1)conn)

.

This yields the 2-groupoid of twisted differential string structure. These objects, and their higher analogs
given by twisted differential fivebrane structures, appear in background field structure of the heterotic string
and its magnetic dual, as discussed in [SSS09c].

These are the kind of structures that ∞-Chern-Weil theory studies.

26



1.1.5 Motivation from higher topos theory

The history of theoretical fundamental physics is the story of a search for the suitable mathematical notions
and structural concepts that naturally model the physical phenomena in question. Examples include, roughly
in historical order,

1. the identification of symplectic geometry as the underlying structure of classical Hamiltonian mechan-
ics;

2. the identification of (semi-)Riemannian differential geometry as the underlying structure of gravity;

3. the identification of group and representation theory as the underlying structure of the zoo of funda-
mental particles;

4. the identification of Chern-Weil theory and differential cohomology as the underlying structure of gauge
theories.

All these examples exhibit the identification of the precise mathematical language that naturally captures
the physics under investigation. Modern theoretical insight in theoretical fundamental physics is literally
unthinkable without these formulations.

Therefore it is natural to ask whether one can go further. Not only have we seen above in 1.1.4 that
some of these formulations leave open questions that we would want them to answer. But one is also led
to wonder if this list of mathematical theories cannot be subsumed into a single more fundamental system
altogether.
In a philosophical vein we should ask

Where does physics take place, conceptually?

Such philosophical-sounding questions can be given useful formalizations in terms of category theory. In this
context “place” translates to topos, “taking place” translates to inernalization and whatever it is that takes
places is characterized by a collection of universal constructions (categorical limits and colimits, categorical
adjunctions).

So we translate

Physics takes place.

Certain universal constructions internalize in a suitable topos.

(For the following explanation of what precisely this means the reader only needs to know the concept of
adjoint functors.)
The remaining question is

What characterizes a suitable topos and what are the universal constructions capturing physics.

At the bottom of it there are two aspects to physics, kinematics and dynamics. Roughly, kinematics is
about the nature of geometric spaces appearing in physics, dynamics is about trajectories – paths – in these
spaces. We will argue that

• the notion of a topos of geometric spaces is usefully given by what goes by the technical term local
topos;

• the notion of a topos of spaces with trajectories is usefully given by what goes by the technical term
∞-connected topos.

A topos that is both local and ∞-connected we call cohesive.
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physics︷ ︸︸ ︷
kinematic dynamics

local topos ∞-connected topos︸ ︷︷ ︸
cohesive topos

.

1.1.5.1 Kinematics – local toposes. With a notion of bare spaces give, a notion of geometric spaces
comes with a forgetful functor GeometricSpaces → BareSpaces that forgets this structure. The claim is
that two extra conditions on this functor guarantee that indeed the structure it forgets is some geometric
structure.

• There is a category C of local models such that every geometric space is obtained by gluing of local
models. The operation of gluing following a blueprint is left adjoint to the inclusion of geometric spaces
into blueprints for geometric spaces.

• Every bare space can canonically be equipped with the two universal cases of geometric structure,
discrete and indiscrete geometric structure. (For instance a set can be equipped with discrete topology
or discrete smooth structure.)

Equipping with these structure is left and right adjoint, respectively, to forgetting geometric structure.

BlueprintsOfGeometricSpaces

glue local models //

oo ? _
GeometricSpaces

ooform discrete geometric structure
? _

forget geometric structure //
oo

form indiscrete geometric structure
? _BareSpaces .

If we take a bare space to be a set of points, then this translates into the following formal statement.

Func(Cop,Set)
sheafification //
oo ? _Sh(C)

oo Disc ? _

Γ //
oo

coDisc
? _Set .

The category of geometric spaces embeds into the category of contravarian functors on test spaces, and
this embedding has a left adjoint. It is a basic fact of topos theory that such reflective embeddings are
precisely categories of sheaves on C with respect to some Grothendieck topology on C (which is defined by
the reflective embedding). Therefore the first demand above says that GeometricSpaces is to be what is
called a sheaf topos.

Another basic fact of topos theory says that this already implies the first part of the second demand, and
uniquely so. There is unique pair of adjoint functors (Disc a Γ) as indicated. The demand of the further
right adjoint embedding coDisc is what makes the sheaf topos a local topos.

These and the following axioms are very simple. Nevertheless, by the power of category theory, it turns
out that they have rich implications. But we will we show that for them to have implications just rich
enough to indeed formalize the kind of structures mentioned at the beginning, we want to pass to∞-toposes
instead. Then the above becomes

∞Func(Cop,∞Grpd)
∞−stackification//
oo ? _Sh∞(C)

oo Disc ? _

Γ //
oo

coDisc
? _∞Grpd .
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1.1.5.2 Dynamics – ∞-connected toposes With a notion of discrete ∞-groupoids inside geometric
∞-groupoids given, we can ask for discrete ∞-bundles over any X to be characterized by the the parallel
transport that takes their fibers into each other, as they move along paths in X. By the basic idea of Galois
theory (see 3.5.6), this completely characterizes a notion of trajectory.

Formally this means that we require a further left adjoint (Π a Disc).

Geometric∞Grpd(X,DiscK) ' ∞Grpd(Π(X),K)

bundles of
discrete ∞-groupoids
on X

parallel transport
of discrete ∞-groupoids
along trajectories
in X

.

This means that for any X we can think of Π(X) as the∞-groupoid of paths in X, of paths-between-paths
in X, and so on.

In order for this to yield a consistent notion of paths in the geometric context, we want to demand that
there are no non-trivial paths in the point (the terminal object), hence that

Π(∗) ' ∗ .

An ordinary topos for which Π exists and satisfies this property is called locally connected and connected.
Hence an∞-topos for which Π exists and satisfies this extra condition we call∞-connected. This terminology
is good, but a bit subtle, since it refers to the meta-topology of the collection of all geometric spaces rather
than to any that of any topological space itself. The reader is advised to regard it just as a technical term
for the time being.

1.1.5.3 Physics – cohesive toposes An ∞-topos that is both local as well as ∞-connected we call
cohesive. The idea is that the extra adjoints on it encode the information of how sets of cells in an ∞-
groupoid are geometrically held together, for instance in that there are smooth paths between them. In the
models of cohesive∞-toposes that we wiil construct the local models are open balls with geometric structure
and each such open ball can be thought of as a “cohesive blob of points”.

The axioms on a cohesive topos are simple and fully formal. They involve essentially just the notion of
adjoint functors.

We can ask now for universal constructions such that internalized in any cohesive ∞-topos they usefully
model differental geometry, differential cohomology, action functionals for physical systems, etc. Below in
3.6 we a comprehensive discussion of an extensive list of such structures. Here we highlight one them.
Differential forms.

One consequence of the axioms of cohesion is that every connected object in a cohesive ∞-topos H has
am essentially unique point (whereas in general it may fail to have a point). We have an equivalence

∞Grp(H)
oo Ω

B
// H∗,≥1

between group objects G in H and (uniquely pointed) connected objects in H.
Define now

(Π a [) := (DiscΠ a DiscΓ) .

The (Disc a Γ)-counit gives a morphism
[BG→ BG .

We write [dRBG for the ∞-pullback

[dRBG //

��

[BG

��
∗ // BG

.
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We show in 4.4.10 that with this construction internalized in smooth ∞-groupoids, the object [dRBG is the
coefficient object for flat g-valued differential forms, where g is the ∞-Lie algebra of G.

Moreover, there is a canonical such form on G itself. This is obtained by forming the pasting diagram of
∞-pullbacks

A //

θ
��

∗

��
[dRBG //

��

[BG

��
∗ // BG

.

We show below in 4.4.12 that this theta is canonical (Maurer-Cartan) g-valued form on G. Then in 4.4.13
we show that for G a shifted abelian group, this form is the universal curvature characteristic. Flat parallel
G-valued transport that is twisted by this form encodes non-flat ∞-connections. Gauge fields and higher
gauge fields are examples.

In 4.4.16 we show that, just as canonically, action functionals for these higher gauge fields exist in H.

All this just from a system of adjoint ∞-functors.
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1.2 General theory

Here we give an introduction to and a survey of the general theory of cohesive differential geometry that is
developed in detail below in 3 below.

The framework of all our constructions is topos theory [John03] or rather, more generally,∞-topos theory
[LuHTT]. In 1.2.1 and 1.2.2 below we recall and survey basic notions with an eye towards our central
example of an ∞-topos: that of smooth ∞-groupoids. In these sections the reader is assumed to be familiar
with basic notions of category theory (such as adjoint functors) and basic notions of homotopy theory (such
as weak homotopy equivalences). A brief introduction to relevant basic concepts (such as Kan complexes
and homotopy pullbacks) is given in section 1.3, which can be read independently of the discussion here.

Then in 1.2.3 and 1.2.4 we describe, similarly in a leisurely manner, the intrinsic notions of cohomology
and geometric homotopy in an∞-topos. Several aspects of the discussion are fairly well-known, we put them
in the general perspective of (cohesive) ∞-topos theory and then go beyond.

Finally in 1.2.5 we indicate how the combination of the intrinsic cohomology and geometric homotopy in
a locally ∞-connected ∞-topos yields an intrinsic notion of differential cohomology in an ∞-topos.

• 1.2.1 – Toposes;

• 1.2.2 – ∞-Toposes;

• 1.2.3 – Cohomology;

• 1.2.4 – Homotopy;

• 1.2.5 – Differential cohomology.

Each of these topics surveyed here are discussed in technical detail below in 3.

1.2.1 Toposes

There are several different perspectives on the notion of topos. One is that a topos is a category that looks
like a category of spaces that sit by local homeomorphisms over a given base space: all spaces that are locally
modeled on a given base space.

The archetypical class of examples are sheaf toposes over a topological space X denoted Sh(X). These
are equivalently categories of étale spaces over X: topological spaces Y that are equipped with a local
homeomorphisms Y → X. When X = ∗ is the point, this is just the category Set of all sets: spaces that are
modeled on the point. This is the archetypical topos itself.

What makes the notion of toposes powerful is the following fact: even though the general topos contains
objects that are considerably different from and possibly considerably richer than plain sets and even richer
than étale spaces over a topological space, the general abstract category theoretic properties of every topos
are essentially the same as those of Set. For instance in every topos all small limits and colimits exist and
it is cartesian closed (even locally). This means that a large number of constructions in Set have immediate
analogs internal to every topos, and the analogs of the statements about these constructions that are true
in Set are true in every topos.

This may be thought of as saying that toposes are very nice categories of spaces in that whatever
construction on spaces one thinks of – for instance formation of quotients or of intersections or of mapping
spaces – the resulting space with the expected general abstract properties will exist in the topos. In this
sense toposes are convenient categories for geometry - as in: convenient category of topological spaces, but
even more convenient than that.

On the other hand, we can de-emphasize the role of the objects of the topos and instead treat the topos
itself as a ”generalized space” (and in particular, a categorified space). We then consider the sheaf topos
Sh(X) as a representative of X itself, while toposes not of this form are “honestly generalized” spaces. This
point of view is supported by the fact that the assignment X 7→ Sh(X) is a full embedding of (sufficiently
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nice) topological spaces into toposes, and that many topological properties of a space X can be detected at
the level of Sh(X).

Here we are mainly concerned with toposes that are far from being akin to sheaves over a topological
space, and instead behave like abstract fat points with geometric structure. This implies that the objects of
these toposes are in turn generalized spaces modeled locally on this geometric structure. Such toposes are
called gros toposes or big toposes. There is a formalization of the properties of a topos that make it behave
like a big topos of generalized spaces inside of which there is geometry: this is the notion of cohesive toposes.

1.2.1.1 Sheaves More concretely, the idea of sheaf toposes formalizes the idea that any notion of space
is typically modeled on a given collection of simple test spaces. For instance differential geometry is the
geometry that is modeled Cartesian spaces Rn, or rather on the category C = CartSp of Cartesian spaces
and smooth functions between them.

A presheaf on such C is a functor X : Cop → Set from the opposite category of C to the category of
sets. We think of this as a rule that assigns to each test space U ∈ C the set X(U) :=: Maps(U,X) of
structure-preserving maps from the test space U into the would-be space X - the probes of X by the test
space U . This assignment defines the generalized space X modeled on C. Every category of presheaves
over a small category is an example of a topos. But these presheaf toposes, while encoding the geometry
of generalized spaces by means of probes by test spaces in C fail to correctly encode the topology of these
spaces. This is captured by restricting to sheaves among all presheaves.

Each test space V ∈ C itself specifies presheaf, by forming the hom-sets Maps(U, V ) := HomC(U, V ) in
C. This is called the Yoneda embedding of test spaces into the collection of all generalized spaces modeled
on them. Presheaves of this form are the representable presheaves. A bit more general than these are the
locally representable presheaves: for instance on C = CartSp this are the smooth manifolds X ∈ SmoothMfd,
whose presheaf-rule is Maps(U,X) := HomSmoothMfd(U,X). By definition, a manifold is locally isomorphic
to a Cartesian space, hence is locally representable as a presheaf on CartSp.

These examples of presheaves on C are special in that they are in fact sheaves: the value of X on a test
space U is entirely determined by the restrictions to each Ui in a cover {Ui → U}i∈I of the test space U by
other test spaces Ui. We think of the subcategory of sheaves Sh(C) ↪→ PSh(C) as consisting of those special
presheaves that are those rules of probe-assignments which respect a certain notion of ways in which test
spaces U, V ∈ C may glue together to a bigger test space.

One may axiomatize this by declaring that the collections of all covers under consideration forms what
is called a Grothendieck topology on C that makes C a site. But of more intrinsic relevance is the equivalent
fact that categories of sheaves are precisely the subtoposes of presheaves toposes

Sh(C)
oo L
� � // PSh(C) [Cop,Set] ,

meaning that the embedding Sh(X) ↪→ PSh(X) has a left adjoint functor L that preserves finite limits.
This may be taken to be the definition of Grothendieck toposes. The left adjoint is called the sheafification
functor. It is determined by and determines a Grothendieck topology on C.

For the choice C = CartSp such is naturally given by the good open cover coverage, which says that a
bunch of maps {Ui → U} in C exhibit the test object U as being glued together from the test objects {Ui}
if these form a good open cover of U . With this notion of coverage every smooth manifold is a sheaf on
CartSp.

But there are important genenralized spaces modeled on CartSp that are not smooth manifolds: topo-
logical spaces for which one can consistently define which maps from Cartesian spaces into them count
as smooth in a way that makes this assignment a sheaf on CartSp, but which are not necessarily locally
isomorphic to a Cartsian space: these are called diffeological spaces. A central example of a space that is
naturally a diffeological space but not a finite dimensional manifold is a mapping space [Σ, X] of smooth
functions between smooth manifolds Σ and X: since the idea is that for U any Cartesian space the smooth
U -parameterized families of points in [Σ, X] are smooth U -parameterized families of smooth maps Σ→ X,
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we can take the plot-assigning rule to be

[Σ, X] : U 7→ HomSmoothMfd(Σ× U,X) .

It is useful to relate all these phenomena in the topos Sh(C) to their image in the archetypical topos Set.
This is simply the category of sets, which however we should think of here as the category Set ' Sh(∗) of
sheaves on the category ∗ which contains only a single object and no nontrivial morphism: objects in here
are generalized spaces modeled on the point. All we know about them is how to map the point into them,
and as such they are just the sets of all possible such maps from the point.

Every category of sheaves Sh(C) comes canonically with an essentially unique topos morphism to the
topos of sets, given by a pair of adjoint functors

Sh(C)
Γ
//

ooDisc
Sh(∗) ' Set .

Here Γ is called the global sections functor. If C has a terminal object ∗, then it is given by evaluation
on that object: the functor Γ sends a plot-assigning rule X : Cop → Set to the set of plots by the point
Γ(X) = X(∗). For instance in C = CartSp the terminal object exists and is the ordinary point ∗ = R0. If
X ∈ Sh(C) is a smooth manifold or diffeological space as above, then Γ(X) ∈ Set is simply its underlying
set of points. So the functor Γ can be thought of as forgetting the cohesive structure that is given by the
fact that our generalized spaces are modeled on C. It remembers only the underlying point-set.

Conversely, its left adjoint functor Disc takes a set S to the sheafification Disc(S) = LConst(S) of the
constant presheaf Const : U 7→ S, which asserts that the set of its plots by any test space is always the
same set S. This is the plot-rule for the discrete space modeled on C given by the set S: a plot has to be a
constant map of the test space U to one of the elements s ∈ S. For the case C = CartSp this interpretation
is literally true in the familiar sense: the generalized smooth space Disc(S) is the discrete smooth manifold
or discrete diffeological space with point set S.

1.2.1.2 Concrete and non-concrete sheaves The examples for generalized spaces X modeled on C
that we considered so far all had the property that the collection of plots U → X into them was a subset of
the set of maps of sets from U to their underlying set Γ(X) of points. These are called concrete sheaves. Not
every sheaf is concrete. The concrete sheaves form a subcategory inside the full topos which is itself almost,
but not quite a topos: it is the quasitopos of concrete objects.

Conc(C)
oo
� � // Sh(C) .

Non-concrete sheaves over C may be exotic as compared to smooth manifolds, but they are still usefully
regarded as generalized spaces modeled on C. For instance for n ∈ N there is the sheaf κ(n,R) given by
saying that plots by U ∈ CartSp are identified with closed differential n-forms on U :

κ(n,R) : U 7→ Ωncl(U) .

This sheaf describes a very non-classical space, which for n ≥ 1 has only a single point, Γ(κ(n,R)) = ∗ , only
a single curve, a single surface, etc., up to a single (n−1)-dimensional probe, but then it has a large number
of n-dimensional probes. Despite the fact that this sheaf is very far in nature from the test spaces that it is
modeled on, it plays a crucial and very natural role: it is in a sense a model for an Eilenberg-MacLane space
K(n,R). We shall see in 4.4.11 that these sheaves are part of an incarnation of the ∞-Lie-algebra bnR and
the sense in which it models an Eilenberg-MacLane space is that of Sullivan models in rational homotopy
theory. In any case, we want to allow ourselves to regard non-concrete objects such as κ(n,R) on the same
footing as diffeological spaces and smooth manifolds.
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1.2.2 ∞-Toposes

While therefore a general object in the sheaf topos Sh(C) may exhibit a considerable generalization of the
objects U ∈ C that it is modeled on, for many natural applications this is still not quite general enough: if
for instance X is a smooth orbifold (see for instance [MoPr97]), then there is not just a set, but a groupoid
of ways of probing it by a Cartesian test space U : if a probe γ : U → X is connected by an orbifold
transformation to another probe γ′ : U → X, then this constitutes a morphism in the groupoid X(U) of
probes of X by U .

Even more generally, there may be a genuine∞-groupoid of probes of the generalized space X by the test
space U : a set of probes with morphisms between different probes, 2-morphisms between these 1-morphisms,
and so on.

Such structures are described in ∞-category theory : where a category has a set of morphisms between
any two objects, an ∞-category has an ∞-grouopoid of morphisms, whose compositions are defined up to
higher coherent homotopy. The theory of ∞-categories is effectively the combination of category theory
and homotopy theory. The main fact about it, emphasized originally by André Joyal and then further
developed in [LuHTT], is that it behaves formally entirely analously to category theory: there are notions
of ∞-functors, ∞-limits, adjoint ∞-functors etc., that satisfy all the familiar relations from category theory.

1.2.2.1 ∞-Groupoids We first look at bare ∞-groupoids and then discuss how to equip these with
smooth structure.

An ∞-groupoid is first of all supposed to be a structure that has k-morphisms for all k ∈ N, which for
k ≥ 1 go between (k−1)-morphisms. A useful tool for organizing such collections of morphisms is the notion
of a simplicial set. This is a functor on the opposite category of the simplex category ∆, whose objects are
the abstract cellular k-simplices, denoted [k] or ∆[k] for all k ∈ N, and whose morphisms ∆[k1]→ ∆[k2] are
all ways of mapping these into each other. So we think of such a simplicial set given by a functor

K : ∆op → Set

as specifying

• a set [0] 7→ K0 of objects;

• a set [1] 7→ K1 of morphisms;

• a set [2] 7→ K2 of 2-morphisms;

• a set [3] 7→ K3 of 3-morphisms;

and generally

• a set [k] 7→ Kk of k-morphisms.

as well as specifying

• functions ([n] ↪→ [n+ 1]) 7→ (Kn+1 → Kn) that send n+ 1-morphisms to their boundary n-morphisms;

• functionss ([n + 1] → [n]) 7→ (Kn → Kn+1) that send n-morphisms to identity (n + 1)-morphisms on
them.

The fact that K is supposed to be a functor enforces that these assignments of sets and functions satisfy
conditions that make consistent our interpretation of them as sets of k-morphisms and source and target
maps between these. These are called the simplicial identities. But apart from this source-target matching,
a generic simplicial set does not yet encode a notion of composition of these morphisms.
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For instance for Λ1[2] the simplicial set consisting of two attached 1-cells

Λ1[2] =


1

��
0

@@

2


and for (f, g) : Λ1[2] → K an image of this situation in K, hence a pair x0

f→ x1
g→ x2 of two composable

1-morphisms in K, we want to demand that there exists a third 1-morphisms in K that may be thought of

as the composition x0
h→ x2 of f and g. But since we are working in higher category theory, we want to

identify this composite only up to a 2-morphism equivalence

x1

g

!!
x0

f
==

h
// x2

'��
.

From the picture it is clear that this is equivalent to demanding that for Λ1[2] ↪→ ∆[2] the obvious inclusion
of the two abstract composable 1-morphisms into the 2-simplex we have a diagram of morphisms of simplicial
sets

Λ1[2]
(f,g) //

��

K

∆[2]

∃h

== .

A simplicial set where for all such (f, g) a corresponding such h exists may be thought of as a collection of
higher morphisms that is equipped with a notion of composition of adjacent 1-morphisms.

For the purpose of describing groupoidal composition, we now want that this composition operation has
all inverses. For that purpose, notice that for

Λ2[2] =


1

��
0

@@

2


the simplicial set consisting of two 1-morphisms that touch at their end, hence for

(g, h) : Λ2[2]→ K

two such 1-morphisms in K, then if g had an inverse g−1 we could use the above composition operation to
compose that with h and thereby find a morphism f connecting the sources of h and g. This being the case
is evidently equivalent to the existence of diagrams of morphisms of simplicial sets of the form

Λ2[2]
(g,h) //

��

K

∆[2]

∃f

== .

Demanding that all such diagrams exist is therefore demanding that we have on 1-morphisms a composition
operation with inverses in K.

In order for this to qualify as an∞-groupoid, this composition operation needs to satisfy an associativity
law up to 2-morphisms, which means that we can find the relevant tetrahedra in K. These in turn need to
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be connected by pentagonators and ever so on. It is a nontrivial but true and powerful fact, that all these
coherence conditions are captured by generalizing the above conditions to all dimensions in the evident way:

let Λi[n] ↪→ ∆[n] be the simplicial set – called the ith n-horn – that consists of all cells of the n-simplex
∆[n] except the interior n-morphism and the ith (n− 1)-morphism.

Then a simplicial set is called a Kan complex , , if for all images f : Λi[n]→ K of such horns in K, the
missing two cells can be found in K – in that we can always find a horn filler σ in the diagram

Λi[n]
f //

��

K

∆[n]

∃σ

== .

The basic example is the nerve N(C) ∈ sSet of an ordinary groupoid C, which is the simplicial set with
N(C)k being the set of sequences of k composable morphisms in C. The nerve operation is a full and faithful
functor from 1-groupoids into Kan complexes and hence may be thought of as embedding 1-groupoids in the
context of general ∞-groupoids.

Groupoids
I i

vv

� v

N

))
Categories� u

N

((

KanComplexes
hH

uu
QuasiCategories� _

��

' ∞-Categories

SimplicialSets

But we need a bit more than just bare ∞-groupoids. In generalization to Lie groupoids, we need smooth
∞-groupoids. A useful way to encode that an ∞-groupoid has extra structure modeled on geometric test
objects that themselves form a category C is to remember the rule which for each test space U in C produces
the ∞-groupoid of U -parameterized families of k-morphisms in K. For instance for a smooth ∞-groupoid
we could test with each Cartesian space U = Rn and find the ∞-groupoids K(U) of smooth n-parameter
families of k-morphisms in K.

This data of U -families arranges itself into a presheaf with values in Kan complexes

K : Cop → KanCplx ↪→ sSet ,

hence with values in simplicial sets. This is equivalently a simplicial presheaf of sets. The functor category
[Cop, sSet] on the opposite category of the category of test objects C serves as a model for the ∞-category
of ∞-groupoids with C-structure.

While there are no higher morphisms in this functor 1-category that could for instance witness that two
∞-groupoids are not isomorphic, but still equivalent, it turns out that all one needs in order to reconstruct
all these higher morphisms (up to equivalence!) is just the information of which morphisms of simplicial
presheaves would become invertible if we were keeping track of higher morphism. These would-be invertible

morphisms are called weak equivalences and denoted K1
'→ K2.

For common choices of C there is a well-understood way to define the weak equivalencesW ⊂ Mor[Cop, sSet],
and equipped with this information the category of simplicial presheaves becomes a category with weak equiv-
alences. There is a well-developed but somewhat intricate theory of how exactly this 1-cagtegorical data
models the full higher category of structured groupoids that we are after, but for our purposes here we
essentially only need to work inside the category of fibrant objects of a model structure on presheaves, which
in practice amounts to the fact that we use the following three basic constructions:
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1. ∞-anafunctors –

2. ∞-anafunctor A morphisms X → Y between ∞-groupoids with C-structure is not just a morphism
X → Y in [Cop, sSet], but is a span of such ordinary morphisms

X̂ //

'
��

Y

X

,

where the left leg is a weak equivalence. This is sometimes called an ∞-anafunctor from X to Y .

3. homotopy pullback – For A → B
p← C a diagram, the ∞-pullback of it is the ordinary pullback in

[Cop, sSet] of a replacement diagram A → B
p̂← Ĉ, where p̂ is a good replacement of p in the sense of

the following factorization lemma.

4.

Proposition 1.2.1 (factorization lemma). For p : C → B a morphism in [Cop, sSet], a good replacement
p̂ : Ĉ → B is given by the composite vertical morphism in the ordinary pullback diagram

Ĉ //

��

C

p

��
B∆[1] //

��

B

B

,

where B∆[1] is the path object of B: the presheaf that is over each U ∈ C the simplicial path space B(U)∆[1].

1.2.2.2 ∞-Sheaves / ∞-stacks In particular, there is a notion of ∞-presheaves on a category (or
∞-category) C: ∞-functors

X : Cop →∞Grpd

to the ∞-category ∞Grpd of ∞-groupoids – there is an ∞-Yoneda embedding, and so on. Accordingly,
∞-topos theory proceeds in its basic notions along the same lines as we sketched above for topos theory:

an ∞-topos of ∞-sheaves is defined to be a reflective sub-∞-category

Sh(∞,1)(C)
oo L
� � // PSh(∞,1)(C)

of an∞-category of∞-presheaves. As before, such is essentially determined by and determines a Grothendieck
topology or coverage on C. Since a 2-sheaf with values in groupoids is usually called a stack, an ∞-sheaf is
often also called an ∞-stack.

In the spirit of the above discussion, the objects of the ∞-topos of ∞-sheaves on C = CartSp we shall
think of as smooth ∞-groupoids. This is our main running example. We shall write Smooth∞Grpd :=
Sh∞(CartSp) for the ∞-topos of smooth ∞-groupoids.

Let

• C := SmthMfd be the category of all smooth manifolds (or some other site, here assumed to have
enough points);

• gSh(C) be the category of groupoid-valued sheaves over C,

for instance X = { X //// X },BG = { G //// ∗ } ∈ gSh(C);
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• HogSh(C) the homotopy category obtained by universally turning the stalkwise groupoid-equivalences
into isomorphisms.

Fact: H1(X,G) ' HogSh(C)(X,BG).

• sSet(C)lfib ↪→ Sh(C, sSet) be the stalkwise Kan simplicial sheaves;

• LW sSh(C)lfib the simplicial localization obtained by universally turning stalkwise homotopy equiva-
lences into homotopy equivalences.

Definition/Theorem. This is the ∞-category theory analog of the sheaf topos over C, the ∞-stack ∞-
topos: H := Sh∞(C) ' LW sSh(C)lfib.
Example. Smooth∞Grpd := Sh∞(SmthMfd) is the ∞-topos of smooth ∞-groupoids.
Proposition. Every object in Smooth∞Grpd is presented by a simplicial manifold, but not necessarily by
a locally Kan simplicial manifold (see below).

But a crucial point of developing our theory in the language of ∞-toposes is that all constructions work
in great generality. By simply passing to another site C, all constructions apply to the theory of generalized
spaces modeled on the test objects in C. Indeed, to really capture all aspects of ∞-Lie theory, we should
and will adjoin to our running example C = CartSp that of the slightly larger site C = CartSpsynthdiff of
infinitesimally thickened Cartesian spaces. Ordinary sheaves on this site are the generalized spaces considered
in synthetic differential geometry : these are smooth spaces such as smooth loci that may have infinitesimal
extension. For instance the first order jet D ⊂ R of the origin in the real line exists as an infinitesimal
space in Sh(CartSpsynthdiff). Accordingly, ∞-groupoids modeled on CartSpsynthdiff are smooth ∞-groupoids
that may have k-morphisms of infinitesimal extension. We will see that a smooth ∞-groupoid all whose
morphisms has infinitesimal extension is a Lie algebra or Lie algebroid or generally an ∞-Lie algebroid.

While ∞-category theory provides a good abstract definition and theory of ∞-groupoids modeled on
test objects in a category C in terms of the ∞-category of ∞-sheaves on C, for concrete manipulations it is
often useful to have a presentation of the ∞-categories in question in terms of generators and relations in
ordinary category theory. Such a generators-and-relations-presentation is provided by the notion of a model
category structure. Specifically, the ∞-toposes of ∞-presheaves that we are concerned with are presented in
this way by a model structure on simplicial presheaves, i.e. on the functor category [Cop, sSet] from C to the
category sSet of simplicial sets. In terms of this model, the corresponding ∞-category of ∞-sheaves is given
by another model structure on [Cop, sSet], called the left Bousfield localization at the set of covers in C.

These models for ∞-stack ∞-toposes have been proposed, known and studied since the 1970s and are
therefore quite well understood. The full description and proof of their abstract role in ∞-category theory
was established in [LuHTT].

As before for toposes, there is an archetypical∞-topos, which is∞Grpd = Sh(∞,1)(∗) itself: the collection
of generalized ∞-groupoids that are modeled on the point. All we know about these generalized spaces is
how to map a point into them and what the homotopies and higher homotopies of such maps are, but
no further extra structure. So these are bare ∞-groupoids without extra structure. Also as before, every
∞-topos comes with an essentially unique geometric morphism to this archetypical ∞-topos given by a pair
of adjoint ∞-functors

Sh(∞,1)(C)
ooDisc

Γ
// ∞Grpd .

Again, if C happens to have a terminal object ∗, then Γ is the operation that evaluates an ∞-sheaf on
the point: it produces the bare ∞-groupoid underlying an ∞-groupoid modeled on C. For instance for
C = CartSp a smooth ∞-groupoid X ∈ Sh(∞,1)(C) is sent by Γ to to the underlying ∞-groupoid that
forgets the smooth structure on X.

Moreover, still in direct analogy to the 1-categorical case above, the left adjoint Disc is the ∞-functor
that sends a bare ∞-groupoid S to the ∞-stackification DiscS = LConstS of the constant ∞-presheaf on S.
This models the discretely structured∞-groupoid on S. For instance for C = CartSp we have that DiscS is a
smooth∞-groupoid with discrete smooth structure: all smooth families of points in it are actually constant.
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1.2.2.3 Structured∞-Groups It is clear that we may speak of group objects in any topos, (or generally
in any category with finite products): objects G equipped with a multiplication G ×G → G and a neutral
element ∗ → G such that the multiplication is unital, associative and has inverses for each element. In a
sheaf topos, such a G is equivalently a sheaf of groups. For instance every Lie group canonically becomes a
group object in Sh(CartSp).

As we pass to an ∞-topos the situation is essentially the same, only that the associativity condition is
replaced by associativity up to coherent homotopy (also called: up to strong homotopy), and similarly for
the unitalness and the existence of inverses. One way to formalize this is to say that a group object in an
∞-topos H is an A∞-algebra object G such that its 0-truncation τ0G is a group object in the underlying
1-topos. (This is discussed in [Lur11].)

For instance in the ∞-topos over CartSp a Lie group still naturally is a group object, but also a Lie
2-group or differentiable group stack is. Moreover, every sheaf of simplicial groups presents a group object
in the ∞-topos, and we will see that all group objects

A group object in ∞Grpd ' Top we will for emphasis call an ∞-group. In this vein a group object in
an ∞-topos over a non-trivial site is a structured ∞-group (for instance a topological ∞-group or a smooth
∞-group).

A classical source of ∞-groups are loop spaces, where the group multiplication is given by concatenation
of based loops in a given space, the homotopy-coherent associativity is given by reparameterizations of
concatenations of loops, and inverses are given by reversing the parameterization of a loop. A classical
result of Milnor says, in this language, that every ∞-group arises as a loop space this way. This statement
generalizes from discrete ∞-groups (group objects in ∞Grpd ' Top) to structured ∞-groups.
Theorem. (Milnor-Lurie) There is an equivalence

{ groups in H }
oo looping Ω

delooping B

' //

{
pointed connected

objects in H

}

This equivalence is a most convenient tool. In the following we will almost exclusively handle ∞-groups G
in terms of their pointed connected delooping objects BG. We discuss this in more detail below in 3.3.6.
This is all the more useful as the objects BG happen to be the moduli ∞-stacks of G-principal ∞-bundles.
We come to this in 1.2.3.2.

1.2.3 Cohomology

Where the archetypical topos is the category Set, the archetypical ∞-topos is the ∞-category ∞Grpd of
∞-groupoids. This, in turn, is equivalent by a classical result (see 4.1) to Top, the category of topological
spaces, regarded as an ∞-category by taking the 2-morphisms to be homotopies between continuous maps,
3-morphisms to be homotopies of homotopy, and so forth:

∞Grpd ' Top .

In Top it is familiar – from the notion of classifying spaces and from the Brown representability theorem
(the reader in need of a review of such matter might try [May]) – that the cohomology of a topological space
X may be identified as the set of homotopy classes of continuous maps from X to some coefficient space A

H(X,A) := π0Top(X,A) .

For instance for A = K(n,Z) ' BnZ the topological space called the nth Eilenberg-MacLane space of the
additive group of integers, we have that

H(X,A) := π0Top(X,BnZ) ' Hn(X,Z)

is the ordinary integral (singular) cohomology of X. Also nonabelian cohomology is famously exhibited this
way: for G a (possibly nonabelian) topological group and A = BG its classifying space (we discuss this
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construction and its generalization in detail in 4.3.4.2) we have that

H(X,A) := π0Top(X,BG) ' H1(X,G)

is the degree-1 nonabelian cohomology of X with coeffients in G, which classifies G-principal bundles over
X (more on that in a moment).

Since this only involves forming∞-categorical hom-spaces and since this is an entirely categorical opera-
tion, it makes sense to define for X, A any two objects in an arbitrary ∞-topos H the intrinsic cohomology
of X with coefficients in A to be

H(X,A) := π0H(X,A) ,

where H(X,A) denotes the ∞-groupoid of morphism from X to A in H. This general identification of
cohomology with hom-spaces in∞-toposes is central to our developments here. We indicate now two classes
of justification for this definition.

1. Essentially every notion of cohomology already considered in the literature is an example of this
definition. Moreover, those that are not are often improved on by fixing them to become an example.

2. The use of a good notion of G-cohomology on X should be that it classifies “G-structures over X” and
exhibits the obstruction theory for extensions or lifts of such structures. We find that it is precisely the
context of an ambient ∞-topos (precisely: the ∞-Giraud axioms that characterize an ∞-topos) that
makes such a classification and obstruction theory work.

1.2.3.1 Equivariant structured nonabelian twisted generalized cohomology We discuss a list
examples of ∞-toposes H together with notions of cohomology whose cocycles are given by morphisms
c ∈ H(X,A) between a domain object X and coefficient object A in this ∞-topos. Some of these examples
are evident and classical, modulo our emphasis on the ∞-topos theoretic perspective, others are original.
Even those cases that are classical receive new information from the ∞-topos theoetic perspective.

Details are below in the relevant parts of 4 and 5.

In view of the unification that we discuss, some of the traditional names for notions of cohomology are a
bit suboptimal. For instance the term generalized cohomology for theories satisfying the Eilenberg-Steenrod
axioms does not well reflect that it is a generalization of ordinary cohomology of topological spaces (only)
which is, in a quite precise sense, orthogonal to the generalizations given by passage to sheaf cohomology or
to nonabelian cohomology, all of which are subsumed by cohomology in an ∞-topos. In order to usefully
distinguish the crucial aspects here we will use the following terminology

• We speak of structured cohomology to indicate that a given notion is realized in an∞-topos other than
the archetypical ∞Grpd ' Top (which representes “discrete structre” in the precise sense discussed in
4.1). Hence traditional sheaf cohomology is “structured” in this sense, while ordinary cohomology and
Eilenberg-Steenrod cohomology is “unstructured”.

• We speak of nonabelian cohomology when coefficient objects are not required to be abelian (groups) or
stable (spectra), but may generally be deloopings A := BG of arbitrary (structred) ∞-groups G.

More properly this might be called not-necessarily abelian cohomology, but following common practice
(as in “noncommutative geometry”) we stick with the slightly imprecise but shorter term. One point
that we will dwell on (see the discussion of examples in 5.4) is that the traditional notion of twisted
cohomology (already twisted abelian cohomology) is naturally a special case of nonabelian cohomology.

Notice that the “generalized” in “generalized cohomology” of Eilenberg-Steenrod type refers to allowing
coefficient objects which are abelian ∞-groups more general than Eilenberg-MacLane objects. Hence this is
in particular subsumed in nonabelian cohomology.

In this terminology, the notion of cohomology in∞-toposes that we are concerned with here is structured
nonabelian/twisted generalized cohomology.
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Finally, not only is it natural to allow the coefficient objects A to be general objects in a general∞-topos,
but also there is no reason to restrict the nature of the domain objects X. For instance traditional sheaf
cohomology always takes X, in our language, to be the terminal object X = ∗ of the ambient∞-topos. This
is also called the (-2)-truncated object (see 3.3.1 below) of the ∞-topos, being the unique member of the
lowest class in a hierarchy of n-truncated objects for (−2) ≤ n ≤ ∞. As we increase n here, we find that the
domain object is generalized to

• n = −1: subspaces of X;

• n = 0: étale spaces over X;

• n = 1: orbifolds / orbispaces / groupoids over X;

• n ≥ 2: higher orbifolds / orbispaces / groupoids

One finds then that cohomology of an n-truncated object for n ≥ 1 reproduces the traditional notion
of equivariant cohomology. In particular this subsumes group cohomology : ordinary group cohomology in
the unstructured case (in H = ∞Grpd) and generally structured group cohomology such as Lie group
cohomology.

Therefore, strictly speaking, we are here concerned with equivariant structured nonabelian/twisted gener-
alized cohomology. All this is neatly encapsulated by just the fundamental notion of hom-spaces in∞-toposes.

1.2.3.1.1 Cochain cohomology The origin and maybe the most elementary notion of cohomology
is that appearing in homological algebra: given a cochain complex of abelian groups

V • =

[
· · · oo d

2

V2
oo d

1

V0
oo d

0

V0

]
,

its cohomology group in degree n is defined to be the quotient group

Hn(V ) := ker(dn)/im(dn−1) .

To see how this is a special case of cohomology in an∞-topos, consider a fixed abelian group A and suppose
that this cochain complex is the A-dual of a chain complex

V• =

[
· · · // V2

∂2 // V1
∂1 // V0

]
,

in that V • = HomAb(V•, A). For instance if A = Z and Vn is the free abelian group on the set of n-simplices
in some topological space, then V n is the group of singular n-cochains on X.

Write then A[n] (or A[−n], if preferred) for the chain complex concentrated in degree n on A. In terms
of this

1. morphisms of chain complexes c : V• → A[n] are in natural bijection with closed elements in V n, hence
with ker(dn);

2. chain homotopies η : c1 → c2 between two such chain morphisms are in natural bijection with elements
in im(dn−1).

This way the cohomology group Hn(V •) is naturally identified with the homotopy classes of maps V• → A[n].
Consider then again an example as that of singular cochains as above, where V• is degreewise a free

abelian group in a simplicial set X. Then this cohomology is the group of connected components of a hom-
space in an ∞-topos. To see this, one observes that the category of chain complexes Ch• is but a convenient
presentation for the category of ∞-groupoids that are equipped with strict abelian group structure in their
incarnation as Kan complexes: simplicial abelian groups. This equivalence Ch• ' sAb is known as the
Dold-Kan correspondence, to be discussed in more detail in 2.2.4. We write Ξ(V•) for the Kan complex
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corresponding to a chain complex under this equivalence. Moreover, for chain complexes of the form A[n]
we write

BnA := Ξ(A[n]) .

With this notation, the ∞-groupoid of chain maps V• → A[n] is equivalently that of ∞-functors X → BnA
and hence the cochain cohomology of V • is

Hn(V •) ' π0H(X,BnA) .

1.2.3.1.2 Ordinary cohomology of topological spaces (...)

1.2.3.1.3 Group cohomology (...)

1.2.3.1.4 Generalized cohomology (Eilenberg-Steenrod type) (...)

1.2.3.1.5 Sheaf cohomology (traditional abelian) (...)

1.2.3.1.6 Orbifold cohomology (...)

1.2.3.1.7 Lie group cohomology There are some definitions in the literature of cohomology theories
that are not special cases of this general concept, but in these cases it seems that the failure is with the
traditional definition, not with the above notion. We will be interested in particular in the group cohomology
of Lie groups. Originally this was defined using a naive direct generalization of the formula for bare group
cohomology as

Hn
naive(G,A) = {smooth maps G×n → A}/ ∼ .

But this definition was eventually found to be too coarse: there are structures that ought to be cocycles on
Lie groups but do not show up in this definition. Graeme Segal therefore proposed a refined definition that
was later rediscovered by Jean-Luc Brylinski, called differentiable Lie group cohomology Hn

diffbl(G,A). This
refines the naive Lie group cohomology in that there is a natural morphism Hn

naive(G,A)→ Hn
diffbl(G,A).

But in the ∞-topos of smooth ∞-groupoids H = Sh∞(CartSp) we have the natural intrinsic definition
of Lie group cohomology as

Hn
Smooth(G,A) := π0H(BG,BnA)

and one finds that this naturally includes the Segal/Brylinski definition

Hn
naive(G,A)→ Hn

diffrbl(G,A)→ Hn
Smooth(G,A) := π0H(BG,BnA) .

and at least for A a discrete group, or the group of real numbers or a quotient of these such as U(1) = R/Z,
the notions coincide

Hn
diffrbl(G,A) ' Hn

Smooth(G,A) .

Details on this discussion about refined Lie group cohomology are below in 4.4.5.2.
For instance one of the crucial aspects of the notion of cohomology is that a cohomology class on X

classifies certain structures over X.
It is a classical fact that if G is a (discrete) group and BG its delooping in Top, then the structure

classified by a cocycle g : X → BG is the G-principal bundle over X obtained as the 1-categorical pullback
P → X

P //

��

EG

��
X

g // BG
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of the universal G-principal bundle EG → BG. But one finds that this pullback construction is just a
1-categorical model for what intrinsically is something simpler: this is just the homotopy pullback in Top of
the point

P //

��

∗

��
X

g
// BG

'
|�

This form of the construction of the G-principal bundle classified by a cocycle makes sense in any ∞-topos
H:

we shall say that for G ∈ H a group object in H and BG its delooping and for g : X → BG a cocycle
(any morphism in H) that the G-principal ∞-bundle classified by g is the ∞-pullback/homotopy pullback

P //

��

∗

��
X

g
// BG

'
|�

in H. (Beware that usually we will notationally suppress the homotopy filling this square diagram.)
Let G be a Lie group and X a smooth manifold, both regarded naturally as objects in the ∞-topos of

smooth ∞-groupoids. Let g : X → BG be a morphism in H. One finds that in terms of the presentation
of Smooth∞Grpd by the model structure on simplicial presheaves this is a Čech 1-cocycle on X with values
in G. The corresponding ∞-pullback P is (up to equivalence or course) the smooth G-principal bundle
classified in the usual sense by this cocycle.

The analogous proposition holds for G a Lie 2-group and P a G-principal 2-bundle.
Generally, we can give a natural definition of G-principal∞-bundle in any∞-topos H over any∞-group

object G ∈ H. One finds that it is the Giraud axioms that characterize∞-toposes that ensure that these are
equivalently classified as the ∞-bullbacks of morphisms g : X → BG. Therefore the intrinsic cohomology

H(X,G) := π0H(X,BG)

in H classifies G-principal ∞-bundles over X. Notice that X here may itself be any object in H.

1.2.3.1.8 Nonabelian cohomology of topological spaces (...)

1.2.3.1.9 Nonabelian sheaf cohomology (...)

1.2.3.1.10 Twisted cohomology (...)

1.2.3.1.11 Differential cohomology (...)

1.2.3.1.12 Crystalline cohomology (...)

1.2.3.2 Higher fiber bundles We indicate here the natural notion of principal bundle in an ∞-topos
and how it relates to the intrinsic notion of cohomology discussed above.

1.2.3.2.1 Ordinary principal bundles For G a group, a G-principal bundle over some space X
is, roughly, a space P → X over X, which is equipped with a G-action over X that is fiberwise free and
transitive (“principal”), hence which after a choice of basepoint in a fiber looks there like the canonical
action of G on itself. A central reason why the notion of G-principal bundles is relevant is that it consistutes
a “geometric incarnation” of the degree-1 (nonabelian) cohomology H1(X,G) of X with coefficients in G
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(with G regarded as the sheaf of G-valued functions on G): G-principal bundles are classified by H1(X,G).
We will see that this classical statement is a special case of a natural and much more general fact, where
principal ∞-bundles incarnate cocycles in the intrinsic cohomology of any ∞-topos. Before coming to that,
here we briefly review aspects of the classical theory to set the scene.

Let G be a topological group and let X be a topological space.

Definition 1.2.2. A topological G-principal bundle over X is a continuous map p : P → X equipped with
a continuous fiberwise G-action ρ : P ×G→ G

P ×G
p1 �� ρ��
P
p��

X

which is locally trivial : there exists a cover φ : U → X and an isomorphism of topological G-spaces

P |U ' U ×G

between the restriction (pullback) of P to U and the trivial bundle U ×G→ U equipped with the canonical
G-action given by multiplication in G.

Observation 1.2.3. Let P → X be a topological G-principal bundle. An immediate consequence of the
definition is

1. The base space X is isomorphic to the quotient of P by the G-action, and, moreover, under this
identitfication P → X is the quotient projection P → P/G.

2. The principality condition is satisfied: the shear map

(p1, ρ) : P ×G→ P ×X P

is an isomorphism.

Remark 1.2.4. Sometimes the quotient property of principal bundles has been taken to be the defining
property. For instance [Cart50a, Cart50b] calls every quotient map P → P/G of a free topological group
action a “G-principal bundle”, without requiring it to be locally trivial. This is a strictly weaker definition:
there are many examples of such quotient maps which are not locally trivial. To distinguish the notions,
[Pa61] refers to the weaker definition as that of a Cartan principal bundle. Also for instance the standard
textbook [Hus94] takes the definition via quotient maps as fundamental and explicitly adds the adjective
“locally trivial” when necessary.

For our purposes the following two points are relevant.

1. Local triviality is crucial for the classification of topological G-principal bundles by nonabelian sheaf
cohomology to work, and so from this perspective a Cartan principal bundle may be pathological.

2. On the other hand, we see below that this problem is an artefact of considering G-principal bundles
in the ill-suited context of the 1-category of topological spaces or manifolds. We find below that after
embedding into an ∞-topos (for instance that of Euclidean topological ∞-groupoids, discussed in 4.3)
both definitions in fact coincide.

The reason is that the Yoneda embedding into the higher categorical context of an ∞-topos “corrects
the quotients”: those quotients of G-actions that are not locally trivial get replaced, while the “good
quotients” are being preserved by the embedding. This statement we make precise in 3.3.8.4 below.
See also the the discussion in 3.3.8.1 below.
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It is a classical fact that for X a manifold and G a topological or Lie group, regarded as a sheaf of groups
C(−, G) on X, there is an equivalence of the following kind

algebraic data on X geometric data on X{
degree-1 nonabelian
sheaf cohomology

}
'

{
isomorphism classes of

G-principal bundles over X

}
H1(X,G) GBund(X)

(x, j)

��

_

��

∗
gjk(x)

��
(x, i)

y

��

//

CC

(x, k)D

��

∗
gik(x)

//

gij(x)
HH

∗

x

� g //

X
g

cocycle
// BG


/∼

'



P ×G //

p1

��
ρ

��

EG×G

p1

��
ρ

��
G-actions

P //

��

EG

��

total spaces

pullback

X
|g|

// BG quotient spaces

G-principal
bundle classifying

map

universal
bundle


/∼

We give a detailed exposition of the construction indicated in this diagram below in 1.3.1.1.

1.2.3.2.2 Principal ∞-bundles Let now H be an ∞-topos, 1.2.2, and G a group object in H,
1.2.2.3. Up to the technical issue of formulating homotopy coherence, the formulation in H of the definition
of G-principal bundles, 1.2.3.2.1, in its version as Cartan G-principal bundle, remark 1.2.4, is immediate:
Definition. A G-principal bundle over X ∈ H is

• a morphism P → X; with an ∞-action ρ : P ×G→ P ;

• such that P → X is the ∞-quotient map P → P//G.

In 3.3.8 below we discuss a precise formulation of this definition and the details of the following central state-
ment about the relation between G-principal ∞-bundles and the intrinsic cohomology of H with coefficients
in the delooping object BG.

Theorem. There is equivalence of ∞-groupoids GBund(X)
lim
→

' //
oo hofib

H(X,BG) , where

1. hofib sends a cocycle X → BG to its homotopy fiber;

2. lim
−→

sends an ∞-bundle to the map on ∞-quotients X ' P//G→ ∗//G ' BG.

In particular, G-principal ∞-bundles are classified by the intrinsic cohomology of H

GBund(X)/∼ ' H1(X,G) := π0H(X,BG) .
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Idea of Proof. Repeatedly apply two of the
Giraud-Rezk-Lurie axioms
that characterize ∞-toposes:

1. every ∞-quotient is effective;
2. ∞-colimits are preserved

by ∞-pullbacks. �

...
...

P ×G×G //

�� �� ��

G×G

�� �� ��
P ×G //

p1

��
ρ

��

G

�� ��
G-∞-actions

P //

��

∗

��

total objects

∞-pullback

X
g

// BG quotient objects

G-principal
∞-bundle cocycle

universal
∞-bundle

This gives a general abstract theory of principal∞-bundles in every∞-topos. We also have the following
explicit presentation. Definition For G ∈ Grp(sSh(C)), and X ∈ sSh(C)lfib, a weakly G-principal simplicial
bundle is a G-action ρ over X such that the principality morphism (ρ, p1) : P ×G→ P ×X P is a stalkwise
weak equivalence.

Below in 3.3.8.4 we discuss that this construction gives a presentation of the ∞-groupoid of G-principal
bundles as the nerve of the ordinary category of weakly G-principal simplicial bundles.

Nerve

 weakly G-principal
simplicial bundles

over X

 ' GBund(X) .

For the special case that X is the terminal object over the site C and when restricted from cocycle ∞-
groupoids to sets of cohomology classes, this reproduces the statement of [JaLu04]. For our applications in
5, in particular for applications in twisted cohomology, 3.3.9, it is important to have the general statement,
where the base space of a principal ∞-bundle may be an arbitrary ∞-stack, and where we remember the
∞-groupoids of gauge transformations between them, instead of passing to their sets of equivalence classes.

The special case where the site C is trivial, C = ∗, leads to the notion of principal ∞-bundles in ∞Grp.
These are presented by certain bundles of simplicial sets. This we discuss below in 4.1.4.

1.2.3.2.3 Associated and twisted ∞-bundles The notion of G-principal bundle is a very special
case of the following natural more general notion. For any F , an F -fiber bundle over some X is a space
E → X over X such that there is a cover U → X over which it becomes equivalent as a bundle to the trivial
F -bundle U × F → U .

Principal bundles themselves form but a small subclass of all possible fiber bundles over some space
X. Even among G-fiber bundles the G-principal bundles are special, due to the constraint that the local
trivialization has to respect the G-action on the fibers. However, every F -fiber bundle is associated to a
G-principal bundle.

Given a representation ρ : F × G → F , the ρ-associated F -fiber bundle is the quotient P ×G F of the
product P × F by the diagonal G-action. Conversely, using that the automorphism group Aut(F ) of F
canonically acts on F , it is immediate that every F -fiber bundle is associated to an Aut(F )-principal bundle
(a statement which, of course, crucially uses the local triviality clause).

All of these constructions and statements have their straightforward generalizations to higher bundles,
hence to associated ∞-bundles. Moreover, just as the theory of principal bundles improves in the context of
∞-toposes, as discussed above, so does the theory of associated bundles.

For notice that by the above classification theorem of G-principal ∞-bundles, every G-∞-action ρ :
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V ×G→ G has a classifying map, which we will denote by the same symbol:

V // V//G

ρ

��
BG

.

One may observe now that this map V//G→ BG is the universal ρ-associated V -∞-bundle: for every F -fiber
∞-bundle E → X there is a morphism X → BG such that E → X is the ∞-pullback of this map to X.

E

��

// V//G

ρ

��
X

g // BG

.

One implication of this is, by the universal property of the ∞-pullback, that sections σ of the associated
bundle

E

��
X

σ

@@

are equivalently lifts of its classifying map through the universal ρ-associated bundle

ΓX(P ×G V ) :=


V//G

ρ

��
X

g //

σ
<<

BG

 .

One observes that by local triviality and by the fact that V is, by the above, the homotopy fiber of V//G→
BG, it follows that locally over a cover U → X such a section is identified with a V -valued map U → V .
Conversely, globally a section of a ρ-associated bundle may be regarded as a twisted V -valued function.

While this is an elementary and familiar statement for ordinary associated bundles, this is where the
theory of associated ∞-bundles becomes considerably richer than that of ordinary ∞-bundles: because here
V itself may be a higher stack, notably it may be a moduli ∞-stack V = BA for A-principal ∞-bundles. If
so, maps U → V classify A-principal ∞-bundles locally over the cover U of X, and so conversely the section
σ itself may globally be regarded as exhibiting a twisted A-principal ∞-bundle over X.

We can refine this statement by furthermore observing that the space of all sections as above is itself the
hom-space in an∞-topos, namely in the slice∞-topos H/BG. This means that such sections are themselves
cocycles in a structured nonabelian cohomology theory:

ΓX(P ×G V ) := G/BG(g, ρ) .

This we may call the g-twisted cohomology of X relative to ρ. We discuss below in 5.4 how traditional notions
of twisted cohomology are special cases of this general notion, as are many further examples.

Now ρ, regarded as an object of the slice H/BG is not in general a connected object. This means that it
is not in general the moduli object for some principal ∞-bundles over the slice. But instead, we find that
we can naturally identify geometric incarnations of such cocycles in the form of twisted ∞-bundles.
Theorem. The g-twisted cohomology H/BG(g, ρ) classifies P -twisted ∞-bundles: twisted G-equivariant
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ΩV -∞-bundles on P :

Q

��

// ∗

��

P -twisted ΩV -principal ∞-bundle

P

��

// V //

��

∗

��

G-principal ∞-bundle

X
σ //

g

==V//G
ρ // BG section of ρ-associated V -∞-bundle

{
sections of

ρ-associated V -∞-bundle

}
'
{

g-twisted ΩV -cohomology
relative ρ

}
'
{

ΩV -∞-bundles
twisted by P

}
A survey of classes of examples of twisted ∞-bundles classified by twisted cohomology is below in 5.4.1.

Among them, in particular the classical notion of nonabelian gerbe [Gir71], and 2-gerbe [Br94] is a special
case.

Namely one see that a (nonabelian/Giraud-)gerbe on X is nothing but a connected and 1-truncated
object in H/X . Similarly, a (nonabelian/Breen) 2-gerbe over X is just a connected and 2-truncated object
in H/X . Accordingly we may call a general connecte object in H/X an nonabelian ∞-gerbe over X. We
say that it is a G-∞-gerbe if it is an Aut(BG)-associated ∞-bundle. We say its band is the underlying
Out(G)-principal ∞-bundle. For 1-gerbes and 2-gerbes this reproduces the classical notions.

In terms of this, the above says that G-∞-gerbes bound by a band are classified by (BAut(BG) →
BOut(G))-twisted cohomology. This is the generalization of Giraud’s original theorem. We discuss all this
in detail below in 3.3.13.

1.2.3.2.4 Module-, line-, and vector-∞-bundles (...)

1.2.4 Homotopy

Every ∞-sheaf ∞-topos H canonically comes equipped with a geometric morphism given by pair of adjoint
∞-functors

(LConst a Γ) : H
oo LConst

Γ
// ∞Grpd

relating it to the archeytpical ∞-topos of ∞-groupoids. Here Γ produces the global sections of an ∞-sheaf
and LConst produces the constant ∞-sheaf on a given ∞-groupoid.

In the cases that we are interested in here H is a big topos of ∞-groupoids equipped with cohesive
structure, notably equipped with smooth structure in our motivating example. In this case Γ has the
interpretation of sending a cohesive ∞-groupoid X ∈ H to its underlying ∞-groupoid, after forgetting
the cohesive structure, and LConst has the interpretation of forming ∞-groupoids equipped with discrete
cohesive structure. We shall write Disc := LConst to indicate this.

But in these cases of cohesive ∞-toposes there are actually more adjoints to these two functors, and this
will be essentially the general abstract definition of cohesiveness. In particular there is a further left adjoint

Π : H→∞Grpd

to Disc: the fundamental ∞-groupoid functor on a locally ∞-connected ∞-topos. Following the standard
terminology of locally connected toposes in ordinary topos theory we shall say that H with such a property is a
locally ∞-connected ∞-topos. This terminology reflects the fact that if X is a locally contractible topological
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space then H = Sh∞(X) is a locally contractible ∞-topos. A classical result of Artin-Mazur implies, that
in this case the value of Π on X ∈ Sh∞(X) is, up to equivalence, the fundamental ∞-groupoid of X:

Π : (X ∈ Sh∞(X)) 7→ (SingX ∈ ∞Grpd) ,

which is the ∞-groupoid whose

• objects are the points of X;

• morphisms are the (continuous) paths in X;

• 2-morphisms are the continuous homotopies between such paths;

• k-morphisms are the higher order homotopies between (k − 1)-dimensional paths.

This is the object that encodes all the homotopy groups of X in a canonical fashion, without choice of fixed
base point.

Also the big ∞-topos Smooth∞Grpd = Sh∞(CartSp) turns out to be locally ∞-connected

(Π a Disc a Γ) : Smooth∞Grpd

Π //
oo Disc

Γ
// ∞Grpd

as a reflection of the fact that every Cartesian space Rn ∈ CartSp is contractible as a topological space.
We find that for X any paracompact smooth manifold, regarded as an object of Smooth∞Grpd, again
Π(X) ∈ Smooth∞Grpd is the corresponding fundamental∞-groupoid. More in detail, under the homotopy-

hypothesis-equivalence (| − | a Sing) : Top
Sing

' //
oo |−| ∞Grpd we have that the composite

|Π(−)| : H
Π→∞Grpd

|−|→ Top

sends a smooth manifold X to its homotopy type: the underlying topological space of X, up to weak
homotopy equivalence.

Analogously, for a general object X ∈ H we may think of |Π(X)| as the generalized geometric realization
in Top. For instance we find that if X ∈ Smooth∞Grpd is presented by a simplicial paracompact manifold,
then |Π(X)| is the ordinary geometric realization of the underlying simplicial topological space of X. This
means in particular that for X ∈ Smooth∞Grpd a Lie groupoid, Π(X) computes its homotopy groups of a
Lie groupoid as traditionally defined.

The ordinary homotopy groups of Π(X) or equivalently of |Π(X)| we call the geometric homotopy groups
of X ∈ H, because these are based on a notion of homotopy induced by an intrisic notion of geometric
paths in objects in X. This is to be contrasted with the categorical homotopy groups of X. These are the
homotopy groups of the underlying ∞-groupoid Γ(X) of X. For instance for X a smooth manifold we have
that

πn(Γ(X)) '
{
X ∈ Set |n = 0

0 |n > 0

but
πn(Π(X)) ' πn(X ∈ Top) .

This allows us to give a precise sense to what it means to have a cohesive refinement (continuous refinement,
smooth refinement, etc.) of an object in Top. Notably we are interested in smooth refinements of classifying
spaces BG ∈ Top for topological groups G by deloopings BG ∈ Smooth∞Grpd of ∞-Lie groups G and we
may interpret this as saying that

Π(BG) ' BG

in Top ' Smooth∞Grpd.
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1.2.5 Differential cohomology

We now indicate how the combination of the intrinsic cohomology and the geometric homotopy in a locally
∞-connected ∞-topos yields a good notion of differential cohomology in an ∞-topos.

Using the defining adjoint ∞-functors (Π a Disc a Γ) we may reflect the fundamental ∞-groupoid
Π : H→∞Grpd from Top back into H by considering the composite endo-edjunction

(Π a [) := (Disc ◦Π a Disc ◦ Γ) : H //
oo

H .

The (Π a Disc)-unit X → Π(X) may be thought of as the inclusion of X into its fundamental ∞-groupoid
as the collection of constant paths in X.

As always, the boldface Π is to indicate that we are dealing with a cohesive refinement of the topological
structure Π. The symbol “[” (“flat”) is to be suggestive of the meaning of this construction:

For X ∈ H any cohesive object, we may think of Π(X) as its cohesive fundamental ∞-groupoid. A
morphism

∇ : Π(X)→ BG

(hence a G-valued cocycle on Π(X)) may be interpreted as assigning:

• to each point x ∈ X the fiber of the corresponding G-principal ∞-bundle classified by the composite

g : X → Π(X)
∇→ BG;

• to each path in X an equivalence between the fibers over its endpoints;

• to each homotopy of paths in X an equivalence between these equivalences;

• and so on.

This in turn we may think as being the flat higher parallel transport of an ∞-connection on the bundle

classified by g : X → Π(X)
∇→ BG.

The adjunction equivalence allows us to identify [BG as the coefficient object for this flat differential
G-valued cohomology on X:

Hflat(X,G) := π0H(X, [BG) ' π0H(Π(X),BG) .

In H = Smooth∞Grpd and with G ∈ H an ordinary Lie group and X ∈ H an ordinary smooth manifold,
we have that Hflat(X,G) is the set of equivalence classes of ordinary G-principal bundles on X with flat
connections.

The (Disc a Γ)-counit [BG→ BG provides the forgetful morphism

Hflat(X,G)→ H(X,G)

form G-principal ∞-bundles with flat connection to their underlying principal ∞-bundles. Not every G-
principal ∞-bundle admits a flat connection. The failure of this to be true - the obstruction to the existence
of flat lifts - is measured by the homotopy fiber of the counit, which we shall denote [dRBG, defined by the
fact that we have a fiber sequence

[dRBG→ [BG→ BG .

As the notation suggests, it turns out that [dRBG may be thought of as the coefficient object for nonabelian
generalized de Rham cohomology. For instance for G an odinary Lie group regarded as an object in H =
Smooth∞Grpd, we have that [dRBG is presented by the sheaf Ω1

flat(−, g) of Lie algebra valued differential
forms with vanishing curvature 2-form. And for the circle Lie n-group Bn−1U(1) we find that [dRBnU(1) is
presented by the complex of sheaves whose abelian sheaf cohomology is de Rham cohomology in degree n.
(More precisely, this is true for n ≥ 2. For n = 1 we get just the sheaf of closed 1-forms. This is due to the
obstruction-theoretic nature of [dR: as we shall see, in degree 1 it computes 1-form curvatures of groupoid
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principal bundles, and these are not quotiented by exact 1-forms.) Moreover, in this case our fiber sequence
extends not just to the left but also to the right

[dRBnU(1)→ [BnU(1)→ BnU(1)
curv→ [dRBn+1U(1) .

The induced morphism
curvX : H(X,BnU(1))→ H(X, [dRBn+1U(1))

we may think of as equipping an Bn−1U(1)-principal n-bundle (equivalently an (n− 1)-bundle gerbe) with
a connection, and then sending it to the higher curvature class of this connection. The homotopy fibers

Hdiff(X,BnU(1))→ H(X,BnU(1))
curv→ H(X, [dRBn+1U(1))

of this map therefore have the interpretation of being the cocycle ∞-groupoids of circle n-bundles with con-
nection. This is the realization in Smooth∞Grpd of our general definition of ordinary differential cohomology
in an ∞-topos.

All these definitions make sense in full generality for any locally∞-connected∞-topos. We used nothing
but the existence of the triple of adjoint ∞-functors (Π a Disc a Γ) : H → ∞Grpd. We shall show for
the special case that H = Smooth∞Grpd and X an ordinary smooth manifold, that this general abstract
definition reproduces ordinary differential cohomology over smooth manifolds as traditionally considered.

The advantage of the general abstract reformulation is that it generalizes the ordinary notion naturally
to base objects that may be arbitrary smooth ∞-groupoids. This gives in particular the ∞-Chern-Weil
homomorphism in an almost tautological form:

for G ∈ H any ∞-group object and BG ∈ H its delooping, we may think of a morphism

c : BG→ BnU(1)

as a representative of a characteristic class on G, in that this induces a morphism

[c(−)] : H(X,G)→ Hn(X,U(1))

from G-principal ∞-bundles to degree-n cohomology-classes. Since the classification of G-principal ∞-
bundles by cocycles is entirely general, we may equivalently think of this as the Bn−1U(1)-principal ∞-
bundle P → BG given as the homotopy fiber of c. A famous example is the Chern-Simons circle 3-bundle
(bundle 2-gerbe) for G a simply connected Lie group.

By postcomposing further with the canonical morphism curv : BnU(1) → [dRBn+1U(1) this gives in
total a differential characteristic class

cdR : BG
c→ BnU(1)

curv→ [dRBn+1U(1)

that sends a G-principal ∞-bundle to a class in de Rham cohomology

[cdR] : H(X,G)→ Hn+1
dR (X) .

This is the generalization of the plain Chern-Weil homomorphism.associated with the characteristic class
c. In cases accessible by traditional theory, it is well known that this may be refined to what are called
the assignment of secondary characteristic classes to G-principal bundles with connection, taking values in
ordinary differential cohomology

[ĉ] : Hconn(X,G)→ Hn+1
diff (X) .

We will discuss that in the general formulation this corresponds to finding objects BGconn that lift all
curvature characteristic classes to their corresponding circle n-bundles with connection, in that it fits into
the diagram

H(−,BGconn) //

��

∏
i Hdiff(−,BniU(1)) //

��

∏
iH

ni+1
dR (−)

��
H(−,BG) // ∏

i H(−,BniU(1))
curv // ∏

i H(−, [dRBni+1U(1))
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The cocycles in Hconn(X,BG) := H(X,BGconn) we may identify with ∞-connections on the underlying
principal∞-bundles. Specifically for G an ordinary Lie group this captures the ordinary notion of connection
on a bundle, for G Lie 2-group it captures the notion of connection on a 2-bundle/gerbe.

1.2.5.1 Higher geometric prequantization Observation. There is a canonical∞-action γ of AutH/BG
(g)

on the space of ∞-sections ΓX(P ×G V ).
Claim. Since Sh∞(SmthMfd) is cohesive, there is a notion of differential refinement of the above discussion,
yielding connections on ∞-bundles.
Example. Let C→ C//U(1)→ BU(1) be the canonical complex-linear circle action. Then
• gconn : X → BU(1)conn classifies a circle bundle with connection, a prequantum line bundle of its

curvature 2-form;
• ΓX(P ×U(1) C) is the corresponding space of smooth sections;
• γ is the exp(Poisson bracket)-group action of preqantum operators, containing the Heisenberg group

action.

Example. Let BU → BPU→ B2U(1) be the canonical 2-circle action. Then
• gconn : X → B2U(1)conn classifies a circle 2-bundle with connection, a prequantum line 2-bundle of its

curvature 3-form;
• ΓX(P ×BU(1) BU) is the corresponding groupoid of smooth sections = twisted bundles;
• γ is the exp(2-plectic bracket)-2-group action of 2-plectic geometry, containing the Heisenberg 2-group

action.
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1.3 Models and applications

Ordinary Chern-Weil theory studies connections on G-principal bundles over a Lie group G. In the context of
the cohesive∞-topos Smooth∞Grpd of smooth∞-groupoids these generalize to∞-connections on principal
∞−bundles over ∞-Lie groups G. Accordingly ∞-Chern-Weil theory deals with these higher connections
and their relation to ordinary differential cohomology.

Here we describe introductory basics of this general theory in concrete terms.
Two simple special cases of general ∞-Chern-Weil theory are obtained by

1. restricting attention to low categorical degree; studying principal 1-bundles, principal 2-bundles and3-
bundles; in terms of groupoids, 2-groupoids and 3-groupoids;

2. restricting attention to infinitesimal aspects; studying not smooth ∞-groupoids but just their L∞-
algebroids. In terms of this it is easy to raise categorical degree to n = ∞, but this misses various
global cohomological effects (very similar to how rational homotopy theory describes just non-torsion
phenomena of genuine homotopy theory).

These are the special cases that this introduction section concentrates on.
We start by describing smooth principal n-bundles in section 1.3.1 for low n in detail, connecting them

to standard theory, but presenting everything in such as way as to allow straightforward generalization to
the full discussion of principal ∞-bundles. Then in the same spirit we discuss connections on principal
n-bundles in section 1.3.3 for low n in a fashion that connects to the ordinary notion of parallel transport
and points the way to the fully-fledged formulation in terms of the path ∞-groupoid functor. This leads
to differential-form expressions that we eventually reformulate in terms of L∞-algebra valued connections in
section 1.3.6. We end this introductory survey by indicating how under Lie integration the constructions
lifts to full ∞-Chern-Weil theory.

• Higher gauge theory in low degree

– 1.3.1 – Principal n-bundles for low n

– 1.3.2 – A model for principal ∞-bundles

– 1.3.3 – Parallel n-transport for low n

– 1.3.4 – Characteristic classes in low degree

• Infinitesimal data of higher gauge theory

– 1.3.5 – L∞-algebraic structures

– 1.3.6 – The ∞-Chern-Weil homomorphism in low degree
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1.3.1 Principal n-bundles for low n

The following is an exposition of the notion of principal bundles in higher but low degree.
We assume here that the reader has a working knowledge of groupoids and at least a rough idea of

2-groupoids. For introductions see for instance [BrHiSi11] [Por]
Below in 1.3.2 a discussion of the formalization of ∞-groupoids in terms of Kan complexes is given and

is used to present a systematic way to understand these constructions in all degrees.

1.3.1.1 Principal 1-bundles Let G be a Lie group and X a smooth manifold (all our smooth manifolds
are assumed to be finite dimensional and paracompact). We give a discussion of smooth G-principal bundles
on X in a manner that paves the way to a straightforward generalization to a description of principal
∞-bundles. From X and G are naturally induced certain Lie groupoids.

From the group G we canonically obtain a groupoid that we write BG and call the delooping groupoid
of G. Formally this groupoid is

BG = ( G
//
// ∗ )

with composition induced from the product in G. A useful depiction of this groupoid is

BG =


∗

g2

��
∗

g2·g1

//

g1

??

∗

 ,

where the gi ∈ G are elements in the group, and the bottom morphism is labeled by forming the product in
the group. (The order of the factors here is a convention whose choice, once and for all, does not matter up
to equivalence.)

But we get a bit more, even. Since G is a Lie group, there is smooth structure on BG that makes it a
Lie groupoid, an internal groupoid in the category SmoothMfd of smooth manifolds: its collection of objects
(trivially) and of morphisms each form a smooth manifold, and all structure maps (source, target, identity,
composition) are smooth functions. We shall write

BG ∈ LieGrpd

for BG regarded as equipped with this smooth structure. Here and in the following the boldface is to indicate
that we have an object equipped with a bit more structure - here: smooth structure - than present on the
object denoted by the same symbols, but without the boldface. Eventually we will make this precise by
having the boldface symbols denote objects in the ∞-topos Smooth∞Grpd which are taken by a suitable
functor to objects in ∞Grpd denoted by the corresponding non-boldface symbols.

Also the smooth manifoldX may be regarded as a Lie groupoid - a groupoid with only identity morphisms.
Its depiction is simply

X = { x Id // x }
for all x ∈ X But there are other groupoids associated with X: let {Ui → X}i∈I be an open cover of X. To
this is canonically associated the Čech-groupoid C({Ui}). Formally we may write this groupoid as

C({Ui}) =
{ ∐

i,j Ui ∩ Uj
//
//
∐
i Ui

}
.

A useful depiction of this groupoid is

C({Ui}) =


(x, j)

##
(x, i) //

;;

(x, k)

 ,
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This indicates that the objects of this groupoid are pairs (x, i) consisting of a point x ∈ X and a patch
Ui ⊂ X that contains x, and a morphism is a triple (x, i, j) consisting of a point and two patches, that both
contain the point, in that x ∈ Ui ∩ Uj . The triangle in the above depiction symbolizes the evident way in
which these morphisms compose. All this inherits a smooth structure from the fact that the Ui are smooth
manifolds and the inclusions Ui ↪→ X are smooth functions. Hence also C({Ui}) becomes a Lie groupoid.

There is a canonical projection functor

C({Ui})→ X : (x, i) 7→ x .

This functor is an internal functor in SmoothMfd and moreover it is evidently essentially surjective and full
and faithful. However, while essential surjectivity and full-and-faithfulness implies that the underlying bare
functor has a homotopy-inverse, that homotopy-inverse never has itself smooth component maps, unless X
itself is a Cartesian space and the chosen cover is trivial.

We do however want to think of C({Ui}) as being equivalent to X even as a Lie groupoid. One says
that a smooth functor whose underlying bare functor is an equivalence of groupoids is a weak equivalence of

Lie groupoids, which we write as C({Ui})
'→ X. Moreover, we shall think of C({Ui}) as a good equivalent

replacement of X if it comes from a cover that is in fact a good open cover in that all its non-empty finite
intersections Ui0,··· ,in := Ui0 ∩ · · · ∩ Uin are diffeomorphic to the Cartesian space RdimX .

We shall discuss later in which precise sense this condition makes C({Ui}) good in the sense that smooth
functors out of C({Ui}) model the correct notion of morphism out of X in the context of smooth groupoids
(namely it will mean that C({Ui}) is cofibrant in a suitable model category structure on the category of Lie
groupoids). The formalization of this statement is what ∞-topos theory is all about, to which we will come.
For the moment we shall be content with accepting this as an ad hoc statement.

Observe that a functor
g : C({Ui})→ BG

is given in components precisely by a collection of smooth functions

{gij : Uij → G}i,j∈I

such that on each Ui ∩ Uj ∩ Uk the equality gjkgij = gik of functions holds.
It is well known that such collections of functions characterize G-principal bundles on X. While this is a

classical fact, we shall now describe a way to derive it that is true to the Lie-groupoid-context and that will
make clear how smooth principal ∞-bundles work.

First observe that in total we have discussed so far spans of smooth functors of the form

C({Ui})
g //

'
��

BG

X

.

Such spans of functors, whose left leg is a weak equivalence, are sometimes known, essentially equivalently,
as Morita morphisms, as generalized morphisms of Lie groupoids, as Hilsum-Skandalis morphisms, or as
groupoid bibundles or as anafunctors. We are to think of these as concrete models for more intrinsically
defined direct morphisms X → BG in the ∞-topos of smooth ∞-groupoids.

Now consider yet another Lie groupoid canonically associated with G: we shall write EG for the groupoid
– the smooth universal G-bundle – whose formal description is

EG =

(
G×G

(−)·(−) //
p1

// G

)
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with the evident composition operation. The depiction of this groupoid is
g2

g3g
−1
2

  
g1

g3g
−1
1

//

g2g
−1
1

>>

g3


,

This again inherits an evident smooth structure from the smooth structure of G and hence becomes a Lie
groupoid.

There is an evident forgetful functor
EG→ BG

which sends

(g1 → g2) 7→ (•
g2g
−1
1→ •) .

Consider then the pullback diagram

P̃ //

��

EG

��
C({Ui})

g //

'
��

BG

X

in the category Grpd(SmoothMfd). The object P̃ is the Lie groupoid whose depiction is

P̃ =
{

(x, i, g1) // (x, j, g2 = gij(x)g1)
}

;

where there is a unique morphism as indicated, whenever the group labels match as indicated. Due to
this uniqueness, this Lie groupoid is weakly equivalent to one that comes just from a manifold P (it is
0-truncated)

P̃
'→ P .

This P is traditionally written as

P =

(∐
i

Ui ×G

)
/ ∼ ,

where the equivalence relation is precisely that exhibited by the morphisms in P̃ . This is the traditional
way to construct a G-principal bundle from cocycle functions {gij}. We may think of P̃ as being P . It is a
particular representative of P in the ∞-topos of Lie groupoids.

While it is easy to see in components that the P obtained this way does indeed have a principal G-action
on it, for later generalizations it is crucial that we can also recover this in a general abstract way. For notice
that there is a canonical action

(EG)×G→ EG ,
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given by the group action on the space of objects. Then consider the pasting diagram of pullbacks

P̃ ×G //

��

EG×G

��
P̃ //

��

EG

��
C(U)

g //

'
��

BG

X

.

Here the morphism P̃ ×G→ P̃ exhibits the principal G-action of G on P̃ .
In summary we find the following

Observation 1.3.1. For {Ui → X} a good open cover, there is an equivalence of categories

SmoothFunc(C({Ui}),BG) ' GBund(X)

between the functor category of smooth functors and smooth natural transformations, and the groupoid of
smooth G-principal bundles on X.

It is no coincidence that this statement looks akin to the maybe more familiar statement which says that
equivalence classes of G-principal bundles are classified by homotopy-classes of morphisms of topological
spaces

π0Top(X,BG) ' π0GBund(X) ,

where BG ∈ Top is the topological classifying space of G. What we are seeing here is a first indication of
how cohomology of bare ∞-groupoids is lifted inside a richer ∞-topos to cohomology of ∞-groupoids with
extra structure.

In fact, all of the statements that we considered so far becomes conceptually simpler in the∞-topos. We

had already remarked that the anafunctor span X
'← C({Ui})

g→ BG is really a model for what is simply a
direct morphism X → BG in the ∞-topos. But more is true: that pullback of EG which we considered is
just a model for the homotopy pullback of just the point

...
...

P̃ ×G //

��

EG×G

��
P̃ //

��

EG

��
C(U)

g //

'
��

BG

X

...
...

P ×G //

��

G

��
P //

��

∗

��
X

g
// BG

'
x�

'
x�

in the model category in the ∞-topos

.
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The traditional statement which identifies the classifying topological space BG as the quotient of the con-
tractible EG by the free G-action

BG ' EG/G

becomes afte the refinement to smooth groupoids the statement that BG is the homotopy quotient of G
acting on the point:

BG ' ∗//G .

Generally:

Definition 1.3.2. For V a smooth manifold equipped with a smooth action by G (not necessarily free),
the action groupoid V//G is the Lie groupoid whose space of objects is V , and whose morphisms are group
elements that connect two points (which may coincide) in V .

V//G =

{
v1

g // v2 |v2 = g(v1)

}
.

Such an action groupoid is canonically equipped with a morphism to BG ' ∗//G obtained by sending
all objects to the single object and acting as the identity on morphisms. Below in 3.3.12 we discuss that the
sequence

V → V//G→ BG

entirely encodes the action of G on V . Also we will see in 5.4.2 that the morphism V//G → BG is the
smooth refinement of the V -bundle which is associated to the universal G-bundle via the given action. If V
is a vector space acted on linearly, then this is an associated vector bundle. Its pullbacks along anafunctors
X → BG yield all V -vector bundles on X.

1.3.1.2 Principal 2-bundles and twisted 1-bundles The discussion above of G-principal bundles
was all based on the Lie groupoids BG and EG that are canonically induced by a Lie group G. We now
discuss the case where G is generalized to a Lie 2-group. The above discussion will go through essentially
verbatim, only that we pick up 2-morphisms everywhere. This is the first step towards higher Chern-Weil
theory. The resulting generalization of the notion of principal bundle is that of principal 2-bundle. For
historical reasons these are known in the literature often as gerbes or as bundle gerbes, even though strictly
speaking there are some conceptual differences.

Write U(1) = R/Z for the circle group. We have already seen above the groupoid BU(1) obtained from
this. But since U(1) is an abelian group this groupoid has the special property that it still has itself the
structure of a group object. This makes it what is called a 2-group. Accordingly, we may form its delooping
once more to arrive at a Lie 2-groupoid B2U(1). Its depiction is

B2U(1) =


∗

Id

��
∗

Id
//

Id

??

∗
g��


for g ∈ U(1). Both horizontal composition as well as vertical composition of the 2-morphisms is given by
the product in U(1).

Let again X be a smooth manifold with good open cover {Ui → X}. The corresponding Čech groupoid
we may also think of as a Lie 2-groupoid,

C(U) =
( ∐

i,j,k Ui ∩ Uj ∩ Uk
//
//
//
∐
i,j Ui ∩ Uj

//
//
∐
i Ui

)
.

What we see here are the first stages of the full Čech nerve of the cover. Eventually we will be looking at
this object in its entirety, since for all degrees this is always a good replacement of the manifold X, as long

58



as {Ui → X} is a good open cover. So we look now at 2-anafunctors given by spans

C({Ui})
g //

'
��

B2U(1)

X

of internal 2-functors. These will model direct morphisms X → B2U(1) in the∞-topos. It is straightforward
to read off the following

Observation 1.3.3. A smooth 2-functor g : C({Ui}) → B2U(1) is given by the data of a 2-cocycle in the
Čech cohomology of X with coefficients in U(1).

Because on 2-morphisms it specifies an assignment

g :


(x, j)

##
(x, i) //

;;

(x, k)
��

 7→


∗

Id

��
∗

Id
//

Id

??

∗

gijk(x)

��


that is given by a collection of smooth functions

(gijk : Ui ∩ Uj ∩ Uk → U(1)) .

On 3-morphisms it gives a constraint on these functions, since there are only identity 3-morphisms in B2U(1):




(x, j) // (x, k)

��
(x, i) //

OO ;;

(x, l)

⇒


(x, j) //

##

(x, k)

��
(x, i) //

OO

(x, l)


 7→





∗ // ∗

��
∗ //

OO ??

∗

gijk(x)

�#

gikl(x)
�#

 =



∗ //

��

∗

��
∗ //

OO

∗

gjkl(x)
{�

gijl(x){�



 .

This relation
gijk · gikl = gijl · gjkl

defines degree-2 cocycles in Čech cohomology with coefficients in U(1).
In order to find the circle principal 2-bundle classified by such a cocycle by a pullback operation as before,

we need to construct the 2-functor EBU(1) → B2U(1) that exhibits the universal principal 2-bundle over
U(1). The right choice for EBU(1) – which we justify systematically in 1.3.2 – is indicated by

EBU(1) =


∗

c2

��
∗

c1

??

c3=gc2c1
// ∗

g��


for c1, c2, c3, g ∈ U(1), where all possible composition operations are given by forming the product of these
labels in U(1). The projection EBU(1)→ B2U(1) is the obvious one that simply forgets the labels ci of the
1-morphisms and just remembers the labels g of the 2-morphisms.
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Definition 1.3.4. With g : C({Ui}) → B2U(1) a Čech cocycle as above, the U(1)-principal 2-bundle or
circle 2-bundle that it defines is the pullback

P̃ //

��

EBU(1)

��
C({Ui})

g //

'
��

B2U(1)

X

.

Unwinding what this means, we see that P̃ is the 2-groupoid whose objects are that of C({Ui}), whose
morphisms are finite sequences of morphisms in C({Ui}), each equipped with a label c ∈ U(1), and whose
2-morphisms are generated from those that look like

(x, j)

c2

##
(x, i)

c3
//

c1

;;

(x, k)
gijk(x)��

subject to the condition that
c1 · c2 = c3 · gijk(x)

in U(1). As before for principal 1-bundles P , where we saw that the analogous pullback 1-groupoid P̃ was
equivalent to the 0-groupoid P , here we see that this 2-groupoid is equivalent to the 1-groupoid

P =
(
C(U)1 × U(1)

//
// C(U)

)
with composition law

((x, i)
c1→ (x, j)

c2→ (x, k)) = ((x, i)
(c1·c2·gijk(x))→ (x, k)) .

This is a groupoid central extension

BU(1)→ P → C({Ui}) ' X .

Centrally extended groupoids of this kind are known in the literature as bundle gerbes (over the surjective
submersion Y =

∐
i Ui → X ). They may equivalently be thought of as given by a line bundle

L

��
(C(U)1 =

∐
i,j Ui ∩ Uj)

// //
(C(U)0 =

∐
i Ui)

��
X

over the space C(U)1 of morphisms, and a line bundle morphism

µg : π∗1L⊗ π∗2L→ π∗1L

that satisfies an evident associativity law, equivalent to the cocycle codition on g. In summary we find that:
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Observation 1.3.5. Bundle gerbes are presentations of Lie groupoids that are total spaces of BU(1)-
principal 2-bundles, def. 1.3.4.

Notice that, even though there is a close relation, the notion of bundle gerbe is different from the original
notion of U(1)-gerbe. This point we discuss in more detail below in 1.3.17 and more abstractly in 4.3.8.

This discussion of circle 2-bundles has a generalization to 2-bundles that are principal over more general
2-groups.

Definition 1.3.6. 1. A smooth crossed module of Lie groups is a pair of homomorphisms ∂ : G1 → G0

and ρ : G0 → Aut(G1) of Lie groups, such that for all g ∈ G0 and h, h1, h2 ∈ G1 we have ρ(∂h1)(h2) =
h1h2h

−1
1 and ∂ρ(g)(h) = g∂(h)g−1.

2. For (G1 → G0) a smooth crossed module, the corresponding strict Lie 2-group is the smooth groupoid

G0 ×G1
//
// G0 , whose source map is given by projection on G0, whose target map is given by

applying ∂ to the second factor and then multiplying with the first in G0, and whose composition is
given by multiplying in G1.

This groupoid has a strict monoidal structure with strict inverses given by equipping G0×G1 with the
semidirect product group structure G0 nG1 induced by the action ρ of G0 on G1.

3. The corresponding one-object strict smooth 2-groupoid we write B(G1 → G0). As a simplicial object
(under the Duskin nerve of 2-categories) this is of the form

B(G1 → G0) = cosk3

(
G×3

0 ×G
×3
1 //

//
//
G×2

0 ×G1 //
//
G0

// ∗
)
.

The infinitesimal analog of a crossed module of groups is a differential crossed module.

Definition 1.3.7. A differential crossed module is a chain complex of vector space of length 2 V1 → V0

equipped with the structure of a dg-Lie algebra.

Example 1.3.8. For G1 → G0 a smooth crossed module of Lie groups, differentiation of all structure maps
yields a corresponding differential crossed module g1 → g0.

Observation 1.3.9. For G := [G1
δ→ G0] a crossed module, the 2-groupoid delooping a 2-group coming

from a crossed module is of the form

BG =


∗

g2

��
∗

δ(k)g2·g1

//

g1

??

∗
k��

| g1, g2 ∈ G0, k ∈ G1

 ,

where the 3-morphisms – the composition identities – are

∗
g2 // ∗

g3

��
∗ //

g1

OO ??

∗

h1

�#

h2
�#


h2·ρ(g3)(h1)=h4·h3 //



∗
g2 //

��

∗

g3

��
∗ //

g1

OO

∗

h3
{�

h4

{�


Remark 1.3.10. All ingredients here are functorial, so that the above statements hold for presheaves over
sites, hence in particular for cohesive 2-groups such as smooth 2-groups. Below in corollarly 3.3.69 it is
shown that every cohesive 2-group has a presentation by a crossed module this way.
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Notice that there are different equivalent conventions possible for how to present BG in terms of the
correspondiung crossed module, given by the choices of order in the group products. Here we are following
convention “LB” in [RoSc08].

Example 1.3.11 (shift of abelian Lie group). For K an abelian Lie group then BK is the delooping 2-group
coming from the crossed module [K → 1] and BBK is the 2-group coming from the complex [K → 1→ 1].

Example 1.3.12 (automorphism 2-group). For H any Lie group with automorphism Lie group Aut(H),

the morphism H
Ad→ Aut(H) that sends group elements to inner automorphisms, together with ρ = id, is a

crossed module. We write AUT(H) := (H → Aut(H)) and speak of the automorphism 2-group of H.

Example 1.3.13. The inclusion of any normal subgroup N ↪→ G with conjugation action of G on N is a
crossed module, with the canonical induced conjugation action of G on N .

Example 1.3.14 (string 2-group). For G a compact, simple and simply connected Lie group, write PG for
the smooth group of based paths in G and Ω̂G for the universal central extension of the smooth group of
based loops. Then the evident morphism (Ω̂G→ PG) equipped with a lift of the adjoint action of paths on
loops is a crossed module [BCSS07]. The corresponding strict 2-group is (a presentation of what is) called
the string 2-group extension of G. The string 2-group we discuss in detail in 5.1.10.

It follows immediately that

Observation 1.3.15. For G = (G1 → G0) a 2-group coming from a crossed module, a cocycle

X
'← C(Ui)

g→ BG

is given by data
{hij ∈ C∞(Uij , G0), gijk ∈ C∞(Uijk, G1)}

such that on each Uijk we have
hik = δ(hijk)hjkhij

and on each Uijkl we have
gikl · ρ(hjk)(gijk) = gijk · gjkl .

Because under the above correspondence between crossed modules and 2-groups, this is the data that
encodes assignments

g :


(x, j)

##
(x, i) //

;;

(x, k)
��

 7→


∗

hjk(x)

��
∗

hik(x)
//

hij(x)
??

∗

gijk(x)

��


that satisfy 

∗
hjk // ∗

hkl

��
∗ //

hij

OO ??

∗

gijk

�#

gikl �#


//



∗
hjk //

��

∗

hkl

��
∗ //

hij

OO

∗

gjkl
{�

gijl

{�


For the case of the crossed module (U(1)→ 1) this recovers the cocycles for circle 2-bundles from observation
1.3.3.

Apart from the notion of bundle gerbe, there is also the original notion of gerbe. The terminology is
somewhat unfortunate, since neither of these concepts is, in general, a special case of the other. But they
are of course closely related. We consider here the simple cocycle-characterization of gerbes and the relation
of these to cocycles for 2-bundles.
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Definition 1.3.16 (G-gerbe). Let G be a smooth group. Then a cocycle for a smooth G-gerbe over a
manifold X is a cocycle for a AUT(G)-principal 2-bundle, where AUT(G) is the automorphism 2-group from
example 1.3.12.

Observation 1.3.17. For every 2-group coming from a crossed module (G1
δ→ G0, ρ) there is a canonical

morphism of 2-groups
(G1 → G0)→ AUT(G1)

given by the commuting diagram of groups

G1
δ //

id

��

G0

ρ

��
G1

Ad // Aut(G0)

.

Accordingly, every (G1 → G0)-principal 2-bundle has an underlying G1-gerbe, def. 1.3.16. But in general
the passage to this underlying G1-gerbe discards information.

Example 1.3.18. For G a simply connected and compact simple Lie group, let String ' (Ω̂G → PG) be
the corresopnding String 2-group from example 1.3.14. Then by observation 1.3.17 every String-principal
2-bundle has an underlying Ω̂G-gerbe. But there is more information in the String-2-bundle than in this
gerbe underlying it.

Example 1.3.19. Let G = (Z ↪→ R) be the crossed module that includes the additive group of integers into
the additive group of real numbers, with trivial action. The canonical projection morphism

B(Z→ R)
'→ BU(1)

is a weak equivalence, by the fact that locally every smooth U(1)-valued function is the quotient of a smooth
R-valued function by a (constant) Z-valued function. This means in particular that up to equivalence,
(Z→ R)-2-bundles are the same as ordinary circle 1-bundles. But it means a bit more than that:

On a manifold X also BZ-principal 2-bundles have the same classification as U(1)-bundles. But the
morphisms of BZ-principal 2-bundles are essentially different from those of U(1)-bundles. This means that
the 2-groupoid BZBund(X) is not, in general equivalent to U(1)Bund(X). But we do have an equivalence
of 2-groupoids

(Z→ U(1))Bund(X) ' U(1)Bund(X) .

Example 1.3.20. Let Ĝ→ G be a central extension of Lie groups by an abelian group A. This induces the
crossed module (A→ Ĝ). There is a canonical 2-anafunctor

B(A→ Ĝ)
c //

'
��

B(A→ 1) = B2A

BG

from BG to B2A. This can be seen to be the characteristic class that classifies the extension (see 1.3.4
below): BĜ→ BG is the A-principal 2-bundle classified by this cocycle.

Accordingly, the collection of all (A→ Ĝ)-principal 2-bundles is, up to equivalence, the same as that of
plain G-1-bundles. But they exhibit the natural projection to BA-2-bundles. Fixing that projection gives
twisted G-1-bundles.

more in detail: the above 2-anafunctor indiuces a 2-anafunctor on cocycle 2-groupoid

(A→ Ĝ)Bund(X)
c //

'
��

BABund(X)

GBund(X)

.
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If we fix a BA-2-bundle g we can consider the fiber of the characteristic class c over g, hence the pullback
GBund[g](X) in

GBund[g](X)

��

// ∗

g

��
(A→ Ĝ)Bund(X)

c //

'
��

BABund(X)

GBund(X)

.

This is the groupoid of [g]-twisted G-bundles. The principal 2-bundle classfied by g is also called the lifting
gerbe of the G-principal bundles underlying the [g]-twisted Ĝ-bundle: because this is the obstruction to
lifting the former to a genuine Ĝ-principal bundle.

If g is given by a Čech cocycle {gijk ∈ C∞(Uijk, A)} then [g]-twisted G-bundles are given by data
{hij ∈ C∞(Uij , G)} which does not quite satisfy the usual cocycle condition, but instead a modification by
g:

hik = δ(gijk)hjkhij .

For instance for the extension U(1)→ U(n)→ PU(n) the corresponding twisted bundles are those that
model twisted K-theory with n-torsion twists (4.4.7).

1.3.1.3 Principal 3-bundles and twisted 2-bundles As one passes beyond (smooth) 2-groups and
their 2-principal bundles, one needs more sophisticated tools for presenting them. While the crossed modules
from def. 1.3.6 have convenient higher analogs – called crossed complexes – the higher analog of remark 1.3.10
does not hold for these: not every (smooth) 3-group is presented by them, much less every n-group for n > 3.
Therefore below in 1.3.2 we switch to a different tool for the general situation: simplicial groups.

However, it so happens that a wide range of relevant examples of (smooth) 3-groups and generally of
smooth n-groups does have a presentation by a crossed complex after all, as do the examples which we shall
discuss now.

Definition 1.3.21. A crossed complex of groupoids is a diagram

C• =


· · · δ // C3

δ //

��

C2
δ //

��

C1

δt //

δs

//

δs

��

C0

=

��
· · · =

// C0 =
// C0 =

// C0 =
// C0

 ,

where C1

δt //

δs

// C0 is equipped with the structure of a 1-groupoid, and where Ck // C0 , for all k ≥ 2,

are bundles of groups, abelian for k ≥ 2; and equipped with an action ρ of the groupoid C1, such that

1. the maps δk, k ≥ 2 are morphisms of groupoids over C0 compatible with the action by C1;

2. δk−1 ◦ δk = 0; k ≥ 3;

3. im(δ2) ⊂ C1 acts by conjugation on C2 and trivially on Ck, k ≥ 3.

Surveys of standard material on crossed complexes of groupoids are in [BrHiSi11][Por]. We discuss
sheaves of crossed complexes, hence cohesive crossed complexes in more detail below in 2.2.4. As mentioned
there, the key aspect of crossed complexes is that they provide an equivalent encoding of precisely those
∞-groupoids that are called strict.
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Definition 1.3.22. A crossed complex of groups is a crossed complex C• of groupoids with C0 = ∗. If the
complex of groups is constant on the trivial group beyond Cn, we say this is a strict n-group.

Explicitly, a crossed complex of groups is a complex of groups of the form

· · · δ2 // G2
δ1 // G1

δ0 // G0

with Gk≥2 abelian (but G1 and G0 not necessarily abelian), together with an action ρk of G0 on Gk for all
k ∈ N, such that

1. ρ0 is the adjoint action of G0 on itself;

2. ρ1 ◦ δ0 is the adjoint action of G1 on itself;

3. ρk ◦ δ0 is the trivial action of G1 on Gk for k > 1;

4. all δk respect the actions.

A morphism of crossed complexes of groups is a sequence of morphisms of component groups, respecting all
this structure.

For n = 2 this reproduces the notion of crossed module and strict 2-group, def. 1.3.6. If furthermore G1

and G0 here are abelian and the action of G0 is trivial, then this is an ordinary complex of abelian groups
as considered in homological algebra. Indeed, all of homological algebra may be thought of as the study of
this presentation of abelian ∞-groups. (More on this in 2.2.4 below.)

We consider now examples of strict 3-groups and of the corresponding principal 3-bundles.

Example 1.3.23. For A an abelian group, the delooping of the 3-group given by the complex (A→ 1→ 1)
is the one-object 3-groupoid that looks like

B3A =



∗ id // ∗

id

��
∗ //

id

OO ??

∗

id
�#

id

��

a∈A //

∗ id //

��

∗

id

��
∗ //

id

OO

∗

id
{�

id

��


Therefore an ∞-anafunctor X

'← C({Ui})
g→ B3U(1) sends 3-simplices in the Čech groupoid

(x, j) // (x, k)

��
(x, i)

OO <<

// (x, l)

��

��

//

(x, j) //

""

(x, k)

��
(x, i)

OO

// (x, l)

��

��


to 3-morphisms in B3U(1) labeled by group elements gijkl(x) ∈ U(1)

• // •

��
•

OO ??

// •

� 

��

gijkl(x)//

• //

��

•

��
•

OO

// •

~�

��


(where all 1-morphisms and 2-morphisms in B3U(1) are necessarily identities).

65



The 3-functoriality of this assignment is given by the following identity on all Čech 4-simplices (x,(h,i,j,k,l)):

•

!!

��

•

==

3

��
•

XX

//

KK

•

��

��

��

•

!!
•

==

•

��
•

XX

//

JJ

88

•

�� ��

�

•

!!

��

•

==

&&

•

��
•

XX

// •
��

	� �

•

!!
•

==

// •

��
•

XX

//

88

•
y�

��

��

•

!!
•

==

//

&&

•

��
•

XX

// •
�%
��

��

ghjkl(x) $$
ghijl(x)

::

ghijk

JJ

ghikl //

gijkl

��

=

��

This means that the cocycle data {gijkl(x)} has to satisfy the equations

ghijk(x)ghikl(x)gijkl(x) = ghjkl(x)ghijl(x)

for all (h, i, j, k, l) and all x ∈ Uhijkl. Since U(1) is abelian this can equivalently be rearranged to

ghijk(x)ghijl(x)−1ghikl(x)ghjkl(x)−1gijkl(x) = 1 .

This is the usual form in which a Čech 3-cocycles with coefficients in U(1) are written.

Definition 1.3.24. Given a cocycle as above, the total space object P̃ given by the pullback

P̃ //

��

EB2U(1)

��
C(U)

g //

'
��

B3U(1)

X

is the corresponding circle principal 3-bundle.

In direct analogy to the argument that leads to observation 1.3.5 we find:

Observation 1.3.25. The structures known as bundle 2-gerbes [St01] are presentations of the 2-groupoids
that are total spaces of circle principal 2-bundles, as above.
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Again, notice that, despite a close relation, this is different from the original notion of 2-gerbe. More
discussion of this point is below in 4.3.8.

The next example is still abelian, but captures basics of the central mechanism of twistings of principal
2-bundles by principal 3-bundles.

Example 1.3.26. Consider a morphism δ : N → A of abelian groups and the corresponding shifted crossed
complex (N → A→ 1). The corresponding delooped 3-group looks like

B(N → A→ 1) =


• // •

��
•

OO ??

// •

a1

� 

a2��

δ(n)=a4a3a
−1
2 a−1

1//

• //

��

•

��
•

OO

// •

a3

~�

a4 ��

 .

A cocycle for a (N → A→ 1)-principal 3-bundle is given by data

{aijk ∈ C∞(Uijk, A), nijkl ∈ C∞(Uijkl, N)}

such that

1. ajkla
−1
ijkaijka

−1
ikl = δ(nijkl)

2. nhijk(x)nhikl(x)nijkl(x) = nhjkl(x)nhijl(x) .

The first equation on the left is the cocycle for a 2-bundle as in observation 1.3.3. But the extra term nijkl
on the right “twists” the cocycle. This twist itself satisfies a higher order cocycle condition.

Notice that there is a canonical projection

B(N → A→ 1)→ B(N → 1→ 1) = B3N .

Therefore we can consider the higher analog of the notion of twisted bundles in example 1.3.20:

Definition 1.3.27. Let N → A be an inclusion and consider a fixed B2N -principal 3-bundle with cocycle
g, let B(A/N)Bund[g](X) be the pullback in

B(A/N)Bund[g](X) //

��

∗

g

��
B(N → A)Bund(X) //

'
��

B2NBund(X)

B(A/N)Bund(X)

.

We say an object in this 2-groupoid is a [g]-twisted B(A/N)-principal 2-bundle.

Below in example 1.3.65 we discuss this and its relation to characteristic classes of 2-bundles in more
detail.

We now turn to the most general 3-group that is presented by a crossed complex.

Observation 1.3.28. For (L
δ→ H

δ→ G) an arbitrary strict 3-group, def. 1.3.22, the delooping 3-groupoid
looks like

B(L→ H → G) =



∗
g2 // ∗

g3

��
∗ //

g1

OO

δ(h1)g2g1

??

∗

h1

�#

h2
�#

λ∈L //

∗
g2 //

δ(h3)g2g3

��

∗

g3

��
∗ //

g1

OO

∗

h3
{�

h4{�
|

h4h3

=
δ(λ) · h2 · ρ(g3)(h1)


,
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with the 4-cells – the composition identities – being

•
g23

!!

��

•

g12

==

3

g34

��
•

g01

XX

//

KK

•

��

��

��

•
g23

!!
•

g12

==

•

g34

��
•

g01

XX

//

JJ

88

•

�� ��

�

•
g23

!!

��

•

g12

==

&&

•

g34

��
•

g01

XX

// •
��

	� �

•
g23

!!
•

g12

==

// •

g34

��
•

g01

XX

//

88

•
y�

��

��

•
g23

!!
•

g12

==

//

&&

•

g34

��
•

g01

XX

// •
�%
��

��

h0234 $$ ρ(g23)(λ0124)

::

ρ(g34)(λ0123)

JJ

λ0134 //

λ1234

��

=

��

If follows that a cocycle

X
'← C(Ui)

(λ,h,g)→ B(L→ H → G)

for a (L→ H → G)-principal 3-bundle is a collection of functions

{gij ∈ C∞(Uij , G), hijk ∈ C∞(Uijk, H), λijkl ∈ C∞(Uijkl, L)}

satisfying the cocycle conditions
gik = δ(hijk)gjkgij on Uijk

hijlhjkl = δ(λijkl) · hikl · ρ(g3)(hijk) on Uijkl

λijklλhiklρ(gkl)(λhijk) = ρ(gjk)λhijlλhjkl on Uhijkl .

Definition 1.3.29. Given such a cocycle, the pullback 3-groupoid P we call the corresponding principal
(L→ H → G)-3-bundle

P //

��

EB(L→ H → G)

��
C(Ui)

'
��

(λ,h,g) // B(L→ H → G)

X

We can now give the higher analog of the notion of twisted bundles, def. 1.3.20.
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Definition 1.3.30. Given a 3-anafunctor

B(L→ H → G) //

'
��

B(L→ 1→ 1) B3L

B(H/L→ G)

then for g the cocycle for an B2L-principal 3-bundle we say that the pullback (H → G)Bundg(X) in

(H → G)Bundg(X) //

��

∗

g

��
(L→ H → G)Bund(X) // B3LBund(X)

is the 3-groupoid of g-twisted (H → G)-principal 2-bundles on X.

Example 1.3.31. Let G be a compact and simply connected simple Lie group. By example 1.3.14 we have
associated with this the string 2-group crossed module Ω̂G→ PG, where

U(1)→ Ω̂G→ ΩG

is the Kac-Moody central extension of level 1 of the based loop group of G. Accordingly, there is an evident
crossed complex

U(1)→ Ω̂G→ PG .

The evident projection

B(U(1)→ Ω̂G→ PG)
'→ BG

is a weak equivalence. This means that (U(1) → Ω̂G → PG)-principal 3-bundles are equivalent to G-1-
bundles. For fixed projection g to a B2U(1)-3-bundle a (U(1)→ Ω̂G→ PG)-principal 3-bundles may hence
be thought of as a g-twisted string-principal 2-bundle.

One finds that these serve as a resolution of G-1-bundles in attempts to lift to string-2-bundles (discussed
below in 5.1).

1.3.2 A model for principal ∞-bundles

We have seen above that the theory of ordinary smooth principal bundles is naturally situated within the
context of Lie groupoids, and then that the theory of smooth principal 2-bundles is naturally situated within
the theory of Lie 2-groupoids. This is clearly the beginning of a pattern in higher category theory where in
the next step we see smooth 3-groupoids and so on. Finally the general theory of principal ∞-bundles deals
with smooth ∞-groupoids. A comprehensive discussion of such smooth ∞-groupoids is given in section 4.4.
In this introduction here we will just briefly describe principal ∞-bundles in this model.

Recall the discussion of ∞-groupoids from 1.2.2.1, in terms of Kan simplicial sets. Consider an object
BG ∈ [Cop, sSet] which is an ∞-groupoid with a single object, so that we may think of it as the delooping
of an ∞-group G. Let ∗ be the point and ∗ → BG the unique inclusion map. The good replacement of this
inclusion morphism is the universal G-principal ∞-bundle EG→ BG given by the pullback diagram

EG //

��

∗

��
(BG)∆[1] //

��

BG

BG

.
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An ∞-anafunctor X
'← X̂ → BG we call a cocycle on X with coefficients in G, and the ∞-pullback P of

the point along this cocycle, which by the above discussion is the ordinary limit

P //

��

EG //

��

∗

��
BG∆[1] //

��

BG

X̂

'
��

g // BG

X

we call the principal ∞-bundle P → X classified by the cocycle.

Example 1.3.32. A detailed description of the 3-groupoid fibration that constitutes the universal principal
2-bundle EG for G any strict 2-group in given in [RoSc08].

It is now evident that our discussion of ordinary smooth principal bundles above is the special case of
this for BG the nerve of the one-object groupoid associated with the ordinary Lie group G. So we find
the complete generalization of the situation that we already indicated there, which is summarized in the
following diagram:

...
...

P̃ ×G //

��

EG×G

��
P̃ //

��

EG

��
C(U)

g //

'
��

BG

X

...
...

P ×G //

��

G

��
P //

��

∗

��
X

g
// BG

'

x�

'

x�

in the model category in the ∞-topos

1.3.3 Parallel n-transport for low n

With a decent handle on principal ∞-bundles as described above, we now turn to the description of connec-
tions on ∞-bundles. It will turn out that the above cocycle-description of G-principal ∞-bundles in terms

of ∞-anafunctors X
'← X̂

g→ BG has, under mild conditions, a natural generalization where BG is replaced
by a (non-concrete) simplicial presheaf BGconn, which we may think of as the ∞-groupoid of ∞-Lie algebra
valued forms. This comes with a canonical map BGconn → BG and an ∞-connection ∇ on the ∞-bundle
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classified by g is a lift ∇ of g in the diagram

BGconn

��
X̂

g //

'
��

∇
;;

BG

X

.

In the language of∞-stacks we may think of BG as the∞-stack (on CartSp) or∞-prestack (on SmoothMfd)
GTrivBund(−) of trivial G-principal bundles, and of BGconn correspondingly as the object GTrivBund∇(−)
of trivial G-principal bundles with (non-trivial) connection. In this sense the statement that ∞-connections
are cocycles with coefficients in some BGconn is a tautology. The real questions are:

1. What is BGconn in concrete formulas?

2. Why are these formulas what they are? What is the general abstract concept of an ∞-connection?
What are its defining abstract properties?

A comprehensive answer to the second question is provided by the general abstract concepts discussed in
section 3. Here in this introduction we will not go into the full abstract theory, but using classical tools we
get pretty close. What we describe is a generalization of the concept of parallel transport to higher parallel
transport. As we shall see, this is naturally expressed in terms of ∞-anafunctors out of path n-groupoids.
This reflects how the full abstract theory arises in the context of an ∞-connected ∞-topos that comes
canonically with a notion of fundamental ∞-groupoid.

Below we begin the discussion of ∞-connections by reviewing the classical theory of connections on a
bundle in a way that will make its generalization to higher connections relatively straightforward. In an
analogous way we can then describe certain classes of connections on a 2-bundle – subsuming the notion
of connection on a bundle gerbe. With that in hand we then revisit the discussion of connections on
ordinary bundles. By associating to each bundle with connection its corresponding curvature 2-bundle with
connection we obtain a more refined description of connections on bundles, one that is naturally adapted
to the construction of curvature characteristic forms in the Chern-Weil homomorphism. This turns out to
be the kind of formulation of connections on an ∞-bundle that drops out of the general abstract theory.
In classical terms, its full formulation involves the description of circle n-bundles with connection in terms
of Deligne cohomology and the description of the ∞-groupoid of ∞-Lie algebra valued forms in terms of
dg-algebra homomorphisms. The combination of these two aspects yields naturally an explicit model for the
Chern-Weil homomorphism and its generalization to higher bundles.

Taken together, these constructions allow us to express a good deal of the general ∞-Chern-Weil theory
with classical tools. As an example, we describe how the classical Čech-Deligne cocycle construction of the
refined Chern-Weil homomorphism drops out from these constructions.

1.3.3.1 Connections on a principal bundle There are different equivalent definitions of the classical
notion of a connection. One that is useful for our purposes is that a connection ∇ on a G-principal bundle
P → X is a rule tra∇ for parallel transport along paths: a rule that assigns to each path γ : [0, 1] → X
a morphism tra∇(γ) : Px → Py between the fibers of the bundle above the endpoints of these paths, in a
compatible way:

Px
tra∇(γ)// Py

tra∇(γ′)// Pz P

��
x

γ // y
γ′ // z X
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In order to formalize this, we introduce a (diffeological) Lie groupoid to be called the path groupoid of X.
(Constructions and results in this section are from [ScWaI].

Definition 1.3.33. For X a smooth manifold let [I,X] be the set of smooth functions I = [0, 1] → X.
For U a Cartesian space, we say that a U -parameterized smooth family of points in [I,X] is a smooth map
U × I → X. (This makes [I,X] a diffeological space).

Say a path γ ∈ [I,X] has sitting instants if it is constant in a neighbourhood of the boundary ∂I. Let
[I, P ]si ⊂ [I, P ] be the subset of paths with sitting instants.

Let [I,X]si → [I,X]thsi be the projection to the set of equivalence classes where two paths are regarded
as equivalent if they are cobounded by a smooth thin homotopy.

Say a U -parameterized smooth family of points in [I,X]thsi is one that comes from a U -family of repre-
sentatives in [I,X]si under this projection. (This makes also [I,X]thsi a diffeological space.)

The passage to the subset and quotient [I,X]thsi of the set of all smooth paths in the above definition
is essentially the minimal adjustment to enforce that the concatenation of smooth paths at their endpoints
defines the composition operation in a groupoid.

Definition 1.3.34. The path groupoid P1(X) is the groupoid

P1(X) = ([I,X]thsi
→→ X)

with source and target maps given by endpoint evaluation and composition given by concatenation of classes
[γ] of paths along any orientation preserving diffeomorphism [0, 1] → [0, 2] ' [0, 1]

∐
1,0[0, 1] of any of their

representatives

[γ2] ◦ [γ1] : [0, 1]
'→ [0, 1]

∐
1,0

[0, 1]
(γ2,γ1)→ X .

This becomes an internal groupoid in diffeological spaces with the above U -families of smooth paths. We
regard it as a groupoid-valued presheaf, an object in [CartSpop,Grpd]:

P1(X) : U 7→ (SmoothMfd(U × I,X)th
si
→→ SmoothMfd(U,X)) .

Observe now that for G a Lie group and BG its delooping Lie groupoid discussed above, a smooth functor
tra : P1(X)→ BG sends each (thin-homotopy class of a) path to an element of the group G

tra : (x
[γ]→ y) 7→ (• tra(γ)∈G→ •)

such that composite paths map to products of group elements :

tra :


y

[γ′]

��
x

[γ′◦γ]

//

[γ]
??

z

 7→


∗

tra(γ′)

��
∗

tra(γ′)tra(γ)

//

tra(γ)
??

∗

 .

and such that U -families of smooth paths induce smooth maps U → G of elements.
There is a classical construction that yields such an assignment: the parallel transport of a Lie-algebra

valued 1-form.

Definition 1.3.35. Suppose A ∈ Ω1(X, g) is a degree-1 differential form on X with values in the Lie algebra
g of G. Then its parallel transport is the smooth functor

traA : P1(X)→ BG

given by

[γ] 7→ P exp(

∫
[0,1]

γ∗A) ∈ G ,
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where the group element on the right is defined to be the value at 1 of the unique solution f : [0, 1]→ G of
the differential equation

ddRf + γ∗A ∧ f = 0

for the boundary condition f(0) = e.

Proposition 1.3.36. This construction A 7→ traA induces an equivalence of categories

[CartSpop,Grpd](P1(X),BG) ' BGconn(X) ,

where on the left we have the hom-groupoid of groupoid-valued presheaves, and where on the right we have
the groupoid of Lie-algebra valued 1-forms, whose

• objects are 1-forms A ∈ Ω1(X, g),

• morphisms g : A1 → A2 are labeled by smooth functions g ∈ C∞(X,G) such that A2 = g−1Ag+g−1dg.

This equivalence is natural in X, so that we obtain another smooth groupoid.

Definition 1.3.37. Define BGconn : CartSpop → Grpd to be the (generalized) Lie groupoid

BGconn : U 7→ [CartSpop,Grpd](P1(−),BG)

whose U -parameterized smooth families of groupoids form the groupoid of Lie-algebra valued 1-forms on U .

This equivalence in particular subsumes the classical facts that parallel transport γ 7→ P exp(
∫

[0,1]
γ∗A)

• is invariant under orientation preserving reparameterizations of paths;

• sends reversed paths to inverses of group elements.

Observation 1.3.38. There is an evident natural smooth functor X → P1(X) that includes points in X
as constant paths. This induces a natural morphism BGconn → BG that forgets the 1-forms.

Definition 1.3.39. Let P → X be a G-principal bundle that corresponds to a cocycle g : C(U) → BG
under the construction discussed above. Then a connection ∇ on P is a lift ∇ of the cocycle through
BGconn → BG.

BGconn

��
C(U)

g //

∇
::

BG

Observation 1.3.40. This is equivalent to the traditional definitions.

A morphism ∇ : C(U)→ BGconn is

• on each Ui a 1-form Ai ∈ Ω1(Ui, g);

• on each Ui ∩ Uj a function gij ∈ C∞(Ui ∩ Uj , G);

such that

• on each Ui ∩ Uj we have Aj = g−1
ij (A+ ddR)gij ;

• on each Ui ∩ Uj ∩ Uk we have gij · gjk = gik.

Definition 1.3.41. Let [I,X]thsi → [I,X]h the projection onto the full quotient by smooth homotopy classes

of paths. Write Π1(X) = ([I,X]h
→→ X) for the smooth groupoid defined as P1(X), but where instead of

thin homotopies, all homotopies are divided out.
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Proposition 1.3.42. The above restricts to a natural equivalence

[CartSpop,Grpd](Π1(X),BG) ' [BG ,

where on the left we have the hom-groupoid of groupoid-valued presheaves, and on the right we have the full
sub-groupoid [BG ⊂ BGconn on those g-valued differential forms whose curvature 2-form FA = ddRA+[A∧A]
vanishes.

A connection ∇ is flat precisely if it factors through the inclusion [BG→ BGconn.

For the purposes of Chern-Weil theory we want a good way to extract the curvature 2-form in a general

abstract way from a cocycle ∇ : X
'← C(U) → BGconn. In order to do that, we first need to discuss

connections on 2-bundles.

1.3.3.2 Connections on a principal 2-bundle There is an evident higher dimensional generalization of
the definition of connections on 1-bundles in terms of functors out of the path groupoid discussed above. This
we discuss now. We will see that, however, the obvious generalization captures not quite all 2-connections.
But we will also see a way to recode 1-connections in terms of flat 2-connections. And that recoding then is
the right general abstract perspective on connections, which generalizes to principal ∞-bundles and in fact
which in the full theory follows from first principles.

(Constructions and results in this section are from [ScWaII], [ScWaIII].)

Definition 1.3.43. The path path 2-groupoid P2(X) is the smooth strict 2-groupoid analogous to P1(X),
but with nontrivial 2-morphisms given by thin homotopy-classes of disks ∆2

Diff → X with sitting instants.
In analogy to the projection P1(X)→ Π1(X) there is a projection to P2(X)→ Π2(X) to the 2-groupoid

obtained by dividing out full homotopy of disks, relative boundary.

We want to consider 2-functors out of the path 2-groupoid into connected 2-groupoids of the form BG,
for G a 2-group, def. 1.3.6. A smooth 2-functor Π2(X)→ BG now assigns information also to surfaces

tra :


y

[γ′]

��
x

[γ′◦γ]

//

[γ]
??

z
[Σ]��

 7→


∗

tra(γ′)

��
∗ //

tra(γ)
??

∗
tra(Σ)��


and thus encodes higher parallel transport.

Proposition 1.3.44. There is a natural equivalence of 2-groupoids

[CartSpop, 2Grpd](Π2(X),BG) ' [BG

where on the right we have the 2-groupoid of Lie 2-algebra valued forms] whose

• objects are pairs A ∈ Ω1(X, g1), B ∈ Ω2(X, g2) such that the 2-form curvature

F2(A,B) := ddRA+ [A ∧A] + δ∗B

and the 3-form curvature
F3(A,B) := ddRB + [A ∧B]

vanish.

• morphisms (λ, a) : (A,B)→ (A′, B′) are pairs a ∈ Ω1(X, g2), λ ∈ C∞(X,G1) such that A′ = λAλ−1 +
λdλ−1 + δ∗a and B′ = λ(B) + ddRa+ [A ∧ a]

• The description of 2-morphisms we leave to the reader (see [ScWaII]).
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As before, this is natural in X, so that we that we get a presheaf of 2-groupoids

[BG : U 7→ [CartSpop, 2Grpd](Π2(U),BG) .

Proposition 1.3.45. If in the above definition we use P2(X) instead of Π2(X), we obtain the same 2-
groupoid, except that the 3-form curvature F3(A,B) is not required to vanish.

Definition 1.3.46. Let P → X be a G-principal 2-bundle classified by a cocycle C(U) → BG. Then a
structure of a flat connection on a 2-bundle ∇ on it is a lift

[BG

��
C(U)

g //

∇flat

;;

BG

.

For G = BA, a connection on a 2-bundle (not necessarily flat) is a lift

[P2(−),B2A]

��
C(U)

g //

∇flat

88

BG

.

We do not state the last definition for general Lie 2-groups G. The reason is that for general G 2-
anafunctors out of P2(X) do not produce the fully general notion of 2-connections that we are after, but
yield a special case in between flatness and non-flatness: the case where precisely the 2-form curvature-
components vanish, while the 3-form curvature part is unrestricted. This case is important in itself and
discussed in detail below. Only for G of the form BA does the 2-form curvature necessarily vanish anyway,
so that in this case the definition by morphisms out of P2(X) happens to already coincide with the proper
general one. This serves in the following theorem as an illustration for the toolset that we are exposing,
but for the purposes of introducing the full notion of ∞-Chern-Weil theory we will rather focus on flat 2-
connections, and then show below how using these one does arrive at a functorial definition of 1-connections
that does generalize to the fully general definition of ∞-connections.

Proposition 1.3.47. Let {Ui → X} be a good open cover, a cocycle C(U) → [P2(−),B2A] is a cocycle in
Čech-Deligne cohomology in degree 3.

Moreover, we have a natural equivalence of bicategories

[CartSpop, 2Grpd](C(U), [P2(−),B2U(1)]) ' U(1)Gerb∇(X) ,

where on the right we have the bicategory of U(1)-bundle gerbes with connection [Gaje97].
In particular the equivalence classes of cocycles form the degree-3 ordinary differential cohomology of X:

H3
diff(X,Z) ' π0([C(U), [P2(−),B2U(1)) .

A cocycle as above naturally corresponds to a 2-anafunctor

Q //

'
��

B2U(1)

P2(X)

The value of this on 2-morphisms in P2(X) is the higher parallel transport of the connection on the 2-bundle.
This appears for instance in the action functional of the sigma model that describes strings charged under
a Kalb-Ramond field.

The following example of a flat nonabelian 2-bundle is very degenerate as far as 2-bundles go, but does
contain in it the seed of a full understanding of connections on 1-bundles.
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Definition 1.3.48. For G a Lie group, its inner automorphism 2-group INN(G) is as a groupoid the universal

G-bundle EG, but regarded as a 2-group with the group structure coming from the crossed module [G
Id→ G].

The depiction of the delooping 2-groupoid BINN(G) is

BINN(G) =


∗

g2

��
∗

kg2g1

//

g1

??

∗
k��

| g1, g2 ∈ G, k ∈ G

 .

This is the Lie 2-group whose Lie 2-algebra inn(g) is the one whose Chevalley-Eilenberg algebra is the Weil
algebra of g.

Example 1.3.49. By the above theorem we have that there is a bijection of sets

{Π2(X)→ BINN(G)} ' Ω1(X, g)

of flat INN(G)-valued 2-connections and Lie-algebra valued 1-forms. Under the identifications of this theorem
this identification works as follows:

• the 1-form component of the 2-connection is A;

• the vanishing of the 2-form component of the 2-curvature F2(A,B) = FA + B identifies the 2-form
component of the 2-connection with the curvature 2-form, B = −FA;

• the vanishing of the 3-form component of the 3-curvature F3(A,B) = dB + [A∧B] = dA + [A∧FA] is
the Bianchi identity satisfied by any curvature 2-form.

This means that 2-connections with values in INN(G) actually model 1-connections and keep track of their
curvatures. Using this we see in the next section a general abstract definition of connections on 1-bundles
that naturally supports the Chern-Weil homomorphism.

1.3.3.3 Curvature characteristics of 1-bundles We now describe connections on 1-bundles in terms
of their flat curvature 2-bundles .

Throughout this section G is a Lie group, BG its delooping 2-groupoid and INN(G) its inner automor-
phism 2-group and BINN(G) the corresponding delooping Lie 2-groupoid.

Definition 1.3.50. Define the smooth groupoid BGdiff ∈ [CartSpop,Grpd] as the pullback

BGdiff = BG×BINN(G) [BINN(G) .

This is the groupoid-valued presheaf which assigns to U ∈ CartSp the groupoid whose objects are commuting
diagrams

U //

��

BG

��
Π2(U) // BINN(G)

,

where the vertical morphisms are the canonical inclusions discussed above, and whose morphisms are com-
patible pairs of natural transformations

U
**
88

��

BG

��
Π2(U)

--

66
BINN(G)

��

��

,

of the horizontal morphisms.
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By the above theorems, we have over any U ∈ CartSp that

• an object in BGdiff(U) is a 1-form A ∈ Ω1(U, g);

• amorphism A1
(g,a)→ A2 is labeled by a function g ∈ C∞(U,G) and a 1-form a ∈ Ω1(U, g) such that

A2 = g−1A1g + g−1dg + a .

Notice that this can always be uniquely solved for a, so that the genuine information in this morphism
is just the data given by g.

• ther are no nontrivial 2-morphisms, even though BINN(G) is a 2-groupoid: since BG is just a 1-
groupoid this is enforced by the commutativity of the above diagram.

From this it is clear that

Proposition 1.3.51. The projection BGdiff
'→ BG is a weak equivalence.

So BGdiff is a resolution of BG. We will see that it is the resoluton that supports 2-anafunctors out of
BG which represent curvature characteristic classes.

Definition 1.3.52. For X
'← C(U) → BU(1) a cocycle for a U(1)-principal bundle P → X, we call a lift

∇ps in

BGdiff

��
C(U)

g //

∇ps

::

BG

a pseudo-connection on P .

Pseudo-connections in themselves are not very interesting. But notice that every ordinary connection is
in particular a pseudo-connection and we have an inclusion morphism of smooth groupoids

BGconn ↪→ BGdiff .

This inclusion plays a central role in the theory. The point is that while BGdiff is such a boring extension of
BG that it is actually equivalent to BG, there is no inclusion of BGconn into BG, but there is into BGdiff .
This is the kind of situation that resolutions are needed for.

It is useful to look at some details for the case that G is an abelian group such as the circle group U(1).
In this abelian case the 2-groupoids BU(1), B2U(1), BINN(U(1)), etc., that so far we noticed are given by
crossed complexes are actually given by ordinary chain complexes: we write

Ξ : Ch+
• → sAb→ KanCplx

for the Dold-Kan correspondence map that identifies chain complexes with simplicial abelian group and
then considers their underlying Kan complexes. Using this map we have the following identifications of our
2-groupoid valued presheaves with complexes of group-valued sheaves

BU(1) = Ξ[C∞(−, U(1))→ 0]

B2U(1) = Ξ[C∞(−, U(1))→ 0→ 0]

BINNU(1) = Ξ[C∞(−, U(1))
Id→ C∞(−, U(1))→ 0] .

Observation 1.3.53. For G = A an abelian group, in particular the circle group, there is a canonical
morphism BINN(U(1))→ BBU(1).
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On the level of chain complexes this is the evident chain map

[C∞(−, U(1))
Id //

��

C∞(−, U(1)) //

��

0

��
[C∞(−, U(1)) // 0 // 0]

.

On the level of 2-groupoids this is the map that forgets the labels on the 1-morphisms
∗

g2

��
∗

kg2g1

//

g1

??

∗
k��

 7→


∗

Id

��
∗

Id
//

Id

??

∗
k��


In terms of this map INN(U(1)) serves to interpolate between the single and the double delooping of U(1).
In fact the sequence of 2-functors

BU(1)→ BINN(U(1))→ B2U(1)

is a model for the universal BU(1)-principal 2-bundle

BU(1)→ EBU(1)→ B2U(1) .

This happens to be an exact sequence of 2-groupoids. Abstractly, what really matters is rather that it is a
fiber sequence, meaning that it is exact in the correct sense inside the ∞-category Smooth∞Grpd. For our
purposes it is however relevant that this particular model is exact also in the ordinary sense in that we have
an ordinary pullback diagram

BU(1) //

��

∗

��
BINN(U(1)) // B2U(1)

,

exhibitng BU(1) as the kernel of BINN(U(1))→ B2U(1).
We shall be interested in the pasting composite of this diagram with the one defining BGdiff over a

domain U :
U //

��

BU(1) //

��

∗

��
Π2(U) // BINN(U(1)) // B2U(1)

,

The total outer diagram appearing this way is a component of the following (generalized) Lie 2-groupoid.

Definition 1.3.54. Set
[dRB2U(1) := ∗ ×B2U(1) [B

2U(1) .

Over any U ∈ CartSp this is the 2-groupoid whose objects are sets of diagrams

U //

��

∗

��
Π2(U) // B2U(1)

.
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This are equivalently just morphisms Π2(U)→ B2U(1), which by the above theorems we may identify with
closed 2-forms B ∈ Ω2

cl(U).
The morphisms B1 → B2 in [dRB2U(1) over U are compatible pseudonatural transformations of the

horizontal morphisms
U ))

99

��

∗

��
Π2(U)

--

66
BINN(G)

��

��

,

which means that they are pseudonatural transformations of the bottom morphism whose components over
the points of U vanish. These identify with 1-forms λ ∈ Ω1(U) such that B2 = B1 + ddRλ. Finally the
2-morphisms would be modifications of these, but the commutativity of the above diagram constrais these
to be trivial.

In summary this shows that

Proposition 1.3.55. Under the Dold-Kan correspondence [dRB2U(1) is the sheaf of truncated de Rham
complexes

[dRB2U(1) = Ξ[Ω1(−)
ddR→ Ω2

cl(−)] .

Corollary 1.3.56. Equivalence classes of 2-anafunctors

X → [dRB2U(1)

are canonically in bijection with the degree 2 de Rham cohomology of X.

Notice that – while every globally defined closed 2-form B ∈ Ω2
cl(X) defines such a 2-anafunctor – not

every such 2-anafunctor comes from a globally defined closed 2-form. Some of them assign closed 2-forms
Bi to patches U1, that differ by differentials Bj − Bi = ddRλij of 1-forms λij on double overlaps, which
themselves satisfy on triple intersections the cocycle condition λij + λjk = λik. But (using a partition of
unity) these non-globally defined forms are always equivalent to globally defined ones.

This simple technical point turns out to play a role in the abstract definition of connections on∞-bundles:
generally, for all n ∈ N the cocycles given by globally defined forms in [dRBnU(1) constitute curvature char-
acteristic forms of genuine connections. The non-globally defined forms also constitute curvature invariants,
but of pseudo-connections. The way the abstract theory finds the genuine connections inside all pseudo-
connections is by the fact that we may find for each cocycle in [dRBnU(1) an equivalent one that does comes
from a globally defined form.

Observation 1.3.57. There is a canonical 2-anafunctor ĉdR
1 : BU(1)→ [dRB2U(1)

BU(1)diff
//

'
��

[dRB2U(1)

BU(1)

,

where the top morphism is given by forming the -composite with the universal BU(1)-principal 2-bundle, as
described above.

For emphasis, notice that this span is governed by a presheaf of diagrams that over U ∈ CartSp is of the
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form
U //

��

BU(1)

��

transition function

Π2(U) //

��

BINN(U)

��

connection

Π2(U) // B2U(1) curvature

.

The top morphisms are the components of the presheaf BU(1). The top squares are those of BU(1)diff .
Forming the bottom square is forming the bottom morphism, which necessarily satifies the constraint that
makes it a components of [B2U(1).

The interpretation of the stages is as indicated in the diagram:

1. the top morphism is the transition function of the underlying bundle;

2. the middle morphism is a choice of (pseudo-)connection on that bundle;

3. the bottom morphism picks up the curvature of this connection.

We will see that full∞-Chern-Weil theory is governed by a slight refinement of presheaves of essentially this
kind of diagram. We will also see that the three stage process here is really an incarnation of the computation
of a connecting homomorphism, reflecting the fact that behind the scenes the notion of curvature is exhibited
as the obstruction cocycle to lifts from bare bundles to flat bundles.

Observation 1.3.58. For X
'← C(U)

g→ BU(1) the cocycle for a U(1)-principal bundle as described above,
the composition of 2-anafunctors of g with ĉdR

1 yields a cocycle for a 2-form ĉdR
1 (g)

BU(1)conn

��
C(V )

∇
99

//

'
��

BU(1)diff
//

'
��

[dRB2U(1)

C(U)
g //

'
��

BU(1)

X

.

If we take {Ui → X} to be a good open cover, then we may assume V = U . We know we can always find
a pseudo-connection C(V )→ BU(1)diff that is actually a genuine connection on a bundle in that it factors
through the inclusion BU(1)conn → BU(1)diff as indicated.

The corresponding total map cdR
1 (g) represented by ĉdR

1 (∇) is the cocycle for the curvature 2-form of
this connection. This represents the first Chern class of the bundle in de Rham cohomology.

For X,A smooth 2-groupoids, write H(X,A) for the 2-groupoid of 2-anafunctors between them.

Corollary 1.3.59. Let H2
dR(X) → H(X, [dRB2U(1)) be a choice of one closed 2-form representative for
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each degree-2 de Rham cohomology-class of X. Then the pullback groupoid Hdiff(X,BU(1)) in

Hconn(X,BU(1)) //

��

H2
dR(X)

��
H(X,BU(1)diff) //

'
��

H(X, [dRB2U(1))

H(X,BU(1)) ' U(1)Bund(X)

is equivalent to disjoint union of groupoids of U(1)-bundles with connection whose curvatures are the chosen
2-form representatives.

1.3.3.4 Circle n-bundles with connection For A an abelian group there is a straightforward gener-
alization of the above constructions to (G = Bn−1A)-principal n-bundles with connection for all n ∈ N. We
spell out the ingredients of the construction in a way analogous to the above discussion. A first-principles
derivation of the objects we consider here below in 4.4.13.

This is content that appeared partly in [SSS09c], [FSS10]. We restrict attention to the circle n-group
G = Bn−1U(1).

There is a familiar traditional presentation of ordinary differential cohomology in terms of Cech-Deligne
cohomology. We briefly recall how this works and then indicate how this presentation can be derived along
the above lines as a presentation of circle n-bundles with connection.

Definition 1.3.60. For n ∈ N the Deligne-Beilinson complex is the chain complex of sheaves (on CartSp
for our purposes here) of abelian groups given as follows

Z(n+ 1)∞D =

 C∞(−,R/Z)
ddR // Ω1(−)

ddR // · · · ddR// Ωn−1(−)
ddR // Ωn(−)

n n− 1 · · · 1 0

 .
This definition goes back to [Del71] [Bel85]. The complex is similar to the n-fold shifted de Rham

complex, up to two important differences.

• In degree n we have the sheaf of U(1)-valued functions, not of R-valued functions (= 0-forms). The
action of the de Rham differential on this is often written dlog : C∞(−, U(1)) → Ω1(−). But if we
think of U(1) ' R/Z then it is just the ordinary de Rham differential applied to any representative in
C∞(−,R) of an element in C∞(−,R/Z).

• In degree 0 we do not have closed differential n-forms (as one would have for the the de Rham complex
shifted into non-negative degree), but all n-forms.

As before, we may use of the Dold-Kan correspondence Ξ : Ch+
•
'→ sAb

U→ sSet to identify sheaves of chain
complexes with simplicial sheaves. We write

BnU(1)conn := ΞZ(n+ 1)∞D

for the simplicial presheaf corresponding to the Deligne complex.
Then for {Ui → X} a good open cover, the Deligne cohomology of X in degree (n+ 1) is

Hn+1
diff (X) = π0[CartSpop, sSet](C({Ui}),BnU(1)conn) .
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Further using the Dold-Kan correspondence, this is equivalently the cohomology of the Čech-Deligne double
complex. A cocycle in degre (n+ 1) then is a tuple

(gi0,··· ,in , · · · , Aijk, Bij , Ci)

with

• Ci ∈ Ωn(Ui);

• Bij ∈ Ωn−1(Ui ∩ Uj);

• Aijk ∈ Ωn−2(Ui ∩ Uj ∩ Uk)

• and so on...

• gi0,··· ,in ∈ C∞(Ui0 ∩ · · · ∩ Uin , U(1))

satisfying the cocycle condition

(ddR + (−1)degδ)(gi0,··· ,in , · · · , Aijk, Bij , Ci) = 0 ,

where δ =
∑
i(−1)ip∗i is the alternating sum of the pullback of forms along the face maps of the Čech nerve.

This is a sequence of conditions of the form

• Ci − Cj = dBij ;

• Bij −Bik +Bjk = dAijk;

• and so on

• (δg)i0,··· ,in+1
= 0.

For low n we have seen these conditions in the dicussion of line bundles and of line 2-bundles (bundle
gerbes) with connection above. Generally, for any n ∈ N, this is Čech-cocycle data for a circle n-bundle with
connection, where

• Ci are the local connection n-forms;

• gi0,··· ,in is the transition function of the circle n-bundle.

We now indicate how the Deligne complex may be derived from differential refinement of cocycles for circle
n-bundles along the lines of the above discussions. To that end, write

BnU(1)ch := ΞU(1)[n] ,

for the simplicial presheaf given under the Dold-Kan correspondence by the chain complex

U(1)[n] = (C∞(−, U(1))→ 0→ · · · → 0)

with the sheaf represented by U(1) in degree n.

Proposition 1.3.61. For {Ui → X} an open cover of a smooth manifold X and C({Ui}) its Čech nerve,
∞-anafunctors

C({Ui})
g //

'
��

BnU(1)

X
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are in natural bijection with tuples of smooth functions

gi0···in : Ui0 ∩ · · · ∩ Uin → R/Z

satisfying

(∂g)i0···in+1 :=

n∑
k=0

gi0···ik−1ik·in = 0 ,

that is, with cocycles in degree-n Čech cohomology on U with values in U(1).
Natural transformations

C({Ui}) ·∆1
(g
λ→g′) //

'
��

BnU(1)

X ·∆1

are in natural bijection with tuples of smooth functions

λi0···in−1
: Ui0 ∩ · · · ∩ Uin−1

→ R/Z

such that
g′i0···in − gi0···in = (δλ)i0···in ,

that is, with Čech coboundaries.

The ∞-bundle P → X classified by such a cocycle according to 1.3.2 we call a circle n-bundle. For
n = 1 this reproduces the ordinary U(1)-principal bundles that we considered before in 1.3.1.1, for n = 2
the bundle gerbes considered in 1.3.1.2 and for n = 3 the bundle 2-gerbes discussed in 1.3.1.3.

To equip these circle n-bundles with connections, we consider the differential refinements of BnU(1)ch to
be denoted BnU(1)diff , BnU(1)conn and [dRBn+1U(1).

Definition 1.3.62. Write

[dRBn+1U(1)chn := Ξ
(

Ω1(−)
ddR→ Ω2(−)

ddR→ · · · ddR→ Ωncl(−)
)

– the truncated de Rham complex – and

BnU(1)diff =


(−) //

��

BnU(1)

��
Π(−) // BnINN(U(1))

 = Ξ


C∞(−,R/Z) // Ω1(−)

ddR // · · · // Ωn(−)

⊕

Ω1(−)
Id

::

ddR

// · · · ddR// Ωn(−)
Id

==


and

BnU(1)conn = Ξ
(
C∞(−,R/Z)

ddR→ Ω1(−)
ddR→ Ω2(−)

ddR→ · · · ddR→ Ωn(−)
)

– the Deligne complex, def. 1.3.60.

Observation 1.3.63. We have a pullback diagram

BnU(1)conn
//

��

Ωn+1
cl (−)

��
BnU(1)diff

curv //

'
��

[dRBn−1U(1)

BnU(1)
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in [CartSpop, sSet]. This models an ∞-pullback

BnU(1)conn
//

��

Ωn+1
cl (−)

��
BnU(1) // [dRBn−1U(1)

in the ∞-topos Smooth∞Grpd, and hence for each smooth manifold X (in particular) a homotopy pullback

H(X,BnU(1)conn) //

��

Ωn+1
cl (X)

��
H(X,BnU(1)) // H(X, [dRBn−1U(1))

.

We write
Hn

diff(X) := H(X,BnU(1)conn)

for the group of cohomology classes on X with coefficients in BnU(1)conn. On these cohomology classes the
above homotopy pullback diagram reduces to the commutative diagram

Hn+1
diff (X)

uu ))
Hn+1(X,Z)

))

Ωn+1
cl (X)

uu
Hn+1(X,R) ' Hn+1

dR (X)

that had appeared above in 1.1.2. But notice that the homotopy pullback of the cocycle n-groupoids contains
more information than this projection to cohomology classes.

Objects in H(X,BnU(1)conn) are modeled by ∞-anafunctors X
'← C({Ui}) → BnU(1)conn, and these

are in natural bijection with tuples(
Ci, Bi0i1 , Ai0i1,i2 , · · ·Zi0···in−1

, gi0···in
)
,

where Ci ∈ Ωn(Ui), Bi0i1 ∈ Ωn−1(Ui0 ∩ Ui1), etc., such that

Ci0 − Ci1 = dBi0i1

and
Bi0i1 −Bi0i2 +Bi1i2 = dAi0i1i2 ,

etc. This is a cocycle in Čech-Deligne cohomology. We may think of this as encoding a circle n-bundle with
connection. The forms (Ci) are the local connection n-forms.

The definition of ∞-connections on G-principal ∞-bundles for nonabelian G may be reduced to this

definition, by approximating every G-cocylce X
'← C({Ui})→ BG by abelian cocycles in all possible ways,

by postcomposing with all possible characteristic classes BG
'← B̂G→ BnU(1) to extract a circle n-bundle

from it. This is what we turn to below in 1.3.4.
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1.3.3.5 Holonomy and canonical action functionals We had started out with motivating differential
refinements of bundles and higher bundles by the notion of higher parallel transport. Here we discuss aspects
of this for the circle n-bundles

Let Σ be a compact smooth manifold of dimension n. For every smooth function Σ → X there is a
corresponding pullback operation

Hn+1
diff (X)→ Hn+1

diff (Σ)

that sends circle n-connections on X to circle n-connections on Σ. But due to its dimension, the curvature
(n+ 1)-form of any circle n-connection on Σ is necessarily trivial. From the definition of homotopy pullback
one can show that this implies that every circle n-connection on Σ is equivalent to one which is given by a
Cech-Deligne cocycle that involves a globally defined connection n-form ω. The integral of this form over
Σ produces a real number. One finds that this is well-defined up to integral shifts. This gives an n-volume
holonomy map ∫

Σ

: H(Σ,BnU(1)conn)→ U(1) .

For instance for n = 1 this is the map that sense an ordinary connection on an ordinary circle bundle over
Σ to its ordinary parallel transport along Σ, its line holonomy.

For G any smooth (higher) group, any morphism

ĉ : BGconn → BnU(1)conn

from the moduli stack of G-connections to that of circle n-connections therefore induces a canonical functional

exp(iSc(−)) : H(Σ,BGconn))
H(Σ,ĉ // H(Σ,BnU(1)conn)

∫
Σ // U(1)

from the ∞-groupoid of G-connections on Σ to U(1).
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1.3.4 Characteristic classes in low degree

We discuss explicit presentations of characteristic classes of principal n-bundles for low values of n and for
low degree of the characteristic class.

• General concept

• Examples

– example 1.3.64 – First Chern class of unitary 1-bundles

– example 1.3.65 – Dixmier-Douady class of circle 2-bundles (of bundle gerbes)

– example 1.3.66 – Obstruction class of central extension

– example 1.3.67 – First Stiefel-Whitney class of an O-principal bundle

– example 1.3.68 – Second Stiefel-Whitney class of an SO-principal bundle

– example 1.3.69 – Bockstein homomorphism

– example 1.3.70 – Third integral Stiefel-Whitney class

– example 1.3.71 – First Pontryagin class of Spin-1-bundles and twisted string-2-bundles

In the context of higher (smooth) groupoids the notion of characteristic class is conceptually very simple:
for G some n-group and BG the corresponding one-object n-groupoid, a characteristic class of degree k ∈ N
with coefficients in some abelian (Lie-)group A is presented simply by a morphism

c : BG→ BnA

of cohesive∞-groupoids. For instance if A = Z such a morphism represents a universal integral characteristic
class on BG. Then for

g : X → BG

any morphism of (smooth) ∞-groupoids that classifies a given G-principal n-bundle P → X, as discussed
above in 1.3.1, the corresponding characteristic class of P (equivalently of g) is the class of the composite

c(P ) : X
g // BG

c // BKA ,

in the cohomology group Hk(X,A) of the ambient ∞-topos.
In other words, in the abstract language of cohesive ∞-toposes the notion of characteristic classes of

cohesive principal ∞-bundles is verbatim that of principal fibrations in ordinary homotopy theory. The
crucial difference, though, is in the implementation of this abstract formalism.

Namely, as we have discussed previously, all the abstract morphisms f : A → B of cohesive ∞-
groupoids here are presented by ∞-anafunctors, hence by spans of genuine morphisms of Kan-complex
valued presheaves, whose left leg is a weak equivalence that exhibits a resolution of the source object.

This means that the characteristic map itself is presented by a span

B̂G
c //

'
��

BkA

BG

,

as is of course the cocycle for the principal n-bundle

C(Ui)
g //

'
��

BG

X

86



and the characteristic class [c(P )] of the corresponding principal n-bundle is presented by a (any) span
composite

C(Ti)
ĝ //

'
��

B̂G
c //

'
��

BkA

C(Ui)
g //

'
��

BG

X

,

where C(Ti) is, if necessary, a refinement of the cover C(Ui) over which the BG-cocycle g lifts to a B̂G-cocycle
as indicated.

Notice the similarity of this situation to that of the discussion of twisted bundles in example 1.3.20.
This is not a coincidence: every characteristic class induces a corresponding notion of twisted n-bundles
and, conversely, every notion of twisted n-bundles can be understood as arising from the failure of a certain
characteristic class to vanish.

We discuss now a list of examples.

Example 1.3.64 (first Chern class). Let N ∈ N. Consider the unitary group U(N). By its definition as a
matrix Lie group, this comes canonically equipped with the determinant function

det : U(N)→ U(1)

and by the standard properties of the determinant, this is in fact a group homomorphism. Therefore this
has a delooping to a morphism of Lie groupoids

Bdet : BU(N)→ BU(1) .

Under geometric realization this maps to a morphism

|Bdet| : BU(N)→ BU(1) ' K(Z, 2)

of topological spaces. This is a characteristic class on the classifying space BU(N): the ordinary first Chern
class. Hence the morphism Bdet on Lie groupoids is a smooth refinement of the ordinary first Chern class.

This smooth refinement acts on smooth U(n)-principal bundles as follows. Postcomposition of a Čech
cocycle

P : C({Ui})
(gij) //

'
��

BU(N)

X

for a U(N)-principal bundle on a smooth manifold X with this characteristic class yields the cocycle

detP : C({Ui})

'
��

(gij) //' // BU(N)
Bdet // BU(1)

X

for a circle bundle (or its associated line bundle) with transition functions (det(gij)): the determinant line
bundle of P .
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We may easily pass to the differential refinement of the first Chern class along similar lines. By prop.
1.3.36 the differential refinement BU(n)conn → BU(n) of the moduli stack of U(n)-principal bundles is given
by the groupoid-valued presheaf which over a test manifold U assigns

BU(n)conn : U 7→
{
A

g→ Ag | A ∈ Ω1(U, u(n)); g ∈ C∞(U,U(n))
}
.

One checks that Bdet uniquely extends to a morphism of groupoid-valued presheaves Bdetconn

BU(n)conn
Bdetconn//

��

BU(1)conn

��
BU(n)

Bdet // BU(1)

by sending A 7→ tr(A). Here the trace operation on the matrix Lie algebra u(n) is a unary invariant
polynomial 〈−〉 : u(n)→ u(1) ' R.

Therefore, over a 1-dimensional compact manifold Σ (a disjoint union of circles) the canonical action
functional, 1.3.3.5, induced by the first Chern class is

exp(iSc1
) : H(Σ,BU(n)conn)

H(Σ,Bdetconn) // H(Σ,BU(1)conn)

∫
Σ // U(1)

sending

A 7→ exp(i

∫
Σ

tr(A)) .

This is the action functional of 1-dimensional U(n)-Chern-Simons theory, discussed below in 5.6.2.

It is a basic fact that the cohomology class of line bundles can be identified within the second integral
cohomology of X. For our purposes here it is instructive to rederive this fact in terms of anafunctors, lifting
gerbes and twisted bundles.

To that end, consider from example 1.3.19 the equivalence of the 2-group (Z ↪→ R) with the ordinary
circle group, which supports the 2-anafunctor

B(Z→ R)
c1 //

'
��

B(Z→ 1) B2Z

BU(1)

.

We see now that this presents an integral characteristic class in degree 2 on BU(1). Given a cocycle
{hij ∈ C∞(Uij , U(1))} for any circle bundle, the postcomposition with this 2-anafunctor amounts to the
following:

1. refine the cover, if necessary, to a good open cover (where all non-empty Ui0,··· ,ik are contractible) –
we shall still write {Ui} now for this good cover;

2. choose on each Uij a (any) lift of the circle-valued functor hij : Uij → U(1) through the quotient map

R→ U(1) to a function ĥij : Uij → R – this is always possible over the contractible Uij ;

3. compute the failures of the lifts thus chosen to constitute the cocycle for an R-principal bundle: these
are the elements

λijk := ĥikĥ
−1
ij ĥ

−1
jk ∈ C

∞(Uijk,Z) ,

which are indeed Z-valued (hence constant) smooth functions due to the fact that the original {hij}
satisfied its cocycle law;
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4. notice that by observation 1.3.15 this yields the construction of the cocycle for a (Z → R)-principal
2-bundle

{ĥij ∈ C∞(Uij ,R), λijk ∈ C∞(Uijk,Z)} ,

which by example 1.3.20 we may also read as the cocycle for a twisted R-1-bundle, with respect to the
central extension Z→ R→ U(1);

5. finally project out the cocycle for the “lifting Z-gerbe” encoded by this, which is the the BZ-principal
2-bundle given by the BZ cocycle

{λijk ∈ C∞(Uijk,Z)} ,

This last cocycle is manifestly in degree-2 integral Čech cohomology, and hence indeed represents a class
in H2(X,Z). This is the first Chern class of the circle bundle given by {hij}. If here hij = detgij is the
determinant circle bundle of some unitary bundle, the this is also the first Chern class of that unitary bundle.

Example 1.3.65 (Dixmier-Douady class). The discussion in example 1.3.64 of the first Chern class of a
circle 1-bundle has an immediate generalization to an analogous canonical class of circle 2-bundles, def. 1.3.4,
hence, by observation 1.3.5, to bundle gerbes. As before, while this amounts to a standard and basic fact,
for our purposes it shall be instructive to spell this out in terms of ∞-anafunctors and twisted principal
2-bundles.

To that end, notice that by delooping the equivalence B(Z→ R)
'→ BU(1) yields

B2(Z→ R)
'→ B2U(1) .

This says that BU(1)-principal 2-bundles/bundle gerbes are equivalent to B(Z → R)-principal 3-bundles,
def. 1.3.24.

As before, this supports a canonical integral characteristic class, now in degree 3, presented by the
∞-anafunctor

B2(Z→ R) //

'
��

B2(Z→ 1) B(Z→ 1→ 1)

B2U(1)

.

The corresponding class in H3(BU(1),Z) is the (smooth lift of) the universal Dixmier-Douady class.
Explicitly, for {gijk ∈ C∞(Uijk, U(1))} the Čech cocycle for a circle-2-bundle, def. 1.3.4, this class is

computed as the composite of spans

C(Ui)

'
��

(ĝ,λ)// B2(Z→ R) //

'
��

B3Z

C(Ui)
g //

'
��

B2U(1)

X

,

where we assume for simplicity of notation that the cover {Ui → X} already has be chosen (possibly after
refining another cover) such that all patches and their non-empty intersections are contractible.

Here the lifted cocycle data {ĝijk : Uijk → U(1)} is through the quotient map R → U(1) to real valued
functions. These lifts will, in general, not satisfy the condition of a cocycle for a BR-principal 2-bundle. The
failure is uniquely picked up by the functions

λijkl := ĝjklg
−1
ijkgijlg

−1
ikl ∈ C

∞(Uijkl,Z) .

89



By example 1.3.26 this data constitutes the cocycle for a (Z→ R→ 1)-principal 3-bundle or, by def. 1.3.27
that of a twisted BR-principal 2-bundle.

The above composite of spans projects out the integral cocycle

λijkl ∈ C∞(Uijkl,Z) ,

which manifestly gives a class in H3(X,Z). This is the Dixmier-Douady class of the original circle 3-bundle,
the higher analog of the Chern-class of a circle bundle.

Example 1.3.66 (obstruction class of central extension). For A→ Ĝ→ G a central extension of Lie groups,
there is a long sequence of (deloopings of) Lie 2-groups

BA→ BĜ→ BG
c→ B2A ,

where the characteristic class c is presented by the ∞-anafunctor

B(A→ Ĝ) //

'
��

B(A→ 1) B2A

BG

with (A→ Ĝ) the crossed module from example 1.3.13.

The proof of this is discussed below in prop. 4.4.34.

Example 1.3.67 (first Stiefel-Whitney class). The morphism of groups

O(n)→ Z2

which sends every element in the connected component of the unit element of O(n) to the unit element of
Z2 and every other element to the non-trivial element of Z2 induces a morphism of delooping Lie groupoids

w1 : BO(n)→ BZ2 .

This represents the universal smooth first Stiefel-Whiteney class.

The relation of w1 to orientation structure is discussed below in 5.1.2.

Example 1.3.68 (second Stiefel-Whitney class). The exact sequence that characterizes the Spin-group is

Z2 → Spin→ SO

induces, by example 1.3.66, a long fiber sequence

BZ2 → BSpin→ BSO
w2→ B2Z2 .

Here the the morphism w2 is presented by the ∞-anafunctor

B(Z2 → Spin) //

'
��

B(Z2 → 1) B2Z2

BSO

.

This is a smooth incarnation of the universal second Stiefel-Whitney class. The BZ2-principal 2-bundle
associated by w2 to any SO(n)-principal bundles is dicussed in [MuSi03] in terms of the corresponding
bundle gerbe, via. observation 1.3.5.

90



Example 1.3.69 (Bockstein homomorphism). The exact sequence

Z ·2→ Z→ Z2

induces, by example 1.3.66, for each n ∈ N a characteristic class

β2 : BnZ2 → Bn+1Z .

This is the Bockstein homomorphism.

Example 1.3.70 (third integral Stiefel-Whitney class). The composite of the second Stiefel-Whitney class
from example 1.3.68 with the Bockstein homomorphism from example 1.3.69 is the third integral Stiefel-
Whitney class

W3 : BSO
w2→ B2Z2

β2→ B3Z .

This has a refined factorization through the universal Dixmier-Douady class from example 1.3.65:

W3 : BSO→ B2U(1) .

This is discussed in lemma 5.4.71 below.

Example 1.3.71 (first Pontryagin class). Let G be a compact and simply connected simple Lie group. Then
the resolution from example 1.3.31 naturally supports a characteristic class presented by the 3-anafunctor

B(U(1)→ Ω̂G→ PG) //

'
��

B(U(1)→ 1→ 1) B3U(1)

BG

.

For G = Spin the spin group, this presents one half of the universal first Pontryagin class. This we dicuss
in detail in 5.1.

Composition with this class sends G-principal bundles to circle 2-bundles, 1.3.4, hence by 1.3.25 to bundle
2-gerbes. Our discussion in 5.1 shows that these are the Chern-Simons 2-gerbes.

The canonical action functional, 1.3.3.5, induced by 1
2p1 over a compact 3-dimensional Σ

exp(iS 1
2 p1

) : H(Σ,BSpinconn)
H(Σ, 12 p̂1) // H(Σ,B3U(1)conn)

∫
Σ // U(1)

is the action functional of ordinary 3-dimensional Chern-Simons theory, refined to the moduli stack of field
configurations. This we discuss in 5.6.3.1.
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1.3.5 L∞-algebraic structures

A Lie algebra is, in a precise sense, the infinitesimal approximation to a Lie group. This statement generalizes
to smooth n-groups (the strict case of which we had seen in definition 1.3.21); their infinitesimal approxi-
mation are Lie n-algebras which for arbitrary n are known as L∞-algebras. The statement also generalizes
to Lie groupoids (discussed in 1.3.1); their infinitesimal approximation are Lie algeboids. Both these are
special cases of a joint generalization; where smooth n-groupoids have L∞-algebroids as their infinitesimal
approximation.

The following is an exposition of basic L∞-algebraic structures, their relation to smooth n-groupoids and
the notion of connection data with coefficients in L∞-algebras.

The following discussion proceeds by these topics:

• L∞-algebroids;

• Lie integration;

• Characteristic cocycles from Lie integration;

• L∞-algebra valued connections;

• Curvature characteristics and Chern-Simons forms;

• ∞-Connections from Lie integration;

1.3.5.1 L∞-algebroids There is a precise sense in which one may think of a Lie algebra g as the in-
finitesimal sub-object of the delooping groupoid BG of the corresponding Lie group G. Without here going
into the details, which are discussed in detail below in 4.5.1, we want to build certain smooth ∞-groupoids
from the knowledge of their infinitesimal subobjects: these subobjects are L∞-algebroids and specifically
L∞-algebras.

For g an N-graded vector space, write g[1] for the same underlying vector space with all degrees shifted
up by one. (Often this is denoted g[−1] instead). Then

∧•g = Sym•(g[1])

is the Grassmann algebra on g; the free graded-commutative algebra on g[1].

Definition 1.3.72. An L∞-algebra structure on an N-graded vector space g is a family of multilinear maps

[−, · · · ,−]k : Symk(g[1])→ g[1]

of degree -1, for all k ∈ N, such that the higher Jacobi identities∑
k+l=n+1

∑
σ∈UnSh(l,k−1)

(−1)σta1
, · · · , tal ], tal+1

, · · · , tak+l−1
] = 0

are satisfied for all n ∈ N and all {tai ∈ g}.

See [SSS09a] for a review and for references.

Example 1.3.73. If g is concentrated in degree 0, then an L∞-algebra structure on g is the same as an
ordinary Lie algebra structure. The only non-trivial bracket is [−,−]2 : g ⊗ g → g and the higher Jacobi
identities reduce to the ordinary Jacobi identity.

We will see many other examples of L∞-algebras. For identifying these, it turns out to be useful to have
the following dual formulation of L∞-algebras.
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Proposition 1.3.74. Let g be a N-graded vector space that is degreewise finite dimensional. Write g∗ for
the degreewise dual, also N-graded.

Then dg-algebra structures on the Grassmann algebra ∧•g∗ = Sym•g[1]∗ are in canonical bijection with
L∞-algebra structures on g, def. 1.3.72.

Here the sum is over all (l, k− 1)unshuffles, which means all permutations σ ∈ Σk+l−1 that preserves the
order within the first l and within the last k − 1 arguments, respectively, and (−1)sgn is the Koszul-sign of
the permutation: the sign picked up by “unshuffling” ta1 ∧ · · · ,∧tak+l−1 according to σ.
Proof. Let {ta} be a basis of g[1]. Write {ta} for the dual basis of g[1]∗, where ta is taken to be in the same
degree as ta.

A derivation d : ∧•g∗ → ∧•g∗ of the Grassmann algebra is fixed by its value on generators, where it
determines and is determined by a sequence of brackets graded-symmetric multilinear maps {[−, · · · ,−]k}∞k=1

by

d : ta 7→ −
∞∑
k=1

1

k!
[ta1

, · · · , tak ]a ta1 ∧ · · · ∧ tak ,

where a sum over repeated indices is understood. This derivation is of degree +1 precisely if all the k-ary
maps are of degree -1. It is straightforward to check that the condition d ◦ d = 0 is equivalent to the higher
Jacobi identities. �

Definition 1.3.75. The dg-algebra corresponding to an L∞-algebra g by prop. 1.3.74 we call the Chevalley-
Eilenberg algebra CE(g) of g.

Example 1.3.76. For g an ordinary Lie algebra, as in example 1.3.73, the notion of Chevalley-Eilenberg
algebra from def. 1.3.75 coincides with the traditional notion.

Examples 1.3.77. • A strict L∞-algebra algebra is a dg-Lie algebra (g, ∂, [−,−]) with (g∗, ∂∗) a cochain
complex in non-negative degree. With g∗ denoting the degreewise dual, the corresponding CE-algebra
is CE(g) = (∧•g∗, dCE = [−,−]∗ + ∂∗.

• We had already seen above the infinitesimal approximation of a Lie 2-group: this is a Lie 2-algebra. If
the Lie 2-group is a smooth strict 2-group it is encoded equivalently by a crossed module of ordinary
Lie groups, and the corresponding Lie 2-algebra is given by a differential crossed module of ordinary
Lie algebras.

• For n ∈ N, n ≥ 1, the Lie n-algebra bn−1R is the infinitesimal approximation to BnU(R) and BnR.
Its CE-algebra is the dg-algebra on a single generators in degree n, with vanishing differential.

• For any ∞-Lie algebra g there is an L∞-algebra inn(g) defined by the fact that its CE-algebra is the
Weil algebra of g:

CE(inn(g)) = W(g) = (∧•(g∗ ⊕ g∗[1]), dW|g∗ = dCE + σ) ,

where σ : g∗ → g∗[1] is the grading shift isomorphism, extended as a derivation.

Example 1.3.78. For g an L∞-algebra, its automorphism L∞-algebra der(g) is the dg-Lie algebra whose
elements in degree k are the derivations

ι : CE(g)→ CE(g)

of degree −k, whose differential is given by the graded commutator [dCE(g),−] and whose Lie bracket is the
commutator bracket of derivations.

In the context of rational homotopy theory, this is discussed on p. 312 of [Su77].
One advantage of describing an L∞-algebra in terms of its dual Chevalley-Eilenberg algebra is that in

this form the correct notion of morphism is manifest.
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Definition 1.3.79. A morphism of L∞-algebras g→ h is a morphism of dg-algebras CE(g)← CE(h).
The category L∞Alg of L∞-algebras is therefore the full subcatgeory of the opposite category of dg-

algebras on those whose underlying graded algebra is free:

L∞Alg
CE(−)→ dgAlgop

R .

Replacing in this characterization the ground field R by an algebra of smooth functions on a manifold a0,
we obtain the notion of an L∞-algebroid g over a0. Morphisms a → b of such ∞-Lie algebroids are dually
precisely morphisms of dg-algebras CE(a)← CE(b).

Definition 1.3.80. The category of L∞-algebroids is the opposite category of the full subcategory of dgAlg

∞LieAlgbd ⊂ dgAlgop

on graded-commutative cochain dg-algebras in non-negative degree whose underlying graded algebra is an
exterior algebra over its degree-0 algebra, and this degree-0 algebra is the algebra of smooth functions on a
smooth manifold.

Remark 1.3.81. More precisely the above definition is that of affine C∞-L∞-algebroids. There are various
ways to refine this to something more encompassing, but for the purposes of this introductory discussion the
above is convenient and sufficient. A more comprehensive discussion is in 4.5.1 below.

Example 1.3.82. • The tangent Lie algebroid TX of a smooth manifold X is the infinitesimal approx-
imation to its fundamental ∞-groupoid. Its CE-algebra is the de Rham complex

CE(TX) = Ω•(X).

1.3.5.2 Lie integration We discusss Lie integration: a construction that sends an L∞-algebroid to a
smooth ∞-groupoid of which it is the infinitesimal approximation.

The construction we want to describe may be understood as a generalization of the following proposition.
This is classical, even if maybe not reflected in the standard textbook literature to the extent it deserves to
be.

Definition 1.3.83. For g a (finite-dimensional) Lie algebra, let exp(g) ∈ [CartSpop, sSet] be the simplicial
presheaf given by the assignment

exp(g) : U 7→ HomdgAlg(CE(g),Ω•(U ×∆•)vert) ,

in degree k of dg-algebra homomorphisms from the Chevalley-Eilenberg algebra of g to the dg-algebra of
vertical differential forms with respect to the trivial bundle U ×∆k → U .

Shortly we will be considering variations of such assignments that are best thought about when writing
out the hom-sets on the right here as sets of arrows; as in

exp(g) : (U, [k]) 7→
{

Ω•vert(U ×∆k)
Avert← CE(g)

}
) .

For g an ordinary Lie algebra it is an ancient and simple but important observation that dg-algebra morphisms
Ω•(∆k)← CE(g) are in natural bijection with Lie-algebra valued 1-forms that are flat in that their curvature
2-forms vanish: the 1-form itself determines precisely a morphism of the underlying graded algebras, and the
respect for the differentials is exactly the flatness condition. It is this elementary but similarly important
observation that historically led Eli Cartan to Cartan calculus and the algebraic formulation of Chern-Weil
theory.

One finds that it makes good sense to generally, for g any ∞-Lie algebra or even ∞-Lie algebroid, think
of HomdgAlg(CE(g),Ω•(∆k)) as the set of ∞-Lie algebroid valued differential forms whose curvature forms
(generally a whole tower of them) vanishes.
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Proposition 1.3.84. Let G be the simply-connected Lie group integrating g according to Lie’s three theorems
and BG ∈ [CartSpop,Grpd] its delooping Lie groupoid regarded as a groupoid-valued presheaf on CartSp.
Write τ1(−) for the truncation operation that quotients out 2-morphisms in a simplicial presheaf to obtain a
presheaf of groupoids.

We have an isomorphism
BG = τ1 exp(g) .

To see this, observe that the presheaf exp(g) has as 1-morphisms U -parameterized families of g-valued
1-forms Avert on the interval, and as 2-morphisms U -parameterized families of flat 1-forms on the disk,
interpolating between these. By identifying these 1-forms with the pullback of the Maurer-Cartan form on
G, we may equivalently think of the 1-morphisms as based smooth paths in G and 2-morphisms smooth
homotopies relative endpoints between them. Since G is simply-connected this means that after dividing
out 2-morphisms only the endpoints of these paths remain, which identify with the points in G.

The following proposition establishes the Lie integration of the shifted 1-dimensional abelian L∞-algebras
bn−1R.

Proposition 1.3.85. For n ∈ N, n ≥ 1. Write

BnRch := ΞR[n]

for the simplicial presheaf on CartSp that is the image of the sheaf of chain complexes represented by R in
degree n and 0 in other degrees, under the Dold-Kan correspondence Ξ : Ch+

• → sAb→ sSet.
Then there is a canonical morphism ∫

∆•
: exp(bn−1R)

'→ BnRch

given by fiber integration of differential forms along U × ∆n → U and this is an equivalence (a global
equivalence in the model structure on simplicial presheaves).

The proof of this statement is discussed in 4.4.11.
This statement will make an appearance repeatedly in the following discussion. Whenever we translate

a construction given in terms exp(−) into a more convenient chain complex representation.

1.3.5.3 Characteristic cocycles from Lie integration We now describe characteristic classes and
curvature characteristic forms on G-bundles in terms of these simplicial presheaves. For that purpose it is
useful for a moment to ignore the truncation issue – to come back to it later – and consider these simplicial
presheaves untruncated.

To see characteristic classes in this picture, write CE(bn−1R) for the commutative real dg-algebra on
a single generator in degree n with vanishing differential. As our notation suggests, this we may think as
the Chevalley-Eilenberg algebra of a higher Lie algebra – the ∞-Lie algebra bn−1R – which is an Eilenberg-
MacLane object in the homotopy theory of∞-Lie algebras, representing∞-Lie algebra cohomology in degree
n with coefficients in R.

Restating this in elementary terms, this just says that dg-algebra homomorphisms

CE(g)← CE(bn−1R) : µ

are in natural bijection with elements µ ∈ CE(g) of degree n, that are closed, dCE(g)µ = 0. This is the
classical description of a cocycle in the Lie algebra cohomology of g.

Definition 1.3.86. Every such ∞-Lie algebra cocycle µ induces a morphism of simplicial presheaves

exp(µ) : exp(g)→ exp(bnR)

given by postcomposition

Ω•vert(U ×∆l)
Avert← CE(g)

µ← CE(bnR) .
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Example 1.3.87. Assume g to be a semisimple Lie algebra, let 〈−,−〉 be the Killing form and µ = 〈−, [−,−]〉
the corresponding 3-cocycle in Lie algebra cohomology. We may assume without restriction that this cocycle
is normalized such that its left-invariant continuation to a 3-form on G has integral periods. Observe that
since π2(G) is trivial we have that the 3-coskeleton (see around def. 3.3.7 for details on coskeleta) of exp(g)
is equivalent to BG. By the inegrality of µ, the operation of exp(µ) on exp(g) followed by integration over
simplices descends to an ∞-anafunctor from BG to B3U(1), as indicated on the right of this diagram in
[CartSpop, sSet]

exp(g)
exp(µ) //

��

exp(bn−1R)

∫
∆•

��
C(V )

ĝ //

'
��

cosk3 exp(g)

∫
∆• cosk3 exp(µ)

//

'
��

B3R/Z

C(U)

'
��

g // BG

X

.

Precomposing this – as indicated on the left of the diagram – with another∞-anafunctor X
'← C(U)

g→ BG
for a G-principal bundle, hence a collection of transition functions {gij : Ui ∩Uj → G} amounts to choosing
(possibly on a refinement V of the cover U of X)

• on each Vi ∩ Vj a lift ĝij of gij to a familly of smooth based paths in G – ĝij : (Vi ∩ Vj) ×∆1 → G –
with endpoints gij ;

• on each Vi ∩ Vj ∩ Vk a smooth family ĝijk : (Vi ∩ Vj ∩ Vk) × ∆2 → G of disks interpolating between
these paths;

• on each Vi ∩ Vj ∩ Vk ∩ Vl a a smooth family ĝijkl : (Vi ∩ Vj ∩ Vk ∩ Vl)×∆3 → G of 3-balls interpolating
between these disks.

On this data the morphism
∫

∆•
exp(µ) acts by sending each 3-cell to the number

ĝijkl 7→
∫

∆3

ĝ∗ijklµ mod Z ,

where µ is regarded in this formula as a closed 3-form on G.

We say this is Lie integration of Lie algebra cocycles.

Proposition 1.3.88. For G = Spin, the Čech cohomology cocycle obtained this way is the first fractional
Pontryagin class of the G-bundle classified by G.

We shall show this below, as part of our L∞-algebraic reconstruction of the above motivating example.
In order to do so, we now add differential refinement to this Lie integration of characteristic classes.

1.3.5.4 L∞-algebra valued connections In 1.3.1 we described ordinary connections on bundles as well
as connections on 2-bundles in terms of parallel transport over paths and surfaces, and showed how such
is equivalently given by cocycles with coefficients in Lie-algebra valued differential forms and Lie 2-algebra
valued differential forms, respectively.
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Notably we saw for the case of ordinary U(1)-principal bundles, that the connection and curvature data
on these is encoded in presheaves of diagrams that over a given test space U ∈ CartSp look like

U //

��

BU(1)

��

transition function

Π(U) //

��

BINN(U)

��

connection

Π(U) // B2U(1) curvature

together with a constraint on the bottom morphism.
It is in the form of such a kind of diagram that the general notion of connections on ∞-bundles may be

modeled. In the full theory in 3 this follows from first principles, but for our present introductory purpose we
shall be content with taking this simple situation of U(1)-bundles together with the notion of Lie integration
as sufficient motivation for the constructions considered now.

So we pass now to what is to some extent the reverse construction of the one considered before: we define
a notion of L∞-algebra valued differential forms and show how by a variant of Lie integration these integrate
to coefficient objects for connections on ∞-bundles.

1.3.5.5 Curvature characteristics and Chern-Simons forms For G a Lie group, we have described
above connections on G-principal bundles in terms of cocycles with coefficients in the Lie-groupoid of Lie-
algebra valued forms BGconn

BGconn� _

��

connection

BGdiff

'
��

pseudo-connection

C(U)g

∇ps

99
∇

BB

//

'
��

BG transition function

X

.

In this context we had derived Lie-algebra valued forms from the parallel transport description BGconn =
[P1(−),BG]. We now turn this around and use Lie integration to construct parallel transport from Lie-
algebra valued forms. The construction is such that it generalizes verbatim to ∞-Lie algebra valued forms.
For that purpose notice that another classical dg-algebra associated with g is its Weil algebra W(g).

Proposition 1.3.89. The Weil algebra W(g) is the free dg-algebra on the graded vector space g∗, meaning
that there is a natural bijection

HomdgAlg(W (g), A) ' HomVectZ(g∗, A) ,

which is singled out among the isomorphism class of dg-algebras with this property by the fact that the
projection of graded vector spaces g∗ ⊕ g∗[1]→ g∗ extends to a dg-algebra homomorphism

CE(g)←W (g) : i∗ .

(Notice that general the dg-algebras that we are dealing with are semi-free dg-algebras in that only their
underlying graded algebra is free, but not the differential).
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The most obvious realization of the free dg-algebra on g∗ is ∧•(g∗ ⊕ g∗[1]) equipped with the differential
that is precisely the degree shift isomorphism σ : g∗ → g∗[1] extended as a derivation. This is not the Weil
algebra on the nose, but is of course isomorphic to it. The differential of the Weil algebra on ∧•(g∗ ⊕ g∗[1])
is given on the unshifted generators by the sum of the CE-differential with the shift isomorphism

dW (g)|g∗ = dCE(g) + σ .

This uniquely fixes the differential on the shifted generators – a phenomenon known (at least after mapping
this to differential forms, as we discuss below) as the Bianchi identity .

Using this, we can express also the presheaf BGdiff from above in diagrammatic fashion

Observation 1.3.90. For G a simply connected Lie group, the presheaf BGdiff ∈ [CartSpop,Grpd] is
isomorphic to

BGdiff = τ1

exp(g)diff : (U, [k]) 7→


Ω•vert(U ×∆k)Avert

oo CE(g)

Ω•(U ×∆k)A oo //

OO

W(g)

OO




where on the right we have the 1-truncation of the simplicial presheaf of diagrams as indicated, where the
vertical morphisms are the canonical ones.

Here over a given U the bottom morphism in such a diagram is an arbitrary g-valued 1-form A on U×∆k.
This we can decompose as A = AU + Avert, where AU vanishes on tangents to ∆k and Avert on tangents
to U . The commutativity of the diagram asserts that Avert has to be such that the curvature 2-form FAvert

vanishes when both its arguments are tangent to ∆k.
On the other hand, there is in the above no further constraint on AU . Accordingly, as we pass to the

1-truncation of exp(g)diff we find that morphisms are of the form (AU )1
g→ (AU )2 with (AU )i arbitrary. This

is the definition of BGdiff .
We see below that it is not a coincidence that this is reminiscent to the first condition on an Ehresmann

connection on a G-principal bundle, which asserts that restricted to the fibers a connection 1-form on the
total space of the bundle has to be flat. Indeed, the simplicial presheaf BGdiff may be thought of as the
∞-sheaf of pseudo-connections on trivial ∞-bundles. Imposing on this also the second Ehresmann condition
will force the pseudo-connection to be a genuine connection.

We now want to lift the above construction exp(µ) of characteristic classes by Lie integration of Lie
algebra cocycles µ from plain bundles classified by BG to bundles with (pseudo-)connection classified by
BGdiff . By what we just said we therefore need to extend exp(µ) from a map on just exp(g) to a map on
exp(g)diff . This is evidently achieved by completing a square in dgAlg of the form

CE(g)µ oo CE(bn−1R)

W(g)

OO

oo cs
W(bn−1R)

OO

and defining exp(µ)diff : exp(g)diff → exp(bn−1R)diff to be the operation of forming pasting composites with
this.

Here W(bn−1R) is the Weil algebra of the Lie n-algebra bn−1R. This is the dg-algebra on two generators
c and k, respectively, in degree n and (n + 1) with the differential given by dW(bn−1R) : c 7→ k. The
commutativity of this diagram says that the bottom morphism takes the degree-n generator c to an element
cs ∈W(g) whose restriction to the unshifted generators is the given cocycle µ.

As we shall see below, any such choice cs will extend the characteristic cocycle obtained from exp(µ)
to a characteristic differential cocycle, exhibiting the ∞-Chern-Weil homomorphism. But only for special
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nice choices of cs will this take genuine ∞-connections to genuine ∞-connections – instead of to pseudo-
connections. As we discuss in the full ∞-Chern-Weil theory, this makes no difference in cohomology. But
in practice it is useful to fine-tune the construction such as to produce nice models of the ∞-Chern-Weil
homomorphism given by genuine ∞-connections. This is achieved by imposing the following additional
constraint on the choice of extension cs of µ:

Definition 1.3.91. For µ ∈ CE(g) a cocycle and cs ∈W(g) a lift of µ through W(g)← CE(g), we say that
dW(g) is an invariant polynomial in transgression with µ if dW(g) sits entirely in the shifted generators, in
that dW(g) ∈ ∧•g∗[1] ↪→W (g).

Definition 1.3.92. Write inv(g) ⊂W(g) (or W(g)basic) for the sub-dg-algebra on invariant polynomials.

Observation 1.3.93. We have W(bn−1R) ' CE(bnR).

Using this, we can now encode the two conditions on the extension cs of the cocycle µ as the commutativity
of this double square diagram

CE(g) oo
µ

CE(bn−1R) cocycle

W(g) oo
cs

OO

W(bn−1R)

OO

Chern-Simons element

inv(g)
〈−〉 //

OO

inv(bn−1R)

OO

invariant polynomial

.

Definition 1.3.94. In such a diagram, we call cs the Chern-Simons element that exhibits the transgression
between µ and 〈−〉.

We shall see below that under the ∞-Chern-Weil homomorphism, Chern-Simons elements give rise to
the familiar Chern-Simons forms – as well as their generalizations – as local connection data of secondary
characteristic classes realized as circle nn-bundles with connection.

Observation 1.3.95. What this diagram encodes is the construction of the connecting homomorphism for
the long exact sequence in cohomology that is induced from the short exact sequence

ker(i∗)→W(g)→ CE(g)

subject to the extra constraint of basic elements.

〈−〉 oo � 〈−〉

µ oo � cs
_

dW

OO

CE(g) oo
i∗

W(g) oo inv(g)

.

To appreciate the construction so far, recall the following classical fact

Fact 1.3.96. For G a compact Lie group, the rationalization BG ⊗ k of the classifying space BG is the
rational space whose Sullivan model is given by the algebra inv(g) of invariant polynomials on the Lie algebra
g.
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So we have obtained the following picture:

delooped ∞-group BG

��

g

��

CE(g) Chevalley-Eilenberg algebra

delooped groupal
universal ∞-bundle

BEG

��

inn(g)

��

W(g) = CE(inn(g))

OO

Weil algebra

rationalized
classifying space

∏
i B

niR
∏
i b
ni−1R inv(g)

OO

algebra of
invariant polynomials

ooLie integration

Example 1.3.97. For g a semisimple Lie algebra, 〈−,−〉 the Killing form invariant polynomial, there is a
Chern-Simons element cs ∈ W(g) witnessing the transgression to the cocycle µ = − 1

6 〈−, [−,−]〉. Under a
g-valued form Ω•(X)←W (g) : A this maps to the ordinary degree 3 Chern-Simons form

cs(A) = 〈A ∧ dA〉+
1

3
〈A ∧ [A ∧A]〉 .

1.3.5.6 ∞-Connections from Lie integration For g an L∞-algebroid we have seen above the object
exp(g)diff that represents pseudo-connections on exp(g)-principal ∞-bundles and serves to support the ∞-
Chern-Weil homomorphism. We now discuss the genuine ∞-connections among these pseudo-connections.
A derivation from first principles of the following construction is given below in 4.4.14.

The construction is due to [SSS09c] and [FSS10].

Definition 1.3.98. Let X be a smooth manifold and g an L∞-algebra algebra or more generally an L∞-
algebroid.

An L∞-algebroid valued differential form on X is a morphism of dg-algebras

Ω•(X)←W(g) : A

from the Weil algebra of g to the de Rham complex of X. Dually this is a morphism of L∞-algebroids

A : TX → inn(g)

from the tangent Lie algebroid to the Weil algebra—inner automorphism ∞-Lie algebra.
Its curvature is the composite of morphisms of graded vector spaces

Ω•(X)
A←W(g)

F(−)← g∗[1] : FA .

Precisely if the curvatures vanish does the morphism factor through the Chevalley-Eilenberg algebra

(FA = 0) ⇔


CE(g)

∃Aflat

zz
Ω•(X) oo

A
W (g)

OO


in which case we call A flat.
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Remark 1.3.99. For {xa} a coordinate chart of an L∞-algebroid a and

Aa := A(xa) ∈ Ωdeg(xa)(X)

the differential form assigned to the generator xa by the a-valued form A, we have the curvature components

F aA = A(dxa) ∈ Ωdeg(xa)+1(X) .

Since dW = dCE + d, this can be equivalently written as

F aA = A(dWx
a − dCEx

a) ,

so the curvature of A precisely measures the “lack of flatness” of A. Also notice that, since A is required to
be a dg-algebra homomorphism, we have

A(dW(a)x
a) = ddRA

a ,

so that
A(dCE(a)x

a) = ddRA
a − F aA .

Assume now A is a degree 1 a-valued differential form on the smooth manifold X, and that cs is a
Chern-Simons element transgressing an invariant polynomial 〈−〉 of a to some cocycle µ, by def. 1.3.91. We
can then consider the image A(cs) of the Chern-Simons element cs in Ω•(X). Equivalently, we can look at
cs as a map from degree 1 a-valued differential forms on X to ordinary (real valued) differential forms on X.

Definition 1.3.100. In the notations above, we write

Ω•(X) oo
A

W(a) oo
cs

W(bn+1R) : cs(A)

for the differential form associated by the Chern-Simons element cs to the degree 1 a-valued differential form
A, and call this the Chern-Simons differential form associated with A.

Similarly, for 〈−〉 an invariant polynomial on a, we write 〈FA〉 for the evaluation

Ω•closed(X) oo
A

W(a) oo
〈−〉

inv(bn+1R) : 〈FA〉 .

We call this the curvature characteristic forms of A.

Definition 1.3.101. For U a smooth manifold, the ∞-groupoid of g-valued forms is the Kan complex

exp(g)conn(U) : [k] 7→
{

Ω•(U ×∆k)
A←W(g) | ∀v ∈ Γ(T∆k) : ιvFA = 0

}
whose k-morphisms are g-valued forms A on U ×∆k with sitting instants, and with the property that their
curvature vanishes on vertical vectors.

The canonical morphism
exp(g)conn → exp(g)

to the untruncated Lie integration of g is given by restriction of A to vertical differential forms (see below).

Here we are thinking of U ×∆k → U as a trivial bundle.
The first Ehresmann condition can be identified with the conditions on lifts ∇ in ∞-anafunctors

exp(g)conn

��
C(U)

'
��

∇
99

g // exp(g)

X

that define connections on ∞-bundles.
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1.3.5.6.1 Curvature characteristics

Proposition 1.3.102. For A ∈ exp(g)conn(U, [k]) a g-valued form on U × ∆k and for 〈−〉 ∈ W(g) any
invariant polynomial, the corresponding curvature characteristic form 〈FA〉 ∈ Ω•(U ×∆k) descends down to
U .

To see this, it is sufficient to show that for all v ∈ Γ(T∆k) we have

1. ιv〈FA〉 = 0;

2. Lv〈FA〉 = 0.

The first condition is evidently satisfied if already ιvFA = 0. The second condition follows with Cartan
calculus and using that ddR〈FA〉 = 0:

Lv〈FA〉 = dιv〈FA〉+ ιvd〈FA〉 = 0 .

Notice that for a general ∞-Lie algebra g the curvature forms FA themselves are not generally closed
(rather they satisfy the more Bianchi identity), hence requiring them to have no component along the simplex
does not imply that they descend. This is different for abelian∞-Lie algebras: for them the curvature forms
themselves are already closed, and hence are themselves already curvature characteristics that do descent.

It is useful to organize the g-valued form A, together with its restriction Avert to vertical differential
forms and with its curvature characteristic forms in the commuting diagram

Ω•(U ×∆k)vert
ooAvert

CE(g) gauge transformation

Ω•(U ×∆k) oo
A

OO

W(g)

OO

g-valued form

Ω•(U) oo
〈FA〉

OO

inv(g)

OO

curvature characteristic forms

in dgAlg. The commutativity of this diagram is implied by ιvFA = 0.

Definition 1.3.103. Write exp(g)CW(U) for the ∞-groupoid of g-valued forms fitting into such diagrams.

exp(g)CW (U) : [k] 7→



Ω•(U ×∆k)vert
ooAvert

CE(g)

Ω•(U ×∆k) oo
A

OO

W(g)

OO

Ω•(U) oo
〈FA〉

OO

inv(g)

OO


.

We call this the coefficient for g-valued ∞-connections

1.3.5.6.2 1-Morphisms: integration of infinitesimal gauge transformations The 1-morphisms
in exp(g)(U) may be thought of as gauge transformations between g-valued forms. We unwind what these
look like concretely.

Definition 1.3.104. Given a 1-morphism in exp(g)(X), represented by g-valued forms

Ω•(U ×∆1)←W(g) : A
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consider the unique decomposition

A = AU + (Avert := λ ∧ dt) ,

with AU the horizonal differential form component and t : ∆1 = [0, 1]→ R the canonical coordinate.
We call λ the gauge parameter. This is a function on ∆1 with values in 0-forms on U for g an ordinary

Lie algebra, plus 1-forms on U for g a Lie 2-algebra, plus 2-forms for a Lie 3-algebra, and so forth.

We describe now how this encodes a gauge transformation

A0(s = 0)
λ→ AU (s = 1) .

Observation 1.3.105. By the nature of the Weil algebra we have

d

ds
AU = dUλ+ [λ ∧A] + [λ ∧A ∧A] + · · ·+ ιsFA ,

where the sum is over all higher brackets of the ∞-Lie algebra g.

In the Cartan calculus for the case that g an ordinary one writes the corresponding second Ehremsnn
condition ι∂sFA = 0 equivalently

L∂sA = adλA .

Definition 1.3.106. Define the covariant derivative of the gauge parameter to be

∇λ := dλ+ [A ∧ λ] + [A ∧A ∧ λ] + · · · .

Remark 1.3.107. In this notation we have

• the general identity
d

ds
AU = ∇λ+ (FA)s

• the horizontality constraint or second Ehresmann condition ι∂sFA = 0, the differential equation

d

ds
AU = ∇λ .

This is known as the equation for infinitesimal gauge transformations of an ∞-Lie algebra valued form.

Observation 1.3.108. By Lie integration we have that Avert – and hence λ – defines an element exp(λ) in
the ∞-Lie group that integrates g.

The unique solution AU (s = 1) of the above differential equation at s = 1 for the initial values AU (s = 0)
we may think of as the result of acting on AU (0) with the gauge transformation exp(λ).
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1.3.5.7 Examples of ∞-connections We discuss some examples of ∞-groupoids of ∞-connections
obtained by Lie integration, as discussed in 1.3.5.6 above.

• 1.3.5.7.1 – Connections on ordinary principal bundles

• 1.3.5.7.2

1.3.5.7.1 Connections on ordinary principal bundles Let g be an ordinary Lie algebra and write
G for the simply connected Lie group integrating it. Write BGconn the groupoid of Lie algebra-valued forms
from prop. 1.3.36.

Proposition 1.3.109. The 1-truncation of the object exp(g)conn from def. 1.3.101 is equivalent to the
coefficient object for G-principal connections from prop. 1.3.36. We have an equivalence

τ1 exp(g)conn = BGconn

Proof. To see this, first note that the sheaves of objects on both sides are manifestly isomorphic, both
are the sheaf of Ω1(−, g). For morphisms, observe that for a form Ω•(U ×∆1) ← W(g) : A which we may
decompose into a horizontal and a verical piece as A = AU + λ∧ dt the condition ι∂tFA = 0 is equivalent to
the differential equation

∂

∂t
A = dUλ+ [λ,A] .

For any initial value A(0) this has the unique solution

A(t) = g(t)−1(A+ dU )g(t) ,

where g : [0, 1]→ G is the parallel transport of λ:

∂

∂t

(
g(t)
−1(A+ dU )g(t)

)
=g(t)−1(A+ dU )λg(t)− g(t)−1λ(A+ dU )g(t)

(where for ease of notation we write actions as if G were a matrix Lie group).
In particular this implies that the endpoints of the path of g-valued 1-forms are related by the usual

cocycle condition in BGconn
A(1) = g(1)−1(A+ dU )g(1) .

In the same fashion one sees that given 2-cell in exp(g)(U) and any 1-form on U at one vertex, there is
a unique lift to a 2-cell in exp(g)conn, obtained by parallel transporting the form around. The claim then
follows from the previous statement of Lie integration that τ1 exp(g) = BG. �

1.3.5.7.2 string-2-connections We discuss the string Lie 2-algebra and local differential form data
for string-2-connections. A detailed discussion of the corresponding String-principal 2-bundles is below in
5.1.4, more discussion of the 2-connections and their twisted generalization is in 5.4.7.3.

Let g be a semisimple Lie algebra. Write 〈−,−〉 : g⊗2 → R for its Killing form and

µ = 〈−, [−,−]〉 : g⊗3 → R

for the canonical 3-cocycle.
We discuss two very different looking, but nevertheless equivalent Lie 2-algebras.

Definition 1.3.110 (skeletal version of string). Write gµ for the Lie 2-algebra whose underlying graded
vector space is

gµ = g⊕ R[−1] ,

and whose nonvanishing brackets are defined as follows.
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• The binary bracket is that of g when both arguments are from g and 0 otherwise.

• The trinary bracket is the 3-cocycle

[−,−,−]gµ := 〈−, [−,−]〉 : g⊗3 → R .

Definition 1.3.111 (strict version of string). Write (Ω̂g → P∗g) for the Lie 2-algebra coming from the
differential crossed module, def. 1.3.7, whose underlying vector space is

(Ω̂g→ Pg) = P∗g⊕ (Ωg⊕ R)[−1] ,

where P∗g is the vector space of smooth maps γ : [0, 1]→ g such that γ(0) = 0, and where Ωg is the subspace
for which also γ(1) = 0, and whose non-vanishing brackets are defined as follows

• [−]1 = ∂ := Ωg⊕ R→ Ωg ↪→ P∗g;

• [−,−] : P∗g⊗ P∗g→ P∗g is given by the pointwise Lie bracket on g as

[γ1, γ2] = (σ 7→ [γ1(σ), γ2(σ)]) ;

• [−,−] : P∗g⊗ (Ωg⊕ R)→ Ωg⊕ R is given by pairs

[γ, (`, c)] :=

(
[γ, `], 2

∫ 1

0

〈γ(σ),
d`

dσ
(σ)〉dσ

)
, (1.1)

where the first term is again pointwise the Lie bracket in g.

Proposition 1.3.112. The linear map

P∗g⊕ (Ωg⊕ R)[−1]→ g⊕ R[−1] ,

which in degree 0 is evaluation at the endpoint

γ 7→ γ(1)

and which in degree 1 is projection onto the R-summand, induces a weak equivalence of L∞algebras

string ' (Ω̂g→ P∗g) ' gµ

Proof. This is theorem 30 in [BCSS07]. �

Definition 1.3.113. We write string for the string Lie 2-algebra if we do not mean to specify a specific
presentation such as soµ or (Ω̂so→ P∗so).

In more technical language we would say that string is defined to be the homotopy fiber of the morphism
of L∞-algebras µ3 : so→ b2R, well defined up to weak equivalence.

Remark 1.3.114. Proposition 1.3.112 says that the two Lie 2-algebras (Ω̂g → P∗g) and gµ, which look
quite different, are actually equivalent. Therefore also the local data for a String-2 connection can take two
very different looking but nevertheless equivalent forms.

Let U be a smooth manifold. The data of (Ω̂g→ P∗g)-valued forms on X is a triple

1. A ∈ Ω1(U,Pg);

2. B ∈ Ω2(U,Ωg);

3. B̂ ∈ Ω2(U,R) .
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consisting of a 1-form with values in the path Lie algebra of g, a 2-form with values in the loop Lie algebra
of g, and an ordinary real-valued 2-form that contains the central part of Ω̂g = Ωg⊕R. The curvature data
of this is

1. F = dA+ 1
2 [A ∧A] +B ∈ Ω2(U,Pg);

2. H = d(B + B̂) + [A ∧ (B + B̂)] ∈ Ω3(U,Ωg⊕ R), ,

where in the last term we have the bracket from (1.1). Notice that if we choose a basis {ta} of g such that
we have structure constant [tb, tc] = fabcta, then for instance the first equation is

F a(σ) = dAa(σ) +
1

2
fabcA

b(σ) ∧Ac(σ) +Ba(σ) .

On the other hand, the data of forms in the equation Lie algebra gµ on U is a tuple

1. A ∈ Ω1(U, g);

2. B̂ ∈ Ω2(U,R),

consisting of a g-valued form and a real-valued 2-form. The curvature data of this is

1. F = dA+ [A ∧A] ∈ Ω2(g);

2. H = dB̂ + 〈A ∧ [A ∧A]〉 ∈ Ω3(U).

While these two sets of data look very different, proposition 1.3.112 implies that under their respective
higher gauge transformations they are in fact equivalent.

Notice that in the first case the 2-form is valued in a nonabelian Lie algebra, whereas in the second case
the 2-form is abelian, but, to compensate this, a trilinear term appears in the formula for the curvatures.
By the discussion in section 1.3.5.6 this means that a gµ-2-connection looks simpler on a single patch than

an (Ω̂g→ P∗g)-2-connection, it has relatively more complicated behavious on double intersections.
Moreover, notice that in the second case we see that one part of Chern-Simons term for A occurs, namely

〈A∧ [A∧A]〉 . The rest of the Chern-Simons term appears in this local formula after passing to yet another
equivalent version of string, one which is well-adapted to the discussion of twisted String 2-connections. This
we discuss in the next section.

The equivalence of the skeletal and the strict presentation for string corresponds under Lie integration
to two different but equivalent models of the smooth String-2-group.

Proposition 1.3.115. The degeewise Lie integration of Ω̂so→ P∗so yields the strict Lie 2-group (Ω̂Spin→
P∗Spin), where Ω̂Spin is the level-1 Kac-Moody central extension of the smooth loop group of Spin.

Proof. The nontrivial part to check is that the action of P∗so on Ω̂so lifts to a compatible action of
P∗Spin on Ω̂Spin. This is shown in [BCSS07]. �
Below in 5.1.4 we show that there is an equivalence of smooth n-stacks

B(Ω̂Spin→ P∗Spin) ' τ2 exp(gµ) .

1.3.6 The ∞-Chern-Weil homomorphism in low degree

We now come to the discussion the Chern-Weil homomorphism and its generalization to the ∞-Chern-Weil
homomorphism.

We have seen in 1.3.1 G-principal ∞-bundles for general smooth ∞-groups G and in particular for
abelian groups G. Naturally, the abelian case is easier and more powerful statements are known about this
case. A general strategy for studying nonabelian ∞-bundles therefore is to approximate them by abelian
bundles. This is achieved by considering characteristic classes. Roughly, a characteristic class is a map that
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functorially sends G-principal ∞-bundles to BnK-principal ∞-bundles, for some n and some abelian group
K. In some cases such an assignment may be obtained by integration of infinitesimal data. If so, then the
assignment refines to one of ∞-bundles with connection. For G an ordinary Lie group this is then what is
called the Chern-Weil homomorphism. For general G we call it the ∞-Chern-Weil homomorphism.

The material of this section is due to [SSS09a] and [FSS10].

1.3.6.1 Motivating examples A simple motivating example for characteristic classes and the Chern-
Weil homomorphism is the construction of determinant line bundles from example 1.3.64. This construction
directly extends to the case where the bundles carry connections. We give an exposition of this differential
refinement of the universal first Chern class, example 1.3.64. A more formal discussion of this situation is
below in 5.4.7.1.

We may canonically identify the Lie algebra u(n) with the matrix Lie algebra of skew-hermitian matrices
on which we have the trace operation

tr : u(n)→ u(1) = iR .

This is the differential version of the determinant in that when regarding the Lie algebra as the infinitesimal
neighbourhood of the neutral element in U(N) the determinant becomes the trace under the exponential
map

det(1 + εA) = 1 + εtr(A)

for ε2 = 0. It follows that for tra∇ : P1(Ui) → BU(N) the parallel transport of a connection on P locally
given by a 1-forms A ∈ Ω1(Ui, u(N)) by

tra∇(γ) = P exp

∫
[0,1]

γ∗A

the determinant parallel transport

det(tra∇ =: P1(Ui)
tra∇→ BU(N)

det→ BU(1)

is locally given by the formula

det(tra∇(γ)) = P exp

∫
[0,1]

γ∗trA ,

which means that the local connection forms on the determinant line bundle are obtained from those of the
unitary bundle by tracing.

(det, tr) : {(gij), (Ai)} 7→ {(detgij), (trAi)} .

This construction extends to a functor

(ĉ1) := (det, tr) : U(N)Bundconn(X)→ U(1)Bundconn(X)

natural in X, that sends U(n)-principal bundles with connection to circle bundles with connection, hence to
cocycles in degree-2 ordinary differential cohomology.

This assignment remembers of a unitary bundle one inegral class and its differential refinement:

• the integral class of the determinant bundle is the first Chern class the U(N)-bundle

[ĉ1(P )] = c1(P ) ;

• the curvature 2-form of its connection is a representative in de Rham cohomology of this class

[F∇ĉ1(P )
] = c1(P )dR .
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H2
diff(X)

xx %%
H2(X,Z) Ω2

cl(X)

ĉ1(P )6

{{

	

$$
c1(P ) tr(F∇)

Equivalently this assignment is given by postcomposition of cocycles with a morphism of smooth∞-groupoids

ĉ1 : BU(N)conn → BU(1)conn .

We say that ĉ1 is a differential characteristic class, the differential refinement of the first Chern class.
In [BrMc96b] an algorithm is given for contructing differential characteristic classes on Čech cocycles in

this fashion for more general Lie algebra cocycles.
For instance these authors give the following construction for the diffrential refinement of the first Pon-

tryagin class [BrMc93].
Let N ∈ N, write Spin(N) for the Spin group and consider the canonical Lie algebra cohomology 3-cocycle

µ = 〈−, [−,−]〉 : so(n)→ b2R

on semisimple Lie algebras, where 〈−,−〉 is the Killing form invariant polynomial. Let (P → X,∇) be a
Spin(N)-principal bundle with connection. Let A ∈ Ω1(P, so(N)) be the Ehresmann connection 1-form on
the total space of the bundle.

Then construct a Čech cocycle for Deligne cohomology in degree 4 as follows:

1. pick an open cover {Ui → X} such that there is a choice of local sections σi : Ui → P . Write

(gij , Ai) := (σ−1
i σj , σ

∗
iA)

for the induced Čech cocycle.

2. Choose a lift of this cocycle to an assignment

• of based paths in Spin(N) to double intersections

ĝij : Uij ×∆1 → Spin(N) ,

with ĝij(0) = e and ĝij(1) = gij ;

• of based 2-simplices between these paths to triple intersections

ĝijk : Uijk ×∆2 → Spin(N) ;

restricting to these paths in the obvious way;

• similarly of based 3-simplices between these paths to quadruple intersections

ĝijkl : Uijkl ×∆3 → Spin(N) .

Such lifts always exists, because the Spin group is connected (because already SO(N) is), simply
connected (because Spin(N) is the universal cover of SO(N)) and also has π2(Spin(N)) = 0 (because
this is the case for every compact Lie group).

3. Define from this a Deligne-cochain by setting

1

2
p̂1(P ) := (gijkl, Aijk, Bij , Ci) :=


∫

∆3(σi · ĝijkl)∗µ(A)modZ,∫
∆2(σi · ĝijk)∗cs(A),∫
∆1(σi · ĝij)∗cs(A),
σ∗i µ(A)

 ,

where cs(A) = 〈A ∧ FA〉 + c〈A ∧ [A ∧ A]〉 is the Chern-Simons form of the connection form A with
respect to the cocyle µ(A) = 〈A ∧ [A ∧A]〉.
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They then prove:

1. This is indeed a Deligne cohomology cocycle;

2. it represents the differential refinement of the first fractional Pontryagin class of P .

H4
diff(X)

xx %%
H4(X,Z) Ω4

cl(X)

1
2 p̂1(P )5

zz

	

$$
1
2p1(P ) dcs(A)

.

In the form in which we have (re)stated this result here the second statement amounts, in view of the first
statement, to the observation that the curvature 4-form of the Deligne cocycle is proportional to

dcs(A) ∝ 〈FA ∧ FA〉 ∈ Ω4
cl(X)

which represents the first Pontryagin class in de Rham cohomology. Therefore the key observation is that
we have a Deligne cocycle at all. This can be checked directly, if somewhat tediously, by hand.

But then the question remains: where does this successful Ansatz come from? And is it natural? For
instance: does this construction extend to a morphism of smooth ∞-groupoids

1

2
p̂1 : BSpin(N)conn → B3U(1)conn

from Spin-principal bundles with connection to circle 3-bundles with connection?
In the following we give a natural presentation of the ∞-Chern-Weil homomorphism by means of Lie

integration of L∞-algebraic data to simplicial presheaves. Among other things, this construction yields an
understanding of why this construction is what it is and does what it does.

The construction proceeds in the following broad steps

1. The infinitesimal analog of a characteristic class c : BG→ BnU(1) is an L∞-algebra cocycle

µ : g→ bn−1R .

2. There is a formal procedure of universal Lie integration which sends this to a morphism of smooth
∞-groupoids

exp(µ) : exp(g)→ exp(bn−1R) ' BnR

presented by a morphism of simplicial presheaves on CartSp.

3. By finding a Chern-Simons element cs that witnesses the transgression of µ to an invariant polynomial
on g this construction has a differential refinement to a morphism

exp(µ, cs) : exp(g)conn → BnRconn

that sends L∞-algebra valued connections to line n-bundles with connection.

4. The n-truncation coskn+1 exp(g) of the object on the left produces the smooth ∞-groups on interest
– coskn+1 exp(g) ' BG – and the corresponding truncation of exp((µ, cs)) carves out the lattice Γ of
periods in G of the cocycle µ inside R. The result is the differential characteristic class

exp(µ, cs) : BGconn → BnR/Γconn .

Typically we have Γ ' Z such that this then reads

exp(µ, cs) : BGconn → BnU(1)conn .
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1.3.6.2 The ∞-Chern-Weil homomorphism In the full ∞-Chern-Weil theory the ∞-Chern-Weil
homomorphism is conceptually very simple: for every n there is canonically a morphism of smooth ∞-
groupoids BnU(1) → [dRBn+1U(1) where the object on the right classifies ordinary de Rham cohomol-
ogy in degree n + 1. For G any ∞-group and any characteristic class c : BG → Bn+1U(1), the ∞-
Chern-Weil homomorphism is the operation that takes a G-principal ∞-bundle X → BG to the composite
X → BG→ BnU(1)→ [dRBn+1U(1).

All the construction that we consider here in this introduction serve to mode this abstract operation.
The ∞-connections that we considered yield resolutions of BnU(1) and BG in terms of which the abstract
morphisms are modeled as ∞-anafunctors.

1.3.6.2.1 ∞-Chern-Simons functionals If we express G by Lie integration of an ∞-Lie algebra
g, then the basic ∞-Chern-Weil homomorphism is modeled by composing an ∞-connection (Avert, A, 〈FA〉)
with the transgression of an invariant polynomial (µ, cs, 〈−〉) as follows



Ω•(U ×∆k)vert
ooAvert

CE(g) Čech cocycle

Ω•(U ×∆k) oo
A

OO

W(g)

OO

connection

Ω•(U) oo
〈FA〉

OO

inv(g)

OO

curvature
characteristic forms


◦



CE(g) oo
µ
CE(bn−1R) cocycle

W(g) oo
cs

OO

W(bn−1R)

OO

Chern-Simons
element

inv(g) oo
〈−〉

OO

inv(bn−1R)

OO

invariant
polynomial



=



Ω•(U ×∆k)vert
ooAvert

CE(g) oo
µ

CE(bn−1R) : µ(Avert) characteristic class

Ω•(U ×∆k) oo
A

OO

W(g)

OO

oo cs
W(bn − 1R)

OO

: csµ(A) Chern-Simons form

Ω•(U) oo
〈FA〉

OO

inv(g)

OO

oo 〈−〉 inv(bn−1R)

OO

: 〈FA〉µ
curvature

characteristic forms


.

This evidently yields a morphism of simplicial presheaves

exp(µ)conn : exp(g)conn → exp(bn−1R)conn

and, upon restriction to the top two horizontal layers, a morphism

exp(µ)diff : exp(g)diff → exp(bn−1R)diff .

Projection onto the third horizontal component gives the map to the curvature classes

exp(bn−1R)diff → [dR exp(bnR)simp ,

In total, this constitutes an ∞-anafunctor

exp(g)diff
exp(µ)diff//

'
��

exp(bn−1R)diff
// [dRb

nR

exp(g)
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Postcomposition with this is the simple ∞-Chern-Weil homomorphism: it sends a cocycle

C(U) //

'
��

exp(g)

X

for an exp(g)-principal bundle to the curvature form represented by

C(V )
(g,∇)//

'
��

exp(g)diff

'
��

exp(µ)diff// exp(bn−1R)diff
// [dRb

nR

C(U)
g //

'
��

exp(g)

X

.

Proposition 1.3.116. For g an ordinary Lie algebra with simply connected Lie group G, the image under
τ1(−) of this diagram constitutes the ordinary Chern-Weil homomorphism in that:

for g the cocycle for a G-principal bundle, any ordinary connection on a bundle constitutes a lift (g,∇)
to the tip of the anafunctor and the morphism represented by that is the Čech-hypercohomology cocycle on
X with values in the truncated de Rham complex given by the globally defined curvature characteristic form
〈F∇ ∧ · · · ∧ F∇〉.

But evidently we have more information available here. The ordinary Chern-Weil homomorphism refines
from a map that assigns curvature characteristic forms, to a map that assigns secondary characteristic classes
in the sense that it assigns circle n-bundles with connection whose curvature is this cuvature characteristic
form. The local connection forms of these circle bundles are given by the middle horizontal morphisms.
These are the Chern-Simons forms

Ω•(U)
A←W(g)

cs←W(bn−1R) : cs(A) .

1.3.6.2.2 Secondary characteristic classes So far we discussed the untruncated coefficient object
exp(g)conn of g-valued ∞-connections. The real object of interest is the k-truncated version τk exp(g)conn

where k ∈ N is such that τk exp)g ' BG is the delooping of the ∞-Lie group in question.
Under such a truncation, the integrated ∞-Lie algebra cocycle exp(µ) : exp(g) → exp(bn−1R) will no

longer be a simplicial map. Instead, the periods of µ will cut out a lattice Γ in R, and exp(µ) does descent
to the quotient of R by that lattice

exp(µ) : τk exp(g)→ BnR/Γ .

We now say this again in more detail.

Suppose g is such that the (n+1)-coskeleton coskn+1 exp(g)
'→' BG for the desired G. Then the periods

of µ over (n+ 1)-balls cut out a lattice Γ ⊂ R and thus we get an ∞-anafunctor

coskn+1 exp(g)diff
//

'
��

BnR/Γdiff
// [dRBn+1R/Γ

BG
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This is curvature characteristic class. We may always restrict to genuine ∞-connections and refine

coskn+1 exp(g)conn
//

� _

��

BnR/Γconn� _

��
coskn+1 exp(g)diff

//

'
��

BnR/Γdiff
// [dRBn+1R/Γ

BG

which models the refined ∞-Chern-Weil homomorphism with values in ordinary differential cohomology

Hconn(X,G)→ Hn+1
conn(X,R/Γ) .

Example 1.3.117. Applying this to the discussion of the Chern-Simons circle 3-bundle above, we find a
differential refinement

exp(g)diffexp(µ)diff
//

��

exp(bn−1R)diff∫
∆•

��
C(V )

(ĝ,∇̂)//

'
��

cosk3 exp(g)diff
//

��

B3U(1)diff

C(U)
(g,∇) //

'
��

BGdiff

X

.

Chasing components through this composite one finds that this descibes the cocycle in Deligne cohomology
given by

(CS(σ∗i∇),

∫
∆1

CS(ĝ∗ij∇),

∫
∆2

CS(ĝ∗ijk∇),

∫
∆3

ĝ∗ijklµ) .

This is the cocycle for the circle n-bundle with connection.

This is precisely the form of the Čech-Deligne cocycle for the first Pontryagin class given in [BrMc96b],
only that here it comes out automatically normalized such as to represent the fractional generator 1

2p1.
By feeding in more general transgressive ∞-Lie algebra cocycles through this machine, we obtain cocy-

cles for more general differential characteristic classes. For instance the next one is the second fractional
Pontryagin class of String-2-bundles with connection [FSS10]. Moreover, these constructions naturally yield
the full cocycle ∞-groupoids, not just their cohomology sets. This allows to form the homotopy fibers of
the ∞-Chern-Weil homomorphism and thus define differential string structures etc. and twisted differential
string structures etc. [SSS09c].
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2 Homotopy type theory

We discuss here aspects of homotopy type theory, the theory of ∞-categories and ∞-toposes, that we need
in the following. Much of this is a review of material available in the literature, we just add some facts that
we will need and for which we did not find a citation. The reader at least roughly familiar with this theory
can skip ahead to our main contribution, the discussion of cohesive ∞-toposes in 3. We will refer back to
these sections here as needed.

2.1 ∞-Categories

The natural joint generalization of the notion of category and of homotopy type is that of ∞-category : a
collection of objects, such that between any ordered pair of them there is a homotopy type of morphisms.
We briefly survey key definitions and properties in the theory of ∞-categories.

2.1.1 Presentation by simplicial sets

Definition 2.1.1. An∞-category is a simplicial set C such that all horns Λi[n]→ C that are inner, in that
0 < i < n, have an extension to a simplex ∆[n]→ C.

A vertex c ∈ C0 is an object, an edge f ∈ C1 is a morphism in C.
An ∞-functor f : C → D between ∞-categories C and D is a morphism of the underlying simplicial

sets.

This definition is due [Joyal].

Remark 2.1.2. For C an ∞-category, we think of C0 as its collection of objects, and of C1 as its collection
of morphisms and generally of Ck as the collection of k-morphisms. The inner horn filling property can be
seen to encode the existence of composites of k-morphisms, well defined up to coherent (k + 1)-morphisms.
It also implies that for k > 1 these k-morphisms are invertible, up to higher morphisms. To emphasize this
fact one also says that C is an (∞, 1)-category. (More generally an (∞, n)-category would have k morphisms
for all k such that for k > n these are equivalences.)

The power of the notion of ∞-categories is that it supports the higher analogs of all the crucial facts of
ordinary category theory. This is a useful meta-theorem to keep in mind, originally emphasized by André
Joyal and Charles Rezk.

Fact 2.1.3. In general

• ∞-Category theory parallels category theory;

• ∞-Topos theory parallels topos theory.

More precisely, essentially all the standard constructions and theorems have their ∞-analogs if only we
replace isomorphism between objects and equalities between morphisms consistently by equivalences and
coherent higher equivalences in an ∞-category.

Proposition 2.1.4. For C and D two ∞-categories, the internal hom of simplicial sets sSet(C,D) ∈ sSet
is an ∞-category.

Definition 2.1.5. We write Func(C,D) for this ∞-category and speak of the ∞-category of ∞-functors
between C and D.

Remark 2.1.6. The objects of Func(C,D) are indeed the ∞-functors from def. 2.1.1. The morphisms may
be called ∞-natural transformations.

Definition 2.1.7. The opposite Cop of an ∞-category C is the ∞-category corresponding to the opposite
of the corresponding sSet-category.
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Definition 2.1.8. Let KanCplx ⊂ sSet be the full subcategory of sSet on the Kan complexes, regarded
naturally as an sSet-enriched category, in fact a Kan-complex enriched category. Below in 2.1.2 we recall the
homotopy coherent nerve construction Nh that sends a Kan-complex enriched category to an ∞-category.

We say that
∞Grpd := NhKanCplx

is the ∞-category of ∞-groupoids.

Definition 2.1.9. For C an ∞-category, we write

PSh∞(C) := Func(Cop,∞Grpd)

and speak of the ∞-category of ∞-presheaves on C.

The following is the ∞-category theory analog of the Yoneda lemma.

Proposition 2.1.10. For C an ∞-category, U ∈ C any object, j(U) ' C(−, U) : Cop → ∞Grpd an ∞-
presheaf represented by U we have for every ∞-presheaf F ∈ PSh∞(C) a natural equivalence of ∞-groupoids

PSh∞(C)(j(U), F ) ' F (U) .

From this derives a notion of∞-limits and of adjoint∞-functors and they satisfy the expected properties.
This we discuss below in 2.3.

2.1.2 Presentation by simplicially enriched categories

A convenient way of handling∞-categories is via sSet-enriched categories: categories which for each ordered
pair of objects has not just a set of morphisms, but a simplicial set of morphisms (see [Ke82] for enriched
category theory in general and section A of [LuHTT] for sSet-enriched category theory in the context of
∞-category theory in particular):

Proposition 2.1.11. There exists an adjunction between simplicially enriched categories and simplicial sets

(| − | a Nh) : sSetCat
Nh

//
oo |−|

sSet

such that

• if S ∈ sSetCat is such that for all objects X,Y ∈ S the simplicial set S(X,Y ) is a Kan complex, then
Nh(S) is an ∞-category;

• the unit of the adjunction is an equivalence of ∞-categories (see def. 2.1.13 below).

This is for instance prop. 1.1.5.10 in [LuHTT].

Remark 2.1.12. In particular, for C an ordinary category, regarded as an sSet-category with simplicially
constant hom-objects, NhC is an ∞-category. A functor C → D is precisely an ∞-functor NhC → NhD. In
this and similar cases we shall often notationally suppress the Nh-operation. This is justified by the following
statements.

Definition 2.1.13. For C an ∞-category, its homotopy category Ho(C) (or HoC) is the ordinary category
obtained from |C| by taking connected components of all simplicial hom-sets:

HoC(X,Y ) = π0(|C|(X,Y )) .

A morphism f ∈ C1 is called an equivalence if its image in Ho(C) is an isomorphism. Two objects in C
connected by an equivalence are called equivalent objects.
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Definition 2.1.14. An ∞-functor F : C → D is called an equivalence of ∞-categories if

1. It is essentially sujective in that the induced functor Ho(f) : Ho(C)→ Ho(D) is essentially surjective;

2. and it is full and faithful in that for all objects X,Y the induced morphism fX,Y : |C|(X,Y ) →
|D|(X,Y ) is a weak homotopy equivalence of simplicial sets.

For C an ∞-category and X, Y two of its objects, we write

C(X,Y ) := |C|(X,Y )

and call this Kan complex the hom-∞-groupoid of C from X to Y .
The following assertion guarantees that sSet-categories are indeed a faithful presentation of∞-categories.

Proposition 2.1.15. For every ∞-category C the unit of the (| − | a Nh)-adjunction from prop. 2.1.11 is
an equivalence of ∞-categories

C
'→ Nh|C| .

This is for instance theorem 1.1.5.13 together with remark 1.1.5.17 in [LuHTT].

Definition 2.1.16. An ∞-groupoid is an ∞-category in which all morphisms are equivalences.

Proposition 2.1.17. ∞-groupoids in this sense are precisely Kan complexes.

This is due to [Joyal02]. See also prop. 1.2.5.1 in [LuHTT].
A convenient way of constructing ∞-categories in terms of sSet-categories is via categories with weak

equivalences.

Definition 2.1.18. A category with weak equivalences (C,W ) is a category C equipped with a subcategory
W ⊂ C which contains all objects of C and such that W satsifies the 2-out-of-3 property : for every commuting
triangle

y

��
x

??

// z

in C with two of the three morphisms in W , also the third one is in W .

Definition 2.1.19. The simplicial localization of a category with weak equivalences (C,W ) is the sSet-
category

LWC ∈ sSetCat

(or LC for short, when W is understood) given as follows: the objects are those of C; and for X,Y ∈ C
two objects, the simplicial hom-set LC(X,Y ) is the inductive limit over n ∈ N of the nerves of the following
categories:

• objects are equivalence classes of zig-zags of length n of morphisms

X oo
'

K1
// K2
oo ' · · · // Y

in C, such that the left-pointing morphisms are in W ;

• morphisms are equivalence classes of transformations of such zig-zags

K1

'

��

'

~~

// K2

'

��

oo ' · · ·

��
X Y

K ′1

'
``

// K ′2 oo
' · · ·

AA

,

such that the vertical morphisms are in W ;
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• subject to the equivalence relation that identifies two such (transformations of) zig-zags if one is
obtained from the other by discarding identity morphisms and then composing consecutive morphisms.

This simplicial “hammock localization” is due to [DwKa80a].

Proposition 2.1.20. Let (C,W ) be a category with weak equivalences and LC be its simplicial localization.
Then its homotopy category in the sense of def. 2.1.13 is equivalent to the ordinary homotopy category
Ho(C,W ) (the category obtained from C by universally inverting the morphisms in W ):

HoLWC ' Ho(C,W ) .

A convenient way of controlling simplicial localizations is via sSetQuillen-enriched model category struc-
tures (see section A.2 of [LuHTT] for a good discussion of all related issues).

Definition 2.1.21. A model category is a category with weak equivalences (C,W ) that has all limits and
colimits and is equipped with two further classes of morphisms, Fib,Cof ⊂ Mor(C) – the fibrations and
cofibrations – such that (Cof,Fib ∩W ) and (Cof ∩W,Fib) are two weak factorization systems on C. Here
the elements in Fib ∩W are called acyclic fibrations and those in Cof ∩W are called acyclic cofibrations.
An object X ∈ C is called cofibrant if the canonical morphism ∅ → X is a cofibration. It is called fibrant if
the canonical morphism X → ∗ is a fibration.

A Quillen adjunction between two model categories is a pair of adjoint functors between the underlying
categories, such that the right adjoint preserves cofibrations and acyclic cofibrations, which equivalently
means that the left adjoint preserves cofibrations and acyclic cofibrations.

Remark 2.1.22. The axioms on model categories directly imply that every object is weakly equivalent to
a fibrant object, and to a cofibrant objects and in fact to a fibrant and cofibrant objects.

Example 2.1.23. The category of simplicial sets carries a model category structure, here denoted sSetQuillen,
whose weak equivalences are the weak homotopy equivalences, cofibrations are the monomorphisms, and
fibrations and the Kan fibrations.

Definition 2.1.24. Let A,B,C be model categories. Then a functor

F : A×B → C

is a left Quillen bifunctor if

1. it preserves colimits separately in each argument;

2. for i : a → a′ and j : b → b′ two cofibrations in A and in B, respectively, the canonical induced
morphism

F (a′, b)
∐
F (a,b)

F (a, b′)→ F (a′, b′)

is a cofibration and C and is in addition a weak equivalence if i or j is.

Remark 2.1.25. In particular, for F : A×B → C a left Quillen bifunctor, if a ∈ A is cofibrant then

F (a,−) : B → C

is an ordinary left Quillen functor if F is a left Quillen bifunctor, as is

F (−, b) : A→ C

for b cofibrant.

Definition 2.1.26. A monoidal model category is a category equipped both with the structure of a model
category and with the structure of a monoidal category, such that the tensor product functor of the monoidal
structure is a left Quillen bifunctor, def. 2.1.24, with respect to the model category structure.
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Example 2.1.27. The model category sSetQuillen is a monoidal model category with respect to its Cartesian
monoidal structure.

Definition 2.1.28. For V a monoidal model category, an V-enriched model category is a model category
equipped with the structure of an V-enriched category which is also V-tensored and -cotensored, such that
the V-tensoring functor is a left Quillen bifunctor, def. 2.1.24.

Remark 2.1.29. An sSetQuillen-enriched model category is often called a simplicial model category. Notice
that, while entirely standard, this use of terminology is imprecise: first, not every simplicial object in
categories is a sSet-enriched category, and second, there are other and inequivalent model category structure
on sSet that make it a monoidal model category with respect to its Cartesian monoidal structure.

Definition 2.1.30. For C an (sSetQuillen-enriched) model category write

C◦ ∈ sSetCat

for the full sSet-subcategory on the fibrant and cofibrant objects.

Proposition 2.1.31. Let C be an sSetQuillen-enriched model category. Then there is an equivalence of
∞-categories

C◦ ' LC .

This is corollary 4.7 with prop. 4.8 in [DwKa80b].

Proposition 2.1.32. The hom-∞-groupoids (NhC
◦)(X,Y ) are already correctly given by the hom-objects

in C from a cofibrant to a fibrant representative of the weak equivalence class of X and Y , respectively.

In this way sSetQuillen-enriched model category structures constitute particularly convenient extra struc-
ture on a category with weak equivalences for constructing the corresponding ∞-category.

We now briefly discuss ways to present basic constructions on ∞-categories in terms of simplicial model
categories.

2.1.2.1 Adjunctions In terms of the presentation of∞-categories by simplicial categories, 2.1.2, adjoint
∞-functors are presented by simplicial Quillen adjunctions, def. 2.1.21, between simplicial model categories:
the restriction of a simplicial Quillen adjunction to fibrant-cofibrant objects is the sSet-enriched functor that
presents the ∞-derived functor under the model of ∞-categories by simplicially enriched categories.

Proposition 2.1.33. Let C and D be simplicial model categories and let

(L a R) : C
oo L

R
// D

be an sSet-enriched adjunction whose underlying ordinary adjunction is a Quillen adjunction. Let C◦ and
D◦ be the ∞-categories presented by C and D (the Kan complex-enriched full sSet-subcategories on fibrant-
cofibrant objects). Then the Quillen adjunction lifts to a pair of adjoint ∞-functors

(LL a RR) : C◦
oo

// D◦

On the decategorified level of the homotopy categories these are the total left and right derived functors,
respectively, of L and R.

This is [LuHTT], prop 5.2.4.6.
The following proposition states conditions under which a simplicial Quillen adjunction may be detected

already from knowing of the right adjoint only that it preserves fibrant objects (instead of all fibrations).

117



Proposition 2.1.34. If C and D are simplicial model categories and D is a left proper model category, then
for an sSet-enriched adjunction

(L a R) : C
oo

// D

to be a Quillen adjunction it is already sufficient that L preserves cofibrations and R preserves fibrant objects.

This appears as [LuHTT], cor. A.3.7.2.
We will use this for finding simplicial Quillen adjunctions into left Bousfield localizations of left proper

model categories: the left Bousfield localization preserves the left properness, and the fibrant objects in the
Bousfield localized structure have a good characterization: they are the fibrant objects in the original model
structure that are also local objects with respect to the set of morphisms at which one localizes. Therefore
for D the left Bousfield localization of a simplicial left proper model category E at a class S of morphisms,
for checking the Quillen adjunction property of (L a R) it is sufficient to check that L preserves cofibrations,
and that R takes fibrant objects c of C to such fibrant objects of E that have the property that for all f ∈ S
the derived hom-space map RHom(f,R(c)) is a weak equivalence.

2.1.2.2 Slicing We discuss presentations of slice ∞-categories ([LuHTT] 1.2.9) by simplicial model cat-
egories.

Proposition 2.1.35. For C a model category and X ∈ C an object, the slice category (overcategory)
C/X as well as the co-slice category (undercategory) CX/ inherit model category structures whose fibrations,
cofibrations and weak equivalences are precisely those of C under the canonical forgetful functors C/X → C

and CX/ → C, respectively.

Proposition 2.1.36. If the model category C is

• cofibrantly generated;

• or proper;

• or cellular

then so are the (co)-slice model structures of prop. 2.1.35, for every object X ∈ C.

This is shown in [H].

Proposition 2.1.37. If the model category C is combinatorial, then so is the slice model structure C/X , for
every object X ∈ C.

Proof. With prop. 2.1.36 this follows form the fact that the slice of a locally presentable category is
again locally presentable, (e.g. remark 3 in [CRV]). �

Proposition 2.1.38. If C is a simplicial model category, then so is its slice C/X , for every object X ∈ C.

Proposition 2.1.39. Let C be a simplicial model category and write C for the ∞-category that it presents.
If X is fibrant in C, then the slice model structure C/X is a presentation of the ∞-categorical slicing C/X . If

X is cofibrant in C, then the co-slice model structure CX/ is a presentation of the ∞-categorical co-slicing
CX/.

Proof. We discuss the first case. The other one is dual.
We need to check that the derived hom-spaces are the correct ∞-categorical hom-spaces. Let A

a→ X

and B
b→ X be two objects of C/X . By [LuHTT], prop. 5.5.5.12 the hom C/X(a, b) is the ∞-pullback

C/X(a, b) ' C(A,B)×C(A,X) {a}
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in∞Grpd. Now write a for a cofibrant representative of this object in C/X and b for a fibrant representative.
The sSet-hom object in C/X is the ordinary pullback

C/X(a, b) ' C(A,B)×C(A,X) {a}

in sSet. One finds that a being cofibrant in C/X means that A is cofibrant in C and b being fibrant in C/X
means that it is a fibration in C. Since by assumption X is fibrant in C, it follows that also B is fibrant
in C. By the fact that sSetQuillen is itself a simplicial model category, it follows with prop. 2.1.32 that the
simplicial hom-objects appearing in the above pullback are the correct hom-spaces, and that the pullback is
along a fibration. Together this means by prop. 2.3.7 that the ordinary pullback is indeed a model for the
above ∞-pullback. �

2.2 ∞-Toposes

The natural context for discussing the geometry of spaces that are locally modeled on test spaces in some
category C (and equipped with a notion of coverings) is the category called the sheaf topos Sh(C) over
C [John03]. Analogously, the natural context for discussing the higher geometry of such spaces is the
∞-category called the ∞-sheaf topos H = Sh∞(C).

The theory of∞-toposes has been given a general abstract formulation in [LuHTT], using the∞-category
theory introduced by [Joyal] and building on [Re05] and [ToVe02]. One of the central results proven there is
that the old homotopy theory of simplicial presheaves, originating around [Br73] and developed notably in
[Jard87] and [Dugg01], is indeed a presentation of ∞-topos theory.

2.2.1 General abstract

Following [LuHTT], for us “∞-topos” means this:

Definition 2.2.1. An ∞-topos is an acessible ∞-geometric embedding

H
oo L
� � // Func(Cop,∞Grpd)

into an ∞-category of ∞-presheaves over some small ∞-category C.
We say this is an∞-category of∞-sheaves (as opposed to a hypercompletion of such) if H is the reflective

localization at the covering sieves of a Grothendieck topology on the homotopy category of C (a topological
localization), and then write H = Sh∞(C) with the site structure on C understood.

For H an ∞-topos we write H(X,Y ) for its hom-∞-groupoid between objects X and Y and write
H(X,Y ) = π0H(X,Y ) for the hom-set in the homotopy category.

The theory of cohesive ∞-toposes revolves around situations where the following fact has a refinement:

Proposition 2.2.2. For every ∞-topos H there is an essentially unique geometric morphism to the ∞-topos
∞Grpd.

(∆ a Γ) : H
oo ∆

Γ
// ∞Grpd

This is prop 6.3.41 in [LuHTT].

Proposition 2.2.3. Here Γ takes global sections – Γ(−) ' H(∗,−) – and ∆ forms constant ∞-sheaves –
∆(−) ' LConst(−).

Proof. By prop. 2.2.2 it is sufficient to exhibit an∞-adjunction (LConst(−) a H(∗,−)) such that the left
adjoint preserves finite ∞-limits. The latter follows since Const : ∞Grpd → PSh∞(C) preserves all limits
(for C some ∞-site of definition for H) and L : PSh(C) → H by definition preserves finite ∞-limits. To
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show the∞-adjunction we use the fact ([LuHTT], cor. 4.4.4.9 ) that every∞-groupoid is the∞-colimit over
itself of the ∞-functor constant on the point: S ' lim

−→S
∗. From this we obtain the natural hom-equivalence

H(LConstS,X) ' PShC(ConstS,X)

' PSh(Constlim
−→S
∗, X)

' lim
←−S

Psh(Const∗, X)

' lim
←−S

H(LConst∗, X)

' lim
←−S

H(∗, X)

' lim
←−S
∞Grpd(∗,H(∗, X))

' ∞Grpd(lim
−→S
∗,H(∗, X))

' ∞Grpd(S,H(∗, X)) .

.

Here and in the following “∗” always denotes the terminal object in the corresponding ∞-category. We used
that LConst preserves the terminal object (the empty ∞-limit.) �

Another class of geometric morphisms that plays a role is base change.

Proposition 2.2.4. For f : X → Y any morphism in an ∞-topos H, the over ∞-categories H/X and H/Y
are themselves ∞-toposes and there is a geometric morphism

(f∗ a f∗) : H/X
f∗

//
oo f
∗

H/Y ,

where f∗ is ∞-pullback along f . Moreover, this is geometric morphism is essential in that there is a further
left adjoint f!, given by postcomposition with f .

For Y = ∗ the terminal object of H, we call f : H/X → h an étale geometric morphism.

This is prop. 6.3.5.1, remark 6.3.5.10 of [LuHTT].

Proposition 2.2.5. For H an ∞-topos, the ∞-functor

H/(−) : H→∞Toposet/H

given by prop. 2.2.4, constitutes an equivalence of H with the full sub-∞-category of the slice of ∞-toposes
and geometric morphisms over H on the étale geometric morphisms.

This is [LuHTT], remark 6.3.5.10.

2.2.2 Presentation by simplicial (pre-)sheaves

For computations it is useful to employ a generators-and-relations presentation of presentable ∞-categories
in general and of ∞-toposes in particular, given by ordinary sSet-enriched categories equipped with the
structure of combinatorial simplicial model categories. These may be obtained by left Bousfield localization
of a model structure on simplicial presheaves (as reviewed in appendix 2 and 3 of [LuHTT]).

We discuss these presentations and then discuss various constructions in terms of these presentations
that will be useful over and over again in the following. Much of this material is standard and our discussion
serves to briefly collect the relevant pieces. But we also highlight a few points that are not usually discussed
explicitly in the literature, but which we will need later on.

Definition 2.2.6. Let C be a small category.
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• Write [Cop, sSet] for the category of functors Cop → sSet to the category of simplicial sets. This is
naturally equivalent to the category [∆op, [Cop,Set]] of simplicial objects in the category of presheaves
on C. Therefore one speaks of the category of simplicial presheaves over C.

• For {Ui → U} a covering family in the site C, write

C({Ui}) ∈ [Cop, sSet] :=

∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

j(Ui0)×j(U) · · · ×j(U) j(Uik)

for the corresponding Čech nerve simplicial presheaf. This is in degree k the disjoint union of the (k+1)-
fold intersections of patches of the cover. It is canonically equipped with a morphism C({Ui})→ j(U).
(Here j : C → [Cop,Set] is the Yoneda embedding.)

• The category [Cop, sSet] is naturally an sSet-enriched category. For any two objects X,A ∈ [Cop, sSet]
write Maps(X,A) ∈ sSet for the simplicial hom-set.

• Write [Cop, sSet]proj for the category of simplicial presheaves equipped with the following choices of
classes of morphisms (which are natural transformations between sSet-valued functors):

– the fibrations are those morphisms whose component over each object U ∈ C is a Kan fibration
of simplicial sets;

– the weak equivalences are those morphisms whose component over each object is a weak equiva-
lence in the Quillen model structure on simplicial sets;

– the cofibrations are the morphisms having the right lifting property against th morphisms that
are both fibrations as well as weak equivalences.

This makes [Cop, sSet]proj into a combinatorial simplicial model category.

• Write [Cop, sSet]proj,loc for model category structure on simplicial presheaves which is the left Bousfield
localization of [Cop, sSet]proj at the set of morphisms of the form C({Ui})→ U for all covering families
{Ui → U} of C.

This is called the projective local model structure on simplicial presheaves [Dugg01].

Definition 2.2.7. The operation of forming objectwise simplicial homotopy groups extends to functors

πPSh
0 : [Cop, sSet]→ [Cop,Set]

and for n > 1
πPSh
n : [Cop, sSet]∗ → [Cop,Set] .

These presheaves of homotopy groups may be sheafified. We write

π0 : [Cop, sSet]
πPSh

0→ [Cop,Set]→ Sh(C)

and for n > 1

πn : [Cop, sSet]∗
πPSh
n→ [Cop,Set]→ Sh(C) .

Proposition 2.2.8. For X ∈ [Cop, sSet]proj,loc fibrant, the homotopy sheaves πn(X) from def. 2.2.7 coincide
with the abstractly defined homotopy groups of X ∈ Sh∞(C) from [LuHTT].

Proof. One may observe that the sSetQuillen-powering of [Cop, sSet]proj,loc does model the abstract
∞Grpd-powering of Sh∞(C). �
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Definition 2.2.9. A site C has enough points if a morphism (A
f→ B) ∈ Sh(C) in its sheaf topos is an

isomorphism precisely if for every topos point, hence for every geometric morphism

(x∗ a x∗) : Set
oo x∗

x∗
// Sh(C)

from the topos of sets we have that x∗(f) : x∗A→ x∗B is an isomorphism.

Notice here that, by definition of geometric morphism, the functor i∗ is left adjoint to i∗ – hence preserves
all colimits – and in addition preserves all finite limits.

Example 2.2.10. The following sites have enough points.

• The categories Mfd (SmoothMfd) of (smooth) finite-dimensional, paracompact manifolds and smooth
functions between them;

• the category CartSp of Cartesian spaces Rn for n ∈ N and continuous (smooth) functions between
them.

This is discussed in detail below in 4.3.1. We restrict from now on attention to this case.

Assumption 2.2.11. The site C has enough points.

Theorem 2.2.12. For C a site with enough points, the weak equivalences in [Cop, sSet]proj,loc are precisely
the stalkwise weak equivalences in sSetQuillen

Proof. By theorem 17 in [Ja96] and using our assumption 2.2.11 the statement is true for the local
injective model structure. The weak equivalences there coincide with those of the local projective model
structure. �

Definition 2.2.13. We say that a morphism f : A→ B in [Cop, sSet] is a local fibration or a local weak equiv-
alence precisely if for all topos points x the morphism x∗f : x∗A→ x∗B is a fibration of weak equivalence,
respectively.

Warning. While by theorem 2.2.12 the local weak equivalences are indeed the weak equivalences in
[Cop, sSet]proj,loc, it is not true that the fibrations in this model structure are the local fibrations of def.
2.2.13.

Proposition 2.2.14. Pullbacks in [Cop, sSet] along local fibrations preserve local weak equivalences.

Proof. Let
A //

��

C

��

Boo

��
A′ // C ′ B′oo

be a diagram where the vertical morphisms are local weak equivalences. Since the inverse image x∗ of a
topos point x preserves finite limits and in particular pullbacks, we have

x∗(A×C B
f→ A′ ×C′ B′) = (x∗A×x∗C x∗B

x∗f→ x∗A′ ×x∗C′ x∗B′) .

On the right the pullbacks are now by assumption pullbacks of simplicial sets along Kan fibrations. Since
sSetQuillen is right proper, these are homotopy pullbacks and therefore preserve weak equivalences. So x∗f
is a weak equivalence for all x and thus f is a local weak equivalence. �
The following characterization of ∞-toposes is one of the central statements of [LuHTT]. For the purposes
of our discussion here the reader can take this to be the definition of ∞-toposes.
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Theorem 2.2.15. For C a site with enough points, the ∞-topos over C is the simplicial localization, def.
2.2.15,

Sh∞(C) ' NhL([Cop, sSet]proj,loc

of the category of simplicial presheaves on C at the local weak equivalences.

In view of prop. 2.2.17 this is prop. 6.5.2.14 in [LuHTT].
We shall also have use of the following different presentation of Sh∞(C).

Definition 2.2.16. Let C be a small site with enough points. Write C̄ ⊂ [Cop, sSet] for the free coproduct
completion.

Let (C̄∆op

,W ) be the category of simplicial objects in C̄ equipped with the stalkwise weak equivalences
inherited from the canonical embedding

i : C̄∆op

↪→ [Cop, sSet] .

Proposition 2.2.17. The induced ∞-functor

NhLC̄
∆op

→ NhL[Cop, sSet]proj,loc

is an equivalence of ∞-categories.

This is due to [NSSb]. We prove this after noticing the following fact.

Proposition 2.2.18. Let C be a category and C̄ its free coproduct completion.
Every simplicial presheaf over C is equivalent in [Cop, sSet]proj to a simplicial object in C̄ (after the

degreewise Yoneda embedding j∆op

: C̄∆op → [Cop, sSet]).
If moreover C has pullbacks, then the simplicial object in C̄ can be taken to be globally Kan, hence fibrant

in [Cop, sSet]proj.

Proof. The first statement is prop. 2.8 in [Dugg01], which says that for every X ∈ [Cop, sSet] the
canonical morphism from the simplicial presheaf

(QX) : [k] 7→
∐

U0→···→Uk→Xk

j(U0) ,

where the coproduct runs over all sequences of morphisms between representables Ui as indicated and using
the evident face and degeneracy maps, is a global weak equivalence

QX
'→ X .

The second statement follows by postcomposing with Kan’s fibrant replacement functor (see for instance
section 3 in [Jard87])

Ex∞ : sSet→ KanCplx ↪→ sSet .

This functor forms new simplices by subdivision, which only involves forming iterated pullbacks over the
spaces of the original simplices. �

Example 2.2.19. Let C be a category of connected topological spaces with given extra structure and
properties (for instance smooth manifolds). Then C̄ is the category of all such spaces (with arbitrary many
connected components).

Then the statement is that every ∞-stack over C has a presentation by a simplicial object in C̄. This is
true with respect to any Grothendieck topology on C, since the weak equivalences in the global projective
model structure that prop. 2.2.18 refers to remain weak equivalences in any left Bousfield localization.

If moreover C has all pullbacks (for instance for connected topological spaces, but not for smooth mani-
folds) then every ∞-stack over C even has a presentation by a globally Kan simplicial object in C̄.
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Proof of theorem 2.2.17. Let Q : [Cop, sSet]→ C̄∆op

be Dugger’s replacement functor from the proof of
prop. 2.2.18. In [Dugg01] it is shown that for all X the simplicial presheaf QX is cofibrant in [Cop, sSet]proj

and that the natural morphism QX → X is a weak equivalence. Since left Bousfield localization does not
affect the cofibrations and only enlarges the weak equivalences, the same is still true in [Cop, sSet]proj,loc.

Therefore we have a natural transformation

i ◦Q→ Id : [Cop, sSet]→ [Cop, sSet]

whose components are weak equivalences. From this the claim follows by prop. 3.5 in [DwKa80a]. �

Remark 2.2.20. If the site C is moreover equipped with the structure of a geometry as in [Lu09a] then
there is canonically the notion of a C-manifold : a sheaf on C that is locally isomorphic to a representable
in C. Write

C̄ ↪→ CMfd ↪→ [Cop,Set]

for the full subcategory of presheaves on the C-manifolds.
Then the above argument applies verbatim also to the category CMfd∆op

of simplicial C-manifolds.
Therefore we find that the∞-topos over C is presented by the simplicial localization of simplicial C-manifolds
at the stalkwise weak equivalences:

Sh∞(C) ' NhLCMfd∆op

.

Example 2.2.21. Let C = CartSpsmooth be the full subcategory of the category SmthMfd of smooth
manifolds on the Cartesian spaces, Rn, for n ∈ R. Then C̄ ⊂ SmthMfd is the full subcatgory on manifolds
that are disjoint unions of Cartesian spaces and CMfd ' SmthMfd. Therefore we have an equivalence of
∞-categories

Sh∞(SmthMfd) ' Sh∞(CartSp) ' L SmthMfd∆op

.

2.2.3 ∞-Sheaves and descent

We discuss some details of the notion of ∞-sheaves from the point of view of the presentations discussed
above in 2.2.2.

By def. 2.2.1 we have, abstractly, that an ∞-sheaf over some site C is an ∞-presheaf that is in the
essential image of a given reflective inclusion Sh∞(C) ↪→ PSh∞(C). By prop. 2.2.15 this reflective embedding
is presented by the Quillen adjunction that exhibits the left Bousfield localization of the model category of
simplicial presheaves at the Čech covers

([Cop, sSet]proj,loc)◦

'
��

oo LId

RId
// ([Cop, sSet]proj)

◦

'
��

Sh∞(C)
oo L
� � // PSh∞(X)

.

Since the Quillen adjunction that exhibits left Bousfield localization is given by identity-1-functors, as in-
dicated, the computation of ∞-sheafification (∞-stackification) L by deriving the left Quillen functor is all
in the cofibrant replacement in [Cop, sSet]proj followed by fibrant replacement in [Cop, sSet]proj,loc. Since
the collection of cofibrations is preserved by left Bousfield localization, this simply amounts to cofibrant-
fibrant replacement in [Cop, sSet]proj,loc. Since, finally, the derived hom space Sh∞(U,A) is computed in
[Cop, sSet]proj,loc already on a fibrant resolution of A out of a cofibrant resolution of U , and since every
representable is necessarily cofibrant, one may effectively identify the ∞-sheaf condition in PSh∞(C) with
the fibrancy condition in [Cop, sSet]proj,loc.

We discuss aspects of this fibrancy condition.
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Definition 2.2.22. For C a site, we say a covering family {Ui → U} is a good cover if the corresponding
Čech nerve

C(Ui) :=

∫ [k]∈∆ ∐
i0,··· ,ik

j(Ui0)×j(U) · · · ×j(U) j(Uk) ∈ [Cop, sSet]proj

(where j : C → [Cop, sSet] is the Yoneda embedding) is degreewise a coproduct of representables, hence if
all non-empty finite intersections of the Ui are again representable:

j(Ui0,··· ,ik) = Ui0 ×U · · · ×U Uik .

Proposition 2.2.23. The Čech nerve C(Ui) of a good cover is cofibrant in [Cop, sSet]proj as well as in
[Cop, sSet]proj,loc.

Proof. In the terminology of [DuHoIs04] the good-ness condition on a cover makes its Čech nerve a
split hypercover. By the result of [Dugg01] this is cofirant in [Cop, sSet]proj. Since left Bousfield localization
preserves cofibrations, it is also cofibrant in [Cop, sSet]proj,loc. �

Definition 2.2.24. For A a simplicial presheaf with values in Kan complexes and {Ui → U} a good cover
in the site C, we say that

Desc({Ui}, A) := [Cop, sSet](C(Ui), A) ,

where on the right we have the sSet-enriched hom of simplicial presheaves, is the descent object of A over
{Ui → U}.

Remark 2.2.25. By assumption A is fibrant and C(Ui) is cofibrant (by prop. 2.2.23) in [Cop, sSet]proj.
Since this is a simplicial model category, it follows that Desc({Ui}, A) is a Kan complex, an ∞-groupoid.
We may also speak of the descent ∞-groupoid. Below we show that its objects have the interpretation of
gluing data or descent data for A. See [DuHoIs04] for more details.

Proposition 2.2.26. For C a site whose topology is generated from good covers, a simplicial presheaf A is
fibrant in [Cop, sSet]proj,loc precisely if it takes values in Kan complexes and if for each generating good cover
{Ui → U} the canonical morphism

A(U)→ Desc({Ui}, A)

is a weak equivalence of Kan complexes.

Proof. By standard results recalled in A.3.7 of [LuHTT] the fibrant objects in the local model structure
are precisely those which are fibrant in the global model structure and which are local with respect to the
morphisms at which one localizes: such that the derived hom out of these morphisms into the given object
produces a weak equivalence.

By prop. 2.2.23 we have that C(Ui) is cofibrant for {Ui → U} a good cover. Therefore the derived hom
is computed already by the enriched hom as in the above statement. �

Remark 2.2.27. The above condition manifestly generalizes the sheaf condition on an ordinary sheaf
[John03]. One finds that

(πPSh
0 (C(Ui))→ πPSh

0 (U)) = (S(Ui) ↪→ U)

is the (subfunctor corresponding to the) sieve associated with the cover {Ui → U}. Therefore when A is itself
just a presheaf of sets (of simplicially constant simplicial sets) the above condition reduces to the statement
that

A(U)→ [Cop,Set](S(Ui), A)

is an isomorphism. This is the standard sheaf condition.

We discuss the descent object, def. 2.2.24, in more detail.
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Definition 2.2.28. Write
coDesc({Ui}, A) ∈ sSet∆

for the cosimlicial simplicial set that in degree k is given by the value of A on the k-fold intersections:

coDesc({Ui}, A)k =
∏

i0,··· ,ik

A(Ui0,··· ,ik) .

Proposition 2.2.29. The descent object from def. 2.2.24 is the totalization of the codescent object:

Desc({Ui}, A) = tot(coDesc({Ui}), A)

:=

∫
[k]∈∆

sSet(∆[k], coDesc({Ui}, A)k)

Here and in the following equality signs denote isomorphism (such as to distinguish from just weak
equivalences of simplicial sets).
Proof. Using sSet-enriched category calculus for the sSet-enriched and sSet-tensored category of simplicial
presheaves (for instance [Ke82] around (3.67)) we compute as follow

Desc({Ui}, A) := [Cop, sSet](C(Ui), A)

= [Cop, sSet](

∫ [k]∈∆

∆[k] · C(Ui)k, A)

=

∫
[k]∈∆

[Cop, sSet](∆[k] · C(Ui), A)

=

∫
[k∈∆]

sSet(∆[k], [Cop, sSet](C(Ui)k), A)

=

∫
[k∈∆]

sSet(∆[k], A(C(Ui)k))

= tot(A(C(Ui)•))

= tot (coDesc({C(Ui)}, A)) .

Here we used in the first step that every simplicial set Y (hence every simplicial presheaf) is the realization
of itself, in that

Y =

∫ [k]∈∆

∆[k] · Yk ,

which is effectively a variant of the Yoneda-lemma. �

Remark 2.2.30. This provides a fairly explicit description of the objects in Desc({Ui}, A) by what is called
nonabelian Čech hypercohomology.

Notice that an element c of the end
∫

[k]∈∆
sSet(∆[k], coDesc({Ui}, A)) is by definition of ends a collection

of morphisms

{ck : ∆[k]→
∏

i0,··· ,ik

Ak(Ui0,··· ,ik)}

126



that makes commuting all parallel diagrams in the following:

∆[2]
c2 // ∏

i0,i1,i2
A(Ui0,i1,i2)

∆[1]
c1 //

OO

��

OO

��

OO

��

OO

∏
i0i1

A(Ui0,i1)

OO

��

OO

��

OO

��

OO

∆[0]

OO

��

OO

c0 // ∏
i0
A(Ui0)

OO

��

OO

.

This says in words that c is

1. a collection of objects ai ∈ A(Ui) on each patch;

2. a collection of morphisms {gij ∈ A1(Uij)} over each double intersection, such that these go between
the restrictions of the objects ai and aj , respectively

ai|Uij
gij // aj |Uij

3. a collection of 2-morphisms {hijk ∈ A2(Uijk)} over triple intersections, which go between the corre-
sponding 1-morphisms:

aj |Uijk
gjk|Uijk

$$
ai|Uijk gik|Uijk

//

gij |Uijk
::

ak|Uijk

hijk

��

,

4. a collection of 3-morphisms {λijkl ∈ A3(Uijkl)} of the form

aj |Uijkl
gjk|Uijkl // ak|Uijkl

gkl|Uijkl

��
ai|Uijkl //

gij |Uijkl

OO ;;

al|Uijkl

hijk|Uijkl
�#

hikl|Uijkl
�#

λijkl //

aj |Uijkl
gjk|Uijkl //

##

aj |Uijkl

gkl|Uijkl

��
ai|Uijkl //

gij |Uijkl

OO

al|Uijkl

hjkl|Uijkl
{�hijl|Uijkl

{�

;

5. and so on.

This recovers the cocycle diagrams that we have discussed more informally in 1.3.1 and generalizes them to
arbitrary coefficient objects A.

2.2.4 ∞-Sheaves with values in chain complexes

Many simplicial presheaves appearing in practice are (equivalent to) objects in sub-∞-categories of Sh∞(C)
of ∞-sheaves with values in abelian or at least in “strict” ∞-groupoids. These subcategories typically offer
convenient and desireable contexts for formulating and proving statements about special cases of general
simplicial presheaves.

One well-known such notion is given by the Dold-Kan correspondence (discussed for instance in [GoJa99]).
This identifies chain complexes of abelian groups with strict and strictly symmetric monoidal ∞-groupoids.
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Proposition 2.2.31. Let Ch+
proj be the standard projective model structure on chain complexes of abelian

groups in non-negative degree and let sAbproj be the standard projective model structure on simplicial abelian
groups. Let C be any small category. There is a composite Quillen adjunction

((N•F )∗ a Ξ) : [Cop, Ch+
proj]proj

oo (N•)∗

Γ∗

' // [Cop, sAbproj]proj
oo F∗

U∗

// [Cop, sSetQuillen]proj ,

where the first is given by postcomposition with the Dold-Puppe-Kan correspondence and the second by post-
composition with the degreewise free-forgetful adjunction for abelian groups over sets.

Dropping the condition on symmetric monoidalness we obtain a more general such inclusion, a kind
of non-abelian Dold-Kan correspondence: the identification of crossed complexes, def. 1.3.21, with strict
∞-groupoids (see [BrHiSi11][Por] for details). This means that we have a sequence of (non-full) inclusions

ChainComplex //

'
��

CrossedComplex //

'
��

KanComplex

'
��

StrAbStr∞Grpd // Str∞Grpd //∞Grpd

of strict ∞-groupoids into all ∞-groupoids, where in the top row we list the explicit presentation and in the
bottom row the abstract notions.

We state a useful theorem for the computation of descent for presheaves, prop. 2.2.26, with values in
strict ∞-groupoids.

Suppose that A : Cop → Str∞Grpd is a presheaf with values in strict ∞-groupoids. In the context of
strict∞-groupoids the standard n-simplex is given by the nth oriental O(n) [Stre04]. This allows to perform
a construction that looks like a descent object in Str∞Grpd:

Definition 2.2.32 (Street 04). The descent object for A ∈ [Cop,Str∞Grpd] relative to Y ∈ [Cop, sSet] is

DescStreet(Y,A) :=

∫
[n]∈∆

Str∞Cat(O(n),A(Yn)) ∈ Str∞Grpd ,

where the end is taken in Str∞Grpd.

This object had been suggested by Ross Street to be the right descent object for strict∞-category-valued
presheaves in [Stre04].

Canonically induced by the orientals is the ω-nerve

N : StrωCat→ sSet

Applying this to the descent object of prop. 2.2.32 yields the simplicial set NDesc(Y,A). On the other
hand, applying the ω-nerve componentwise to A yields a simplicial presheaf NA to which the ordinary
simplicial descent from def. 2.2.24 applies. The following theorem asserts that under certain conditions the
∞-groupoids presented by both these simplicial sets are equivalent.

Proposition 2.2.33 (Verity 09). If A : Cop,Str∞Grpd and Y : Cop → sSet are such that NA(Y•) : ∆ →
sSet is fibrant in the Reedy model structure [∆, sSetQuillen]Reedy, then

NDescStreet(Y,A)
'→ Desc(Y,NA)

is a weak homotopy equivalence of Kan complexes.

This is proven in [Veri09]. In our applications the assumptions of this theorem are usually satisfied:
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Corollary 2.2.34. If Y ∈ [Cop, sSet] is such that Y• : ∆ → [Cop,Set] ↪→ [Cop, sSet] is cofibrant in
[∆, [Cop, sSet]proj]Reedy then for A : Cop → Str∞Grpd we have a weak equivalence

NDesc(Y,A)
'→ Desc(Y,NA) .

Proof. If Y• is Reedy cofibrant, then by definition the canonical morphisms

lim
→

(([n]
+→ [k]) 7→ Yk)→ Yn

are cofibrations in [Cop, sSet]proj. Since the latter is an sSetQuillen-enriched model category and NA is fibrant
in [Cop, sSet]proj, it follows that the hom-functor [Cop, sSet](−, NA) sends cofibrations to fibrations, so that

NA(Yn)→ lim
←

([n]
+→ [k] 7→ NA(Yk))

is a Kan fibration. But this says that NA(Y•) is Reedy fibrant, so that the assumption of prop. 2.2.33 is
met. �

2.3 ∞-Limits and ∞-colimits

We discuss some basic properties and presentations of universal constructions in ∞-category theory that we
will refer to frequently.

2.3.1 General abstract

2.3.1.1 ∞-Pullbacks We will have have ample application for the following immediate ∞-category
theoretic generalization of a basic 1-categorical fact.

Proposition 2.3.1 (pasting law for ∞-pullbacks). Let

a //

��

b //

��

c

��
d // e // f

be a diagram in an ∞-category and suppose that the right square is an ∞-pullback. Then the left square is
an ∞-pullback precisely if the outer rectangle is.

This appears as [LuHTT], lemma 4.4.2.1. Notice that here and in the following we do not explicitly
display the 2-morphisms/homotopies that do fill these diagrams in the given ∞-category.

2.3.1.2 Effective epimorphisms We briefly record the definition and main properties of effective epi-
morphisms in an ∞-topos from [LuHTT], section 6.2.3.

Definition 2.3.2. A morphism Y → X in an∞-topos is an effective epimorphism if it exhibits the∞-colimit
over the simplicial diagram that is its Čech nerve:

Y ' lim
−→n

Y ×
n
X .

See for instance below cor. 6.2.3.5 in [LuHTT].

Remark 2.3.3. In view of the discussion of groupoid objects below in 3.3.5 we also speak of an effective
epimorphism U // // X as being an atlas, or, more explicitly, as exhibiting U as an atlas of X.
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Proposition 2.3.4. Effective epimorphisms are preserved by ∞-pullback.

This is prop. 6.2.3.15 in [LuHTT].

Proposition 2.3.5.

A morphism p : X → Y is an effective epimorphism precisely if its 0-truncation τ0p : τ0X → τ0Y , def. 3.3.1,
is an effective epimorphism, hence an epimorphism, in the 1-topos of 0-truncated objects.

This is prop. 7.2.1.14 in [LuHTT].

Example 2.3.6. A morphism in ∞Grpd is effective epi precisely if it induces an epimorphism π0(X) →
π0(Y ) of sets of connected components.

2.3.2 Presentations

We discuss presentations of various classes of ∞-limits and ∞-colimits in an ∞-category by homotopy limits
and homotopy colimits in categories with weak equivalences presenting them.

2.3.2.1 ∞-Pullbacks We discuss here tools for computing ∞-pullbacks in an ∞-category H in terms of
homotopy pullbacks in a homotopical 1-category presenting it.

Proposition 2.3.7. Let A → C ← B be a cospan diagram in a model category, def. 2.1.21. Sufficient
conditions for the ordinary pullback A×C B to be a homotopy pullback are

• one of the two morphisms is a fibration and all three objects are fibrant;

• one of the two morphisms is a fibration and the model structure is right proper.

This appears for instance as prop. A.2.4.4 in [LuHTT].
It remains to have good algorithms for identifying fibrations and for resolving morphisms by fibrations.

A standard recipe for constructing fibration resolutions is

Proposition 2.3.8 (factorization lemma). Let B → C be a morphism between fibrant objects in a model

category and let C
' // CI // // C × C be a path object for B. Then the composite vertical morphism in

CI ×C B

��

//

�� ��

B

��
CI

��

// C

C

is a fibrantion replacement of B → C.

This appears for instance on p. 4 of [Br73].

Corollary 2.3.9. For A→ C ← B a diagram of fibrant objects in a model category, its homotopy pullback
is presented by the ordinary limit A×hC B in

A×hC B //

��

CI ×C B //

��

B

��
CI //

��

C

A // C

,
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which is, up to isomorphism, the same as the ordinary pullback in

A×hC B //

��

CI

��
A×B // C × C

.

Remark 2.3.10. For the special case of “abelian” objects another useful way of constructing fibrations is via
the Dold-Kan correspondence, wich we discuss in 2.2.4. As described there, a morphism between simplicial
presheaves that arise from presheaves of chain complexes is a fibration (in the projective model structure on
simplicial presheaves) if it arises from a degreewise surjection of chain complexes.

2.3.2.2 Finite ∞-limits of ∞-sheaves We discuss presentations for finite ∞-limits specifically in ∞-
toposes.

Proposition 2.3.11. Let C be a site with enough points, def. 2.2.9. Write H ' (Sh(C)∆op

,W ) for the
hypercomplete ∞-topos over C, where W is the class of local weak equivalences, theorem 2.2.12.

Then pullbacks in Sh(C)∆op

along local fibrations, def. 2.2.13, are homotopy pullbacks, hence present
∞-pullbacks in H.

Proof. Let A
loc // // C oo B be a cospan with the left leg a local fibration. By the existence of the

projective local model structure [Cop, sSet]proj,loc there exists a morphism of diagrams

A
loc // //

'
��

C

'
��

oo B

'
��

A′ // // C ′ oo B′

,

where the bottom cospan is a fibrant diagram with respect to the projective local model structure, hence a
cospan of genuine fibrations between fibrant objects, so that the ordinary pullback A′×C′B′ is a presentation
of the homotopy pullback of the original diagram. Here the vertical morphisms are weak equivalences, and
by theorem 2.2.12 this means that they are stalkwise weak equivalences of simplicial sets. Moreover, by
the nature of left Bousfield localization, the genuine fibrations are in particular global projective fibrations,
hence in particular are stalkwise fibrations.

Now for p : Set → Sh(C) any topos point, the stalk functor p∗ preserves finite limits and hence pre-
serves (the sheafification of) the above pullbacks. So by the asumption that A→ C is a local fibration, the
simplicial set p∗(A×C B) is a pullback of simplicial sets along a Kan fibration, hence, by the right proper-
ness of sSetQuillen, and using prop. 2.3.7, is a homotopy pullback there. Moreover, the induced morphism
p∗(A ×C B) → p∗(A′ ×C′ B′) is therefore a morphism of homotopy pullbacks along a weak equivalence of
diagrams. This means that it is itself a weak equivalence. Since this is true for all topos points, it follows
that A×C B → A′ ×C′ B′ is a stalkwise weak equivalence, hence a weak equivalence, hence that A×C B is
itself already a model for the homotopy pullback. �

The following proposition establishes the model category analog of the statement that by left exactness
of ∞-sheafification, finite ∞-limits of ∞-sheafified ∞-presheaves may be computed as the ∞-sheafification
of the finite ∞-limit of the ∞-presheaves.

Proposition 2.3.12. Let C be a site and F : D → [Cop, sSet] be a finite diagram.
Write Rglob lim

←
F ∈ [Cop, sSet] for (any representative of) the homotopy limit over F computed in the

global model structure [Cop, sSet]proj, well defined up to isomorphism in the homotopy category.
Then Rglob lim

←
F ∈ [Cop, sSet] presents also the homotopy limit of F in the local model structure [Cop, sSet]proj,loc.
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Proof. By [LuHTT], theorem 4.2.4.1, we have that the homotopy limit R lim
←

computes the corresponding

∞-limit. Since ∞-sheafification L is by definition a left exact ∞-functor it preserves these finite ∞-limits:

([D, [Cop, sSet]proj,loc]inj)
◦

R lim
←−
��

oo L∗ ([D, [Cop, sSet]proj]inj)
◦

R lim
←−
��

([Cop, sSet]proj,loc)◦ oo
L'LId

([Cop, sSet]proj)
◦

.

Here L ' LId is the left derived functor of the identity for the left Bousfield localization. Therefore for
F a finit diagram in simplicial presheaves, its homotopy limit in the local model structure R lim← L∗F is
equivalently computed by LIdR lim→ F , with R lim← F the homotopy limit in the global model structure. �
Together with 2.3.2.1, this provides an efficient algorithm for computing presentations of ∞-pullbacks in a
model structure on simplicial presheaves.

Remark 2.3.13. Taken together, prop. 2.3.12, prop. 2.3.7 and definition 2.2.6 imply that we may compute
∞-pullbacks in an ∞-topos by the following algorithm:

1. Present the ∞-topos by a local projective model structure on simplicial presheaves;

2. find a presentation of the morphisms to be pulled back such that one of them is over each object of
the site a Kan fibration of simplicial sets;

3. then form the ordinary pullback of simplicial presheaves, which in turn is over each object the ordinary
pullback of simplicial sets.

The resulting object presents the ∞-pullback of ∞-sheaves.

2.3.2.3 ∞-Colimits We collect some standard facts and tools concerning the computation of homotopy
colimits.

Proposition 2.3.14. Let C be a combinatorial model category and let J be a small category. Then the
colimit over J-diagrams in C is a left Quillen functor for the projective model structure on functors on J :

lim
−→

: [J,C]proj → C .

Proof. For C combinatorial, the projective model structure exists by [LuHTT] prop. A.2.8.2. The right
adjoint to the colimit

const : C → [J,C]proj

is manifestly right Quillen for the projective model structure. �

Example 2.3.15. Write
(N,≤) := { 0 // 1 // 2 // · · · }

for the cotower category. A cotower X0 → X1 → A2 → · · · in a model category C is projectively cofibrant
precisely if

1. every morphism Xi → Xi+1 is a cofibration in C;

2. the first object X0, and hence all objects Xi, are cofibrant in C.

Therefore a sequential∞-colimit over a cotower is presented by the ordinary colimit of a presentation of this
cotower where all morphisms are cofibrations and all objects are cofibrant.
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This is a simple example, but since we will need details of this at various places, we spell out the proof
for the record.
Proof. Given a cotower X• with properties as stated, we need to check that for p• : A• → B• a morphism
of cotowers such that for all n ∈ N the morphism pn : An → Bn is an acyclic fibration in C, and for
f• : X• → B• any morphism, there is a lift f̂• in

A•

p•
����

X•
f• //

f̂•

==

B•

.

This lift we can construct by induction on n. For n = 0 we only need a lift in

A0

p0

����
X0

f0 //

f̂0

==

B0

,

which exists by assumption that X0 is cofibrant. Assume then that a lift has been for f≤n. Then the next

lift f̂n+1 needs to make the diagram

An

""��
Xn � q

""

f̂n

55

// Bn An+1

����
Xn+1

fn+1

//

f̂n+1

55

Bn+1

commute. Such a lift exists now by assumption that Xn → Xn+1 is a cofibration.
Conversely, assume that X• is projectively cofibrant. Then first of all it has the left lifting property

against all cotower morphisms of the form

A0
//

'
����

∗

��

// ∗ //

��

· · ·

B0
// ∗ // ∗ // · · ·

.

Such a lift is equivalent to a lift of X0 against A0
' // // B0 and hence X0 is cofibrant in C. To see that

every morphism Xn → Xn+1 is a cofibration, notice that for every lifting problem in C of the form

Xn

��

// A

'
����

Xn+1
// B
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the cotower lifting problem of the form

X0
// · · · // Xn

// A

��

// ∗ // ∗ // · · ·

X0
// · · · // Xn

// B // ∗ // ∗ // · · ·

X0
// · · · // Xn

// Xn+1

<<

// · · ·

is equivalent. �
For less trivial diagram categories it quickly becomes hard to obtain projective cofibrant resolutions. In these
cases it is often it is useful to compute the (homotopy) colimit instead as a special case of a (homotopy)
coend.

Proposition 2.3.16. Let F : A×B → C be a Quillen bifunctor, def. 2.1.24, and let J be a Reedy category,
then the coend over F (see [Ke82])∫ S

F (−,−) : [J,A]Reedy × [Jop, B]Reedy → C

is a Quillen bifunctor from the product of the Reedy model categories on functors with values in A and B,
respectively, to C.

Similarly, if A and B are combinatorial model categories and J is any small category, then the coend∫ S

F (−,−) : [J,A]proj × [Jop, B]inj → C

is a Quillen bifunctor.

This appears in [LuHTT] as prop. A.2.9.26 and remark A.2.9.27.

Proposition 2.3.17. If V is a closed monoidal model category, C is a V-enriched model category, and J is
a small category which is Reedy, then the homotopy colimit of J-shaped diagrams in C is presented by the
left derived functor of ∫ J

(−) ·QReedy(I) : [J,C]Reedy → C ,

where QReedy(I) is a cofibrant replacement of the functor constant in the tensor unit in [Jop,V]Reedy, and
where

(−) · (−) : C × V → C

is the given V-tensoring of C. Similarly, if J is not necessarily Reedy, but V and C are combinatorial, then
the homotopy colimit is also given by the left derived functor of∫ J

(−) ·Qproj(I) : [J,C]inj → C ,

where now Qproj(I) is a cofibrant resolution of the tensor unit in [Jop,V]proj.

This is nicely discussed in [Gam10].
Proof. By definition of enriched category, the V-tensoring operation is a left Quillen bifunctor. With this
the statement follows from prop. 2.3.16. �
Various classical facts of model category theory are special cases of these formulas.
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2.3.2.4 ∞-Colimits over simplicial diagrams We discuss here a standard presentation of homotopy
colimits over simplical diagrams given by the diagonal simplicial set or the total simplicial set associated
with a bisimplicial set.

Proposition 2.3.18. Write [∆, sSet] for the category of cosimplicial simplicial sets. For sSet equipped with
its cartesian monoidal structure, the tensor unit is the terminal object ∗.

• The simplex functor
∆ : [n] 7→ ∆[n] := ∆(−, [n])

is a cofibrant resolution of ∗ in [∆, sSetQuillen]Reedy;

• the fat simplex functor
∆ : [n] 7→ N(∆/[n])

is a cofibrant resolution of ∗ in [∆, sSetQuillen]proj.

Proposition 2.3.19. Let C be a simplicial model category and F : ∆op → C a simplicial diagram

1. If every monomorphism in C is a cofibration, then the homotopy colimit over F is given by the real-
ization

L lim
→
F '

∫ [n]∈∆

F ([n]) ·∆[n] .

2. If F takes values in cofibrant objects, then the the homotopy colimit over F is given by the fat realization

L lim
→
F '

∫ [n]∈∆

F ([n]) ·∆[n] .

3. If F is Reedy cofibrant, then the canonical morphism∫ [n]∈∆

F ([n]) ·∆[n]→
∫ [n]∈∆

F ([n]) ·∆[n]

(the Bousfield-Kan map) is a weak equivalence.

Proof. If every monomorphism is a cofibration, then F is necessarily cofibrant in [∆op, C]Reedy. The first
statement then follows from prop. 2.3.17 and the first item in prop. 2.3.18. On the other hand, if F takes
values in cofibrant objects, then it is cofibrant in [∆op, C]inj, and so the second statement follows from prop.
2.3.17 and the second item in prop. 2.3.18.

Notice that projective cofibrancy implies Reedy cofibrancy, so that ∆ is also Reedy cofibrant. Therefore
the morphism in the last item of the proposition is, by remark 2.1.25, the image under a left Quillen functor
of a weak equivalence between cofibrant objects and therefore itself a weak equivalence. �

Example 2.3.20. Every simplicial set, and more generally every simplicial presheaf is the homotopy colimit
over its simplicial diagram of cells.

More precisely, let C be a small site, and let [Cop, sSetQuillen]inj,loc be the corresponding local injective
model structure on simplicial presheaves. Then for any X ∈ [Cop, sSet], with

X• : ∆op → [Cop,Set] ↪→ [Cop, sSetQuillen]

its simplicial diagram of components, we have

X ' L lim
−→

X• .
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Proof. By prop. 2.3.19 the homotopy colimit is given by the coend

L lim
−→

X• '
∫ [n]∈∆

Xn ×∆[n] .

By basic properties of the coend, this is isomorphic to X. �

Proposition 2.3.21. The homotopy colimit of a simplicial diagram in sSetQuillen, or more generally of a
simplicial diagram of simplicial presheaves, is given by the diagonal of the corresponding bisimplicial set /
bisimplicial presheaf.

More precisely, for
F : ∆op → [Cop, sSetQuillen]inj,log

a simplicial diagram, its homotopy colimit is given by

L lim
−→

F• ' dF : ([n] 7→ (Fn)n) .

Proof. By prop. 2.3.19 the homotopy colimit is given by the coend

L lim
−→

F• '
∫ [n]∈∆

Fn ·∆[n] .

By a standard fact (e.g. exercise 1.6 in [GoJa99]), this coend is in fact isomorphic to the diagonal. �

Definition 2.3.22. Write ∆a for the augmented simplex category, which is the simplex category with an
initial object adjoined, denoted [−1].

This is a symmetric monoidal category with tensor product being the ordinal sum operation

[k], [l] 7→ [k + l + 1] .

Write
σ : ∆×∆→ ∆

for the restriction of this tensor product along the canonical inclusion ∆ ↪→ ∆a. Write

σ∗ : sSet→ [∆op, sSet]

for the operation of precomposition with this functor. By right Kan extension this induces an adjoint pair
of functors

(Dec a T ) : [∆op, sSet]
oo σ∗

σ∗
// sSet .

• Dec := σ∗ is called the total décalage functor;

• T := σ∗ is called the total simplicial set functor.

The total simplicial set functor was introduced in [ArMa66]. Details are in [St11].

Remark 2.3.23. By definition, for X ∈ [∆op, sSet], its total décalage is the bisimplicial set given by

(DecX)k,l = Xk+l+1 .

Remark 2.3.24. For X ∈ [∆op, sSet], the simplicial set TX is in each degree given by an equalizer of maps
between finite products of components of X. Hence forming T is compatible with sheafification and other
processes that preserve finite limits.
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See [St11], equation (2).

Proposition 2.3.25. For every X ∈ [∆op, sSet]

• the canonical morphism
dX → TX

from the diagonal to the total simplicial set is a weak equivalence in sSetQuillen;

• the adjunction unit
X → TDexX

is a weak equivalence in sSetQuillen.

For every X ∈ sSet

• there is a natural isomorphism T constX ' X.

This is due to [CeRe][St11].

Corollary 2.3.26. For
F : ∆op → [Cop, sSetQuillen]inj,loc

a simplicial object in simplicial presheaves, its homotopy colimit is given by applying objectwise over each
U ∈ C the total simplicial set functor

L lim
−→

F ' (U 7→ TF (U)) .

Proof. By prop. 2.3.25 this follows from prop. 2.3.21. �

Remark 2.3.27. The use of the total simplicial set instead of the diagonal simplicial set in the presentation
of simplicial homotopy colimits is useful and reduces to varios traditional notions in particular in the context
of group objects and action groupoid objects. This we discuss below in 3.3.6.2 and 3.3.8.3.

2.3.2.5 Effective epimorphisms, atlases and décalage We discuss apsects of the presentation of
effective epimorphisms, def. 2.3.2, with respect to presentations of the ambient ∞-topos by categories of
simplicial presheaves, 2.2.2.

Observation 2.3.28. If the ∞-topos H is presented by a category of simplicial presheaves, 2.2.2, then for
X a simplicial presheaf the canonical morphism of simplicial presheaves constX0 → X that includes the
presheaf of 0-cells as a simplicially constant simplicial presheaf presents an effective epimorphism in H.

Proof. By prop. 2.3.5. �

Remark 2.3.29. In practice the presentation of an ∞-stack by a simplicial presheaf is often taken to be
understood, and then observation 2.3.28 induces also a canonical atlas.

We now discuss a fibration resolution of the canonical atlas. Let σ : ∆ ×∆ → ∆ the functor from def.
2.3.22, defining total décalage.

Definition 2.3.30. Write
Dec0 : sSet→ sSet

for the functor given by precomposition with σ(−, [0]) : ∆→ ∆, and

Dec0 : sSet→ sSet

for the functor given by precomposition with σ([0],−) : ∆→ ∆. This is called the plain décalage functor or
shifting functor.

137



This functor was introduced in [Il72]. A discussion in the present context is in section 2.2 of [St11].

Proposition 2.3.31. The décalage of X is isomorphic to the simplicial set

Dec0X = Hom(∆• ?∆[0], X) ,

where (−) ? (−) : sSet × sSet → sSet is the join of simplicial sets. The canonical inclusions ∆[n],∆[0] →
∆[n] ?∆[0] induce two canonical morphisms

Dec0X

'
��

// // X

constX0

,

where

• the horizontal morphism is given in degree n by dn+1 : Xn+1 → Xn;

• the horizontal morphism is a Kan fibration;

• the vertical morphism is a weak homotopy equivalence;

• a weak homotopy inverse is given by the morphism that is degreewise given by the degeneracy morphisms
in X.

Proof. The relation to the join of simplicial sets is nicely discussed around page 7 of [RoSt12]. The weak
homotopy equivalence is classical, see for instance [St11].

To see that Dec0X → X is a Kan fibration, notice that for all n ∈ N we have (Dec0X)n = Hom(∆[c] ?
∆[0], X), where (−) ? (−) : sSet× sSet→ sSet is the join of simplicial sets. Therefore the lifting problem

Λi[n] //

��

Dec0X

��
∆[n] // X

is equivalently the lifting problem

(Λi[n] ?∆[n])
∐

Λi[n] ∆[n] //

��

X

��
∆[n] ?∆[0] // ∗

.

Here the left moprhism is a anodyne morphism, in fact is an (n+ 1)-horn inclusion. Hence a lift exists if X
is a Kan complex. (Alternatively, notice that Dec0X is the disjoint union of slices X/x for x ∈ X0. By cor.
2.1.2.2 in [LuHTT] the projection X/x → X is a left fibration if X is Kan fibrant, and by prop. 2.1.3.3 there
this implies that it is a Kan fibration). �

Corollary 2.3.32. For X in [Cop, sSet]proj fibrant, a fibration resolution of the canonical effective epimor-
phism constX0 → X from observation 2.3.28 is given by the décalage morphism Dec0X → X, def. 2.3.30.

Proof. It only remains to observe that we have a commuting diagram

constX0
s //

��

Dec0X

��
X

= // X

,
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where the top morphism, given degreewise by the degeneracy maps in X, is a weak homotopy equivalence
by classical results. �
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3 Cohesive homotopy type theory

We discuss here the general abstract theory of cohesive ∞-toposes and of the homotopical, cohomological,
geometrical and differential structures internal to them.

Below in 4 we construct models of these axioms.

3.1 Local, locally ∞-connected, and cohesive ∞-toposes

We introduce the axioms for those ∞-toposes that we call local, locally ∞-connected and, as a combination
of these, cohesive. In 3.1.1 we give the general abstract discussion and in 3.1.2 we discuss presentations.

Ample illustration and justification for these definitions and constructions is given below in

• 3.3 – Structures in an ∞-topos;

• 3.4 – Structures in a local ∞-topos;

• 3.5 – Structures in a locally ∞-connected ∞-topos;

• 3.6 – Structures in a cohesive ∞-topos;

• 3.7 – Structures in a differential ∞-topos,

where we list geometric structures that are implied by the axioms of cohesion.

3.1.1 General abstract

We give the definition and basic properties of cohesive ∞-toposes first externally, in 3.1.1.1 in terms of
properties of the global section geometric morphism, and then internally, in the language of the internal
logic of an ∞-topos, in 3.1.1.2.

3.1.1.1 External formulation A topos or ∞-topos may be viewed both as a category or, respectively,
∞-category of generalized spaces – then also called a “gros topos” – or as a generalized space itself – then
also called a “petit topos”. The duality relation between these two perspectives is given by prop. 2.2.5, which
says that every ∞-topos regarded as a generalized space is equivalent to the ∞-category of generalized étale
spaces over it, while, conversely, every collection of generalized spaces encoded by an ∞-topos may be
understood as being those generalized spaces equipped with local equivalences to a fixed generalized model
space.

From this description it is intuitively clear that the “smaller” an∞-topos is when regarded as a generalized
space, the “larger” is the collection of generalized spaces locally modeled on it, and vice versa. If by “size”
we mean “dimension”, there are two notions of dimension of an ∞-topos H that coincide with the ordinary
notion of dimension of a manifold X when H = Sh∞(X), but which may be different in general. These are

• homotopy dimension (see def. 3.3.26 below);

• cohomology dimension ([LuHTT], section 7.2.2).

If by “size” we mean “nontriviality of homotopy groups”, hence nontriviality of shape of a space, there is
the notion of

• shape of an ∞-topos ([LuHTT], section 7.1.6);

which coincides with the topological shape of X in the case that H = Sh∞(X), as above. Finally, if by
“small size” we just mean finite dimensional, then the property of ∞-toposes reflecting that is

• hypercompleteness ([LuHTT], section 6.5.2).
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For the description of higher geometry and higher differential geometry, we are interested in ∞-toposes
that are “maximally gros” and“minimally petit”: regarded as generalized spaces they should look like fat
points or contractible blobs being the abstract blob of geometry that every object in them is supposed to be
locally modeled on, but that otherwise do not make these objects be parameterized over a nontrivial space.

The following definitions describe extra properties of the global section geometric morphism of an ∞-
topos that imply that some or all of the measures of “size” of the ∞-topos vanish, hence that make the
∞-topos be far from being a non-trivial generalized space itself, and instead be genuinely a collection of
generalized spaces modeled on some notion of local geometry.

The following definition is the direct generalization standard notion of a locally/globally connected topos
[John03]: a topos whose terminal geometric morphism has an extra left adjoint that computes geometric
connected components, hence a geometric notion of π0. We will see in 3.5, that as we pass to ∞-toposes,
the extra left adjoint provides a good definition of all geometric homotopy groups.

Definition 3.1.1. An ∞-topos H we call locally ∞-connected if the (essentially unique) global section ∞-
geometric morphism from prop. 2.2.2 is an essential ∞-geometric morphism in that it has a further left
adjoint Π:

(Π a ∆ a Γ) : H

Π //
oo ∆

Γ
// ∞Grpd .

• If in addition Π preserves the terminal object we say that H is a locally∞-connected and∞-connected
∞-topos.

Remark 3.1.2. Meanwhile, a locally∞-connected∞-topos as above has been called an∞-topos of constant
shape in [Lur11], section A.1. Some of the following statements now overlap with the discussion there.

Proposition 3.1.3. For a locally and globally ∞-connected ∞-topos, the functor ∆ is full and faithful.

Proof. This follows verbatim the proof for the familiar statement about connected toposes, since all the
required properties have ∞-analogs: we have that

• the right adjoint ∞-functor ∆ is full and faithful precisely if Π∆ ' Id ([LuHTT], p. 308);

• every ∞-groupoid S is the ∞-colimit over itself of the ∞-functor constant on the point:

S ' lim
→ S
∗ .

([LuHTT], corollary 4.4.4.9).

With the assumption that with ∆ also Π is a left adjoint and that Π preserves the terminal object we
therefore have for all S ∈ ∞Grpd that

Π∆S ' Π∆lim
→ S
∗

' lim
−→S

Π∆∗

' lim
−→S
∗

' S

.

�

Proposition 3.1.4. A locally ∞-connected ∞-topos

1. has the shape of Π(∗);

2. hence has the shape of the point if it is globally ∞-connected.
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Proof. By inspection of the definitions. �

The following definition is the direct generalization of the notion of local topos, [JoMo89].

Definition 3.1.5. An∞-topos H is called local if the global section geometric morphism has a right adjoint.

Proposition 3.1.6. A local ∞-topos

1. has homotopy dimension 0 (see def. 3.3.26 below);

2. has cohomological dimension 0 ([LuHTT], section 7.2.2);

3. is hypercomplete.

Proof. The first statement is cor. 3.3.32 below. The second is a consequence of the first by [LuHTT],
cor. 7.2.2.30. The third follows from the second by [LuHTT], cor. 7.2.1.12. �

The following definition is the direct generalization of the main axioms in the definition of topos of
cohesion from [Lawv07].

Definition 3.1.7. A cohesive ∞-topos H is

1. a locally and globally ∞-connected topos H, def 3.1.1,

2. which in addition is a local ∞-topos, def. 3.1.5;

3. and such that the extra left adjoint preserves not just the terminal object, but all finite products.

Remark 3.1.8. The two conditions say in summary that an ∞-topos is cohesive precisely if it admits
quadruple of adjoint ∞-functors

(Π a ∆ a Γ a ∇) : H

Π //
oo ∆ ? _

Γ //
oo

∇
? _
∞Grpd

such that Π preserves finite products.

We may think of these axioms as encoding properties that characterize those ∞-toposes of ∞-groupoids
that are equipped with extra cohesive structure. In order to reflect this geometric interpretation notationally
we will from now on write

(Π a Disc a Γ a coDisc) : H

Π //
oo Disc ? _

Γ //
oo

coDisc
? _
∞Grpd

for the defining ∞-connected and ∞-local geometric morphism and say for S ∈ ∞Grpd that

• DiscS ∈ H is a discrete object of H or a discrete cohesive ∞-groupoid obtained by equipping S with
discrete cohesive structure;

• coDiscS ∈ H is a codiscrete object of H or a codiscrete cohesive ∞-groupoid, obtained by equipping S
with indiscrete cohesive structure;

and for X ∈ H that

• Γ(X) ∈ ∞Grpd is the underlying ∞-groupoid of X;

• Π(X) is the fundamental ∞-groupoid or geometric path ∞-groupoid of X.
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A simple but instructive toy example illustrating these interpretations is given by the Sierpinski ∞-topos,
discussed below in example 4.2.2. A detailed discussion of these geometric interpretations in various models
is in 4.

Every adjoint quadruple of functors induces an adjoint triple of endofunctors:

Definition 3.1.9. On any cohesive ∞-topos H define the adjoint triple of functors

(Π a [ a ]) : H

Π //
oo Disc ? _

Γ
//
∞Grpd

� � Disc //
oo Γ� �

coDisc
//
H .

The geometric interpretation of these three functors is discussed below in 3.5.3, 3.5.5 and 3.4.2, respec-
tively:

• Π is the geometric path or geometric homotopy functor;

• for A ∈ H we may pronounce [A as “flat A”, it is the coefficient for flat cohomology with coefficients
in A;

• for A ∈ H we may pronounce ]A as “sharp A”, it is the classifying object for “sharply varying”
A-principal ∞-bundles, those that need not be geometric (not continuous).

For emphasis we record the following list of pointlike properties of a cohesive ∞-topos.

Proposition 3.1.10. A cohesive ∞-topos

1. has homotopy dimension 0;

2. has cohomological dimension 0;

3. has the shape of the point;

4. is hypercomplete.

Proof. By prop. 3.1.6 and prop. 3.1.4. �
The following captures further aspects of the notion of cohesion encoded by a cohesive ∞-topos.

Definition 3.1.11. Given an object X ∈ H of a cohesive ∞-topos over ∞Grpd, we say that

1. pieces have points in X if the canonical morphism

(ΓX → ΠX) := ( ΓX
Γι // ΓDiscΠX

' // ΠX )

is an effective epimorphism, def. 2.3.2.

2. X has one point per piece if this morphism is an equivalence.

For the class of cohesive∞-toposes discussed below in 3.1.2 it is true for all their objects that pieces have
points. A class of (relative) cohesive ∞-toposes for which this is not the case is discussed in 4.2.

3.1.1.2 Internal formulation The above discussion of cohesion looks at an∞-topos “from the outside”,
namely as an object of the∞-category of all∞-toposes, and characterizes it in terms of additional properties
of functors defined on it. Since any∞-topos H also serves as an ambient context for homotopical mathematics
formulated internal to it, it is desireable to have an equivalent reformulation of cohesion entirely in the
internal language of H.

This we discuss now. This section draws from discussion with and ideas of Mike Shulman.
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Theorem 3.1.12. Let H be an ∞-topos. The inclusion of a full sub-∞-category

Disc : Bdisc ↪→ H

– to be called the discrete objects – and of a full sub-∞-category

coDisc : Bcod ↪→ H

– to be called the codiscrete objects – satisfies Bdisc ' Bcod and extends to an adjoint quadruple of the form

H
Π //

oo Disc ? _

Γ //
oo coDisc ? _

B

as in def. 3.1.7 precisely if for every object X ∈ H

1. there exists, with notation from def. 3.1.9,

(a) a morphism X → ΠX to a discrete object;

(b) a morphism [X → X from a discrete object;

(c) a morphism X → ]X to codiscrete object;

2. such that for all discrete Y and codiscrete Ỹ the induced morphisms

(a) H(ΠX,Y )→ H(X,Y );

(b) H(Y, [X)→ H(Y,X);

(c) H(]X, Ỹ )→ H(X, Ỹ );

(d) ]([X → X);

(e) [(X → ]X)

are equivalences.

Finally, Π preserves the terminal object if the morphism ∗ → Π∗ is an equivalence.

Proof. Prop. 5.2.7.8 in [LuHTT] asserts that a full sub-∞-category B ↪→ H is reflectively embedded
precisely if for every object X ∈ H there is a morphism

locX : X → LX

to an object LX ∈ H ↪→ H such that for all Y ∈ B ↪→ H the morphism

H(locX , Y ) : H(LX,Y )→ H(X,Y )

is an equivalence. In this case L is the composite of the embedding and its left adjoint. Accordingly, a dual
statement holds for coreflective embeddings. This gives the structure and the first three properties of the
above assertion. We identify therefore

(Π a [ a ]) := (Disc Π a Disc Γ a coDisc Γ) .

It remains to show that the last two properties say precisely that the sub-∞-categories of discrete and
codiscrete objects are equivalent and that under this equivalence their coreflective and reflective embedding,
respectively, fits into a single adjoint triple. It is clear that if this is the case then the last two properties
hold. We show the converse.

First notice that the two embeddings always combine into an adjunction of the form

Bdisc

� � Disc //
oo

Γ

H
Γ̃ //

oo
coDisc

? _Bcod .
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The equivalence ]([X → X) applied to X := coDiscA gives that coDisc applied to the counit of this composite
adjunction is an equivalence

coDisc Γ̃ Disc ΓcoDiscA
'→ coDisc Γ̃ coDiscA

'→ coDiscA

and since coDisc is full and faithful, so is the composite counit itself. Dually, the equivalence [(X → ]X)
implies that the unit of this composite adjunction is an equivalence. Hence the adjunction itself is an
equivalence, and so Bdisc ' Bcod. Using this we obtain a composite equivalence

Disc Γ̃X
'→ Disc ΓcoDisc Γ̃X

'→ Disc ΓX ,

where the left morphism is the image under Disc of the ave composite adjunction on the codiscrete object
Γ̃X, and where the second is a natural inverse of [(X → ]X). Since Disc is full and faithful, this implies
that

Γ ' Γ̃ .

�
This formulation of cohesion is not entirely internal yet, since it still refers to the external hom∞-groupoids
H. But cohesion also implies that the external ∞-groupoids can be re-internalized.

Proposition 3.1.13. The statement of theorem 3.1.12 remains true with items 2. a) - 2. b) replaced by

2. (a’) ][ΠX,Y ]→ ][X,Y ];

2. (b’) ][Y, [X]→ ][Y,X];

2. (c’) []X, Ỹ ]→ [X, Ỹ ];

where [−,−] denotes the internal hom in H.

Proof. By prop. 3.4.2 we have for codiscrete Ỹ equivalences [X, Ỹ ] ' coDiscH(X, Ỹ ). Since coDisc is
full and faithful, the morphism H(]X, Ỹ )→ H(X, Ỹ ) is an equivalence precisely if []X, Ỹ ]→ [X, Ỹ ] is.

Generally, we have Γ[X,Y ] ' H(X,Y ). With the full and faithfulness of coDisc this similarly gives the
remaining statements. �

3.1.2 Presentation

We discuss the presentation of cohesive ∞-toposes, in the sense of presentation of ∞-toposes as discussed in
2.2.2. In 3.1.2.1 we consider sites such that the ∞-topos of ∞-sheaves over them is cohesive. In 3.1.2.2 we
analyze fibrancy and descent over these sites.

3.1.2.1 Presentation over ∞-cohesive sites We discuss a class of sites with the property that the
∞-toposes of ∞-sheaves over them (2.2.2) are cohesive, def. 3.1.7.

Definition 3.1.14. We call a site (a small category equipped with a coverage) locally and globally ∞-
connected if

1. it has a terminal object ∗;

2. for every generating covering family {Ui → U} in C

(a) {Ui → U} is a good covering, def. 2.2.22: the Čech nerve C({Ui}) ∈ [Cop, sSet] is degreewise a
coproduct of representables;
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(b) the colimit lim
−→

: [Cop, sSet]→ sSet of C({Ui}) is weakly contractible

lim
−→

C({Ui})
'→ ∗ .

Proposition 3.1.15. For C a locally and globally ∞-connected site, the ∞-topos Sh∞(C) is locally and
globally ∞-connected.

We prove this after noting two lemmas.

Lemma 3.1.16. For {Ui → U} a covering family in the ∞-connected site C, the Čech nerve C({Ui}) ∈
[Cop, sSet] is a cofibrant resolution of U both in the global projective model structure [Cop, sSet]proj as well
as in the local model structure [Cop, sSet]proj,loc.

Proof. By assumption on C we have that C({Ui}) is a split hypercover [DuHoIs04]. This implies that
C({Ui}) is cofibrant in the global model structure. By general properties of left Bousfield localization we have
that the cofibrations in the local model structure as the same as in the global one. Finally that C({Ui})→ U
is a weak equivalence in the local model structure holds effectively by definition (since we are localizing at
these morphisms). �

Proposition 3.1.17. On a locally and globally∞-connected site C, the global section∞-geometric morphsm
(∆ a Γ) : Sh∞(C)→∞Grpd is presented under prop. 2.1.33 by the simplical Quillen adjunction

(Const a Γ) : [Cop, sSet]proj,loc
ooConst

Γ
// sSetQuillen ,

where Γ is the functor that evaluates on the terminal object, Γ(X) = X(∗) and Const is the functor that
assigns constant presheaves ConstS : U 7→ S.

Proof. That we have a 1-categorical adjunction (Const a Γ) follows by noticing that since C has a
terminal object we have that Γ = lim

←−
is given by the limit operation.

To see that we have a Quillen adjunction first notice that we have a Quillen adjunction on the global
model structure

(Const a Γ) : [Cop, sSet]proj
ooConst

Γ
// sSetQuillen ,

since Γ manifestly preserves fibrations and acyclic fibrations there. Because [Cop, sSet]proj,loc is left proper
and has the same cofibrations as the global model structure, it follows with prop. 2.1.34 that for this to
descend to a Quillen adjunction on the local model structure it is sufficient that Γ preserves locally fibrant
objects. But every fibrant object in the local structure is in particular fibrant in the global structure, hence
in particular fibrant over the terminal object of C.

The left derived functor LConst of Const : sSetQuillen → [Cop, sSet] preserves∞-limits (because∞-limits
in an ∞-category of ∞-presheaves are computed objectwise), and moreover ∞-stackification, being the left
derived functor of Id : [Cop, sSet]proj → [Cop, sSet]proj, is a left exact ∞-functor, therefore the left derived
functor of Const : sSetQuillen → [Cop, sSet]proj,loc preserves finite ∞-limits.

This means that our Quillen adjunction does model an ∞-geometric morphism Sh∞(C)→∞Grpd. By
prop. 2.2.2 this is indeed a representative of the terminal geometric morphism as claimed. �
Proof of theorem 3.1.15. By general abstract facts the sSet-functor Const : sSet → [Cop, sSet] given on
S ∈ sSet by Const(S) : U 7→ S for all U ∈ C has an sSet-left adjoint

Π : X 7→
∫ U

X(U) = lim
−→

X

naturally in X and S, given by the colimit operation. Notice that since sSet is itself a category of presheaves
(on the simplex category), these colimits are degreewise colimits in Set. Also notice that the colimit over a
representable functor is the point (by a simple Yoneda lemma-style argument).
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Regarded as a functor sSetQuillen → [Cop, sSet]proj the functor Const manifestly preserves fibrations and
acyclic fibrations and hence

(Π a Const) : [Cop, sSet]proj

lim
−→ //
oo
Const

sSetQuillen

is a Quillen adjunction, in particular Π : [Cop, sSet]proj → sSetQuillen preserves cofibrations. Since by
general properties of left Bousfield localization the cofibrations of [Cop, sSet]proj,loc are the same, also Π :
[Cop, sSet]proj,loc → sSetQuillen preserves cofibrations.

Since sSetQuillen is a left proper model category it follows with prop. 2.1.34 that for

(Π a Const) : [Cop, sSet]proj,loc

lim
−→ //
oo
Const

sSetQuillen

to be a Quillen adjunction, it suffices now that Const preserves fibrant objects. This means that constant
simplicial presheaves satisfy descent along covering families in the ∞-cohesive site C: for every covering
family {Ui → U} in C and every simplicial set S it must be true that

[Cop, sSet](U,ConstS)→ [Cop, sSet](C({Ui}),ConstS)

is a homotopy equivalence of Kan complexes. (Here we use that U , being a representable, is cofibrant,
that C({Ui}) is cofibrant by the lemma 3.1.16 and that ConstS is fibrant in the projective structure by the
assumption that S is fibrant. So the simplicial hom-complexes in the above equaltion really are the correct
derived hom-spaces.)

But that this is the case follows by the condition on the ∞-connected site C by which lim
−→

C({Ui}) ' ∗:
using this we have that

[Cop, sSet](C({Ui}),ConstS) = sSet(lim
−→

C({Ui}), S) ' sSet(∗, S) = S .

So we have established that (lim
−→
a Const) is also a Quillen adjunction on the local model structure.

It is clear that the left derived functor of lim
−→

preserves the terminal object: since that is representable

by assumption on C, it is cofibrant in [Cop, sSet]proj,loc, hence L lim
−→
∗ ' lim

−→
∗ = ∗. �

Definition 3.1.18. An ∞-cohesive site is a site such that

1. it has finite products;

2. every object U ∈ C has at least one point: C(∗, U) 6= ∅;

3. for every covering family {Ui → U} its Čech nerve C({Ui}) ∈ [Cop, sSet] is degreewise a coproduct of
representables

4. the canonical morphisms C({Ui}) → U are taken to weak equivalences by both limit and colimit
[Cop, sSet]→ sSet:

lim
−→

C({Ui})
'→ lim
−→

Ui

lim
←−

C({Ui})
'→ lim
←−

Ui
.

Notice that for the representable U we have lim→ U ' ∗ and that since C is assumed to have finite
products and hence in particular a terminal object lim← U = C(∗, U).

Proposition 3.1.19. The ∞-sheaf ∞-topos over an ∞-cohesive site is a cohesive ∞-topos in which for all
objects pieces have points, def. 3.1.11.
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Proof. Since an ∞-cohesive site is in particular a locally and globally ∞-connected site (def. 3.1.14) it
follows with theorem 3.1.15 that Π exists and preserves the terminal object. Moreover, by the discussion there
Π acts by sending a fibrant-cofibrant simplicial presheaf F : Cop → sSet to its colimit. Since C is assumed
to have finite products, Cop has finite coproducts, hence is a sifted category. Therefore taking colimits of
functors on Cop commutes with taking products of these functors. Since the ∞-product of ∞-presheaves is
modeled by the ordinary product on fibrant simplicial presheaves, it follows that over an ∞-cohesive site Π
indeed exhibits a strongly ∞-connected ∞-topos.

Using the notation and results of the proof of theorem 3.1.15, we show that the further right adjoint ∆
exists by exhibiting a suitable right Quillen adjoint to Γ : [Cop, sSet] → sSet, which is given by evaluation
on the terminal object. Its sSet-enriched right adjoint is given by

∇S : U 7→ sSet(Γ(U), S)

as confirmed by the following end/coend computation:

(X,∇(S)) =

∫
U∈C

sSet(X(U), sSet(Γ(U), S)

=

∫
U∈C

sSet(X(U)× Γ(U), S)

= sSet(

∫ U∈C
X(U)× Γ(U), S)

= sSet(

∫ U∈C
X(U)×HomC(∗, U), S)

= sSet(X(∗), S)

= sSet(Γ(X), S)

,

We have that

(Γ a ∇) : [Cop, sSet]proj

Γ→←
∇

sSetQuillen

is a Quillen adjunction, since ∇ manifestly preserves fibrations and acyclic fibrations. Since [Cop, sSet]proj,loc

is a left proper model category, to see that this descends to a Quillen adjunction on the local model structure
it is sufficient by prop. 2.1.34 to check that ∇ : sSetQuillen → [Cop, sSet]proj,loc preserves fibrant objects, in
that for S a Kan complex we have that ∇S satisfies descent along Čech nerves of covering families.

This is implied by the second defining condition on the∞-local site C, that lim
←−

C({Ui}) = HomC(∗, C({Ui)}) '
HomC(∗, U) = lim

←−
U is a weak equivalence. Using this we have for fibrant S ∈ sSetQuillen the descent weak

equivalence
[Cop, sSet](U,∇S) = sSet(HomC(∗, U), S)

' sSet(HomC(∗, C(U)), S)

= [Cop, sSet](C(U),∇S)

,

where we use in the middle step that sSetQuillen is a simplicial model category so that homming the weak
equivalence between cofibrant objects into the fibrant object S indeed yields a weak equivalence.

It remains to show that pieces have points, def. 3.1.11, in Sh∞(C). For the first statement we use
the cofibrant replacement theorem from [Dugg01] for [Cop, sSet]proj,loc which says that for X any simplicial
presheaf, a functorial projective cofibrant replacement is given by the object

QX :=
(
· · · //////

∐
U0→U1→X1

U0
// //
∐
U0→X0

U0

)
,

where the coproducts are over the set of morphisms of presheaves from representables Ui as indicated. By
the above discussion, the presentations of Γ and Π by left Quillen functors lim

←
and lim

−→
takes this to the
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morphism lim
←
QX → lim

→
QX induced in components by

· · · //////
∐
U0→U1→X1

C(∗.U0) // //

��

∐
U0→X0

C(∗, U0)

��
· · · //////

∐
U0→U1→X1

∗ // //
∐
U0→X0

∗

.

By assumption on C we have that all sets C(∗, U0) are non-empty, so that this is componentwise an epimor-
phism and hence induces in particular an epimorphism on connected components.

Finally, for S a Kan complex we have by the above that DiscS is the presheaf constant on S. Its homotopy
sheaves are the presheaves constant on the homotopy groups of S. The inclusion of these into the homotopy
sheaves of coDiscS is over each U ∈ C the diagonal injection

πn(S, x) ↪→ πn(S, x)C(∗,U) .

Therefore also discrete objects are concrete in the ∞-topos over the ∞-cohesive site C. �
Below in 4 we discuss in detail the following examples.

Examples 3.1.20. The following sites are ∞-cohesive.

• The site CartSptop of Cartesian spaces, continuous maps between them and good open covers (prop.
4.3.2).

• The site CartSpsmooth of Cartesian spaces, smooth maps between them and good open covers (prop.
4.4.6),

• The site CartSpSynthDiff of Cartesian spaces with infinitesimal thickening, smooth maps between the
and good open covers that are the identity on the thickening (prop. 4.5.6).

• The site CartSpsuper of super-Cartesian spaces, morphisms of supermanifolds between them and good
open covers (prop. 4.6.10).

We record a fact that is expected to hold quite generally for ∞-toposes, but for which we currently have
a proof only over ∞-connected sites.

Theorem 3.1.21 (parameterized∞-Grothendieck construction). Let H be an∞-topos with an∞-connected
site of definition, def. 3.1.14, and let A ∈ ∞Grpd be any ∞-groupoid. Then there is an equivalence of ∞-
categories

H/DiscA ' HA

between the slice∞-topos of H over the discrete cohesive∞-groupoid on A and the∞-category of∞-functors
A→ H.

Proof. For the case that the site of definition is terminal, hence that H ' ∞Grpd this statement is the
∞-Grothendieck construction from section 2 of [LuHTT]. There the equivalence of ∞-categories

∞Grpd/A ' ∞GrpdA

which takes a fibration to an∞-functor that assigns its fibers is presented by a Quillen equivalence of model
categories

sSet+/A
//

oo [w(A)op, sSet]proj

between a model structure on marked simplicial sets sSet+ over a Kan complex A and the global projective
model structure on enriched presheaves on the simplically enriched category w(A) corresponding to A by
the discussion in section 1.1.5 of [LuHTT].
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Now for C an ∞-connected site and H ' ([Cop, sSet]proj,loc)◦ we have by the proof of prop. 3.1.15 that
with A a Kan complex, the constant simplicial presheaf constA : Cop → sSet is a fibrant presentation in
[Cop, sSet]proj,loc of DiscA. Therefore the ∞-categorical slice H/DiscA is presented by the induced model
structure on the 1-categorical slice category

H/DiscA '
(
([Cop, sSet]/constA)proj,loc/constA

)◦
.

We have an evident equivalence of 1-categories

[Cop, sSet]/constA ' [Cop, sSet/A]

under which the above slice model structure is seen to become the model structure on presheaves with values
in the slice model structure (sSet/A)Quillen/A, hence

H/DiscA '
(
[Cop, (sSet/A)Quillen/A]proj,loc

)◦
.

Since A is fibrant in the Quillen model structure, the slice model structure here presents the ∞-categorical
slice of ∞-groupoids

∞Grpd/A '
(
(sSet/A)Quillen/A

)◦
.

By the above presentation of the∞-Grothendieck construction by marked simplicial sets, this is equivalently

· · · '
(
sSet+/A

)◦ ' ([w(A)op, sSet]proj)
◦
.

Since all model categories appearing here are combinatorial, it follows with prop. 4.2.4.4 in [LuHTT] that
we have an equivalence of ∞-categories

H/DiscA ' ([Cop, [w(A)op, sSet]proj]proj,loc)
◦

and hence
· · · ' ([w(A)op, [Cop, sSet]proj,loc]proj)

◦ ' HA .

�

3.1.2.2 Fibrancy over ∞-cohesive sites The condition on an object X ∈ [Cop, sSet]proj to be fibrant
models the fact that X is an∞-presheaf of ∞-groupoids. The condition that X is also fibrant as an object in
[Cop, sSet]proj,loc models the higher analog of the sheaf condition: it makes X an ∞-sheaf. For generic sites
C fibrancy in the local model structure is a property rather hard to check or establish concretely. But often
a given site can be replaced by another site on which the condition is easier to control, without changing the
corresponding ∞-topos, up to equivalence. Here we discuss for cohesive sites, def. 3.1.18 explicit conditions
for a simplicial presheaf over them to be fibrant.

In order to discuss descent over C it is convenient to introduce the following notation for “cohomology
over the site C”. For the moment this is just an auxiliary technical notion. Later we will see how it relates
to an intrinsically defined notion of cohomology.

Definition 3.1.22. For C an ∞-cohesive site, A ∈ [Cop,Set]proj fibrant, and {Ui → U} a good cover in U ,
we write

Hn
C({Ui}, A) := π0Maps(C({Ui}), A) .

Moreover, if A is equipped with (abelian) group structure we write

Hn
C({Ui}, A) := π0Maps(C({Ui}),W

n
A) .

Definition 3.1.23. An object A ∈ [Cop, sSet] is called C-acyclic if
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1. it is fibrant in [Cop, sSet]proj;

2. for all n ∈ N the homotopy group presheaves πPSh
n from def. 2.2.7 are already sheaves πn(A) ∈ Sh(C);

3. for n = 1 and k = 1 as well as n ≥ 2 and k ≥ 1 we have Hk
C({Ui}, πn(A)) ' ∗ for all good covers

{Ui → U}.

Remark 3.1.24. This definition can be formulated and the following statements about it are true over any
site whatsoever. However, on generic sites C the C-acyclic objects are not very interesting. On ∞-cohesive
sites on the other hand they are of central importance.

Observation 3.1.25. If A is C-acyclic then for every point x : ∗ → A also ΩxA is C-acyclic (for any model
of the loop space object in [Cop, sSet]proj).

Proof. The standard statement in sSetQuillen

πnΩX ' πn+1X

directly prolongs to [Cop, sSet]proj. �

Theorem 3.1.26. Let C be an ∞-cohesive site. Sufficient conditions for an object A ∈ [Cop, sSet] to be
fibrant in the local model structure [Cop, sSet]proj,loc are

• A is 0-truncated and C-acyclic;

• A is connected and C-acyclic;

• A is a group object and C-acyclic.

Here and in the following “truncated” and “connected” are as simplicial presheaves (not after sheafifica-
tion of homotopy presheaves).

We demonstrate this statement in several stages.

Proposition 3.1.27. A 0-truncated object is fibrant in [Cop, sSet]proj,loc precisely if it is fibrant in [Cop, sSet]proj

and weakly equivalent to a sheaf: to an object in the image of the canonical inclusion

ShC ↪→ [Cop,Set] ↪→ [Cop, sSet] .

Proof. From general facts of left Bousfield localization we have that the fibrant objects in the local model
structure are necessarily fibrant also in the global structure.

Since moreover A → π0(A) is a weak equivalence in the global model structure by assumption, we have
for every covering {Ui → U} in C a sequence of weak equivalences

Maps(C({Ui}), A)
'→ Maps(C({Ui}), π0(A))

'→ Maps(π0C({Ui}), π0(A))
'→ ShC(S({Ui}), π0(A)) ,

where S({Ui}) ↪→ U is the sieve corresponding to the cover. Therefore the descent condition

Maps(U,A)
'→ Maps(C({Ui}), A)

is precisely the sheaf condition for π0(A). �

Proposition 3.1.28. A connected fibrant object A ∈ [Cop, sSet]proj is fibrant in [Cop, sSet]proj,loc if for all
objects U ∈ C

1. HC(U,A) ' ∗;
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2. ΩA is fibrant in [Cop, sSet]proj,loc ,

where ΩA is any fibrant object in [Cop, sSet]proj representing the looping of A.

Proof. For {Ui → U} a covering we need to show that the canonical morphism

Maps(U,A)→ Maps(C({Ui}), A)

is a weak homotopy equivalence. This is equivalent to the two morphisms

1. π0Maps(U,A)→ π0Maps(C({Ui}), A)

2. ΩMaps(U,A)→ ΩMaps(C({Ui}), A)

being weak equivalences. Since A is connected the first of these says that there is a weak equivalence

∗ '→ HC(U,A). The second condition is equivalent to Maps(U,ΩA) → Maps(C({Ui}),ΩA), being a weak
equivalence, hence to the descent of ΩA. �

Proposition 3.1.29. An object A which is connected, 1-truncated and C-acyclic is fibrant in [Cop, sSet]proj,loc.

Proof. Observe that for a connected and 1-truncated objects we have a weak equivalence A 'Wπ1(A) in
[Cop, sSet]proj. The first condition of prop. 3.1.28 is then implied by C-connectedness. The second condition
there is that π1(A) satisfies descent. By C-acyclicity this is a sheaf and it is 0-truncated by assumption,
therefore it satisfies descent by prop 3.1.27. �

Proposition 3.1.30. Every connected and C-acyclic object A ∈ [Cop, sSet]proj is fibrant in [Cop, sSet]proj,loc.

Proof. We first show the statement for truncated A and afterwards for the general case.
The k-truncated case in turn we consider by induction over k. If A is 1-truncated the proposition holds

by prop. 3.1.29. Assuming then that the statement has been shown for k-truncated A, we need to show it
for (k + 1)-truncated A.

This we do by decomposing A into its canonical Postnikov tower def. 3.3.6: For n ∈ N let

A(n) := A/∼n

be the quotient simplicial presheaf where two cells

α, β : ∆n × U → A

are identified, α ∼n β, precisely if they agree on their n-skeleton:

sknα = sknβ : skn∆ ↪→ ∆n → A(U) .

It is a standard fact (shown in [GoJa99], theorem VI 3.5 for simplicial sets, which generalizes immediately
to the global model structure [Cop, sSet]proj ) that for all n > 1 we have sequences

K(n)→ A(n)→ A(n− 1) ,

where A(n−1) is (n−1)-truncated with homotopy groups in degree ≤ n−1 those of A, and where the right
morphism is a Kan fibration and the left morphism is its kernel, such that

A = lim
←−n

A(n) .

Moreover, there are canonical weak homotopy equivalences

K(n)→ Ξ((πn−1A)[n])
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to the Eilenberg-MacLane object on the nth homotopy group in degree n.
Since A(n− 1) is (n− 1)-truncated and connected, the induction assumption implies that it is fibrant in

the local model structure.
Moreover we see that K(n) is fibrant in [Cop, sSet]proj,loc: the first condition of 3.1.28 holds by the

assumption that A is C-connected. The second condition is implied again by the induction hypothesis, since
ΩK(n) is (n− 1)-truncated, connected and still C-acyclic, by observation 3.1.25.

Therefore in the diagram (where Maps(−,−) denotes the simplicial hom complex)

Maps(U,K(n)) //

'
��

Maps(U,A(n)) //

��

Maps(U,A(n− 1))

'
��

Maps(C({Ui}),K(n)) // Maps(C({Ui}), A(n)) // Maps(C({Ui}), A(n− 1))

for {Ui → U} any good cover in C the top and bottom rows are fiber sequences (notice that all simplicial
sets in the top row are connected because A is connected) and the left and right vertical morphisms are
weak equivalences in [Cop, sSet]proj (the right one since A(n − 1) is fibrant in the local model structure by
induction hypothesis, as remarked before, and the left one by C-acyclicity of A). It follows that also the
middle morphism is a weak equivalence. This shows that A(n) is fibrant in [Cop, sSet]proj,loc. By completing
the induction the same then follows for the object A itself.

This establishes the claim for truncated A. To demonstrate the claim for general A notice that the limit
over a sequence of fibrations between fibrant objects is a homotopy limit (by example 2.3.15). Therefore we
have

Maps(U,A)

��

' lim
←−n

Maps(U,A(n))

'

��
Maps(C({Ui}), A) ' lim

←−n
Maps(C({Ui}), A(n))

,

where the right vertical morphism is a morphism between homotopy limits in [Cop, sSet]proj induced by a
weak equivalence of diagrams, hence is itself a weak equivalence. Therefore A is fibrant in [Cop, sSet]proj,loc. �

Lemma 3.1.31. For G ∈ [Cop, sSet] a group object, the canonical sequence

G0 → G→ G/G0

is a homotopy fiber sequence in [Cop, sSet]proj.

Proof. Since homotopy pullbacks of presheaves are computed objectwise, it is sufficient to show this for
C = ∗, hence in sSetQuillen. One checks that generally, for X a Kan complex and G a simplicial group acting
on X, the quotient morphism X → X/G is a Kan fibration. Therefore the homotopy fiber of G→ G/G0 is
presented by the ordinary fiber in sSet. Since the action of G0 on G is free, this is indeed G0 → G. �

Proposition 3.1.32. Every C-acyclic group object G ∈ [Cop, sSet]proj for which G0 is a sheaf is fibrant in
[Cop, sSet]proj,loc.

Proof. By lemma 3.1.31 we have a fibration sequence

G0 → G→ G/G0 .

Since G0 is assumed to be a sheaf it is fibrant in the local model structure by prop. 3.1.27. Since G/G0 is
evidently connected and C-acyclic it is fibrant in the local model structure by prop. 3.1.30. As before in the
proof there this implies that also G is fibrant in the local model structure. �

We discuss some examples.
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Proposition 3.1.33. Let (δ : G1 → G0) be a crossed module, def. 1.3.6, of sheaves over an ∞-cohesive site
C. Then the simplicial delooping W̄ (G1 → G0) is fibrant in [Cop, sSet]proj,loc if the image factorization of
G0 ×G1 → G0 ×G0 has sections over each U ∈ C and if the presheaf kerδ is a sheaf.

Proof. The existence of the lift ensures that the homotopy presheaf πPSh
1 W̄G is a sheaf. Notice that

πPSh
2 W̄G = ker(δ). Since moreover W̄G is manifestly connected, the claim follows with theorem 3.1.26. �

3.2 Differential ∞-toposes

We discuss extra structure on a cohesive ∞-topos that encodes a refinement of the corresponding notion of
cohesion to a notion of infinitesimal cohesion. With respect to such it makes sense to ask if an object in the
topos has infinitesimal extension.

A basic class of examples of objects with infinitesimal extension are infinitesimal intervals D that arise,
in the presence of infinitesimal cohesion, from line objects A as the subobjects D ↪→ A of elements that
square to 0 (in the internal logic of the topos)

D = {x ∈ A|x · x = 0} .

These objects co-represent tangent spaces, in that for any other object X the internal hom object TX :=
[D, X] plays the role of the tangent bundle of X.

A well-known proposal for an axiomatic characterization of infinitesimal objects in a 1-topos goes by the
name synthetic differential geometry [Lawv97], where infinitesimal extension is characterized by algebraic
properties of dual function algebras, as above. From the point of view and in the presence of cohesion in an
∞-topos, however, there is a more immediate geometric characterization: an object D in a cohesive∞-topos
H behaves like a possibly infinitesimally thickened point if

1. it is geometrically contractible, Π(D) ' ∗;

2. it has a single global point, Γ(D) ' ∗.

This axiomatization we discuss in the following. We show that it formalizes a modern refinement of infinites-
imal calculus called D-geometry [BeDr04] [Lu09b].

More precisely, we consider geometric inclusions H ↪→ Hth of cohesive∞-toposes that exhibit the objects
of Hth as infinitesimal cohesive neighbourhoods of objects in H.

Below in 3.7 we discuss a list of structures that are canonically present in infinitesimal cohesive neigh-
bourhoods.

Further below in 4.5 we discuss a model for these axioms which is an ∞-categorical generalization of a
topos that is a model for synthetic differential geometry.

3.2.1 General abstract

Definition 3.2.1. Given a cohesive ∞-topos H we say that an infinitesimal cohesive neighbourhood of H
is a geometric embedding i : H ↪→ Hth into another cohesive ∞-topos Hth, such that there is an extra left
adjoint i! (necessarily also full and faithful) and an extra right adjoint i!

(i! a i∗ a i∗ a i!) : H

� � i! //
oo i∗

i∗ //oo
i!

Hth

and such that i! preserves finite products.
If we think of this as exhibiting axtra structure on Hth, we call Hth a differential ∞-topos.
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Remark 3.2.2. This definition captures the characterization of infinitesimal objects as having a single
global point surrounded by an infinitesimal neighbourhood: as we discuss in detail below in 3.7.1, the ∞-
functor i∗ may be thought of as contracting away any infinitesimal extension of an object. Thus X being
an infinitesimal object amounts to i∗X ' ∗, and the ∞-adjunction (i! a i∗) then implies that X has only a
single global point, since

Hth(∗, X) ' Hth(i!∗, X)

' H(∗, i∗X)

' H(∗, ∗)
' ∗

.

Observation 3.2.3. The inclusion into the infinitesimal neighbourhood is necessarily a morphism of ∞-
toposes over ∞Grpd.

H
(i∗ai∗) //

ΓH ##

Hth

ΓHthzz
∞Grpd

as is the induced ∞-geometric morphism (i∗ a i!) : Hth → H:

Hth

(i∗ai!) //

ΓHth $$

H

ΓH{{
∞Grpd

.

Proof. By essential uniqueness of the terminal global section geometric morphism. In both cases the
direct image functor has as left adjoint that preserves the terminal object. Therefore we compute in the first
case

ΓHth
(i∗X) ' Hth(∗, i∗X)

' H(i∗∗, X)

' H(∗, X)

' ΓH(X)

and analogously in the second. �

3.2.2 Presentations

We establish a presentation of differential∞-toposes, def. 3.2.1, in terms of categories of simplicial presheaves
over suitable neighbourhoods of ∞-cohesive sites.

Definition 3.2.4. Let C be an ∞-cohesive site, def. 3.1.18. We say a site Cth

• equipped with a coreflective embedding

(i a p) : C
i
↪→←
p
Cth

• such that

1. i preserves finite products;

2. i preserves pullbacks along morphisms in covering families;
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3. both i and p send covering families to covering families;

4. for all U ∈ Cth and for all covering families {Ui → p(U)} in C there is a lift through p to a
covering family {Ui → U} in Cth

is an infinitesimal neighbourhood site of C.

Theorem 3.2.5. Let C be an ∞-cohesive site and let (i a p) : C
i
↪→←
p
Cth be an infinitesimal neighbourhood

site.
Then the ∞-category of ∞-sheaves on Cth is a cohesive ∞-topos and the restriction i∗ along i exhibits it

as an infinitesimal neighbourhood of the cohesive ∞-topos over C.

(i! a i∗ a i∗ a i!) : Sh∞(C)→ Sh∞(Cth) .

Moreover, i! restricts on representables to the ∞-Yoneda embedding factoring through i:

C �
� //

i

��

Sh∞(C)

i!

��
Cth
� � // Sh∞(Cth)

.

Proof. We demonstrate this in the model category presentation of Sh∞(Cth) as in the proof of prop.
3.1.19.

Consider the right Kan extension Rani : [Cop, sSet] → [Cop
th , sSet] of simplicial presheaves along the

functor i. On an object K ∈ Cth it is given by

RaniF : K 7→
∫
U∈C

sSet(Cth(i(U),K), F (U))

'
∫
U∈C

sSet(C(U, p(K)), F (U))

' F (p(K)

,

where in the last step we use the Yoneda reduction-form of the Yoneda lemma.
This shows that the right adjoint to (−) ◦ i is itself given by precomposition with a functor, and hence

has itself a further right adjoint, which gives us a total of four adjoint functors

[Cop, sSet]

Lani //
oo (−)◦i

(−)◦p //
oo

Ranp

[Cop
th , sSet] .

From this are induced the corresponding simplicial Quillen adjunctions on the global projective and injective
model structure on simplicial presheaves

(Lani a (−) ◦ i) : [Cop, sSet]proj

Lani //
oo
(−)◦i

[Cop
th , sSet]proj ;

((−) ◦ i a (−) ◦ p) : [Cop, sSet]proj
oo (−)◦i

(−)◦p
// [C

op
th , sSet]proj ;

((−) ◦ p a Ranp) : [Cop, sSet]inj

(−)◦p //
oo
Ranp

[Cop
th , sSet]inj .
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By prop. 2.1.34, for these Quillen adjunctions to descend to the Čech-local model structure on simplicial
presheaves it suffices that the right adjoints preserve locally fibrant objects.

We first check that (−) ◦ i sends locally fibrant objects to locally fibrant objects. To that end, let

{Ui → U} be a covering family in C. Write
∫ [k]∈∆

∆[k] ·
∐
i0,··· ,ik(j(Ui0)×j(U) j(Ui1)×j(U) · · · ×j(U) j(Uk))

for its Čech nerve, where j denotes the Yoneda embedding. Recall by the definition of the ∞-cohesive site
C that all the fiber products of representable presheaves here are again themselves representable, hence

· · · =
∫ [k]∈∆

∆[k] ·
∐
i0,··· ,ik(j(Ui0×U Ui1×U · · ·×U Uk)). Using that the left adjoint Lani preserves the coend

and tensoring, that it restricts on representables to i and by the assumption that i preserves pullbacks along
covers we have that

LaniC({Ui → U}) '
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Lani(j(Ui0 ×U Ui1 ×U · · · ×U Uk))

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

j(i(Ui0 ×U Ui1 ×U · · · ×U Uk))

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

j(i(Ui0)×i(U) i(Ui1)×i(U) · · · ×i(U) i(Uk))

.

By the assumption that i preserves covers, this is the Čech nerve of a covering family in Cth. Therefore for
F ∈ [Cop

th , sSet]proj,loc fibrant we have for all coverings {Ui → U} in C that the descent morphism

i∗F (U) = F (i(U))
'→ [Cop

th , sSet](C({i(Ui)}), F ) = [Cop, sSet](C({Ui}), i∗F )

is a weak equivalence.
To see that (−) ◦ p preserves locally fibrant objects, we apply the analogous reasoning after observing

that its left adjoint (−) ◦ i preserves all limits and colimits of simplicial presheaves (as these are computed

objectwise) and by observing that for {UI
pi→ U} a covering family in Cth we have that its image under

(−) ◦ i is its image under p, by the Yoneda lemma:

[Cop, sSet](K, ((−) ◦ i)(U)) ' Cth(i(K),U)

' C(K, p(U))

and using that p preserves covers by assumption.
Therefore (−) ◦ i is a left and right local Quillen functor with left local Quillen adjoint Lani and right

local Quillen adjoint (−) ◦ p.
Finally to see by the above reasoning that also Ranp preserves locally fibant objects notice that for every

covering family {Ui → U} in C and every morphism K → p∗U in Cth we may find a covering {Kj → K}
such that we have commuting diagrams as on the left of

Kj
//

��

p∗Ui(j)

��
K // p∗U

↔

p(Kj)

��

i∗(Kj) //

��

Ui(j)

��
p(K) i∗(K) // U

,

because by the (i∗ a p∗) adjunction established above these correspond to the diagrams as indicated on the
right, which exist by definition of coverage and the fact that, by definition, in Cth covers lift through p.

This implies that {p∗Ui → p∗U} is a generalized cover in the terminology of [DuHoIs04], which by the
discussion there implies that the corresponding Čech nerve projection C({p∗Ui})→ p∗U is a weak equivalence
in [Cop

th , sSet]proj,loc.
This establishes the quadruple of adjoint ∞-functors as claimed.
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To see that Lani preserves products, use that, by the local formula for the left Kan extension, it is
sufficient that for each K ∈ Cth the functor

X 7→ lim
→

(pop/K → Cop X→ sSet)

preserves finite products. By a standard fact this is the case precisely if the slice category pop/K is sifted.
A sufficient condition for this is that it has coproducts. This is equivalent to K/p having products, and this
is finally true due to the assumption that p preserves products.

It remains to see that i! is a full and faithful ∞-functor. For that notice the general fact that left Kan
extension along a full and faithful functor i satisfies Lani ◦ i ' id. It only remains to observe that since (−)◦ i
is not only right but also left Quillen by the above, we have that i∗ ◦ Lani applied to a cofibrant object is
already the derived functor of the composite. �

Definition 3.2.6. For (i! a i∗ a i∗ a i!) : H → Hth an infinitesimal neighbourhood of a cohesive ∞-topos,
we write

(Πinf a Discinf a Γinf) := (i∗ a i∗ a i!) ,

so that the locally connected terminal geometric morphism of Hth factors as

(ΠHth
a DiscHth

a [Hth
) : Hth

Πinf //
oo Discinf

Γinf

// H

ΠH //
oo DiscH

ΓH

// ∞Grpd .
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3.3 Structures in an ∞-topos

We discuss here a list of fundamental homotopical and cohomological structures that exist in every ∞-topos
but are particularly expressive in a local ∞-topos, def. 3.1.5, or rather: over a base∞-topos that is local. As
we discuss below in 3.3.4, every local∞-topos has the homotopy dimension of the point and hence all gerbes
a delooped groups. This means that group objects in a local ∞-topos, discussed in 3.3.6 below, behave as
absolute structured groups rather than as∞-sheaves over groups that vary over a fixed nontrivial space. This
is the first central property of the gros toposes H that we are interested in here. For every object X ∈ H
the slice ∞-topos H/X → H is ∞-topos relative to its local base H, but itself in general not local. Group
objects in the slice are groups parameterized over X and ∞-gerbes in the slice are the actual ∞-gerbes over
X. This we discuss in 3.3.13.

Structures entirely specific to local ∞-toposes we discuss below in 3.4. Additional structures that are
present if we assume that H is locally∞-connected are discussed below in 3.5, and those in an actual cohesive
∞-topos below in 3.6.

• 3.3.1 – Truncated objects and Postnikov towers

• 3.3.2 – Compact objects

• 3.3.3 – Homotopy

• 3.3.4 – Connected objects

• 3.3.5 – Groupoids

• 3.3.6 – Groups

• 3.3.7 – Cohomology

• 3.3.8 – Principal bundles

• 3.3.9 – Twisted cohomology and sections

• 3.3.11 – Relative cohomology

• 3.3.12 – Group representations and associated bundles

• 3.3.13 – Gerbes

3.3.1 Truncated objects and Postnikov towers

3.3.1.1 General abstract

Definition 3.3.1. For n ∈ N an ∞-groupoid X ∈ ∞Grpd is called n-truncated or a homotopy n-type if all
its homotopy groups in degree > n are trivial. It is called (−1)-truncated if it is either empty or contractible.
It is called (−2)-truncated if it is non-empty and contractible.

For H an ∞-topos, and object A ∈ H is called n-truncated for −2 ≤ n ≤ ∞ if for all X ∈ H the hom
∞-groupoid H(X,A) is n-truncated.

An ∞-functor between ∞-groupoids is called k-truncated for −2 ≤ k ≤ ∞ if all its homotopy fibers are
k-truncated. A morphism f : A → B in an ∞-topos H is k-truncated if for all objects X ∈ H the induced
∞-functor H(X, f) : H(X,A)→ H(X,B) is k-truncated.

This appears as [Re05] 7.1 and [LuHTT] def. 5.5.6.8.

Remark 3.3.2. • A morphism is (−2)-truncated precisely if it is an equivalence.

• A morphism between ∞-groupoids that is (−1)-truncated is a full and faithful ∞-functor. A general
morphism that is (−1)-truncated is an ∞-monomorphism.
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Proposition 3.3.3. For all (−2) ≤ n ≤ ∞ the full sub-∞-category H≤n of H on the n-truncated objects is
reflective in H in that the inclusion functor has a left adjoint ∞-functor τn

H≤n
oo τn
� � // H .

Moreover, τn preserves finite products

This is [LuHTT] prop. 5.5.6.18, lemma 6.5.1.2.

Definition 3.3.4. For an object X ∈ H in an ∞-topos, we say that the canonical sequence

X

|| "" ))
· · · // τnX // · · · // τ0X // τ−1X

induced from the reflectors of prop. 3.3.3 is the Postnikov tower of X.
We say that the Postnikov tower converges if the above diagram exhibits X as the ∞-limit over its

Postnikov tower
X ' lim

←−n
τnX .

This is def. 5.5.6.23 in [LuHTT].

3.3.1.2 Presentations

Proposition 3.3.5. Let C be a small site of definition of an ∞-topos H, so that

H ' LW [Cop, sSet]proj,loc

according to theorem 2.2.15. Let [Cop, sSet]proj,loc,≤n be the left Bousfield localization of the local projective
model structure on simplicial presheaves at the set of morphisms

{∂∆[k + 1] ↪→ U → ∆[k + 1] · U | U ∈ C; k > n} .

This is a presentation of the sub-∞-category of n-truncated objects

H≤n ' ([Cop, sSet]proj,loc,≤n)◦

and the canonical Quillen adjunction

[Cop, sSet]proj,loc
oo id

id
// [Cop, sSet]proj,loc,≤n

presents the reflection, τn ' Lid.

This appears in the proof of [Re05], prop. 7.5.

Definition 3.3.6. For H an∞-topos and for X ∈ H an object, a Postnikov decompsition of X is a sequence

· · · → X2 → X1 → X0

in the under-∞-category HX/, such that for all n ∈ N the morphism X → Xn exhibits Xn as an n-truncation
of X.
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This appears as def. 5.5.6.23 in [LuHTT].
We now discuss an explicit presentation for n-truncation and Postnikov decompositions in terms of the

projective model structure on simplicial presheaves. First recall the following classical notions, reviewed for
instance in [GoJa99].

Definition 3.3.7. Let ιn+1 : ∆≤n+1 ↪→ ∆ be the full subcatgeory of the simplex category on the objects
[k] for k ≤ n+ 1. Write sSet≤n+1 := Func(∆op

≤n+1,Set) for the category of (n+ 1)-stage simplicial sets.
Finally, write

coskn+1 : sSet
ι∗n+1// sSet≤n+1

� �coskn+1 // sSet

for the composite of the pullback along ιn+1 with its right adjoint coskn+1.
For X ∈ sSet we say that coskn+1X is it (n+ 1)-coskeleton.
All of these constructions prolong to simplicial presheaves.

Theorem 3.3.8. For X ∈ sSet a Kan complex, the tower of cosk-units

· · · → cosk3X → cosk2X → cosk1X

presents the Postnikov decomposition of X in ∞Grpd.

This is a classical result due to [DwKa84b].

Proposition 3.3.9. For C the site of definition of a hypercomplete ∞-topos, let X ∈ [Cop, sSet]proj,loc be a
fibrant simplicial presheaf. Then the tower of cosk-units

· · · → cosk3X → cosk2X → cosk1X

presents the Postnikov decomposition of X in Sh∞(X).

Proof. It is sufficient to show that X → coskn+1X presents the n-truncation X → τnX in Sh∞(X). For
this, in turn, it is sufficient to observe that this morphism is a fibrant replacement in [Cop, sSet]proj,loc,≤n.
By standard facts about left Bousfield localizations, coskn+1X is indeed fibrant in that model structure,
since it is fibrant in the original structure by assumption and is local with respect to higher sphere inclusions
by the nature of the coskeleton construction.

So it remains to see that the morphism X → coskn+1X is a weak equivalence in the localized model
structure. We notice that by assumption of hypercompleteness, the homotopy category is also computed by
the derived hom in the truncation-localization of the Jardine model structure [Jard87]. By the nature of
cosk, the morphism induces an isomorphism on all homotopy sheaves in degree ≤ n (since the homotopy
presheaves of X and coskn+1X in these degrees are manifestly equal and X → coskn+1 is the identity on
cells in these degrees). Since by prop. 3.3.5 also the localized Jardine structure presents the full sub-∞-
category on n-truncated objects, the morphisms which are isos on homotpy groups in degree ≤ n are already
equivalences here. �

3.3.2 Compact objects

Traditionally there are two notions referred to as compactness of a space, which are closely related but subtly
different.

1. On the one hand a space is called compact if regarded as an object of a certain site each of its covering
families has a finite subfamily that is still covering.

2. On the other hand, an object in a category with colimits is called compact if the hom-functor out of
that object commutes with all filtered colimits. Or more generally in the ∞-category context: if the
hom-∞-functor out of the objects commutes with all filtered ∞-colimits (section 5.3 of [LuHTT]).
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For instance in the site of topological spaces or of smooth manifolds, equipped with the usual open-cover
coverage, the first definition reproduces the the traditional definition of compact topological space and of
compact smooth manifold, respectively. But the notion of compact object in the category of topological
spaces in the sense of the second definition is not quite equivalent. For instance the two-element set equipped
with the indiscrete topology is compact in the first sense, but not in the second.

The cause of this mismatch, as we will discuss in detail below, becomes clearer once we generalize beyond
1-category theory to ∞-topos theory: in that context it is familiar that locality of morphisms out of an
object X into an n-truncated object A (an n-stack) is no longer controled by just the notion of covers of
X, but by the notion of hypercover of height n, which reduces to the ordinary notion of cover for n = 0.
Accordingly it is clear that the ordinary condition on a compact topological space to admit fintie refinement
of any cover is just the first step in a tower of conditions: we may say an object is compact of height n if
every hypercover of height n over the object is refined by a “finite hypercover” in a suitable sense.

Indeed, the condition on a compact object in a 1-category to distribute over filtered colimits turns out to
be a compactness condition of height 1, which conceptually explains why it is stronger than the existence of
finite refinements of covers. This state of affairs in the first two height levels has been known, in different
terms, in topos theory, where one distinguishes between a topos being compact and being strongly compact
[MoVe00]:

Definition 3.3.10. A 1-topos (∆ a Γ) : X oo // Set is called

1. a compact topos if the global section functor Γ preserves filtered colimits of subterminal objects (=
(-1)-truncated objects);

2. a strongly compact topos if Γ preserves all filtered colimits (hence of all 0-truncated objects).

Clearly these are the first two stages in a tower of notions which continues as follows.

Definition 3.3.11. For (−1) ≤ n ≤ ∞, an ∞-topos (∆ a Γ) : X oo //∞Grpd is called compact of height
n if Γ preserves filtered ∞-colimits of n-truncated objects.

Since therefore the traditional terminology concerning “compactness” is not quite consistent across fields,
with the category-theoretic “compact object” corresponding, as shown below, to the topos theoretic “strongly
compact”, we introduce for definiteness the following terminology.

Definition 3.3.12. For C a subcanonical site, call an object X ∈ C ↪→ Sh(C) ↪→ Sh∞(C) representably
compact if every covering family {Uα → X}i∈I has a finite subfamily {Uj → X}j∈J⊂I which is still covering.

The relation to the traditional notion of compact spaces and compact objects is given by the following

Proposition 3.3.13. Let H be a 1-topos and X ∈ H an object. Then

1. if X is representably compact, def. 3.3.12, with respect to the canonical topology, then the slice topos
H/X is a compact topos;

2. the slice topos H/X is strongly compact precisely if X is a compact object.

Proof. Use that the global section functor Γ on the slice topos is given by

Γ([E → X]) = H(X,E)×H(X,X) {idX}

and that colimits in the slice are computed as colimits in H:

lim
−→i

[Ei → X] ' [( lim
−→i

Ei)→ X] .

For the first statement, observe that the subterminal objects of H/X are the monomorphisms in H.
Therefore Γ sends all subterminals to the empty set except the terminal object itself, which is sent to the
singleton set. Accordingly, if U• : I → H/X is a filtered colimit of subterminals then
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• either the {Uα} do not cover, hence in particular none of the Uα is X itself, and hence both Γ(lim
−→i

Uα)

as well as lim
−→i

Γ(Uα) are the empty set;

• or the {Uα}i∈I do cover. Then by assumption on X there is a finite subcover J ⊂ I, and then by
assumption that U• is filtered the cover contains the finite union lim

−→
i∈J

Uα = X and hence both Γ(lim
−→i

Uα)

as well as lim
−→i

Γ(Uα) are the singleton set.

For the second statement, assume first that X is a compact object. Then using that colimits in a topos
are preserved by pullbacks, it follows for all filtered diagrams [E• → X] in H/X that

Γ(lim
−→i

[Ei → X]) ' H(X, lim
−→i

Ei)×H(X,X) {id}

' ( lim
−→i

H(X,Ei))×H(X,X) {id}

' lim
−→i

(H(X,Ei)×H(X,X) {id})

' lim
−→i

Γ[Ei → X]

,

and hence H/X is strongly compact.
Conversely, assume that H/X is strongly compact. Observe that for every object F ∈ H we have a

natural isomorphism H(X,F ) ' Γ([X × F → X]). Using this, we obtain for every filtered diagram F• in H
that

H(X, lim
−→i

Fi) ' Γ([X × ( lim
−→i

Fi)→ X])

' Γ(lim
−→i

[X × Fi → X])

' lim
−→i

Γ([X × Fi → X])

' lim
−→i

H(X,Fi)

and hence X is a compact object. �

Notice that a diagram of subterminal objects necessarily consists only of monomorphisms. We show now
that, while a representably compact object generally distributes over such monofiltered colimits.

Definition 3.3.14. Call a filtered diagram A : I → D in a category D mono-filtered if for all morphisms
i1 → i2 in the diagram category I the morphism A(i1 → i2) is a monomorphism in D.

Lemma 3.3.15. For C a site and A : I → Sh(C) ↪→ PSh(C) a monofiltered diagram of sheaves, its colimit
lim
−→i

Ai ∈ PSh(C) is a separated presheaf.

Proof. For {Uα → X} any covering family in C with S({Uα}) ∈ PSh(C) the corresponding sieve, we
need to show that

lim
−→i

Ai(X)→ PShC(S({Uα}), lim
−→i

Ai)

is a monomorphism. An element on the left is represented by a pair (i ∈ I, a ∈ Ai(X)). Given any other
such element, we may assume by filteredness that they are both represented over the same index i. So let
(i, a) and (i, a′) be two such elements. Under the above function, (i, a) is mapped to the collection {i, a|Uα}α
and (i, a′) to {i, a′|Uα}α. If a is different from a′, then these families differ at stage i, hence at least one pair
a|Uα , a′|Uα is different at stage i. Then by mono-filteredness, this pair differs also at all later stages, hence
the corresponding families {Uα → lim

−→i

Ai}α differ. �

Proposition 3.3.16. For X ∈ C ↪→ Sh(C) a representably compact object, def. 3.3.12, HomSh(C)(X,−)
commutes with all mono-filtered colimits.
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Proof. Let A : I → Sh(C) ↪→ PSh(C) be a mono-filtered diagram of sheaves, regarded as a diagram
of presheaves. Write lim

−→i

Ai for its colimit. So with L : PSh(C) → Sh(C) denoting sheafification, L lim
−→i

Ai

is the colimit of sheaves in question. By the Yoneda lemma and since colimits of presheaves are computed
objectwise, it is sufficient to show that for X a representably compact object, the value of the sheafified
colimit is the colimit of the values of the sheaves on X

(L lim
−→i

Ai)(X) ' ( lim
−→i

Ai)(X) = lim
−→i

Ai(X) .

To see this, we evaluate the sheafification by the plus construction. By lemma 3.3.15, the presheaf lim
−→i

Ai is

already separated, so we obtain its sheafification by applying the plus-construction just once.
We observe now that over a representably compact object X the single plus-construction acts as the

identity on the presheaf lim
−→i

Ai. Namely the single plus-construction over X takes the colimit of the value

of the presheaf on sieves

S({Uα}) := lim
−→

(
∐
α,β Uα,β

////
∐
α Uα )

over the opposite of the category of covers {Uα → X} of X. By the very definition of compactness, the
inclusion of (the opposite category of) the category of finite covers of X into that of all covers is a final
functor. Therefore we may compute the plus-construction over X by the colimit over just the collection of
finite covers. On a finite cover we have

PSh(S({Uα}), lim
−→i

Ai) := PSh(lim
−→

(
∐
α,β Uαβ

////
∐
α Uα ), lim

−→i

Ai)

' lim
←−

(
∏
α lim
−→i

Ai(Uα) ////
∏
α,β lim
−→i

Ai(Uα,β) )

' lim
−→i

lim
←−

(
∏
αAi(Uα) ////

∏
α,β Ai(Uα,β) )

' lim
−→i

Ai(X)

,

where in the second but last step we used that filtered colimits commute with finite limits, and in the last
step we used that each Ai is a sheaf.

So in conclusion, for X a representably compact object and A : I → Sh(C) a monofiltered diagram, we
have found that

HomSh(C)(X,L lim
−→i

Ai) ' ( lim
−→i

Ai)
+(X)

' lim
−→i

Ai(X)

' lim
−→i

HomSh(C)(X,Ai)

�
The discussion so far suggests that there should be conditions for “representantably higher compactness”
on objects in a site that imply that the Yoneda-embedding of these objects into the ∞-topos over the site
distribute over larger classes of filtered ∞-colimits.

Definition 3.3.17. For C a site, say that an object X ∈ C is representably paracompact if each bounded
hypercover over X can be refined by the Čech nerve of an ordinary cover.

The motivating example is

Proposition 3.3.18. Over a paracompact topological space, every bounded hypercover is refined by the Čech
nerve of an ordinary open cover.

Proof. Let Y → X be a bounded hypercover. By lemma 7.2.3.5 in [LuHTT] we may find for each k ∈ N
a refinement of the cover given by Y0 such that the non-trivial (k + 1)-fold intersections of this cover factor
through Yk+1. Let then n ∈ N be a bound for the height of Y and form the intersection of the covers obtained
by this lemma for 0 ≤ k ≤ n. Then the resulting Čech nerve projection factors through Y → X. �
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Proposition 3.3.19. Let X ∈ C ↪→ Sh∞(C) =: H be an object which is

1. representably paracompact, def. 3.3.17;

2. representably compact, def. 3.3.12

then it distributes over sequential ∞-colimits A• : I → Sh∞(C) of n-truncated objects for every n ∈ N.

Proof. Let A• : I → [Cop, sSet] be a presentation of a given sequential diagram in Sh∞(Mfd), such that
it is fibrant and cofibrant in [I, [Cop, sSet]proj,loc]proj. Note for later use that this implies in particular that

• The ordinary colimit lim
−→i

Ai ∈ [Cop, sSet] is a homotopy colimit.

• Every Ai is fibrant in [Cop, sSet]proj,loc and hence also in [Cop, sSet]proj.

• Every morphismAi → Aj is (by example 2.3.15) a cofibration in [Cop, sSet]proj,loc, hence in [Cop, sSet]proj,
hence in particular in [Cop, sSet]inj, hence is over each U ∈ C a monomorphism.

Observe that lim
−→i

Ai is still fibrant in [Cop, sSet]proj: since the colimit is taken in presheaves, it is computed

objectwise, and since it is filtered, we may find the lift against horn inclusions (which are inclusions of
degreewise finite simplicial sets) at some stage in the colimit, where it exists by assumption that A• is
projectively fibrant, so that each Ai is projectively fibrant in the local and hence in particular in the global
model structure.

Since X, being representable, is cofibrant in [Cop, sSet]proj,loc, it also follows by this reasoning that the
diagram

H(X,A•) : I →∞Grpd

is presented by
A•(X) : I → sSet .

Since the functors

[I, [Cop, sSet]proj,loc]proj
id // [I, [Cop, sSet]proj]proj

id // [I, [Cop, sSet]inj]proj
id // [I, sSetQuillen]proj

all preserve cofibrant objects, it follows that A•(X) is cofibrant in [I, sSetQuillen]proj. Therefore also its
ordinary colimit presents the corresponding ∞-colimit.

This means that the equivalence which we have to establish can be written in the form

RHom(X, lim
−→i

Ai) ' lim
−→i

Ai(X) .

If here lim
−→i

Ai were fibrant in [Cop, sSet]proj,loc, then the derived hom on the left would be given by the

simplicial mapping space and the equivalence would hold trivially. So the remaining issue is now to deal
with the fibrant replacement: the ∞-sheafification of lim

−→i

Ai.

We want to appeal to theorem 7.6 c) in [DuHoIs04] to compute the derived hom into this∞-stackification
by a colimit over hypercovers of the ordinary simplicial homs out of these hypercovers into lim

−→i

Ai itself. To

do so, we now argue that by the assumptions on X, we may in fact replace the hypercovers here with finite
Čech covers.

So consider the colimit
lim

{Uα→X}finite

[Cop, sSet](Č({Uα}), lim
−→i

Ai)

over all finite covers of X. Since by representable compactness of X these are cofinal in all covers of X, this
is isomorphic to the colimit over all Čech covers

· · · = lim
{Uα→X}

[Cop, sSet](Č({Uα}), lim
−→i

Ai) .
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Next, by representable paracomopactness of X, the Čech covers in turn are cofinal in all bounded hypercovers
Y → X, so that, furthermore, this is isomorphic to the colimit over all bounded hypercovers

· · · = lim
Y→X

[Cop, sSet](Y, lim
−→i

Ai) .

Finally, by the assumption that the Ai are n-truncated, the colimit here may equivalently be taken over all
hypercovers.

We now claim that the canonical morphism

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim
−→i

Ai)→ RHom(X, lim
−→i

Ai)

is a weak equivalence. Since the category of covers is filtered, we may first compute homotopy groups and
then take the colimit. With the above isomorphisms, the statement is then given by theorem 7.6 c) in
[DuHoIs04].

Now to conclude: since maps out of the finite Cech nerves pass through the filtered colimit, we have

RHom(X, lim
−→i

Ai) ' lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim
−→i

Ai)

' lim
{Uα→X}finite

lim
−→i

[Cop, sSet](Č({Uα}), Ai)

' lim
−→i

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), Ai)

' lim
−→i

Ai(X)

.

Here in the last step we used that each single Ai is fibrant in [Cop, sSet]proj,loc, so that for each i ∈ I

[Cop, sSet](X,Ai)→ [Cop, sSet](Č({Uα}), Ai)

is a weak equivalence. Moreover, the diagram [Cop, sSet](Č({Uα}), A•) in sSet is still projectively cofibrant,
by example 2.3.15, since all morphisms are cofibrations in sSetQuillen, and so the colimit in the second but
last line is still a homotopy colimit and thus preserves these weak equivalences. �

3.3.3 Homotopy

3.3.3.1 General abstract

Definition 3.3.20. Let H an ∞-topos and X ∈ H an object. For n ∈ N write

(X(∗→∂∆[n+1]) : X∆[n] → X) ∈ H/X

for the cotensoring of X by the point inclusion into the simplicial n-sphere, regarded as an object in the slice
of H over X. The nth homotopy group of X is the image of this under 0-truncation, prop. 3.3.3

πn(X) := τ0(X∗→∂∆[n+1]) ∈ τ0(H/X) .

This appears as def. 6.5.1.1 in [LuHTT].

Remark 3.3.21. Since truncation preserves finite products by prop. 3.3.3 we have that πn(X) is indeed a
group object in the 1-topos τ0() for n ≥ 1 and is an abelian group object for n ≥ 2.

Remark 3.3.22. For H =∞Grpd ' Top and x : ∗ → X ∈ ∞Grpd a pointed object, we have for all n ∈ N
that

πn(X,x) := x∗πn(X) ∈ τ0∞Grpd/∗ ' Set

is the nth homotopy group of X at x as traditionally defined.

In [LuHTT] this is remark 6.5.1.6.
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3.3.3.2 Presentations (...)

3.3.4 Connected objects

We discuss objects in an ∞-topos which are connected or higher connected in that their first non-trivial
homotopy group, 3.3.3, is in some positive degree.

In a local ∞-topos and hence in particular in a cohesive ∞-topos, these are precisely the deloopings of
group objects, discussed below in 3.3.6. In a more general ∞-topos, such as a slice of a cohesive ∞-topos,
these are the (nonabelian/Giraud-)gerbes, discussed below in 3.3.13.

3.3.4.1 General abstract

Definition 3.3.23. Let n ∈ Z, with −1 ≤ n. An object X ∈ H is called n-connected if

1. the terminal morphism X → ∗ is an effective epimorphism, def. 2.3.2;

2. all categorical homotopy groups πk(X), def. 3.3.20, for k ≤ n are trivial.

One also says

• inhabited or well-supported for (-1)-connected;

• connected for 0-connected;

• simply connected for 1-connected;

• (n+ 1)-connective for n-connected.

A morphism f : X → Y in H is called n-connected if it is n-connected regarded as an object of H/Y .

This is def. 6.5.1.10 in [LuHTT].

Example 3.3.24. An object X ∈ ∞Grpd ' Top is n-connected precisely if it is n-connected in the
traditional sense of higher connectedness of topological spaces. (A morphism in ∞Grpd is effective epi
precisely if it induces an epimorphism on sets of connected components.)

Example 3.3.25. For C an ∞-site, a connected object in Sh∞(C) may also be called an (“nonabelian” or
“Giraud”-) ∞-gerbe over C. This we discuss below in 3.3.13.

Definition 3.3.26. An ∞-topos H has homotopy dimension n ∈ N if n is the smallest number such that
every (n− 1)-connected object X ∈ H admits a morphism ∗ → X from the terminal object

Remark 3.3.27. A morphism ∗ → X is a section of the terminal geometric morphism. So in an∞-topos of
homotopy dimension n every (n− 1)-connected object X has a section. For such X the terminal geometric
morphism is therefore in fact a split epimorphism.

Example 3.3.28. The trivial ∞-topos H = ∗ is, up to equivalence, the unique ∞-topos of homotopy
dimension 0.

This is example 7.2.1.2 in [LuHTT].

Proposition 3.3.29. An ∞-topos H has homotopy dimension ≤ n precisely if the global section geometric
morphism Γ : H → ∞Grpd, def. 2.2.2, sends (n − 1)-connected morphisms to (−1)-connected morphisms
(effective epimorphisms).

Proof. This is essentially lemma 7.2.1.7 in [LuHTT]. The proof there shows a bit more, even. �

Proposition 3.3.30. A local ∞-topos, def. 3.1.5, has homotopy dimension 0.
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Proof. By prop. 3.3.29 it is sufficient to show that effective epimorphisms are sent to effective epimor-
phisms. Since for a local ∞-topos the global section functor is a left adjoint, it preserves not only the
∞-limits involved in the characterization of effective epimorphisms, def. 2.3.2, but also the ∞-colimits. �

Remark 3.3.31. In particular an ∞-presheaf ∞-topos over an ∞-site with a terminal object is local. For
this special case the statement of prop. 3.3.30 is example. 7.2.1.2 in [LuHTT], the argument above being
effectively the same as the one given there.

Corollary 3.3.32. A cohesive ∞-topos, def. 3.1.7, has homotopy dimension 0.

Proof. By definition, a cohesive ∞-topos is in particular a local ∞-topos. �

In an ordinary topos every morphism has a unique factorization into an epimorphism followed by a
monomorphism, the image factorization.

X
f //

epi ""

A

im(f)

mono

<< .

In an ∞-topos this notion generalizes to a tower of factorizations.

Proposition 3.3.33. In an ∞-topos H for any −2 ≤ k ≤ ∞, every morphism f : X → Y admits a
factorization

X
f //

$$

A

imk+1(f)

::

into a k-connected morphism, def. 3.3.23 followed by a k-truncated morphism, def. 3.3.1, and the space of
choices of such factorizations is contractible.

This is [LuHTT], example 5.2.8.18.

Remark 3.3.34. For k = −1 this is the immediate generalization of the (epi,mono) factorization system in
ordinary toposes. In particular, the 0-image factorization of a morphism between 0-truncated objects is the
ordinary image factorization.

For k = 1 this is the generalization of the (essentially surhective and full, faithful) factorization system
for functors between groupoids.

3.3.4.2 Presentations We discuss presentations of connected and pointed connected objects in an ∞-
topos by presheaves of pointed or reduced simplicial sets.

Observation 3.3.35. Under the presentation ∞Grpd ' (sSetQuillen)◦, a Kan complex X ∈ sSet presents
an n-connected ∞-groupoid precisely if

1. X is inhabited (not empty);

2. all simplicial homotopy groups of X in degree k ≤ n are trivial.

Definition 3.3.36. For n ∈ N a simplicial set X ∈ sSet is n-reduced if it has a single k-simplex for all k ≤ n,
hence if its n-skeleton is the point

sknX = ∗ .
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For 0-reduced we also just say reduced. Write

sSetn ↪→ sSet

for the full subcategory of n-reduced simplicial sets.

Proposition 3.3.37. The n-reduced simplicial sets form a reflective subcategory

sSetn
oo redn
� � // sSet

of that of simplicial sets, where the reflector redn identifies all the n-vertices of a given simplicial set, in
other words redn(X) = X/sknX for X a simplicial set.

The inclusion sSetn ↪→ sSet uniquely factors through the forgetful functor sSet∗/ → sSet from pointed
simplicial sets, and that factorization is co-reflective

sSetn
� � //
oo
En+1

sSet∗/ .

Here the coreflector En+1 sends a pointed simplicial set ∗ x→ X to the sub-object En+1(X,x) – the (n+ 1)-
Eilenberg subcomplex (e.g. def. 8.3 in [May67]) – of cells whose n-faces coincide with the base point, hence
to the fiber

En+1(X,x) //

��

X

��
{∗} // cosknX

of the projection to the n-coskeleton.
For (∗ → X) ∈ sSet∗/ such that X ∈ sSet is Kan fibrant and n-connected, the counit En+1(X, ∗)→ X is

a homotopy equivalence.

The last statement appears for instance as part of theorem 8.4 in [May67].

Proposition 3.3.38. Let C be a site with a terminal object and let H := Sh∞(C). Then under the presen-
tation H ' ([Cop, sSet]proj,loc)◦ every pointed n-connected object in H is presented by a presheaf of n-reduced
simplicial sets, under the canonical inclusion [Cop, sSetn] ↪→ [Cop, sSet].

Proof. Let X ∈ [Cop, sSet] be a simplicial presheaf presenting the given object. Then its objectwise
Kan fibrant replacement Ex∞X is still a presentation, fibrant in the global projective model structure.
Since the terminal object in H is presented by the terminal simplicial presheaf and since by assumption
on C this is representable and hence cofibrant in the projective model structure, the point inclusion is
presented by a morphism of simplicial presheaves ∗ → Ex∞X, hence by a presheaf of pointed simplicial sets
(∗ → Ex∞X) ∈ [Cop, sSet∗/]. So with observation 3.3.37 we obtain the presheaf of n-reduced simplicial sets

En+1(Ex∞X, ∗) ∈ [Cop, sSetn] ↪→ [Cop, sSet]

and the inclusion En+1(Ex∞X, ∗) → Ex∞X is a global weak equivalence, hence a local weak equivalence,
hence exhibits En+1(Ex∞X, ∗) as another presentation of the object in question. �

Proposition 3.3.39. The category sSet0 of reduced simplicial sets carries a left proper combinatorial model
category structure whose weak equivalences and cofibrations are those in sSetQuillen under the inclusion
sSet0 ↪→ sSet.
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Proof. The existence of the model structure itself is prop. V.6.2 in [GoJa99]. That this is left proper
combinatorial follows for instance from prop. A.2.6.13 in [LuHTT], taking the set C0 there to be

C0 := {red(Λk[n]→ ∆[n])}n∈N,0≤k≤n ,

the image under of the horn inclusions (the generating cofibrations in sSetQuillen) under the left adjoint, from
observation 3.3.37, to the inclusion functor. �

Lemma 3.3.40. Under the inclusion sSet0 → sSet a fibration with respect to the model structure from prop.
3.3.39 maps to a fibration in sSetQuillen precisely if it has the right lifting property against the morphism
(∗ → S1) := red(∆[0]→ ∆[1]).

In particular it maps fibrant objects to fibrant objects.

The first statement appears as lemma 6.6. in [GoJa99]. The second (an immediate consequence) as
corollary 6.8.

Proposition 3.3.41. The adjunction

sSet0

� � i //
oo

E1

sSet
∗/
Quillen

from observation 3.3.4.2 is a Quillen adjunction between the model structure form prop. 3.3.39 and the
co-slice model structure, prop. 2.1.35, of sSetQuillen under the point. This presents the full inclusion

∞Grpd
∗/
≥1 ↪→∞Grpd∗/

of connected pointed ∞-groupoids into all pointed ∞-groupoids.

Proof. It is clear that the inclusion preserves cofibrations and acyclic cofibrations, in fact all weak
equivalences. Since the point is necessarily cofibrant in sSetQuillen, the model structure on the right is by

prop. 2.1.39 indeed a presentation of ∞Grpd∗/.
We claim now that the derived ∞-adjunction of this Quillen adjunction presents a homotopy full and

faithful inclusion whose essential image consists of the connected pointed objects. For homotopy full- and
faithfulness it is sufficient to show that for the derived functors there is a natural weak equivalence

id ' RE1 ◦ Li .

This is the case, because by prop. 3.3.40 the composite derived functors are computed by the composite
ordinary functors precomposed with a fibrant replacement functor P , so that we have a natural morphism

X
'→ PX = E1 ◦ i(PX) ' (RE1) ◦ (Li)(X) .

Hence Li is homotopy full-and faithful and by prop. 3.3.38 its essential image consists of the connected
pointed objects. �

3.3.5 Groupoids

In any ∞-topos H we may consider groupoids internal to H, in the sense of internal category theory (as
exposed for instance in the introduction of [Lu2]).

Such a groupoid object G in H is an H-object G0 “of G-objects” together with an H-object G1 “of G-
morphisms” equipped with source and target assigning morphisms s, t : G1 → G0, an identity-assigning
morphism i : G0 → G1 and a composition morphism G1×G0 G1 → G1 that all satisfy the axioms of a groupoid
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(unitalness, asscoiativity, existence of inverses) up to coherent homotopy in H. One way to formalize what
it means for these axioms to hold up to coherent homotopy is the following.

One notes that ordinary groupoids, i.e. groupoid objects internal to Set, are characterized by the fact
that their nerves are simplicial objects G• : ∆op → Set in Set such that all groupoidal Segal maps (see def.
3.3.42 below) are isomorphisms. This turns out to be a characterization that makes sense generally internal
to higher categories: a groupoid object in H is an ∞-functor G : ∆op → H such that all groupoidal Segal
morphisms are equivalences in H. This defines an ∞-category Grpd(H) of groupoid objects in H.

Here a subtlety arises that is the source of a lot of interesting structure in higher topos theory: by the
discussion in 2.2 the very objects of H are already to be regarded as “structured ∞-groupoids” themselves.
Indeed, there is a full embedding const : H ↪→ Grpd(H) that forms constant simplicial objects and thus
regards every object X ∈ H as a groupoid object which, even though it has a trivial object of morphisms,
already has a structured∞-groupoid of objects. This embedding is in fact reflective, with the reflector given
by forming the ∞-colimit over a simplicial diagram

H
oo

lim
−→

� �

const
// Grpd(H) .

For G a groupoid object in H, the object lim
−→
G• in H may be thought of as the ∞-groupoid obtained from

“gluing together the object of objects of G along the object of morphisms of G”. This idea that groupoid
objects in an ∞-topos are like structured ∞-groupoids together with gluing information is formalized by
the theorem that groupoid objects in H are equivalent to the effective epimorphisms Y // // X in H, the
intrinsic notion of cover (of X by Y ) in H. The effective epimorphism / cover corresponding to a groupoid

object G is the colimiting cocone G0
// // lim
−→
G• . This state of affairs is a fundamental property of ∞-

toposes, and as such part of the ∞-Giraud axioms (recalled as theorem 3.3.44 below) which characterize
∞-toposes.

3.3.5.1 General abstract

Definition 3.3.42. A groupoid object in an ∞-topos H is a simplicial object

G : ∆op → H

such that all its groupoidal Segal maps are equivalences: for every n ∈ N and every partition [k]∪ [k′]→ [n]
into two subsets with exactly one joint element {∗} = [k] ∩ [k′], the canonical diagram

G[n] //

��

G[k]

��
G[k′] // G[∗]

is an ∞-pullback diagram.
Write

Grpd(H) ⊂ Func(∆op,H)

for the full subcategory of the ∞-category of simplicial objects in H on the groupoid objects.

This is def. 6.1.2.7 of [LuHTT], using prop. 6.1.2.6.

Example 3.3.43. For Y → X any morphism in H, there is a groupoid object Č(Y → X) which in degree
n is the (n+ 1)-fold ∞-fiber product of Y over X with itself

Č(Y → X) : [n] 7→ Y ×
n+1
X
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This appears in [LuHTT] as prop. 6.1.2.11 and in

Theorem 3.3.44. In an ∞-topos H we have

1. Every groupoid object in H is effective: the canonical morphism G0 → lim
−→
G• is an effective epimor-

phism, and G is equivalent to the Čech nerve of this effective epimorphism.

Moreover, this extends to a natural equivalence of ∞-categories

Grpd(H) ' (H∆[1])eff ,

where on the right we have the full sub-∞-category of the arrow category of H on the effective epimor-
phisms.

2. The ∞-pullback along any morphism preserves ∞-colimits

lim
→i

f∗Pi ' f∗ lim
→i

Pi

��

// lim
→i

Pi

��
Y

f // X

This are two of the Giraud-Lurie axioms [LuHTT] that characterize ∞-toposes. (The equivalence of
∞-categories in the first point follows with the remark below corollary 6.2.3.5 of [LuHTT].)

3.3.5.2 Presentations For H = Sh∞(C) the ∞-topos over a site C, we discuss a presentation of the
∞-category Grpd(H) of groupoid object in H in terms of a model category structure on the category of
I-simplicial objects in a model category of simplicial presheaves, where an I-simplicial object is a simplicial
object equipped with extra structure that encodes equivalences under reversion of the order of vertices.

Definition 3.3.45. Write I∆ for the category (...).

[Ber08a]

Definition 3.3.46. Write
[I∆op, [Cop, sSet]inj,loc]proj,Segal

for the left Bousfield localization of [I∆op, [Cop, sSet]inj,loc]proj at the set of simplex spine inclusions. (...)

Example 3.3.47. For C = ∗ this gives the model structur of invertible Segal spaces discussed in section 3
of [Ber08b].

(...)

3.3.6 Groups

Every ∞-topos H comes with a notion of ∞-group objects that generalizes the ordinary notion of group
objects in a topos as well as that of grouplike A∞-spaces in Top ' ∞Grpd [Sta63]. Operations of looping
and delooping identify ∞-group objects with pointed connected objects. If moreover H is cohesive then
it follows that every connected object is canonically pointed, and hence every connected object uniquely
corresponds to an ∞-group object.

This section to a large extent collects and reviews general facts about ∞-group objects in ∞-toposes
from [LuHTT] and [Lur11]. We add some observations that we need later on.
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3.3.6.1 General abstract

Definition 3.3.48. Write

• H∗/ for the ∞-category of pointed objects in H;

• H≥1 for for the full sub-∞-category of H on the connected objects;

• H
∗/
≥1 for the full sub-∞-category of the pointed and connected objects.

Definition 3.3.49. Write
Ω : H∗/ → H

for the ∞-functor that sends a pointed object ∗ → X to its loop space object : the ∞-pullback

ΩX //

��

∗

��
∗ // X

.

Definition 3.3.50. An ∞-group in H is an A∞-algebra G in H such that π0(G) is a group object. Write
Grp(H) for the ∞-category of ∞-groups in H.

This is def. 5.1.3.2 in [Lur11], together with remark 5.1.3.3.

Theorem 3.3.51. Every loop space object canonically has the structure of an∞-group, and this construction
extends to an ∞-functor

Ω : H∗/ → Grp(H) .

This constitutes an equivalence of ∞-categories

(Ω a B) : Grp(H)
oo Ω

B

' // H
∗/
≥1

of ∞-groups with connected pointed objects in H.

This is lemma 7.2.2.1 in [LuHTT]. (See also theorem 5.1.3.6 of [Lur11] where this is the equivalence
denoted φ0 in the proof.)

Definition 3.3.52. We call the inverse B : Grp(H) → H
∗/
≥1 the delooping functor of H. By convenient

abuse of notation we write B also for the composite B : ∞Grpd(H) → H
∗/
≥1 → H with the functor that

forgets the basepoint and the connectedness.

Remark 3.3.53. While by prop. 3.1.10 every connected object in a cohesive ∞-topos has a unique point,
nevertheless the homotopy type of the full hom-∞-groupoid H∗/(BG,BH) of pointed objects in general
differs from the hom ∞-groupoid H(BG,BH) of the underlying unpointed objects.

For instance let H := ∞Grpd and let G be an ordinary group, regarded as a group object in ∞Grpd.
Then H∗/(BG,BG) ' Aut(G) is the ordinary automorphism group of G, but H(BG,BG) = AUT(G) is the
automorphism 2-group, example 1.3.12.

Proposition 3.3.54. ∞-groups G in H are equivalently those groupoid objects, def. 3.3.42, G in H for
which G0 ' ∗.

This is the statement of the compound equivalence φ3φ2φ1 in the proof of theorem 5.1.3.6 in [Lur11].

173



Remark 3.3.55. This means that for G an ∞-group object the Čech nerve extension of its delooping fiber
sequence G→ ∗ → BG is the simplicial object

· · ·
//////// G×G

////// G
//// ∗ // // BG

that exhibits G as a groupoid object over ∗. In particular it means that for G an ∞-group, the essentially
unique morphism ∗ → BG is an effective epimorphism.

Definition 3.3.56. For f : Y → Z any morphism in H and z : ∗ → Z a point, the ∞-fiber or homotopy
fiber of f over this point is the ∞-pullback X := ∗ ×Z Y

X //

��

∗

��
Y

f // Z

.

Observation 3.3.57. Suppose that also Y is pointed and f is a morphism of pointed objects. Then the
∞-fiber of an ∞-fiber is the loop object of the base.

This means that we have a diagram

ΩzZ

��

// X //

��

∗

��
∗ // Y

f // Z

.

where the outer rectangle is an∞-pullback if the left square is an∞-pullback. This follows from the pasting
law prop. 2.3.1.

3.3.6.2 Presentations We discuss presentations of the notion of∞-groups, 3.3.6.1, by simplicial groups
in a category with weak equivalences.

Definition 3.3.58. One writes W for the composite functor from simplicial groups to simplicial sets given
by

W : [∆op,Grpd]
[∆op,B]// [∆op,Grpd]

[∆op,N ]// [∆op, sSet]
T // sSet ,

where

• [∆op,B] : [∆op,Grp] → [∆op,Grpd] is the functor from simplicial groups to simplicial groupoids that
sends degreewise a group to the corresponding one-object groupoid;

• T : [∆op, sSet]→ sSet is the total simplicial set functor, def. 2.3.22.

This simplicial delooping W was originally introduced in components in [EiML], now a classical construc-
tion. The above formulation is due to [Dus75], see lemma 15 in [St11].

Remark 3.3.59. This functor takes values in reduced simplicial sets sSet≥1 ↪→ sSet, those with precisely
one vertex.

Remark 3.3.60. For G a simplicial group, the simplicial set WG is, by corollary 2.3.26, the homotopy
colimit over a simplicial diagram in simplicial sets. Below in 3.3.8.4 we see that this simplicial diagram is
that presenting the groupoid object ∗//G which is the action groupoid of G acting trivially on the point.

Proposition 3.3.61. The category sGrpd of simplicial groups carries a cofibrantly generated model structure
for which the fibrations and the weak equivalences are those of sSetQuillen under the forgetful functor sGrpd→
sSet.
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Proof. This is theorem 2.3 in [GoJa99]. Since model structure is therefore transferred along the forgetful
functor, it inherits generating (acyclic) cofibrations from those of sSetQuillen. �

Theorem 3.3.62. The functor W is the right adjoint of a Quillen equivalence

(L aW ) : sGrp
W

//
oo L

sSet≥1 ,

with respect to the model structures of prop. 3.3.61 and prop. 3.3.39. In particular

• the adjunction unit is a weak equivalence

Y
'→WLY

for every Y ∈ sSet0 ↪→ sSetQuillen

• WLY is always a Kan complex.

This is discussed for instance in chapter V of [GoJa99]. A new proof is given in [St11].

Definition 3.3.63. For G a simplicial group, write

WG→WG

for the décalage, def. 2.3.30, on WG.

This characterization by décalage of the object going by the classical name WG is made fairly explicit
on p. 85 of [Dus75]. The fully explicit statement is in [RoSt12].

Proposition 3.3.64. The morphism WG → WG is a Kan fibration resolution of the point inclusion ∗ →
WG.

Proof. This follows directly from the characterization of WG→WG by décalage. �
Pieces of this statement appear in [May67]: lemma 18.2 there gives the fibration property, prop. 21.5 the
contractibility of WG.

Corollary 3.3.65. For G a simplicial group, the sequence of simplicial sets

G // WG // // WG

is a presentation in sSetQuillen by a pullback of a Kan fibration of the looping fiber sequence, theorem. 3.3.51,

G→ ∗ → BG

in ∞Grpd.

Proof. One finds that G is the 1-categorical fiber of WG → WG. The statement then follows using
prop. 3.3.64 in prop. 2.3.7. �
The explicit statement that the sequence G→WG→WG is a model for the looping fiber sequence appears
on p. 239 of [Por]. The universality of WG→WG for G-principal simplicial bundles is the topic of section
21 in [May67], where however it is not made explicit that the “twisted cartesian products” considered there
are precisely the models for the pullbacks as above. This is made explicit for instance on page 148 of [Por].

Corollary 3.3.66. The Quillen equivalence (L a W ) from theorem 3.3.62 is a presentation of the loop-
ing/delooping equivalence, theorem 3.3.51.

We now lift all these statements from simplicial sets to simplicial presheaves.
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Proposition 3.3.67. If the cohesive ∞-topos H has site of definition C with a terminal object, then

• every ∞-group object has a presentation by a presheaf of simplicial groups

G ∈ [Cop, sGrp]
U→ [Cop, sSet]

which is fibrant in [Cop, sSet]proj;

• the corresponding delooping object is presented by the presheaf

WG ∈ [Cop, sSet0] ↪→ [Cop, sSet]

which is given over each U ∈ C by W (G(U)) .

Proof. By theorem 3.3.51 every∞-group is the loop space object of a pointed connected object. By prop.
3.3.38 every such is presented by a presheaf X of reduced simplicial sets. By the simplicial looping/delooping
Quillen equivalence, theorem 3.3.62, the presheaf

WLX ∈ [Cop, sSet]proj

is weakly equivalent to the simplicial presheaf X. From this the statement follows with corollary 3.3.65,
combined with prop. 2.3.12, which together say that the presheaf LX of simplicial groups presents the given
∞-group. �

Remark 3.3.68. We may read this as saying that every ∞-group may be strictified.

Example 3.3.69. Every 2-group in H (1-truncated group object) has a presentation by a crossed module,
def. 1.3.6, in simplicial presheaves.

3.3.7 Cohomology

There is an intrinsic notion of cohomology in every ∞-topos. It is the joint generalization of the definition
of cohomology in Top in terms of maps into classifying spaces and of sheaf cohomology over any site of
definition of the ∞-topos.

For the case of abelian coefficients, as disucssed in 2.2.4, this perspective of (sheaf) cohomology as the
cohomology intrinsic to an ∞-topos is essentially made explicit already in [Br73]. In more modern language
analogous discussion is in section 7.2.2 of [LuHTT].

Here we review central concepts and discuss further aspects that will be needed later on.

3.3.7.1 General abstract

Definition 3.3.70. For X,A ∈ H two objects, we say that

H(X,A) := π0H(X,A)

is the cohomology set of X with coefficients in A. If A = G is an ∞-group we write

H1(X,G) := π0H(X,BG)

for cohomology with coefficients in its delooping. Generally, if K ∈ H has a p-fold delooping for some p ∈ N,
we write

Hp(X,K) := π0H(X,BpK) .

In the context of cohomology on X wth coefficients in A we we say that

• the hom-space H(X,A) is the cocycle ∞-groupoid ;
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• a morphism g : X → A is a cocycle;

• a 2-morphism : g ⇒ h is a coboundary between cocycles.

• a morphism c : A→ B represents the characteristic class

[c] : H(−, A)→ H(−, B) .

If X is not 0-truncated (not a cohesive 0-groupoid) then cohomology on X is equivariant cohomology .

Remark 3.3.71. There is also a notion of cohomology in the petit ∞-topos of X ∈ H, the slice of H over
X

X := H/X .

This is canonically equipped with the étale geometric morphism, prop. 2.2.4

(X! a X∗ a X∗) : H/X

X! //
oo X∗

X∗

// H ,

where X! simply forgets the morphism to X and where X∗ = X×(−) forms the product with X. Accordingly
X∗(∗H) ' ∗X =: X and X!(∗X ) = X ∈ H. Therefore cohomology over X with coefficients of the form X∗A
is equivalently the cohomology in H of X with coefficients in A:

X (X,X∗A) ' H(X,A) .

For a general coeffcient object A ∈ X the A-cohomology over X in X is a twisted cohomology of X in H,
discussed below in 3.3.9.

Typically one thinks of a morphism A→ B in H as presenting a characteristic class of A if B is “simpler”
than A, notably if B is an Eilenberg-MacLane object B = BnK for K a 0-truncated abelian group in H. In
this case the characteristic class may be regarded as being in the degree-n K-cohomology of A

[c] ∈ Hn(A,K) .

Definition 3.3.72. For every morphism c : BG→ BH ∈ H define the long fiber sequence to the left

· · · → ΩG→ ΩH → F → G→ H → BF → BG
c→ BH

to be given by the consecutive pasting diagrams of ∞-pullbacks

F

��

// G //

��

∗

��
∗ // H //

��

BF //

��

∗

��
∗ // BG

c // BH

.

Proposition 3.3.73. This is well-defined, in that the objects in the fiber sequence are indeed as indicated.

Proof. Repeatedly apply the pasting law 2.3.1 and definition 3.3.49. �
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Proposition 3.3.74. 1. The long fiber sequence to the left of c : BG → BH becomes constant on the
point after n iterations if H is n-truncated.

2. For every object X ∈ H we have a long exact sequence of pointed cohomology sets

· · · → H0(X,G)→ H0(X,H)→ H1(X,F )→ H1(X,G)→ H1(X,H) .

Proof. The first statement follows from the observation that a loop space object ΩxA is a fiber of the
free loop space object LA and that this may equivalently be computed by the ∞-powering AS

1

, where
S1 ∈ Top ' ∞Grpd is the circle.

The second statement follows by observing that the ∞-hom-functor H(X,−) preserves all ∞-limits, so
that we have ∞-pullbacks

H(X,F ) //

��

∗

��
H(X,G) // H(X,H)

etc. in ∞Grpd at each stage of the fiber sequence. The statement then follows with the familiar long exact
sequence for homotopy groups in Top ' ∞Grpd. �

Remark 3.3.75. To every cocycle g : X → BG is canonically associated its homotopy fiber P → X, the
∞-pullback

P //

��

∗

��
X

g // BG .

.

We discuss below in 3.3.8 that such P canonically has the structure of a G-principal ∞-bundle and that BG
is the fine moduli space – the moduli ∞-stack – for G-principal ∞-bundles.

Proposition 3.3.76 (Mayer-Vietoris fiber sequence). Let H be an ∞-topos with a 1-site of definition (for
instance an ∞-cohesive site as in def. 3.1.18) and let B be an ∞-group object in H. Then for any two
morphisms f : X → B and g : Y → B the ∞-pullback X ×B Y is equivalently the ∞-pullback

X ×B Y //

��

∗

��
X × Y

f ·g−1

// B

,

where the bottom morphism is the composite

f · g−1 : X × Y
(f,g) // B ×B

(id,(−)−1) //

−

44B ×B · // B

of the pair (f, g) with the morphism that inverts the second factor and the morphism that exhibits the group
product on B.

We have then a fiber sequence that starts out as

· · · // ΩB // X ×B Y // X × Y
f ·g−1

// B .

178



Proof. By prop 3.3.67 there is a presheaf of simplicial groups presenting B over the site C, which we shall
denote by the same symbol, B ∈ [Cop, sGrp] → [Cop, sSet]. In terms of this the morphism − : B × B → B
is, objectwise over U ∈ C, given by the simplicial morphism −U : B(U)× B(U) → B(U) that sends k-cells
(a, b) : ∆[k]→ B(U)×B(U) to a · b−1, using the degreewise group structure.

We observe first that this morphism is objectwise a Kan fibration and hence a fibration in [Sop, sSet]proj.
To see this, let

Λ[k]i

j

��

(ha,hb)// B(U)×B(U)

−
��

∆[k]
σ // B(U)

be a lifting problem. Since B(U), being the simplicial set underlying a simplicial group, is a Kan complex,
there is a filler b : ∆[k]→ B(U) of the horn hb. Define then a k-cell

a := σ · b .

This is a filler of ha, since the face maps are group homomorphisms:

δla = δl(σ · b)
= δl(σ) · δl(b)
= δl(σ) · (hb)l
= (ha)l

.

So we have a filler

Λ[k]i

j

��

(ha,hb)// B(U)×B(U)

−
��

∆[k]
σ //

(a,b)
88

B(U)

.

Observe then that there is a pullback diagram of simplicial presheaves

B //

∆B

��

∗

e

��
B ×B − // B

,

where the left morphism is the diagonal on B and where the right morphism picks the neutral element in B.
Since, by the above, the bottom morphism is a fibration, this presents a homotopy pullback.

Next, by the factorization lemma, lemma 2.3.8, and using prop. 2.3.12, the homotopy pullback of f along
g is presented by the ordinary pullback of simplicial presheaves

Q //

��

B∆[0]

��
X × Y

(f,g) // B ×B

,

where the right morphism is endpoint evaluation out of the canonical path object of B, which is a fibration
replacement of the diagonal ∆B . Therefore this presents an ∞-pullback

Q //

��

B

∆B

��
X × Y

(f,g) // B ×B

.
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Now by the pasting law, prop. 2.3.1, Q is also an ∞-pullback for the total outer diagram in

Q //

��

B

∆B

��

// ∗

e

��
X × Y

(f,g) //

f ·g−1

55B ×B − // B

.

�

3.3.7.2 Presentations We discuss explicit presentations of cocycles, cohomology classes and fiber se-
quences in an ∞-topos.

3.3.7.2.1 Cocycle ∞-groupoids and cohomology classes We discuss a useful presentation of
cocycle ∞-groupoids and of cohomology classes by a construction that exists when the ambient ∞-topos is
presented by a category with weak equivalences that is equipped with the structure of a category of fibrant
objects [Br73].

Definition 3.3.77 (Brown). A category of fibrant objects is a category equipped with two distinguished
classes of morphisms, called fibrations and weak equivalences, such that

1. the category has a terminal object ∗ and finite products;

2. fibrations and weak equivalences form subcategories that contain all isomorphisms; weak equivalences
moreover satisfy the 2-out-of-3 property;

3. for any object B the map B → ∗ is a fibration;

4. the classes of fibrations and of acyclic fibrations (the fibration that are also weak equivalences) are

stable under pullback. That means: given a diagram A
g−→ C

f←− B where f is a (acyclic) fibration then
the pullback A×C B exists and the morphism A×C B → A is again a (acyclic) fibration.

5. For every object B there is a path object BI , i.e. a factorization of the diagonal ∆: B → B ×B into

B
' // BI // // B ×B

such that left map is weak equivalence and the right map a fibration. We assume here moreover for
simplicity that this BI can be chosen functorial in B.

Given a category of fibrant objects, we will denote the class of weak equivalence by W and the class of
fibrations by F .

Examples 3.3.78. We have the following well known examples of categories of fibrant objects.

• For any model category (with functorial factorization) the full subcategory of fibrant objects is a
category of fibrant objects.

• The category of stalkwise Kan simplicial presheaves on any site with enough points. In this case the
fibrations are the stalkwise fibrations and the weak equivalences are the stalkwise weak equivalences.

Remark 3.3.79. Notice that (over a non-trivial site) the second example above is not a special case of the
first: while there are model structures on categories of simplicial presheaves whose weak equivalences are the
stalkwise weak equivalences, their fibrations (even between fibrant objects) are much more restricted than
just being stalkwise fibrations.
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Theorem 3.3.80. Let the ∞-category H be presented by a category with weak equivalences (C,W ) that
carries a compatible structure of a category of fibrant objects, def. 3.3.77.

Then for X,A and two objects in C, presenting two objects in H, the ∞-groupoid H(X,A) is presented
in sSetQuillen by the nerve of the category whose

• objects are spans (cocycles / ∞-anafunctors)

X oooo ' X̂
g // A

in C;

• morphisms f : (X̂, g)→ (X̂ ′, g′) are given by morphisms f : X̂ → X̂ ′ in C such that the diagram

X̂
'
wwww

f

��

g

&&
X A

X̂ ′
'
gggg

g′

88

commutes.

This appears for instance as prop. 3.23 in [Cis10].

Example 3.3.81. By the discussion in 2.2.2, if H has a 1-site of definition C with enough 1-topos points,
then it is presented by the category Sh(C)∆op

of simplicial sheaves on C with weak equivalences the stalkwise
weak equivalences of simplicial sets, and equivalently by its full subcategory of stalkwise Kan fibrant simplicial
sheaves. With the local fibrations, def. 2.2.13 as fibrations, this is a category of fibrant objects. So in this
case the cocycle ∞-groupoid H(X,A) is presented by the Kan fibrant replacement of the category whose
objects are spans

X oooo ' X̂
g // A

for X̂ → X a stalkwise acylic Kan fibration, and whose morphisms are as above.

3.3.7.2.2 Fiber sequences We discuss explicit presentations of certain fiber sequences, def. 3.3.72,
in an ∞-topos.

Proposition 3.3.82. Let A → Ĝ → G be a central extension of (ordinary) groups. Then there is a long
fiber sequence in ∞Grpd of the form

A // Ĝ // G
Ωc // BA // BĜ // BG

c // B2A ,

where the connecting homomorphism is presented by the correspondence of crossed modules, def. 1.3.6, given
by

(1→ G) oo
'

(A→ Ĝ) // (A→ 1) .

Here in the middle appears the crossed module defined by the central extension, def. 1.3.13.

3.3.8 Principal bundles

For G an ∞-group object in a cohesive ∞-topos H and BG its delooping in H, as discussed in 3.3.6, the
cohomology over an object X with coefficients in BG, as in 3.3.7, classifies maps P → X that are equipped
with a G-action that is principal. We discuss here these G-principal ∞-bundles.
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3.3.8.1 Introduction and survey A traditional definition of G-principal bundle – for G a topological
group or Lie group or similar – is: the quotient projection

P → X := P/G

induced by a free action
ρ : P ×G→ P

of G on a (topological, etc.) space P , such that there is a cover U → X over which the projection is
isomorphic to the trivial one U ×G→ U .

The evident refinement of the central part of this definition to higher geometry is: a G-principal ∞-
bundle for G a topological or smooth∞-group (discussed in 4 below) is the∞-quotient (homotopy quotient)
projection

P → X := P/∞G

of an∞-action of G on a topological or smooth∞-groupoid (∞-stack). Now it is remarkable that this single
clause already implies the other two conditions in the traditional definitions.

To see this, notice that if G is an ordinary group acting non-freely on an ordinary space P with, say,
global stabilizer subgroup Gstab ↪→ G, then the ordinary quotient P → X := P/G differs from the homotopy
quotient. The latter is instead the quotient stack X/∞Gstab (sometimes written [X//Gstab], an orbifold if
Gstab is finite). Precisely if the stabilizer subgroup is trivial, hence precisely if the action is free, does the
ordinary quotient coincide with the homotopy quotient.

Conversely this means that in the context of higher geometry also a non-free action may be principal:
with respect not to a base space, but with respect to a base groupoid/stack. In the example just discussed,
we have that the projection P → X/∞Gstab exhibits P as a G-principal bundle over the action groupoid
P/∞G ' X/∞Gstab. For instance if P = V is a vector space equipped with a G-representation, then
V → V/∞G is a G-principal bundle over a groupoid/stack. In other words, the traditional requirement of
freenes in a principal action is not so much a characterization of principality as such, as rather a condition
that ensures that the base of a principal action is a 0-truncated object in higher geometry.

Beyond this specific class of 0-truncated examples, this means that we have the following noteworthy
general statement: in higher geometry every ∞-action is principal with respect to some base, namely with
respect to its ∞-quotient. In this sense the notion of principal bundles is (even) more fundamental to
higher geometry than it is to ordinary geometry. Also, several constructions in ordinary geometry that are
traditionally thought of as conceptually different from the notion of prncipality turn out to be special cases
of principality in higher geometry. For instance a central extension of groups Ĝ→ G by a group A turns out
to be equivalently a higher principal bundle, namely a BA-principal 2-bundle of moduli stacks BĜ→ BG.
Following this through, one finds that the topics of ∞-representations (3.3.12), principal ∞-bundles, ∞-
group extensions (3.3.10) and ∞-group cohomology are all different aspects of just one single concept in
higher geometry.

More is true: in the context of an∞-topos – such as that of smooth∞-groupoids, 4.4 – every∞-quotient
projection is locally trivial, with respect to the canonical intrinsic notion of cover. Hence also the second
extra condition in the classical definition of principality becomes automatic. This is a direct consequence of
one of the characteristic properties of an∞-topos: that “all∞-quotients are effective”, theorem 3.3.44. This
means that the projection map P → P/∞G is always a cover (an effective epimorphism) and so, since every
G-principal ∞-bundle trivializes over itself, it exhibits a local trivialization of itself. Even without explicitly
requiring it to be locally trivial.

As before, this means that the local triviality clause appearing in the traditional definition of principal
bundles is not so much a characteristic of principality as such, as rather a condition that ensures that a
given quotient taken in a category of geometric spaces coincides with the “correct” quotient obtained when
regarding the situation in the ambient topos.

Another direct consequence of the ∞-topos theoretic Giraud theorem, 3.3.44, is the equivalence of the
definition of principal bundles as quotient maps, which we discussed so far, with the other main definition
of principality: the condition that the “shear map” (p1, ρ) : P × G → P ×X P is an equivalence. It is
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immediate to verify in traditional 1-categorical contexts that this is equivalent to the action being free and
exhibiting X as its quotient. Simple as this is, one may observe in view of the above discussion, that the
shear map being an equivalence is much more fundamental even: notice that P ×G is the first stage of the
action groupoid object P//G and P ×X P is the first stage of the Čech nerve groupoid object Č(P → X) of
the corresponding quotient map. Accordingly, the shear map equivalence is the first stage in the equivalence
of groupoid objects in the ∞-topos

P//G ' Č(P → X) .

This equivalence is just the explicit statement of the fact mentioned before: the groupoid object P//G is
effective – as any groupoid object in an ∞-topos – and, equivalently, its principal ∞-bundle map P → X is
an effective epimorphism.

Fairly directly from this fact, finally, springs the classification theorem of principal ∞-bundles. For we
have a canonical morphism of groupoid objects P//G→ ∗//G induced by the terminal map P → ∗. By the
∞-Giraud theorem the ∞-colimit over this sequence of morphisms of groupoid objects is a G-cocycle on X,
def. 3.3.70, canonically induced by P :

lim
→

(
(Č(P → X)• ' (P//G)• → (∗//G)•

)
= (X → BG) ∈ H(X,BG) .

Conversely, from any such G-cocycle one finds that one obtaines a G-principal ∞-bundle simply by forming
its ∞-fiber: the ∞-pullback of the point inclusion ∗ → BG. We show below that in presentations of the
∞-topos theory by 1-categorical tools, the computation of this homotopy fiber is presented by the ordinary
pullback of a big resolution of the point, which turns out to be nothing but the universal G-principal bundle.
This appearance of the universal ∞-bundle as just a resolution of the point inclusion may be understood
in light of the above discussion. Because the classical characterization of the universal G-principal bundle
EG is: a space that is homotopy equivalent to the point and equipped with a free G-action. But by the
above, freeness of the action is an artefact of 0-truncation and not a characteristic of principality in higher
geometry. Accordingly, in higher geometry the universal G-principal ∞-bundle for any ∞-group G may be
taken to be the point, equipped with the trivial (maximally non-free) G-action. As such, it is a bundle not
over the classifying space BG of G, but over the full moduli ∞-stack BG.

This way we have natural assignments of G-principal∞-bundles to cocycles in G-nonabelian cohomology,
and vice versa. We find below that precisely the second remaining clause of the ∞-Giraud theorem, 3.3.44
implies that these constructions constitute an equivalence of∞-groupoids, hence that G-principal∞-bundles
are classified by G-cohomology: the fact that in an ∞-topos ∞-colimits are preserved by ∞-pullback.

In conclusion, principal bundle theory not only has a natural formulation in higher topos theory, but its
existence is in fact essentially equivalent to the very properties that characterize ∞-toposes.

∞-Giraud axioms principal ∞-bundle theory

groupoid objects are effective
every ∞-quotient P → X := P/∞G

is principal

∞-colimits are universal
G-principal ∞-bundles

are classfied by H(X,BG)

3.3.8.2 General abstract We define G-principal∞-bundles in any∞-topos H, discuss basic properties
and show that they are classified by the intrinsic G-cochomology in H, 3.3.7.

Definition 3.3.83. For G ∈ Grp(H) an ∞-group we say a G-action on an object P ∈ H is a groupoid
object P//G ([LuHTT], section 6.1.2) of the form

· · ·
//////// P ×G×G

////// P ×G //// P
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such that the degreewise projections P ×Gn → Gn constitute a morphism of groupoid objects

· · ·
//////// P ×G×G

��

////// P ×G

��

//// P

��
· · ·

// ////// G×G
////// G

//// ∗

.

With convenient abuse of notation we also write

P//G := lim
−→

P ×G×
•
∈ H

for the corresponding ∞-colimit object, the ∞-quotient of this action.
Write

GAction ↪→ Grpd(H)/(∗//G)

for the full sub-∞-category of groupoid objects over ∗//G on those that are G-actions.

Remark 3.3.84. Since the face and degeneracy maps in the groupoid object G×
•

are fixed, this definition
fixes all face and degeneracy maps in P//G except the outermost face maps. This is what defines the action

ρ : P ×G→ G .

Remark 3.3.85. Using this notation in prop. 3.3.54 we have

BG ' ∗//G .

Definition 3.3.86. For G ∈ ∞Grp(H), a morphism P → X in H together with a G-action on P is a
G-principal ∞-bundle over X if P → X exhibits the ∞-colimit X ' P//G.

A morphism of G-principal ∞-bundles P1 → P2 over X is a morphism of the corresponding action
groupoid objects that preserves X.

Remark 3.3.87. By theorem 3.3.44 this means in particular that a G-principal ∞-bundle P → X is an
effective epimorphism.

Proposition 3.3.88. A G-principal ∞-bundle P → X satisfies the principality condition: the canonical
morphism

(ρ, p1) : P ×G ' // P ×X P

is an equivalence, where ρ is the G-action, remark 3.3.44.

Proof. By the Giraud axioms satisfied in the ambient ∞-topos, theorem 3.3.44, the groupoid object
P//G is effective, which means that it is equivalent to the Čech nerve of P → X. In first degree this implies
a canonical equivalence P ×G→ P ×X P . Since the two face maps d0, d1 : P ×X P → P in the Čech nerve
are simply the projections out of the fiber product, it follows that the two components of this canonical
equivalence are the two face maps d0, d1 : P ×G→ P of P//G. By definition, these are the projection onto
the first factor and the action itself. �

Proposition 3.3.89. For g : X → BG any morphism, its homotopy fiber P → X canonically carries the
structure of a G-principal ∞-bundle over X.

Proof. That P → X is the fiber of g : X → BG means that we have an ∞-pullback diagram

P

��

// ∗

��
X

g // BG

.
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By the pasting law for ∞-pullbacks, prop. 2.3.1, this induces a compound diagram

· · ·
//////// P ×G×G

��

////// P ×G

��

//// P

��

// // X

g

��
· · ·

//////// G×G
// //// G

//// ∗ // // BG

where each square and each composite rectangle is an ∞-pullback. This exhibits the G-action on P . Since
∗ → BG is an effective epimorphism, so is its ∞-pullback P → X. Since, by the ∞-Giraud theorem, ∞-
colimits are preserved by ∞-pullbacks we have that P → X exhibits the ∞-colimit X ' P//G. �

Remark 3.3.90. For P → X a G-principal ∞-bundle obtained as in prop. 3.3.89, and for x : ∗ → X any
point of X we have a canonical equivalence

x∗P
' // G

between the fiber of P over X and the ∞-group object G.

Proof. This follows from the pasting law for ∞-pullbacks, which gives the diagram

G

��

// P

��

// ∗

��
∗ x // X

g // BG

in which both squares as well as the total rectangle are ∞-pullbacks. �

Definition 3.3.91. The trivial G-principal ∞-bundle (P → X) ' (X ×G→ X) is, up to equivalence, the
one obtained via prop. 3.3.89 from the morphism X → ∗ → BG.

Observation 3.3.92. For P → X a G-principal ∞-bundle and Y → X any morphism, the ∞-pullback
Y ×X P naturally inherits the structure of a G-principal ∞-bundle.

Proof. By the same kind of argument as in prop. 3.3.89 (which is the special case of the pullback of
what we will see is the universal G-principal ∞-bundle ∗ → BG). �

Definition 3.3.93. A G-principal ∞-bundle P → X is called locally trivial if there exists an effective
epimorphism U → X and an equivalence of G-principal ∞-bundles

U ×X P ' U ×G

from the pullback of P , observation. 3.3.92, to the trivial G-principal ∞-bundle over U , def. 3.3.91.

Proposition 3.3.94. Every G-principal ∞-bundle is locally trivial.

Proof. For P → X a G-principal ∞-bundle, it is, by remark 3.3.87, itself an effective epimorphism. The
pullback of the G-bundle along this morphism, hence to its own total space is trivial, by the principality
condition, prop. 3.3.88. Hence setting U := P proves the claim. �

Proposition 3.3.95. For every G-principal ∞-bundle P → X the square

P

��

// ∗

��
X ' lim

→n

P ×G×n // lim
→n

G×n ' BG

is an ∞-pullback diagram.
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Proof. Let U → X be an effective epimorphism such that P → X pulled back to U becomes the trivial
G-principal ∞-bundle. By prop. 3.3.94 this exists. By functoriality of the ∞-colimit, this induces the
diagram

U ×G // //

��

P //

��

∗

pt

��
U // // X // BG

'

U ×G // //

��

∗

pt

��
U // ∗

pt // BG

.

By assumption, in this diagram the outer rectangles and the square on the very left are ∞-pullbacks. We
need to show that also the right square on the left is an ∞-pullback.

Since U → X is an effective epimorphism by assumption, and since these are stable under ∞-pullback,
also U ×G→ P is an effective epimorphism, as indicated. This means that

P ' lim
→n

(U ×G)×
n+1
P .

We claim that for all n ∈ N the fiber products in the colimit on the right are equivalent to (U×
n+1
X )×G. For

n = 0 this is true by assumption of local triviality. Assume then by induction that it holds for some n ∈ N.
Then with the pasting law, prop. 2.3.1, we find an ∞-pullback diagram of the form

(U×
n+1
X )×G ' (U ×G)×

n+1
P //

��

(U ×G)×
n
P

��

' (U×
n
X )×G

U ×G //

��

P

��
U // X

.

This completes the induction. With this the above expression for P becomes

P ' lim
→n

(U×
n+1
X )×G

' lim
→n

pt∗ (U×
n+1
X )

' pt∗ lim
→n

(U×
n+1
X )

' pt∗X

,

where we used that by the ∞-Giraud theorem, 3.3.44, we may take the ∞-pullback out of the ∞-colimit
and where in the last step we used again the assumption that U → X is an effective epimorphism. �

Lemma 3.3.96. In any ∞-topos a morphism

A
f //

  

B

~~
X

over an object X is an equivalence precisely if for any effective epimorphism p : Y → X the pullback p∗f in

p∗A
p∗f //

!!

p∗B

}}
Y

is an equivalence.
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Proof. It is clear that p∗f is a weak equivalence if f is. Conversely, assume that p∗f is a weak equivalence.
Since effective epimorphisms as well as equivalences are preserved by pullback we get a simplicial diagram
of the form

· · · // //// p∗A×A p∗A // //

'
��

p∗A

'
��

// // A

f

��
· · · ////// p∗B ×B p∗B // // p∗B // // B

,

where the rightmost horizontal morphisms are effective epimorphisms, as indicated. By definition of effective
epimorphisms this exhibits f as an ∞-colimit over equivalences, hence as an equivalence. �

Proposition 3.3.97. Every morphism between G-torsors over X that are G-principal ∞-bundles over X is
an equivalence.

Proof. Since a morphism of G-torsors P1 → P2 is a morphism of Čech nerves that fixes their ∞-colimit
X, up to equivalence, and since ∗ → BG is an effective epimorphism, we are, by prop. 3.3.95, in the situation
of lemma 3.3.96.

P1

��

//

'

((

X

'

((
g1

��

P2

}}

// X
g2

}}
∗ // BG

.

�

Theorem 3.3.98. For all X,BG ∈ H there is a natural equivalence of ∞-groupoids

GBund(X) ' H(X,BG)

which on vertices is the construction of def. 3.3.89: a bundle P → X is mapped to a morphism X → BG
such that P → X → BG is a fiber sequence.

We therefore say

• BG is the classifying object or moduli ∞-stack for G-principal ∞-bundles;

• a morphism c : X → BG is a cocycle for the corresponding G-principal ∞-bundle and its class
[c] ∈ H1

H(X,G) is its characteristic class.

Proof. By definitions 3.3.83 and 3.3.86 and using the ∞-Giraud theorem 3.3.44 the ∞-groupoid of G-
principal ∞-bundles over X is equivalent to the full sub-∞-category of the slice of the arrow ∞-topos
HI/(∗ → BG) on those squares

P //

����

∗

����
X // BG

exhibiting P → X as a G-principal ∞-bundle. By prop. 3.3.89 and prop. 3.3.95 these are precisely the
∞-pullback squares of this form. By the universality of the ∞-pullback the morphisms between these are
fully determined by the morphisms between the cocycles X → BG. �
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3.3.8.3 Universal principal ∞-bundles and the Borel construction By prop. 3.3.67 every ∞-
group in an ∞-topos over an ∞-cohesive site is presented by a (pre-)sheaf of simplicial groups, hence by
a strict group object G in a 1-category of simplicial (pre-)sheaves. We have seen in 3.3.6.2 that for such
a presentation the delooping BG is presented by W̄G. By the above discussion in 3.3.8.2 the theory of
G-principal ∞-bundles is essentially that of homotopy fibers of morphisms into BG, hence into W̄G. By
prop. 2.3.7 such homotopy fibers are computed as ordinary pullbacks of fibration resolutions of the point
inclusion into W̄G. Here we discuss these fibration resolutions. They turn out to be the classical universal
simplicial principal bundles WG→ W̄G.

This section draws from [NSSa].

By prop. 3.3.67 every ∞-group in an ∞-topos over an ∞-cohesive site is presented by a (pre-)sheaf of
simplicial groups, hence by a strict group object G in a 1-category of simplicial (pre-)sheaves. We have seen
in 3.3.6.2 that for such a presentation the delooping BG is presented by W̄G. By the above discussion in
3.3.8.2 the theory of G-principal ∞-bundles is essentially that of homotopy fibers of morphisms into BG,
hence into W̄G. By prop. 2.3.7 such homotopy fibers are computed as ordinary pullbacks of fibration
resolutions of the point inclusion into W̄G. Here we discuss these fibration resolutions. They turn out to be
the classical universal simplicial principal bundles WG→ W̄G.

Let C be some site. We consider group objects in the category of simplicial presheaves [Cop, sSet].
Since sheafification preserves finite limits, all of the following statements hold verbatim also in the category
Sh(C)∆op

of simplicial sheaves over C.

Definition 3.3.99. For G be a group object in [Cop, sSet] and for ρ : P × G → P a G-action, its action
groupoid object is the simplicial object

P//G ∈ [∆op, [Cop, sSet]]

whose value in degree n is
(P//G)n := P ×G×

n

∈ [Cop, sSet] ,

whose face maps are given by

di(p, g1, . . . , gn) =


(pg1, g2, . . . , gn) if i = 0,

(p, g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1,

(p, g1, . . . , gn−1) if i = n,

and whose degeneracy maps are given by

si(p, g1, . . . , gn) = (p, g1, . . . , gi−1, 1, gi, . . . , gn) .

Definition 3.3.100. For ρ : P ×G→ P an action, write

P/hG := T (P//G) ∈ [Cop, sSet]

for the corresponding total simplicial object, def. 2.3.22.

Remark 3.3.101. According to corollary 2.3.26 the object P/hG presents the homotopy colimit over the
simplicial object P//G. We say that P/hG is the homotopy quotient of P by the action of G.

Example 3.3.102. The unique trivial action of a group object G on the terminal object ∗ gives rise to a
canonical action groupoid ∗//G. According to def. 3.3.58 we have

∗/hG = WG.

The multiplication morphism · : G × G → G regarded as an action of G on itself gives rise to a canonical
action groupoid G//G. The terminal morphism G→ ∗ induces a morphism of simplicial objects

G//G→ ∗//G .
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Defined this way G//G carries a left G-action relative to this morphism. To stay with our convention that
actions on bundles are from the right, we consider in the following instead the right action of G on itself
given by

G×G σ // G×G
((−)−1,id) // G×G · // G ,

where σ exchanges the two cartesian factors

(h, g) 7→ g−1h .

With respect to this action, the action groupoid object G//G is canonically equipped with the right G-action
by multiplication from the right. Whenever in the following we write

G//G→ ∗//G

we are referring to this latter definition.

Definition 3.3.103. Given a group object in [Cop, sSet], write

(WG→ W̄G) := (G/hG→ ∗/hG) ∈ [Cop, sSet]

for the morphism induced on homotopy quotients, def. 3.3.100, by the morphism of canonical action groupoid
objects of example 3.3.102.

We will call this the universal weakly G-principal bundle.

This term will be justified by prop. 3.3.108, remark 3.3.109 and theorem 3.3.128 below. We now discuss
some basic properties of this morphism.

Definition 3.3.104. For ρ : P ×G→ P a G-action in [Cop, sSet], we write

P ×GWG := (P ×WG)/G ∈ [Cop, sSet]

for the quotient by the diagonal G-action with respect to the given right G action on P and the canonical
right G-action on WG from prop. 3.3.108. We call this quotient the Borel construction of the G-action on
P .

Proposition 3.3.105. For P ×G→ P an action in [Cop, sSet], there is an isomorphism

P/hG ' P ×GWG,

between the homotopy quotient, def. 3.3.100, and the Borel construction. In particular, for all n ∈ N there
are ismorphisms

(P/hG)n ' Pn ×Gn−1 × · · · ×G0 .

Proof. This follows by a straightforward computation.

Lemma 3.3.106. Let P be a Kan complex, G a simplicial group and ρ : P × G → P an action. The
following holds.

1. The qotient map P → P/G is a Kan fibration.

2. If the action is free, then P/G is a Kan complex.

The second statement is for instance lemma V3.7 in [GoJa99].

Lemma 3.3.107. For P a Kan complex and P ×G→ P an action by a group object, the homotopy quotient
P/hG, def. 3.3.100, is itself a Kan complex.
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Proof. By prop. 3.3.105 the homotopy quotient is isomorphic to the Borel construction. Since G acts
freely on WG it acts freely on P ×WG. The statement then follows with lemma 3.3.106. �

Proposition 3.3.108. For G a group object in [Cop, sSet], the morphism WG → WG from def. 3.3.103
has the following properties.

1. It is isomorphic to the traditional morphism denoted by these symbols, e.g. [May67].

2. It is isomorphic to the décalage morphism Dec0WG→WG, def. 2.3.30.

3. It is canonically equipped with a right G-action over WG that makes it a weakly G-princial bundle (in
fact the shear map is an isomorphism).

4. It is an objectwise Kan fibration replacement of the point inclusion ∗ → W̄G.

This is lemma 10 in [RoSt12].

Remark 3.3.109. Let X̂ → W̄G be a morphism in [Cop, sSet], presenting, by prop. 3.3.67, a morphism
X → BG in the ∞-topos H = Sh∞(C). By prop. 3.3.95 every G-principal ∞-bundle over X arises as the
homotopy fiber of such a morphism. By using prop. 3.3.108 in prop. 2.3.7 it follows that the principal
∞-bundle classified by X̂ → W̄G is presented by the ordinary pullback of WG→ W̄G. This is the defining
property of the universal principal bundle.

In 3.3.8.4 below we show how this observation leads to a complete presentation of the theory of principal
∞-bundles by simplical weakly principal bundles.

3.3.8.4 Presentation in locally fibrant simplicial sheaves We discuss a presentation of the general
notion of principal ∞-bundles, 3.3.8.2 by weakly principal bundles in a 1-category of simplicial sheaves.

Let H be a hypercomplete ∞-topos (for instance a cohesive ∞-topos), such that it admits a 1-site C
with enough points.

Observation 3.3.110. By prop. 2.2.12 a category with weak equivalences that presents H under simplicial
localization, def. 2.1.19, is the category of simplicial 1-sheaves on C, sSh(C), with the weak equivalences
W ⊂ Mor(sSh(C)) being the stalkwise weak equivalences:

H ' LW sSh(C) .

Also the full subcategory
sSh(C)lfib ↪→ sSh(C)

on the locally fibrant objects is a presentation.

Corollary 3.3.111. Regard sSh(C)lfib as a category of fibrant objects, def. 3.3.77, with weak equivalences
and fibrations the stalkwise weak equivalences and firations in sSetQuillen, respectively, as in example 3.3.78.

Then for any two objects X,A ∈ H there are simplicial sheaves, to be denoted by the same symbols, such
that the hom∞-groupoid in H from X to A is presented in sSetQuillen by the Kan complex of cocycles 3.3.7.2.

Proof. By theorem 3.3.80. �
We now discuss for the general theory of principal ∞-bundles in H from 3.3.8.2 a corresponding realization
in the presentation for H given by (sSh(C),W ).

By prop. 3.3.67 every ∞-group in H is presented by an ordinary group in sSh(C). It is too much to ask
that also every G-principal ∞-bundle is presented by a principal bundle in sSh(C). But something close is
true: every principal ∞-bundle is presented by a weakly principal bundle in sSh(C).
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Definition 3.3.112. Let X ∈ sSh(C) be any object, and let G ∈ sSh(C) be equipped with the structure of
a group object. A weakly G-principal bundle is

• an object P ∈ sSh(C) (the total space);

• a local fibration π : P → X (the bundle projection);

• a right action

P ×G

##

ρ // P

��
X

of G on P over X

such that

• the action of G is weakly principal in that the shear map

(p1, ρ) : P ×G→ P ×X P (p, g) 7→ (p, pg)

is a local weak equivalence.

Remark 3.3.113. We do not ask the G-action to be degreewise free as in [JaLu04], where a similar notion
is considered. However we show in Corollary 3.3.130 below that each weakly G-principal bundle is equivalent
to one with free G-action.

Definition 3.3.114. A morphism of weakly G-principal bundles (π, ρ) → (π′, ρ′) over X is a morphism
f : P → P ′ in sSh(C) that is G-equivariant and commutes with the bundle projections, hence such that it
makes this diagram commute:

P ×G
(f,id) //

ρ

��

P ′ ×G

ρ′

��
P

π
##

f // P ′

π′{{
X

.

Write
wGBund(X) ∈ sSetQuillen

for the nerve of the category of weakly G-principal bundles and morphisms as above. The ∞-groupoid that
this presents under ∞Grpd ' (sSetQuillen)◦ we call the ∞-groupoid of weakly G-principal bundles over X.

Lemma 3.3.115. Let π : P → X be a weakly G-principal bundle. Then the following statements are true:

1. For any point p : ∗ → P the action of G induces a weak equivalence

G −→ Px

where x = πp and where Px is the fiber of P → X over x.

2. For all n ∈ N, the multi-shear maps

P ×Gn → P×
n+1
X (p, g1, ..., gn) 7→ (p, pg1, ..., pgn)

are weak equivalences.
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Proof. We consider the first statement. Regard the weak equivalence P ×G ∼−→ P ×X P as a morphism
over P where in both cases the map to P is given by projection onto the first factor. By basic properties of
categories of fibrant objects, both of these morphisms are fibrations. Therefore, by prop. 2.3.11 the pullback
of the shear map along p is still a weak equivalence. But this pullback is just the map G→ Px, which proves
the claim.

For the second statement, we use induction on n. Suppose that P ×Gn → P×
n+1
X is a weak equivalence.

By prop. 2.3.11, the pullback P×
n
X ×X (P ×G) → P×

n+2
X of the shear map itself along P×

n
X → X is again

a weak equivalence, as is the product P × Gn × G → P×
n+1
X × G of the n-fold shear map with G. The

composite of these two weak equivalences is the multi-shear map P ×Gn+1 → P×
n+2
X , which is hence a also

weak equivalence.

Proposition 3.3.116. Let P → X be a weakly G-principal bundle and let f : Y → X be an arbitrary
morphism. Then the pullback f∗P → Y exists and is also canonically a weakly G-principal bundle. This
operation extends to define a pullback morphism

f∗ : wGBund(X)→ wGBund(Y ) .

Proof. By basic properties of a category of fibrant objects:
The pullback f∗P exists and the morphism f∗P → Y is again a local fibration. Thus it only remains to

show that f∗P is weakly principal, i.e. that the morphism f∗P ×G → f∗P ×Y f∗P is a weak equivalence.
This follows from prop. 2.3.11.

Remark 3.3.117. The functor f∗ associated to the map f : Y → X above is the restriction of a functor
f∗ : sSh(C)/X → sSh(C)/Y mapping from simplicial sheaves over X to simplicial sheaves over Y . This

functor f∗ has a left adjoint f! : sSh(C)/Y → Sh∆op

/X given by composition along f , in other words

f!(E → Y ) = E → Y
f−→ X.

Note that the functor f! does not usually restrict to a functor f! : wGBund(Y )→ wGBund(X). But when it
does, we say that principal ∞-bundles satisfy descent along f . In this situation, if P is a weakly G-principal
bundle on Y , then P is weakly equivalent to the pulled-back principal∞-bundle f∗f!P on Y , in other words
P ‘descends’ to f!P .

The next result says that weakly G-principal bundles satisfy descent along local acyclic fibrations (hy-
percovers).

Proposition 3.3.118. Let p : Y → X be a local acyclic fibration in sSh(C). Then the functor p! defined
above restricts to a functor p! : wGBund(Y )→ wGBund(X), left adjoint to p∗ : wGBund(X)→ wGBund(Y ),
hence to a homotopy equivalence in sSetQuillen.

Proof. Given a weakly G-principal bundle P → Y , the first thing we have to check is that the map
P ×G→ P ×X P is a weak equivalence. This map can be factored as P ×G→ P ×Y P → P ×X P . Hence
it suffices to show that the map P ×Y P → P ×X P is a weak equivalence. But this follows by prop. 2.3.11,
since both pullbacks are along local fibrations and Y → X is a local weak equivalence by assumption.

This establishes the existence of the functor p!. It is easy to see that it is left adjoint to p∗. This implies
that it induces a homotopy equivalence in sSetQuillen.

Corollary 3.3.119. For f : Y → X a local weak equivalence, the induced functor f∗ : wGBund(X) →
wGBund(Y ) is a homotopy equivalence.

Proof. By lemma 2.3.8 we can factor the weak equivalence f into a composite of a local acyclic fibration
and a left inverse to a local acyclic fibration. Therefore, by prop. 3.3.118, f∗ may be factored as the composite
of two homotopy equivalences, hence is itself a homotopy equivalence.

We discuss now how weakly G-principal bundles arise from the universal G-principal bundle, def. 3.3.103
by pullback, and how this establishes their equivalence with G-ccoycles.
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Proposition 3.3.120. For G a group object in sSh(C), the map WG → WG from def. 3.3.103 equipped
with the G-action of prop. 3.3.108 is a weakly G-principal bundle.

Indeed, it is a strictly G-principal bundle. This is a classical fact, for instance around lemma V4.1 in
[GoJa99].In terms of the total simplicial set functor it is observed in section 4 of [RoSt12].
Proof. By inspection one finds that

(G//G)×G

��

// G//G

��
G//G // ∗//G

is a pullback diagram in [∆op, sSh(C)]. Since the total simplicial object functor T of def. 2.3.22 is right
adjoint it preserves this pullback. This shows the principality of the shear map.

Definition 3.3.121. For Y → X a morphism in sSh(C), write

Č(Y ) ∈ [∆op, sSh(C)]

for its Čech nerve, given in degree n by the n-fold fiber product of Y over X

Č(Y )n := Y ×
n+1
X .

Observation 3.3.122. The canonical morphism of simplicial objects Č(Y ) → X, with X regarded as a
constant simplicial object induces under totalization, def. 2.3.22, and by prop. 2.3.25 a canonical morphism

TČ(Y )→ X ∈ sSh(C) .

Lemma 3.3.123. For p : Y → X a local acyclic fibration, the morphism TČ(Y ) → X from observation
3.3.122 is a local weak equivalence.

Proof. By pullback stability of local acylic fibrations, for each n ∈ N the morphism Y ×
n
X → X is a local

weak equivalence. By remark. 2.3.24 and prop. 2.3.25 this degreewise local weak equivalence is preserved
by the functor T .

The main statement now is the following.

Theorem 3.3.124. For P → X a weakly G-principal bundle in sSh(C), the canonical morphism

P/hG −→ X

is a local acyclic fibration.

Proof. To see that the morphism is a local weak equivalence, factor P//G→ X in [∆op, sSh(C)] via the
multi-shear maps from lemma 3.3.115 through the Čech nerve, def. 3.3.121, as

P//G→ Č(P )→ X .

Applying to this the total simplicial object functor T , def. 2.3.22, yields a factorization

P/hG→ TČ(P )→ X .

The left morphism is a weak equivalence because, by lemma 3.3.115, the multi-shear maps are weak equiv-
alences and by corollary 2.3.26 T preserves sends degreewise weak equivalences to weak equivalences. The
right map is a weak equivalence by lemma 3.3.123.
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We now prove that P/hG→ X is a local fibration. We need to show that for each topos point p of Sh(C)
the morphism of stalks p(P/hG) → p(X) is a Kan fibration of simplicial sets. By prop. 3.3.105 this means
equivalently that the morphism

p(P ×GWG)→ p(X)

is a Kan fibration. By definition of topos point, p commutes with all the finite products and colimits involved
here. Therefore equivalently we need to show that

p(P )×p(G) Wp(G)→ p(X)

is a Kan fibration for all topos points p.
Observe that this morphism factors the projection p(P )×W (p(G))→ p(X) as

p(P )×W (p(G))→ p(P )×p(G) W (p(G))→ p(X)

in sSet. Here the first morphism is a Kan fibration by lemma 3.3.106, which in particular is also surjective
on vertices. Also the total composite morphism is a Kan fibration, since W (p(G)) is Kan fibrant. From this
the desired result follows with the next lemma 3.3.125.

Lemma 3.3.125. Suppose that X
p−→ Y

q−→ Z is a diagram of simplicial sets such that p is a Kan fibration
surjective on vertices and qp is a Kan fibration. Then q is also a Kan fibration.

Proof. Consider a lifting problem of the form

Λk[n] //

��

Y

q

��
∆[n] // Z.

Choose a 0-simplex of X which projects to the 0-simplex of Y corresponding to the image of the vertex 0
under the map Λk[n] → Y . Since ∆[0] → Λk[n] is an acyclic cofibration, we may choose a map Λk[n] → X
such that the diagram

∆[0]

��

// X

p

��
Λk[n] //

==

Y

commutes. This map gives rise to a commutative diagram

Λk[n] //

��

X

qp

��
∆[n] // Z

and any diagonal filler in this diagram gives a solution of the original lifting problem.

We now discuss the equivalence between weakly G-principal bundles and G-cocycles. For X,A ∈ sSh(C),
write Cocycle(X,A) for the category of cocycles from X to A, according to 3.3.7.2.

Definition 3.3.126. Let X,G ∈ sSh(C) with G equipped with the structure of a group object (hence
necessarily locally fibrant) and also with X being locally fibrant.

Define a functor
Extr : wGBund(X)→ Cocycle(X,WG)
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(“extracting” a cocycle) on objects by sending a weakly G-principal bundle P → X to the cocycle

X oooo ∼
P/hG // WG ,

where the left morphism is the local acyclic fibration from theorem 3.3.124, and where the right morphism
is the image under the total simplicial object functor, def. 2.3.22, of the canonical morphism P//G→ ∗//G
of simplicial objects.

Define also a functor
Rec : Cocycle(X,WG)→ wGBund(X)

(“reconstruction” of the bundle) which on objects takes a cocycle X
π←− Y g−→WG to the weakly G-principal

bundle
g∗WG→ Y

π→ X ,

which is the pullback of the universal G-principal bundle, def. 3.3.103, along g, and which on morphisms
takes a coboundary to the morphism between pullbacks induced from the corresponding morphism of pullback
diagrams.

Observation 3.3.127. The functor Extr sends the universal G-principal bundle WG→WG to the cocycle

WG ' ∗ ×GWG
'←WG×GWG

'→WG×G ∗ 'WG.

Write
q : Cocycle(X,WG)→ Cocycle(X,WG)

for the functor given by postcomposition with this universal cocycle. This has an evident left and right
adjoint q̄. Therefore under the simplicial nerve these functors induce homotopy equivalences in sSetQuillen.

Theorem 3.3.128. The functors Extr and Rec from def. 3.3.126 induce weak equivalences

NwGBund(X) ' NCocycle(X,WG) ∈ sSetQuillen

between the simplicial nerves of the category of weakly G-principal bundles and of cocycles, respectively.

Proof. We construct natural transformations

Extr ◦ Rec⇒ q

and
Rec ◦ Extr⇒ id ,

where q is the homotopy equivalence from observation 3.3.127.
For

X
π←− Y f−→WG.

a cocycle, its image under Extr ◦ Rec is

X ← (f∗WG)/hG→WG.

The morphism (f∗WG)/hG factors through Y by construction, so that the left triangle in the diagram

(f∗WG)/hG

��

∼

ssss ++
X WG

Y
∼

kkkk
q(f)

33
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commutes. The top right morphism is by definition the image under the total simplicial set functor, def.
2.3.22, of (f∗WG)//G→ ∗//G. This factors the top horizontal morphism in

(f∗WG)//G

��

// (WG)//G

��

// ∗//G

Y
f // WG

.

Applying the total simplicial object functor to this diagram gives the above commuting triangle on the right.
Clearly this construction is natural and hence provides a natural transformation Extr Rec⇒ q.

For the other natural trasformation, let now P → X be a weakly G-principal bundle. This induces the
following commutative diagram of simplicial objects (with P and X regarded as constant simplicial objects)

P oo

��

P ×X (P//G)

��

(P ×G)//G∼
φoo //

��

G//G

��
X oo P//G P//G // ∗//G

,

where the left and the right square are pullbacks, and where the top horizontal morphism φ is the degreewise
local weak equivalence which is degreewise induced by the shear map, composed with exchange of the two
factors.

Explicitly, in degree 0 the morphism φ is given on generalized elements by

(p′, g) (p′g, p′)�φ0oo

and in degree 1 by

(p′g, (p′, h))
_

d0

��

((p′, g), h)
_

d0

��

�φ1oo

(p′g, p′h) ((p′h, h−1g)�φ0oo

,

etc. Here the top horizontal morphisms also respect the right G-actions ρ induced from the weakly G-
principal bundle structure on P → X and on G//G→ ∗//G. For instance the respect of the right G-action
of φ in degree 0 is on elements verified by

((p′g, p′), k)
_
ρ

��

((p′, g), k)
_
ρ

��

�φ0oo

(p′gk, p′) ((p′, gk)
�φ0oo

.

The image of the above diagram under the total simplicial object functor, which preserves all the pullbacks
and weak equivalences involved, is

P oooo
∼

����

P ×X P/hG

����

(P ×G)/hG
∼oo //

����

WG

����
X oooo ∼

P/hG P/hG // WG

.

Here the total bottom span is the cocycle Extr(P ), and so the object (P ×G)/hG over X is Rec(Extr(P )).
Therefore this exhibits a natural morphism Rec ExtrP → P .
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Remark 3.3.129. By theorem 3.3.80 the simplicial set NCocycle(X,WG) is a presentation of the intrinsic
cocycle ∞-groupoid H(X,BG) of the hypercomplete ∞-topos H = Shhc

∞(C). Therefore the equivalence of
theorem 3.3.128 is a presentation of that of theorem 3.3.98,

GBund∞(X) ' H(X,BG)

between the ∞-groupoid of G-principal ∞-bundles in H and the intrinsic cocycle ∞-groupoid of H.

Corollary 3.3.130. For each weakly G-principal bundle P → X there is a weakly G-principal bundle P f

with a levelwise free G-action and a weak equivalence P f
∼−→ P of weakly G-principal bundles over X. In

fact, the assignment P 7→ P f is an homotopy inverse to the full inclusion of weakly G-principal bundles with
free action into all weakly G-principal bundles.

Proof. Note that the universal bundle WG→WG carries a free G-action, in the sense that the levelwise
action of Gn on (WG)n is free. This means that the functor Rec from the proof of theorem 3.3.128 indeed
takes values in weakly G-principal budles with free action. Hence we can set

P f := Rec(Extr(P )) = (P ×G)/hG .

By the discussion there we have a natural morphism P f → P and one checks that this exhibits the homo-
motopy inverse.

3.3.9 Twisted cohomology and sections

A slight variant of cohomology is often relevant: twisted cohomology. We formulate this in the general context
3.3.7 of nonabelian cohomology in an∞-topos, where it is naturally identified as the ordinary cohomology of
slice∞-toposes. We discuss how a cocycle in twisted cohomology thus defined is equivalently a section of an
associated∞-bundle. This is the picture which for the stable (abelian) cohomology over topological spaces is
familiar from [MaSi07] [AnBlGe10]. Also the notion of ∞-group cohomology with coefficients (in a module)
is a special case of twisted cohomology. Finally, twisted cohomology equivalently classifies extensions of
structure groups of ∞-bundles; this we discuss below in 3.3.10.

3.3.9.1 General abstract For H an ∞-topos, fix a morphism c : B → C. Write [c] ∈ H(B,C) for the
class that it represents in the C-cohomology of B, def. 3.3.70. Let C be pointed and write A → B for the
∞-fiber of c, so that we have a fiber sequence

A // B

c

��
C

.

We think of this now as exhibiting a universal coefficient ∞-bundle B → C with typical fiber A varying
over the base C. To the extent that B → C differs from the trivial A-bundle A× C → C, cohomology with
coefficients in B for fixed projection down to C is therefore a twisted version of cohomology with coefficients
in A.

Definition 3.3.131. We say that the twisted cohomology with coefficients in A relative to c is the intrinsic
cohomology of the over-∞-topos H/C with coefficients in f .

If c is understood and φ : X → B is any morphism, we write

H[φ](X,A) := H/C(φ, c)

and speak of the cocycle ∞-groupoid of twisted cohomology on X with coefficients in A and twist [φ] ∈
H(X,B) relative to [c] ∈ H(B,C).
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Proposition 3.3.132. We have the following immediate properties of twisted cohomology:

1. The [φ]-twisted cohomology relative to [c] indeed depends, up to equivalence, only on the characteristic
class [c] ∈ H(B,C) represented by c and also only on the equivalence class [φ] ∈ H(X,C) of the twist.

2. If the characteristic class is terminal, c : B → ∗ we have A ' B and the corresponding twisted
cohomology is ordinary cohomology with coefficients in A, even the cocycle ∞-groupoids are equivalent.

Proposition 3.3.133. For given characteristic cocycle c : B → C and a twist φ : X → C the cocycle
∞-groupoid of twisted A-cohomology on X is given by the ∞-pullback

H[φ](X,A) //

��

∗

φ

��
H(X,B)

c∗ // H(X,C)

in ∞Grpd.

Proof. This is an application of the general pullback-formula for hom-spaces in an over-∞-category,
[LuHTT] prop 5.5.5.12. �

Proposition 3.3.134. If the twist is trivial, φ = ∗ (meaning that it factors as φ : X → ∗ → C through the
point of the pointed object C), the corresponding twisted A-cohomology is equivalent to ordinary A-cohomology

H[∗](X,A) ' H(X,A) .

Proof. In this case the characterizing ∞-pullback diagram from prop. 3.3.133 is the image under the
hom-functor H(X,−) : H → ∞Grpd of the pullback diagram B

c→ C ← ∗. By definition of A as the
homotopy fiber of c, its pullback is A. Since the hom-functor H(X,−) preserves ∞-pullbacks the claim
follows:

Hφ=0(X,A) ' H(X,B)
∏

H(X,C)

H(X, ∗)

' H(X,B
∏
C

∗)

' H(X,A)

.

�
Often twisted cohomology is formulated in terms of homotopy classes of sections of a bundle (see for instance
section 22 of [MaSi07] and [AnBlGe10] for twisted cohomology over topological spaces (really: over bare
homotopy types) and with stable coefficients). The following discussion shows that this is equivalent to the
above definition.

Remark 3.3.135. By the discussion in 3.3.7 we may understand the twist φ : X → C as the cocycle for
an ΩC-principal ∞-bundle over X, being the ∞-pullback of the point inclusion ∗ → C along φ, where the
point is the homotopy-incarnation of the universal ΩC-principal ∞-bundle, by observation 3.3.109. The
characteristic class c : B → C in the fiber sequence

A //

��

B

c

��
∗ // C

we may think of as an A-fiber bundle associated to the universal ΩC-bundle ∗ → C. Accordingly the
∞-pullback Pφ := X ×C B is the associated A-bundle over X classified by φ.
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Proposition 3.3.136. Let Pφ := X ×C B be the ∞-pullback of the characteristic class c along the twisting
cocycle φ

Pφ //

p

��

B

c

��
X

φ // C

.

Then the φ-twisted A-cohomology of X is equivalently the space of sections ΓX(Pφ) of Pφ over X:

Hφ(X,A) ' ΓX(Pφ) ,

where on the right we have the ∞-pullback

ΓX(Pφ) //

��

∗

id

��
H(X,Pφ)

p∗ // H(X,X)

.

Proof. Consider the pasting diagram

H[φ](X,A)
' // Γφ(X)

��

// ∗

id

��
H(X,Pφ)

p∗ //

��

H(X,X)

φ∗

��
H(X,B)

c∗ // H(X,C)

.

Since the hom-functor H(X,−) preserves ∞-limits the bottom square is an ∞-pullback. By the pasting law
for ∞-pullbacks, prop. 2.3.1, so is then the total outer diagram. Noticing that the right vertical composite

is ∗ φ→ H(X,C) the claim follows with prop. 3.3.133. �

Remark 3.3.137. In applications one is typically interested in situations where the characteristic class
[c] and the domain X is fixed and the twist φ varies. Since by prop. 3.3.132 only the equivalence class
[φ] ∈ H(X,C) matters, it is sufficient to pick one representative φ in each equivalence class. Such a choice
is equivalently a choice of section

H(X,C)
=→ π0H(X,C)→ H(X,C)

of the 0-truncation projection H(X,C) → H(X,C) from the cocycle ∞-groupoid to the set of cohomology
classes. Notice that this is the minimal effective epimorphism out of a 0-truncated object into H(X,C) and
as such is unique up to equivalence. This justifies the following terminology.

Definition 3.3.138. With a characteristic class [c] ∈ H(B,C) with homotopy fiber A understood, we write

Htw(X,A) :=
∐

[φ]∈H(X,C)

H[φ](X,A)

for the total twisted cohomology : the union of all twisted cohomology cocycle ∞-groupoids.
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Observation 3.3.139. We have that Htw(X,A) is the ∞-pullback

Htw(X,A)
tw //

��

H(X,C)

��
H(X,B)

c∗ // H(X,C)

,

where the right vertical morphism in any collection of representative of twists, as in remark 3.3.137.

3.3.9.2 Presentations

Remark 3.3.140. When the ∞-topos H is presented by a model structure on simplicial presheaves as in
2.2.2 and presentations for X and C have been chosen, then the cocycle∞-groupoid H(X,C) is presented by
an explicit simplicial set H(X,C)simp ∈ sSet. Once these choices are made, there is therefore the inclusion
of simplicial presheaves

const(H(X,C)simp)0 → H(X,C)simp ,

where on the left we have the simplicially constant object on the vertices of H(X,C)simp. This morphism,
in turn, presents a morphism in ∞Grpd that in general contains a multitude of copies of the components of
any H(X,C)→ H(X,C) from remark 3.3.137, a multitude of representatives of twists for each cohomology
class of twists. Since by prop. 3.3.132 the twisted cohomology does not depend, up to equivalence, on the
choice of representative, the corresponding ∞-pullback yields in general a larger coproduct of ∞-groupoids
as the corresponding twisted cohomology. This however just contains copies of the homotopy types already
present in Htw(X,A) as defined above and therefore constitutes no additional information.

However, the choice of effective epimorphism H(X,C) → H(X,C), while unique up to equivalence, can
usually not be made functorially in X. Therefore twisted cohomology can have a representing object only if
one does consider multiple twist representatives in a suitable way. An example of this situation appears in
the discussion of differential cohomology below in 3.6.4.

3.3.10 Extensions and twisted bundles

We discuss the notion of extensions of ∞-groups, 3.3.6, generalizing the traditional notion of group exten-
sions. This is in fact a special case of the notion of principal ∞-bundle, 3.3.8, for base space objects that
are deloopings of ∞-groups. We also discuss the induced notion of extensions of structure ∞-groups of
principal ∞-bundles. These are the geometric structures classified by twisted cohomology, 3.3.9. We show
that principal ∞-bundles with an extended structure ∞-group are equivalent to principal ∞-bundles with
unextended structure ∞-group but carrying a principal ∞-bundle for the extending ∞-group on their total
space, which on fibers restricts to the given ∞-group extension.

Definition 3.3.141. We say a sequence of ∞-groups, def. 3.3.6,

A→ Ĝ→ G

in some ∞-topos H exhibits Ĝ as an extension of G by A if the corresponding delooping sequence, theorem
3.3.51,

BA→ BĜ→ BG

is a fiber sequence in H, def. 3.3.72.

Remark 3.3.142. If this fiber sequence extends one step further to the right to a morphism φ : BG→ B2A,
we have by def. 3.3.93 that BĜ → BG is the BA-principal ∞-bundle classified by the cocycle φ; and
BA→ BĜ is its fiber over the unique point of BG. These extensions are accordingly classified by

Ext(G,A) := H(BG,B2A) .
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Observation 3.3.143. By theorem 3.3.98 ∞-group extensions A → Ĝ → G induce and are entirely char-
acterized by G-actions, def. 3.3.83, on BA.

Definition 3.3.144. Given ∞-groups G and A, and G-actions on BA and on an object X ∈ H, we say
that an A-principal ∞-bundle P → X is G-twisted equivariant if the cocycle X → BA corresponding to it
by theorem 3.3.98 is a morphism of G-actions, def. 3.3.83.

Proposition 3.3.145. G-twisted equivariant A-principal ∞-bundles P → X are equivalent to cocycles
X//G→ BĜ, where Ĝ is the extension of G corresponding to the G-action on BA by observation 3.3.143.

Proof. For A = ∗ the trivial group, the statement reduces to theorem 3.3.98. The general proof works
along the same lines as the proof of that theorem. The key step is the generalization of prop. 3.3.95. The
proof proceeds verbatim as there, only with pt : ∗ → BG generalized to i : BA→ BĜ:

the morphism of G-actions X → BA and a choice of effective epimorphism U → X//G over which
X → X//G trivializes gives rise to a morphism in H∆[1]/(∗ → BG) which involves the diagram

U ×G // //

��

X //

��

BA

i
��

U // // X//G // BĜ

'

U ×G // //

��

BA

i
��

U // ∗
pt // BĜ

in H. (We are using that for the 0-connected object BĜ every morphism ∗ → BG factors through BĜ →
BG.) Here the total rectangle and the left square on the left are ∞-pullbacks, and we need to show that
then also the right square on the left is an ∞-pullback. Notice that by the pasting law the rectangle on the
right is indeed equivalent to the pasting of ∞-pullbacks

U ×G //

��

G //

��

BA

i
��

U // ∗
pt // BĜ

so that the relation
U×

n+1
X ×G ' i∗(U×

n+1
X )

holds. With this the proof finishes as in the proof of prop. 3.3.95, with pt∗ generalized to i∗. �

Definition 3.3.146. Given an ∞-group extension A // Ĝ
p // G and given a G-principal ∞-bundle

P → X in H, we say that an extension P̂ of P to a Ĝ-principal ∞-bundle is a lift ĝ of its classifying cocycle
g : X → BG through the extension:

BĜ

p

��
X

ĝ

==

g // BG

.

A morphism of extensions is a coherent homotopy between two such lifts. Accordingly, the ∞-groupoid of
extensions of P through relative to Ĝ→ G is

Ext(P ) := H/BG(g, p) ,

the p-twisted cohomology, def. 3.3.131 of X relative to the classifying cocycle g of P .

Observation 3.3.147. Given an ∞-group extension A→ Ĝ→ G an extension of a G-principal ∞-bundle
P → X to a Ĝ-principal ∞-bundle canonically induces an A-principal ∞-bundle P̂ → P with the following
properties
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1. P̂ → P is G-twisted equivariant, def. 3.3.144;

2. for every points x : ∗ → X the restriction of P̂ → P to the fiber Px is equivalent to the ∞-group
extension Ĝ→ G.

Proof. This follows from repeated application of the pasting law for ∞-pullbacks, prop. 2.3.1 applied to
the following diagram in H:

Ĝ //

��

P̂ //

��

∗

��
G //

��

P
q //

��

BA //

��

∗

��
∗ x // X

g

66
ĝ // BĜ // BG

.

The bottom composite g : X → BG is a cocycle for the given G-principal ∞-bundle P → X and it factors
through ĝ : X → BĜ by assumption of the existence of the extension P̂ → P .

Since also the bottom right square is an ∞-pullback by the given ∞-group extension, the pasting law
asserts that the square over ĝ is also am ∞-pullback, and then that so is the square over q. This exhibits P̂
as an A-principal ∞-bundle over P classified by the cocycle q on P . By prop. 3.3.145 this P̂ → P is twisted
G-equivariant.

Now choose any point x : ∗ → X of the base space as on the left of the diagram. Pulling this back upwards
through the diagram and using the pasting law and the definition of loop space objects G ' ΩBG ' ∗

∏
BG ∗

the diagram completes by ∞-pullback squares on the left as indicated, which proves the claim. �

Proposition 3.3.148. Given a G-principal ∞-bundle P → X, and an extension of ∞-groups A→ Ĝ→ G,
corresponding extensions of P are equivalent to twisted G-equivariant A-principal ∞-bundles P̂ → P .

Proof. By observation 3.3.147 and prop. 3.3.145. �

Examples 3.3.149. Below we discuss the following examples of this situation.

• 5.1.4 – String-principal 2-bundles are equivalently circle 2-bundles / bundle gerbes on the total space
of a Spin-principal bundle which restrict on each fiber to the canonical circle 2-bundle on Spin.

• 5.1.5 – Fivebrane-principal 6-bundles are equivalently circle 6-bundles on the total space of a String-
principal 2-bundle which restrict on each fiber to the canonical circle 6-bundle on String.

• 5.4.5 – AUT(U(1))-principal 2-bundles are equivalently orientifold circle 2-bundles (“Jandl bundle
gerbes”) on the underlying double cover.

3.3.11 Relative cohomology

We discuss the notion of relative cohomology internal to any ∞-topos H.

Definition 3.3.150. Let i : Y → X and f : B → A be two morphisms in H. We say that the ∞-groupoid
of relative cocycles on i with coefficients in f is the hom ∞-groupoid HI(i, f), where HI := Funct(∆[1],H).
The corresponding set of equivalence classes / homotopy classes we call the relative cohomology

HB
Y (X,A) := π0H

I(i, f) .
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When A is understood to be a pointed object, B = ∗ is the terminal object and f : B ' ∗ → A is the
point inclusion, we speak for short of the cohomology of X with coefficients in A relative to Y and write

HY (X,A) := H∗Y (X,A) .

Proposition 3.3.151. The ∞-groupoid of relative cocycles fits into an ∞-pullback diagram of the form

HI(i, f) //

��

H(X,A)

i∗

��
H(Y,B)

f∗ // H(Y,A)

.

Proof. Let C be an ∞-site of definition of H and

H ' ([Cop, sSet]proj,loc)◦

be a presentatin by simplicial presheaves as in 2.2.2. Then HI is presented by the, say, Reedy model structure
on simplicial functors from ∆[1] to simplicial presheaves

HI ' ([∆[1], [Cop, sSet]proj,loc]Reedy)◦ .

We may find for i : Y → X in H a presentation by a cofibration between cofibrant objects in [Cop, sSet]proj,loc,
and similarly for f : B → A a presentation by a fibration between fibrant objects. Let these same symbols
now denote these presentations. Then i is also cofibrant in the above presentation for HI and similarly f is
fibrant there.

This implies that the ∞-categorical hom space in question is given by the hom-simplicial set

HI(i, f) ' [∆[1], [Cop, sSet]](i, f) .

This in turn is computed as the 1-categorical pullback of simplicial sets

[∆[1], [Cop, sSet]](i, f) //

��

[Cop, sSet](X,A)

i∗

��
[Cop, sSet](Y,A)

f∗ // [Cop, sSet](Y,A)

.

Since [Cop, sSet] is a simplicial model category, and by assumption on our presentations for i and f , here
the bottom and the right morphism are Kan fibrations. Therefore by prop. 2.3.7 this presents a homotopy
pullback diagram, which proves the claim. �

Remark 3.3.152. This says in words that a cocycle relative to Y → X with coefficients in B → A is an
A-cocycle on X whose pullback to Y is equipped with a coboundary to a B-cocycle. In particular, in the
case that B ' ∗ it is an A-cocycle on X equipped with a trivialization of its pullback to Y .

In the case that B is not trivial, this definition of relative cohomology is a generalization of the twisted
cohomology discussed in 3.3.9.

Observation 3.3.153. Let c : X → A be a fixed A-cocycle on X. Then the fiber of the ∞-groupoid of
(i, f)-relative cocycles over c is equivalently the ∞-groupoid of [i∗c]-twisted cohomology on Y , according to
def. 3.3.131.
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Proof. By the pasting law, prop. 2.3.1 the relative cocycles over c sitting in the top ∞-pullback square
of

HI(i, f)|c //

��

∗

c

��
HI(i, f) //

��

H(X,A)

i∗

��
H(Y,B)

f∗ // H(Y,A)

also form the ∞-pullback of the total rectangle, which by 3.3.133 is the ∞-groupoid of [i∗c]-twisted cocycles
on Y . �

Remark 3.3.154. In the special case that the coefficients B and A have a presentation by sheaves of chain
complexes in the image of the Dold-Kan correspondence, prop. 2.2.31, the morphism i∗ : H(X,A)→ H(Y,A)
has a presentation by a morphism of cochain complexes and the above∞-pullback may be computed in terms
of the dual mapping cone on this morphism. Specicially in the case that B ' ∗ the homotopy pullback is
presented by that dual mapping cone itself, and hence the relative cohomology is the cochain cohomology of
the mapping cone on i∗. In this form relative cohomology is traditionally defined in the literature.

3.3.12 Representations and associated bundles

We discuss the notion of representations/actions/modules of ∞-groups in an ∞-topos and the structures
directly induced by this: the corresponding twisted cohomology is cohomology with coefficients in modules
(the generalization of group cohomology with coefficients in a module) and the corresponding notion of
associated ∞-bundles.

3.3.12.1 General abstract According to the discussion in 3.3.8 every action of an ∞-group G on an
object V is classified by a morphism out of V//G into BG.

Definition 3.3.155. For G ∈ Grp(H) an ∞-group, 3.3.6, and for V ∈ H any object, we say that a
representation or action of G on V is a fiber sequence in H of the form

V → V//G
ρ→ BG ,

where BG is the delooping of G according to theorem 3.3.51.
We say that the ∞-category of G-representations on V is the full sub-∞-category

RepG(V ) ↪→ H/BG

of the over-∞-category H/BG on those morphisms whose homotopy fiber is V .

We call V//G the action ∞-groupoid of the action of G on V .

Remark 3.3.156. While every representation of G on V may be regarded as a principal action with respect
to the quotient map V → V//G, the morphisms of G-representations are different from those of G-principal
∞-bundles. The latter preserve the base space V//G, but the former preserve the total space V .

Proposition 3.3.157. For ρ an action as in def. 3.3.155, we have an ∞-pullback diagram

V ×G
ρ̃ //

p1

��

V

��
V // V//G

,

where the left vertical morphism is the projection on the first factor.
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Proof. Consider the pasting diagram

V ×G
ρ̃ //

��

V //

��

∗

��
V // V//G

ρ // BG

,

where the right square is the defining ∞-pullback, and where we define the left square to be an ∞-pullback.
We need to show that it can be chosen of the form claimed. For this notice that, by definition of fiber
sequence, the bottom composite morphism is equivalent to V → ∗ → BG. By the pasting law, prop. 2.3.1,
therefore the pullback in question is given, up to equivalence, by the left vertical morphism in the pasting
diagram of ∞-pullbacks

V ×G //

��

G

��

// ∗

��
V // ∗ // BG

.

This exhibits the left vertical morphism as the projection out of the product of V with G on the first factor.
�
The top horizontal morphism

ρ̃ : V ×G→ V

is the actual action operation, which sends a pair of elements (v, g) to the image of v under the action of the
group element g.

Observation 3.3.158. For ρ : V//G→ BG a representation, the object V//G is indeed the ∞-quotient of
the action ρ̃ : V ×G→ V given by prop. 3.3.157.

Proof. As in the discussion in 3.3.8, the ∞-quotient is the ∞-colimit over the simplicial action diagram

· · ·
//
//
//
//
V ×G×G×G

//
//
// V ×G×G

//
// V ×G

ρ̃ // V .

By iteration of the step in the proof of prop. 3.3.157 this is seen to be the simplicial nerve of ρ. Therefore
the claim follows by the Giraud-Lurie property of ∞-toposes (quotients are effective). �

Definition 3.3.159. For V → V//G
ρ→ BG an ∞-group representation and v : ∗ → V a global element, we

say that the loop ∞-group
Stabρ(v) := Ωv(V//G) ,

hence the ∞-pullback in

Ωv(V//G) //

��

∗

v

��
V

��
∗ v // V // V//G

is the stabilizer ∞-group or isotropy ∞-group of v under ρ.
We say that the action ρ is (globally) free if the stabilizer ∞-groups for all global points are all trivial.
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Example 3.3.160. For every ∞-group G, the defining fiber sequence

G→ ∗ → BG

encodes the canonical action of G on itself (by left or right multiplication).
The unique global stabilizer∞-group according to def. 3.3.159 is manifestly trivial and hence this action

is indeed free.

Example 3.3.161. More generally, let f : W → V be any morphism (hence a “non-global element” of V ).
Then we may ask for the stabilizer of W in V under G.

We have an induced representation [W,V ]//G → BG on the internal hom object [W,V ] given by the
∞-pullback

[W,V ]//G //

��

[W,V//G]

[W,ρ]

��
BG // [W,BG]

,

where the bottom morphism is the hom-adjunct of the projection W ×BG→ BG.
The stabilizer of Y in V is then Stab(f) := Ωf ([W,V ]//G).

Observation 3.3.162. The stabilizer ∞-group of any ρ : V//G → BG and v : ∗ → V comes canonically
equipped with a morphism of ∞-groups

iv : Stabρ(v)→ G

given as the top left horizontal morphism in the following pasting composite of ∞-pullback squares

Stabρ(v)
iv //

��

G //

��

∗

v

��
∗ v // V //

��

V//G

��
ρ

��
∗ // BG

.

Proof. The bottom square is an∞-pullback by def. 3.3.155. After defining the top right square to be an
∞-pullback, the pasting law, prop. 2.3.1, and def. 3.3.49 identify the object in the top middle as G. (The
universal morphism G → X appearing here may be thought of as carrying g ∈ G to the image of x under
the action of g.) Again with the pasting law the top left object in the top left ∞-pullback is identified as
the stabilizer.

Noticing now that if we regard V and V//G as objects pointed by v, then according to def. 3.3.72 we
have produced the long fiber sequence

Stabρ(v)
iv // G // V // V//G

ρ // BG .

This exhibits iv as the looping of ρ,
iv ' Ωv ρ ,

and hence as a homomorphism of ∞-groups. �

Every ∞-group representation ρ : V//G→ BG induces the following variants of cohomology, 3.3.7:

1. ∞-Group cohomology on G with coefficients in V ;

2. twisted V -cohomology on any object X equipped with a G-principal ∞-bundle.
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The first is the special case of the latter for the universal principal ∞-bundle. This we now discuss.

Definition 3.3.163. For G an ∞-group with representation ρ on V , we say that the ∞-group cohomology
of G with coefficients in V Hgrp,ρ(G,V ), is the IdBG-twisted cohomology with respect to ρ, according to
3.3.9.

This means that a cocycle in the ∞-group cohomology of G with coefficients in V is a section σ of the
form

V//G

ρ

��
BG

Id //

σ
;;

BG

.

In particular for ρ the trivial representation on V , we have

Hgrp,triv(G,V ) := π0H(BG,V ) .

If V = A is an abelian ∞-group, then we write, as usual

Hn
grp(G,A) := π0H(BG,BnA) .

We discuss how this reproduces the traditional notion of group cohomology below in 4.1.5.1.

Definition 3.3.164. For ρ : X//G → BG an action of an ∞-group G on an object X ∈ H, we say that
the cohomology, def. 3.3.70, of X//G is the ρ-equivariant cohomology of X, or, if the context is clear, the
G-equivariant cohomology of X. For A ∈ H any coefficient object, we write

HG(X,A) := H(X//G,A) .

Remark 3.3.165. Definitions 3.3.163 and 3.3.164 overlap for the case that V = ∗: for G an ∞-group, its
group cohomology is equivalently the G-equivariant cohomology of the point.

Definition 3.3.166. For P → X a G-principal ∞-bundle, def. 3.3.93, and g : X → BG a corresponding
cocycle, we say that the ρ-associated V -bundle to P is the ∞-pullback E in

E

��

// V//G

ρ

��
X

g // BG

.

Observation 3.3.167. For x : ∗ → X any point of X, the ∞-fiber of the associated bundle E → X over x
is V , in that we have an ∞-pullback diagram

V //

��

E

��
∗ // X

.

Proof. Consider the diagram

V //

��

E //

��

V//G

ρ

��
∗ x // X

g // BG

.

The right square is an ∞-pullback by def. 3.3.166. If now the left square is assumed to be an ∞-pullback it
follows by the pasting law 2.3.1 that so is the total rectangle. Since points ∗ → BG are essentially unique,
this identifies V by def. 3.3.155. �
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Example 3.3.168. The defining morphism ρ : V//G → BG is the V -∞-bundle that is ρ-associated to the
universal G-principal ∞-bundle.

We discuss ordinary associated vector bundles from the above perspective below in 5.4.2.

3.3.12.2 Presentation in locally fibrant simplicial sheaves We discuss associated ∞-bundles in an
∞-topos H = Sh∞(C) in terms of the presentation of H by locally fibrant simplicial sheaves, corresponding
to the respective presentation of principal ∞-bundles from 3.3.8.4.

Let C be a site with terminal object.
By prop. 3.3.67 every∞-group over C has a presentation by a sheaf of simplicial groupsG ∈ Grp(sSh(C)lfib).

Moreover, by theorem 3.3.128 every ∞-action of G on an object V , def. 3.3.155, is exhibited by a weakly
principal simplicial bundle

V // V/hG

ρ

��
WG

.

By example 3.3.168 this is a presentation for the universal ρ-associated V -bundle.
We now spell out what this means in the presentation.

Lemma 3.3.169. The morphism V/hG→WG is a local fibration.

Proof. By the same argument as in the proof of theorem 3.3.124. �

Proposition 3.3.170. Let P → X in sSh(C)lfib be a weakly G-principal bundle with classifying cocycle

X
'← X̂

g→ WG. Then the corresponding ρ-associated ∞-bundle, def. 3.3.166, is presented by the ordinary
V -associated bundle P ×G V formed in sSh(C)lfib.

Proof. By def. 3.3.166 the associated∞-bundle is the∞-pullback of V//G→ BG along g. Using lemma
3.3.169 in prop. 2.3.11 we find that this is presented already by the ordinary pullback of V/hG→WG along
g. By prop. 3.3.105 this in turn is isomorphic to the pullback of V ×G WG → WG. Since sSh(C) is a
1-topos, pullbacks preserve quotients, and so this pullback finally is

g∗(WG×G V ) ' (g∗WG)×G V ' P ×GWG.

�

3.3.13 Gerbes

We now consider a notion of ∞-bundles that are not principal, 3.3.8, but are associated to principal ∞-
bundles [NSSb]. This notion makes sense generally in any∞-topos, but it is of interest in∞-toposes X that
one thinks of as being “petit”: such as that over a fixed topological space X (X := Sh∞(Op(X))), or such
as any of the slice toposes

X := H/X

for H any big ∞-topos and X ∈ X an object.
In all these cases the external object X is internally the terminal object, and so we shall write X := ∗ ∈ X .

The original definition of a gerbe on X [Gir71] is: a stack E (i.e. a 1-truncated ∞-stack) that is
locally connected and locally non-empty. In more intrinsic terms, these two conditions simply say that E
is connected : the 0th homotopy sheaf is terminal, π0(E) ' ∗ (and the morphism E → ∗ is an effective
epimorphism). This modern reformulation is made explicit in the literature for instance in section 5 of
[JaLu04] and in section 7.2.2 of [LuHTT].
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Definition 3.3.171. For X an ∞-topos, a gerbe in X is an object E ∈ X which is

1. connected;

2. 1-truncated.

Remark 3.3.172. Notice that this definition a priori has little in common with the definition that has been
given the name bundle gerbe (reviewed for instance in [NiWa11]). Bundle gerbes are instead presentations
of total spaces of principal ∞-bundles (or the cocycles that define them). The classification result below in
3.3.182 exhibits the relation between the two concepts.

This definition has various obvious generalizations. The following is considered in [LuHTT].

Definition 3.3.173. For n ∈ N, an EM n-gerbe is an object E ∈ X which is

1. n-connective = (n− 1)-connected;

2. n-truncated.

Remark 3.3.174. This is almost the definition of an Eilenberg-MacLane object in X , only that the condition
requiring a global section ∗ → E (hence X → E) is missing. Indeed, the Eilenberg-MacLane objects of degree
n in X are precisely the EM n-gerbes of trivial class, according to proposition 3.3.182 below.

There is also an earlier established definition of 2-gerbes in the literature [Br94], which is more general
than EM 2-gerbes. Stated in the above fashion it reads as follows.

Definition 3.3.175. A 2-gerbe in X an object E ∈ X which is

1. connected;

2. 2-truncated.

This definition has an evident generalization to arbitrary degree, which we shall adopt.

Definition 3.3.176. An n-gerbe in X is an object E ∈ X which is

1. connected;

2. n-truncated.

An ∞-gerbe is a connected object.
Write GGerbe ⊂ X for the core (the maximal ∞-groupoid inside) the full sub-∞-category of X on the

G-∞-gerbes.

Remark 3.3.177. Therefore ∞-gerbes (and hence EM n-gerbes and 2-gerbes and hence gerbes) are much
like deloopings of ∞-groups, as in 3.3.6, only that there is no requirement that there exists a global section.
An ∞-gerbe for which there is a morphism ∗ = X → E we call trivializable. By theorem 3.3.51 trivializable
and (canonically) pointed ∞-gerbes are equivalent to ∞-group objects in X .

But locally every ∞-gerbe E is of this form. For let

(x∗ a x∗) : ∞Grpd
oo x∗

x∗
// X

be a point of the ∞-topos X (a geometric morphism from the terminal ∞-topos). Then the stalk x∗E ∈
∞Grpd of the ∞-gerbe is 1-connective: because inverse images preserve the finite ∞-limits involved in the
definition of homotopy sheaves, and preserve the terminal object. Therefore

π0x
∗E ' x∗π0E ' x∗∗ ' ∗ .

Hence for every point x we have a stalk ∞-group Gx and an equivalence

x∗E ' BGx .

Therefore one is interested in the following notion.
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Definition 3.3.178. For G ∈ ∞Grp(X ) an ∞-group object, a G-∞-gerbe is an ∞-gerbe E such that there
exists

1. an effective epimorphism U → ∗;

2. an equivalence E|U ' BG|U .

In words, using the discussion of 3.3.8, this says that a G-∞-gerbe is one that locally looks like the
∞-stack of G-principal ∞-bundles.

Example 3.3.179. For X a topological space and X = Sh∞(X) the ∞-topos of ∞-sheaves over it, these
notions reduce to the following.

• a 0-truncated group object G ∈ Grp(X ) ⊂ ∞Grp(X ) is a sheaf of groups on X;

• for {Ui → X} any open cover, the canonical morphism
∐
i Ui → X is an effective epimorphism to the

terminal object;

• BGUi is the stack of G|Ui -torsors.

It is clear that one way to construct a G-∞-gerbe should be to start with an Aut(BG)-principal∞-bundle
and then canonically associate a fiber ∞-bundle to it, def. 3.3.166.

Definition 3.3.180. For F ∈ X any object, write

Aut(F ) ↪→ [F, F ] ∈ X

for the maximal subobject on the internal hom [F, F ] on those elements that are equivalences F
'→ F . For

G ∈ ∞Grp(X ) we write
AUT(G) := Aut(BG) .

Example 3.3.181. For G ∈ Grp(∞Grpd) an ordinary group, AUT(G) is usually called its automorphism
2-group. Its underlying groupoid is equivalent to

AutGrp(G)×G
p1(−)·Ad(p2(−)) //

p1

// AutGrp(G) .

In terms of def. 5.4.1 below, this is the action groupoid of G acting on Aut(G) by the morphism Ad : G→
Aut(G).

We have the following classification theorem for ∞-gerbes.

Theorem 3.3.182. Let X be a 1-localic ∞-topos (one that has a 1-site of definition).
For G ∈ ∞Grp(X ) any ∞-group object, G-principal ∞-gerbes are classified by AUT(G)-cohomolohy:

π0GGerbe ' π0X (∗,BAUT(G)) =: H1
X (X,AUT(G)) .

A G-gerbe E has trivial AUT (G)-cohomology precisely if it has a global section X → E. Moreover, the
equivalence is induced by sending an AUT(G)-principal ∞-bundle to its canonically associated ∞-bundle
with fiber BG.

Proof. Inspection shows that this statement is a special case of the more general classification result in
[We11], namely the special case where the fiber object F in that account is F = BG.

In that case

1. definition 3.5 there is the definition of G-∞-gerbe here;

2. the object denoted “B(∗,hAut•(F ), ∗)” there (the two-sided bar construction on a simplicial group
representation of AUT(G)) presents the object denoted BAUT(G) here;
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3. theorem 5.10 there is then the statement to be proven here.

Under this equivalence AUT(G)-cocycles are sent to pullbacks of the universal BG-fibration. One sees that
this is a fibration presentation of an effective epimorphism. Therefore the pullback is a homotopy pullback
of an effective epimorphism and hence itself an effective epimoprhism. Therefore the corresponding G-gerbes
indeed sit by an effective epimorpism over X. �
For the case that G is 0-truncated (an ordinary group object) this is also the content of theorem 23 in
[JaLu04].

Examples 3.3.183. For G ∈ Grp(X ) ⊂ ∞Grp(X ) an ordinary 1-group object, this reproduces the classical
result of [Gir71], which originally motivated the whole subject: by example 3.3.181 in this case AUT(G) is
the traditional automorphism 2-group and

H1
X (X,AUT(G))

is Giraud’s nonabelian G-cohomology that classifies G-gerbes.
For G ∈ 2Grp(X ) ⊂ ∞Grpd(X )a 2-group, we recover the classification of 2-gerbes as in [Br94][Br06].

Remark 3.3.184. In section 7.2.2 of [LuHTT] the special case that here we called EM-n-gerbes is considered.
Beware that there are further differences: for instance the notion of morphisms between n-gerbes as defined
there is more restrictive than considered here. Notably with our definition (and hence also that of [Br94]) each
group automorphism of an abelian group object A induces an automorphism of the trivial A-2-gerbe B2A.
But, except for the identity, this is not admitted in [LuHTT] (manifestly so by the diagram above lemma
7.2.2.24 there). Accordingly, the classification result in [LuHTT] is different: it involves the cohomology
group Hn+1

X (X,A). Notice that there is a canonical morphism

Hn+1
X (X,A)→ H1

X (X,AUT BnA)

from this cohomology group to the one we find with our definition, induced from the canonical morphism
Bn+1A→ Aut(BnA).

Remark 3.3.185. By prop. 3.3.182 we may effectively think of G-∞-gerbes in terms of the AUT(G)-
principal ∞-bundles that they are associated to. As for ordinary associated bundles, this way most notions
for principal∞-bundles carry over to∞-gerbes. For instance an∞-connection on a G-∞-gerbe we may take
to be an ∞-connection on the corresponding principal ∞-bundle, discussed below in 3.6.5.

From the classification prop. 3.3.182 are naturally derived the following further notions.

Definition 3.3.186. Fix k ∈ N. For G ∈ ∞Grp(X ) a k-truncated ∞-group object (a (k + 1)-group), write

Out(G) := τkAUT(G)

for the k-truncation of AUT(G). (Notice that this is still an ∞-group, since by lemma 6.5.1.2 in [LuHTT]
τn preserves all ∞-colimits but also all products.) We call this the outer automorphism n-group of G.

Example 3.3.187. For G ∈ Grpd(∞Grpd) an ordinary group, Out(G) is the coimage of Ad : G→ Aut(G),
which is the traditional group of outer automorphisms of G.

Notice that by definition there is a canonical morphism

BAUT(G)→ BOut(G) .

Definition 3.3.188. Write B2Z(G) for the ∞-fiber of this morphism, fitting into a fiber sequence

B2Z(G)→ BAUT(G)→ BOut(G) .

We call Z(G) the center of the ∞-group G.
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Example 3.3.189. For X = ∞Grpd and k = 0 we have that G is an ordinary discrete group, AUT(G) is

the strict 2-group coming from the crossed module, def. 1.3.6, [G
Ad→ Aut(G)] and the canonical morphism

of crossed modules
G //

Ad

��

∗

��
Aut(G) // Out(G)

induces a fibration of connected 2-groupoids. Therefore its homotopy fiber is equivalent to its ordinary fiber,

which is given by the crossed complex [G
Ad→ Inn(G)]. This is weakly equivalent to the 2-group BZ(G) given

by the crossed module [Z(G)→ 1], where Z(G) is the center of G in the traditional sense.

By theorem 3.3.182 this induces a morphism

Band : π0GGerbe→ H1
X (X,Out(G)) .

Definition 3.3.190. For E ∈ GGerbe we call Band(E) the band of E.
Fix an element [K] ∈ H1

X (X,Out(G)). The∞-groupoid GGerbeK of K -banded gerbes is the∞-pullback

GGerbeK //

��

∗

K

��
X (X,BAUT(G)) // X (X,BOut(G))

.

Remark 3.3.191. To even specify the band we need to have the group object G specified. More in detail
the data of a K-banded gerbe is therefore a pair (G ∈ ∞Grp(X ), [K] ∈ H1

X (X,Out(G))). For instance if
G an abelian group then the class [K] is necessarily trivial, and so G itself is the information given by the
band.

Observation 3.3.192. For K = ∗ the trivial band, it follows from the universality of the ∞-bullback that

π0(GGerbeK=∗) ' H2
X (X,Z(G)) .

Therefore for general K we may think of π0GGerbeK as the K-twisted Z(G)-cohomology, def. 3.3.131, in
degree 2 (which of course may itself be cohomology in higher degree when Z(G) itself is higher connected).

Example 3.3.193. For G a 0-truncated group object this reduces to the notion of band as introduced in
[Gir71].

3.4 Structures in a local ∞-topos

We discuss structures present in a local ∞-topos, def. 3.1.5.

• 3.4.1 – Codiscrete objects;

• 3.4.2 – Concrete objects.

3.4.1 Codiscrete objects

Observation 3.4.1. The cartesian internal hom [−,−] : Hop × H → H is related to the external hom
H(−,−) : Hop ×H→∞Grpd by

H(−,−) ' Γ[−,−] ..
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Proof. The ∞-Yoneda lemma implies, by the same argument as for 1-categorical sheaf toposes, that the
internal hom is the ∞-stack given on any test object U by

[X,A](U) ' H(U, [X,A]) ' H(X × U,A).

By prop. 2.2.3 the global section functor Γ is given by evaluation on the point, so that

Γ([X,A]) ' H(∗, [X,A]) ' H(X × ∗, A) ' H(X,A) .

�

Proposition 3.4.2. The codiscrete objects in a local ∞-topos, hence in a cohesive ∞-topos, H are stable
under internal exponentiation: for all X ∈ H and A ∈ ∞Grpd we have

[X, coDiscA] ∈ H

is codiscrete. Specifically, the internal hom into a codiscrete object is the codiscretificartion of the external
hom

[X, coDiscA] ' coDiscH(X, coDiscA) .

Proof. The internal hom is the ∞-stack given by the assignment

[X, coDiscA] : U 7→ H(X × U, coDiscA) .

By the (Γ a Disc)-adjunction the right hand is

' ∞Grpd(Γ(X × U), A) .

Since Γ is also a right adjoint it preserves the product, so that

· · · ' ∞Grpd(Γ(X)× Γ(U), A) .

Using the cartesian closure of ∞Grpd this is

· · · ' ∞Grpd(Γ(U), [Γ(X), A]) .

Using again the (Γ a coDisc)-adjunction this is

· · · ' H(U, coDisc[Γ(X), A]).

Since all of these equivalence are natural, with the ∞-Yoneda lemma it finally follows that

[X, coDiscA] ' coDisc∞Grpd(Γ(X), A) ' coDiscH(X, coDiscA) .

�

3.4.2 Concrete objects

The cohesive structure on an object in a cohesive ∞-topos need not be supported by points. We discuss
a general abstract characterization of objects that do have an interpretation as bare n-groupoids equipped
with cohesive structure.

The content of this section is taken from [CarSch].
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Proposition 3.4.3. On a cohesive ∞-topos H both Disc and coDisc are full and faithful ∞-functors and
coDisc exhibits ∞Grpd as a sub-∞-topos of H by an ∞-geometric embedding

∞Grpd
oo Γ
� �

coDisc
// H .

Proof. The full and faithfulness of Disc was shown in prop. 3.1.3 and that for coDisc follows from the
same kind of argument. Since Γ is also a right adjoint it preserves in particular finite ∞-limits, so that
(Γ a coDisc) is indeed an ∞-geometric morphism. �

Corollary 3.4.4. The∞-topos∞Grpd is equivalent to the full sub-∞-category of H on those objects X ∈ H
for which the canonical morphism

X → coDisc ΓX

is an equivalence.

Proof. This follows by general facts about reflective sub-∞-categories ([LuHTT], section 5.5.4). �

Proposition 3.4.5. Let H be the ∞-topos over an ∞-cohesive site C. For a 0-truncated object X in H the
morphism

X → coDisc ΓX

is a monomorphism precisely if X is a concrete sheaf in the traditional sense of [Dub79].

Proof. Monomorphisms of sheaves are detected objectwise. So by the Yoneda lemma and using the
(Γ a coDisc)-adjunction we have that X → coDisc ΓX is a monomorphism precisely if for all U ∈ C the
morphism

X(U) ' H(U,X)→ H(U, coDisc ΓX) ' H(Γ(U),Γ(X))

is a monomorphism. This is the traditional definition. �

Definition 3.4.6. We say

• an object X ∈ H is n-concrete if it is n-truncated and the unit X → coDiscΓX is an (n− 1)-truncated
morphism;

• a k-truncated object for k ≤ 0 is concrete if it is 0-concrete;

• an object that is not k-truncated for k ≤ 0 is concrete if, recursively,

1. it has a concrete atlas: an effective epimorphism U → X where U is 0-concrete;

2. the ∞-pullback U ×X U is itself concrete.

We write Conc(H) ↪→ H for the full sub-∞-category on the concrete objects.

Remark 3.4.7. For untruncated objects the above recursion never terminates: an untruncated object is
concrete if it has a concrete atlas, whose fiber product with itself has a concrete atlas, and so forth. For an
n-truncated object the last recursion step requires a 0-concrete atlas whose fiber product is 0-concrete.

Observation 3.4.8. The restriction of Γ and Π to Conc(H) yields a quadruple of adjunctions

(Π a Disc a Γ a coDisc) : Conc(H)

Π //
oo Disc ? _

Γ //
oo

coDisc
? _
∞Grpd ,

where Π preserves finite products.
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Proof. Since Conc(H) is a full sub-∞-category it suffices to check that Disc, coDisc :∞Grpd→ H both
factor through the inclusion Conc(H) ↪→ H. For coDisc this is evident. For Disc this follows from the
content of the third axiom on a cohesive ∞-topos: discrete objects are concrete. �

Definition 3.4.9. For X ∈ H a k-truncated object, we say its k-concretification, conckX, is the k-image
factorization, according to prop. 3.3.33, of the (Γ a coDisc)-unit

X //

##

coDisc ΓX

conckX

88 .

We discuss aspects of n-concrete objects for low n.

Observation 3.4.10. A 1-functor between 1-groupoids is n-truncated as a morphism of ∞-groupoids pre-
cisely if

• for n = −2 it is an equivalence of categories;

• for n = −1 it is a full and faithful functor;

• for n = 0 it is a faithful functor.

Proof. We consider the case n = 0. A functor f : X → Y between groupoids being faithful is equivalent
to the induced morphisms on first homotopy groups being monomorphisms. Therefore for F → X → Y the
homotopy fiber over any point of Y , the long exact sequence of homotopy groups yields

· · · → π1(F )→ π1(X)
f∗
↪→ π1(Y )→ · · ·

and hence realizes π1(F ) as the kernel of an injective map. Therefore π(F ) ' ∗ and hence F is 0-truncated
for every basepoint. This is the defining condition for f being 0-truncated. �

Proposition 3.4.11. Let C be a site and let f : X → Y be a morphism of presheaves of groupoids on
C which, under the nerve, are fibrant objects in [Cop, sSet]proj,loc. If f is objectwise a) an equivalence, b)
full and faithful or c) faithful, then the morphism presented by f in H := Sh∞(X) is a) -2-truncated, b)
(-1)-truncated, c) 0-truncated, respectively.

Proof. We need to compute for every A ∈ H the homotopy fibers of H(A, f). Since by assumption X
and Y are fibrant presentations, we may pick any cofibrant presentation of A and obtain this morphism as
[Cop, sSet](A, f). This is the nerve of a functor of groupoids which is a) an equivalence, b) full and faithful
or c) faithful, respectively. The statement then follows with observation 3.4.10. �

Proposition 3.4.12. Let C be an ∞-cohesive site, 3.1.2.1, and let A ∈ Sh∞(C) be a 1-truncated object
that has a presentation by a groupoid-valued presheaf on C which is fibrant as a simplicial presheaf. Then
it is 1-concrete if in degree 1 this is a concrete sheaf. Moreover, its 1-concretification, def. 3.4.9, has a
presentation by a presheaf of groupoids which in degree 1 is a concrete sheaf.

Proof. Any functor f : X → Y between groupoids has a factorization X → im1f → Y , where the
groupoid im1f has the same objects as X and has as morphisms equivalence classes [ξ] of morphisms ξ in X
under the relation [ξ1] = [ξ2] precisely if f(ξ1) = f(ξ)2. The evident functor im1f → Y is manifestly faithful
and this factorization is natural. Therefore if now f is a morphism of presheaves of groupoids, it, too, has a
factorization wich is objectwise of this form.
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By the discussion in 3.1.2.1, over an ∞-cohesive site the units ηX : X → ]X of the (Γ a coDisc)-
∞-adjunction are presented for fibrant simplicial presheaf representatives X by morphisms of simplicial
presheaves that object- and degreewise send the value set of a presheaf to the set of concrete values. By the
previous paragraph and prop. 3.4.11 it follows that the 1-image factorization X → im1ηX → ]X is in the
second morphism objectwise a faithful functor. This means that the hom-presheaf (im1ηX)1 is a concrete
sheaf on C. �

Proposition 3.4.13. Let f : X → Y be a morphism between presheaves of groupoids that are fibrant as
objects of [Cop, sSet]proj, and such that f is objectwise an essentially surjective and full functor.

Then f presents a 0-connected morphism in Sh∞(C).

Proof. One checks that functors between 1-groupoids are 0-connected as morphisms in∞Grpd precisely
if they are essentially surjective and faithful.

The direction (eso+full) ⇒ 0-connected of this argument goes through objectwise. �

3.5 Structures in a locally ∞-connected ∞-topos

We discuss here homotopical, cohomological and geometrical structures that are canonically present in a
locally ∞-connected ∞-topos H, 3.1.1. The existence of the extra left adjoint Π for a locally ∞-connected
∞-topos encodes an intrinsic notion of geometric paths in the objects of H.

If H is in addition cohesive, then these Π-geometric structures combine with the cohomological structures
of a local∞-topos, discussed in 3.4 to produce differential geometry and differential cohomological structures.
This we discuss below in 3.6.

• 3.5.1 – Geometric homotopy / Cohesive A1-homotopy

• 3.5.2 – Concordance

• 3.5.3 – Paths and geometric Postnikov towers

• 3.5.4 – Universal coverings and geometric Whitehead towers

• 3.5.5 – Flat connections and local systems

• 3.5.6 – Galois theory

3.5.1 Geometric homotopy / Cohesive A1-homotopy

We discuss internal realizations of the notions of geometric realization, and geometric homotopy in any
cohesive ∞-topos H.

Definition 3.5.1. For H a locally ∞-connected ∞-topos and X ∈ H an object, we call Π(X) ∈ ∞Grpd
the fundamental ∞-groupoid of X.

The ordinary homotopy groups of Π(X) we call the geometric homotopy groups of X

πgeom
• (X ∈ H) := π•(Π(X ∈ ∞Grpd)) .

Definition 3.5.2. For | − | :∞Grpd
'→ Top the canonical equivalence of ∞-toposes, we write

|X| := |ΠX| ∈ Top

and call this the geometric realization of X.

216



Remark 3.5.3. In presentations of H by simplicial presheaves, as in prop. 3.1.19, aspects of this abstract
notion are more or less implicit in the literature. See for instance around remark 2.22 of [SiTe]. The key
insight is already in [ArMa69], if somewhat implicitly. This we discuss in detail in 4.3.4.

In some applications we need the following characterization of geometric homotopies in a cohesive ∞-
topos.

Definition 3.5.4. We say a geometric homotopy between two morphisms f, g : X → Y in H is a diagram

X

(Id,i)

��

f

""
X × I

η // Y

X

(Id,o)

OO

g

<<

such that I is geometrically connected, πgeom0 (I) = ∗.

Proposition 3.5.5. If two morphism f, g : X → Y in a cohesive ∞-topos H are geometrically homotopic
then their images Π(f),Π(g) are equivalent in ∞Grpd.

Proof. By the condition that Π preserves products in a strongly∞-connected∞-topos we have that the
image of the geometric homotopy in ∞Grpd is a diagram of the form

Π(X)

(Id,Π(i))

��

Π(f)

&&
Π(X)×Π(I)

Π(η) // Π(Y )

Π(X)

(Id,Π(o))

OO

Π(g)

88

Since Π(I) is connected by assumption, there is a diagram

∗

Π(i)

��
∗

==

!!

// Π(I)

∗

Π(o)

OO

in∞Grpd (filled with homotopies, which we do not display, as usual, that connect the three points in Π(I)).
Taking the product of this diagram with Π(X) and pasting the result to the above image Π(η) of the geo-
metric homotopy constructs the equivalence Π(f)⇒ Π(g) in ∞Grpd. �

We now formalize the situation in which the higher analogs of this statement are all naturally true. Notice
([LuHTT], section 5) that the ∞-topos H, being in particular a presentable ∞-category, admits a choice of
a small set {ci}i of generating objects, and that every small set of morphisms in H induces a full reflective
sub-∞-category of objects that are local with respect to these morphisms.
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Definition 3.5.6. For H a cohesive ∞-topos, we say an object I ∈ H is an geometric interval exhibiting
the cohesion of H if the reflective inclusion of the discrete objects

(Π a Disc) : ∞Grpd
oo Π
� �

Disc
// H

is induced by the localization at the set of morphisms

S := {ci × (I → ∗)}i, ,

for {ci}i some small set of generators of H.

Remark 3.5.7. In this situation, for X ∈ H we may think of Π(X) also as the I-localization of X.

A class of examples of this situation is the following.

Proposition 3.5.8. Let C be an ∞-cohesive site, def. 3.1.18, which moreover is the syntactic category of
a Lawvere algebraic theory (see chapter 3, volume 2 of [Borc94]), in that it has finite products and there is
an object

A1 ∈ C

such that every other object is isomorphic to an n-fold cartesian product An = (A1)n.
Then A1 ∈ C ↪→ Sh∞(C) is a geometric interval exhibiting the cohesion of the ∞-topos over C.

Proof. A set of generating objects of H = Sh∞(C) is given by the set of isomorphism classes of objects
of C, hence, by assumption, by {An}n∈N. The set of localizing morphisms is therefore

S := {An+1 → An | n ∈ N} .

By prop. 3.1.19, H is presented by the model category [Cop, sSet]proj,loc. By the proof of [LuHTT] cor.
A.3.7.10 the localization of H as S is presented by the left Bousfield localization of this model category at
S, given by a Quillen adjunction to be denoted

(LA1 a RA1) : [Cop, sSet]proj,loc,A1
oo id

id
// [Cop, sSet]proj,loc .

Observe that we also have a Quillen adjunction

(const a (−)∗) : [Cop, sSet]proj,loc,A1

oo const

(−)∗

// sSetQuillen ,

where the right adjoint evaluates at the terminal object A0, and where the left adjoint produces constant
simplicial presheaves. This is because the two functors are clearly a Quillen adjunction before localization
(on [Cop, sSet]proj) and so by [LuHTT] cor. A.3.7.2 it is sufficient to observe that on the local structure the
right adjoint still preserves fibrant objects, which it does because the fibrant objects in the localization are
in particular fibrant in the unlocalized structure.

Moreover, we claim that (const a (−)∗) is in fact a Quillen equivalence, by observing that the derived
adjunction unit and counit are equivalences. For the derived adjunction unit, notice that by the proof
of prop. 3.1.19 a constant simplicial presheaf is fibrant in [Cop, sSet]proj,loc, and so it is clearly fibrant
in [Cop, sSet]proj,loc,A1 . Therefore the plain adjunction unit, which is the identity, is already the derived
adjunction unit. For the derived counit, let X ∈ [Cop, sSet]proj,loc,A1 be fibrant. Then also the adjunction
counit

η : const(X(A0))→ X

218



is already the derived counit (since X(A1) ∈ sSetQuillen is necessarily cofibrant). At every An ∈ C it is
isomorphic to the sequence of morphisms

η(An);X(A0)→ X(A1)→ · · · → X(An) ,

each of which is a weak equivalence by the A1-locality of X.
Now observe that we have an equivalence of ∞-functors

Disc ' RRA1 ◦ Lconst :∞Grpd→ H .

Because for A ∈ sSet fibrant, Lconst(A) ' A is still fibrant, by the proof of prop. 3.1.19, and so
(RRA1)((Lconst)(A)) ' constA is presented simply by the constant simplicial presheaf on A, which indeed
is a presentation for DiscA, again by the proof of prop. 3.1.19.

Finally, since by the above Lconst is in fact an equivalence, by essential uniqueness of ∞-adjoints it
follows now that LLA1 is left adjoint to the ∞-functor Disc, and this proves the claim. �

Proposition 3.5.9. For H a locally ∞-connected ∞-topos, also all its objects X ∈ H are locally ∞-
connected, in the sense that their over-∞-toposes H/X are locally ∞-connected (ΠX a ∆X a ΓX) : H/X →
∞Grpd.

The two notions of fundamental ∞-groupoids of any object X induced this way do agree, in that there is
a natural equivalence

ΠX(X ∈ H/X) ' Π(X ∈ H) .

Proof. By the general properties of over-∞-toposes ([LuHTT], prop 6.3.5.1) we have a a composite
essential ∞-geometric morphism

(ΠX a ∆X a ΓX) : H/X

X! //
oo X∗

X∗

// H

Π //
oo ∆

Γ
// ∞Grpd

and X! is given by sending (Y → X) ∈ H/X to Y ∈ H. �

3.5.2 Concordance

We formulate the notion of concordance (of bundles or cocycles) abstractly internal to a cohesive ∞-topos.

Definition 3.5.10. For H a cohesive ∞-topos and X,A ∈ H two objects, we say that the ∞-groupoid of
concordances from X to A is

Concord(X,A) := Π[X,A] ,

where [−,−] : Hop ×H→ H is the internal hom.

Observation 3.5.11. For X,A,B ∈ H three objects, there is a canonical composition ∞-functor of con-
cordances between them

Concord(X,A)× Concord(A,B)→ Concord(X,B) .

Using that, by the axioms of cohesion, Π preserves products, this is the image under Π of the composition
on internal homs

[X,A]× [A,B]→ [X,B] .
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3.5.3 Paths and geometric Postnikov towers

The fundamental ∞-groupoid ΠX of objects X in H may be reflected back into H, where it gives a notion
of geometric homotopy path n-groupoids and a geometric notion of Postnikov towers of objects in H.

Recall from def. 3.1.9 the pair of adjoint endofunctors

(Π a [) : H→ H

on any locally connected ∞-topos H.
We say for any X,A ∈ H

• Π(X) is the path ∞-groupoid of X – the reflection of the fundamental ∞-groupoid from 3.5.1 back
into the cohesive context of H;

• [A (“flat A”) is the coefficient object for flat differential A-cohomology or for A-local systems (discussed
below in 3.5.5).

Write

(τn a in) : H≤n

τn←
↪→
i

H

for the reflective sub-∞-category of n-truncated objects ([LuHTT], section 5.5.6) and

τn : H
τn→ H≤n ↪→ H

for the localization funtor. We say

Πn : H
Πn→ H

τn→ H

is the homotopy path n-groupoid functor. The (truncated) components of the (Π a Disc)-unit

X → Πn(X)

we call the constant path inclusion. Dually we have canonical morphisms

[A→ A

natural in A ∈ H.

Definition 3.5.12. For X ∈ H we say that the geometric Postnikov tower of X is the categorical Postnikov
tower ([LuHTT] def. 5.5.6.23) of Π(X) ∈ H :

Π(X)→ · · · → Π2(X)→ Π1(X)→ Π0(X) .

The main purpose of geometric Postnikov towers for us is the notion of geometric Whitehead towers that
they induce, discussed in the next section.

3.5.4 Universal coverings and geometric Whitehead towers

We discuss an intrinsic notion of Whitehead towers in a locally ∞-connected ∞-topos H.

Definition 3.5.13. For X ∈ H a pointed object, the geometric Whitehead tower of X is the sequence of
objects

X(∞) → · · · → X(2) → X(1) → X(0) ' X
in H, where for each n ∈ N the object X(n+1) is the homotopy fiber of the canonical morphism X → Πn+1X
to the path (n + 1)-groupoid of X (3.5.3). We call X(n+1) the (n + 1)-fold universal covering space of X.
We write X(∞) for the homotopy fiber of the untruncated constant path inclusion.

X(∞) → X → Π(X) .
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Here the morphisms X(n) → Xn−1 are those induced from this pasting diagram of ∞-pullbacks

X(n) //

��

∗

��
X(n−1)

��

// Bnπn(X)

��

// ∗

��
X // Πn(X)

τ≤(n−1)// Π(n−1)(X)

,

where the object Bnπn(X) is defined as the homotopy fiber of the bottom right morphism.

Proposition 3.5.14. Every object X in a cohesive ∞-topos H is covered by objects of the form X(∞) for
different choices of base points in X, in the sense that every X is the∞-colimit over a diagram whose vertices
are of this form.

Proof. Consider the diagram

lim
−→s∈Π(X)

(i∗∗s) //

'

��

lim
−→s∈Π(X)

∗s

'

��
X

i // Π(X)

.

The bottom morphism is the constant path inclusion, the (Π a Disc)-unit. The right morphism is the equiv-

alence that is the image under Disc of the decomposition lim
−→S
∗ '→ S of every ∞-groupoid as the ∞-colimit

over itself of the ∞-functor constant on the point. The left morphism is the ∞-pullback along i of this
equivalence, hence itself an equivalence. By universality of ∞-colimits in the ∞-topos H, the top left object
is the ∞-colimit over the single homotopy fibers i∗∗s of the form X(∞) as indicated. �
We would like claim that moreover each of the patches i∗∗ of the object X in a cohesive ∞-topos is geo-
metrically contractible, thus exhibiting a generic cover of any object by contractibles. The following states
something slightly weaker.

Proposition 3.5.15. The inclusion Π(i∗∗)→ Π(X) of the fundamental ∞-groupoid Π(i∗∗) of each of these
patches into Π(X) is homotopic to the point.

Proof. We apply Π(−) to the above diagram over a single vertex s and attach the (Π a Disc)-counit to
get

Π(i∗∗) //

��

∗

��
Π(X)

Π(i)// Π Disc Π(X) // Π(X)

.

Then the bottom morphism is an equivalence by the (Π a Disc)-zig-zag-identity. �
This implies that in a cohesive ∞-topos every principal

3.5.5 Flat connections and local systems

We describe for a locally ∞-connected ∞-topos H a canonical intrinsic notion of flat connections on ∞-
bundles, flat higher parallel transport and ∞-local systems.

Let Π : H→ H be the path ∞-groupoid functor from def. 3.1.9, discussed in 3.5.3.
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Definition 3.5.16. For X,A ∈ H we write

Hflat(X,A) := H(ΠX,A)

and call Hflat(X,A) := π0Hflat(X,A) the flat (nonabelian) differential cohomology of X with coefficients in
A. We say a morphism ∇ : Π(X)→ A is a flat ∞-connnection on the principal ∞-bundle corresponding to

X → Π(X)
∇→ A, or an A-local system on X.

The induced morphism
Hflat(X,A)→ H(X,A)

we say is the forgetful functor that forgets flat connections.

The object Π(X) has the interpretation of the path∞-groupoid of X: it is a cohesive∞-groupoid whose
k-morphisms may be thought of as generated from the k-morphisms in X and k-dimensional cohesive paths
in X. Accordingly a mophism Π(X)→ A may be thought of as assigning

• to each point of X a fiber in A;

• to each path in X an equivalence between these fibers;

• to each disk in X a 2-equivalalence between these equivaleces associated to its boundary

• and so on.

This we think of as encoding a flat higher parallel transport on X, coming from some flat ∞-connection and
defining this flat ∞-connection.

Observation 3.5.17. By the (Π a [)-adjunction we have a natural equivalence

Hflat(X,A) ' H(X, [A) .

A cocycle g : X → A for a principal ∞-bundle on X is in the image of

Hflat(X,A)→ H(X,A)

precisely if there is a lift ∇ in the diagram

[A

��
X

∇
>>

g // A

.

We call [A the coefficient object for flat A-connections.

Proposition 3.5.18. For G := Disc(G0) ∈ H discrete∞-group (3.3.6) the canonical morphism Hflat(X,BG)→
H(X,BG) is an equivalence.

Proof. This follows by definition 3.1.9 [ = Disc Γ and using that Disc is full and faithful. �
This says that for discrete structure ∞-groups G there is an essentially unique flat ∞-connection on any
G-principal ∞-bundle. Moreover, the further equivalence

H(Π(X),BG) ' Hflat(X,BG) ' H(X,BG)

may be read as saying that the G-principal ∞-bundle for discrete G is entirely characterized by the flat
higher parallel transport of this unique ∞-connection.

Below in 3.5.6 we discuss in more detail the total spaces classified by ∞-local systems.
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3.5.6 Galois theory

We discuss a canonical internal realization of locally constant ∞-stacks and their classification by Galois
theory inside any cohesive ∞-topos.

Classical Galois theory is the classification of certain extensions of a field K. Viewing the formal dual
Spec(K) as a space, this generalizes to Galois theory of schemes, which classifies κ-compact étale morphisms
E → X over a connected scheme X by functors

Π1(X) ' Bπ1(X)→ Setκ

from the classifying groupoid of the fundamental group of X (defined thereby) to the category of κ-small
sets. See for instance [Len85] for an account.

From the point of view of topos theory over the étale site, κ-compact étale morphisms are equivalently
sheaves (namely the sheaves of local sections of the étale morphism) that are locally constant on κ-small sets.
The notion of locally constant sheaves of course exists over any site and in any topos whatsoever, and hence
topos theoretic Galois theory more generally classifies locally constant sheaves. A general abstract category
theoretic discussion of such generalized Galois theory is given by Janelidze, whose construction in the form
of [CJKP97] we generalize below to locally connected ∞-toposes.

A generalization of Galois theory from topos theory to∞-topos theory as a classification of locally constant
∞-stacks was envisioned by Grothendieck and, for the special case over topological spaces, first formalized
in [Toën00], where it is shown that the homotopy type of a connected locally contractible topological space
X is the automorphism∞-group of the fiber functor on locally constant∞-stacks over X. Similar disucssion
appeared later in [PoWa05] and [Shu07].

We show below that this central statement of higher Galois theory holds generally in every ∞-connected
∞-topos.

For κ an uncountable regular cardinal, write

Core∞Grpdκ ∈ ∞Grpd

for the ∞-groupoid of κ-small ∞-groupoids, def. 4.1.19.

Definition 3.5.19. For X ∈ H write

LConst(X) := H(X,Disc(Core∞Grpdκ))

for the cocycle ∞-groupoid on X with coefficients in the discretely cohesive ∞-groupoid on the ∞-groupoid
of κ-small ∞-groupoids. We call this the ∞-groupoid of locally constant ∞-stacks on X.

Observation 3.5.20. Since Disc is left adjoint and right adjoint, it commutes with coproducts and with
delooping, def. 3.3.51, so that by remark 4.1.20 we have

Disc(Core∞Grpdκ) '
∐
i

B Disc(Aut(Fi)) .

Therefore, by the discussion in 3.3.8, a locally constant ∞-stack P ∈ LConst(X) may be identified on each
geometric connected component of X with the total space of a Disc Aut(Fi)-principal ∞-bundle P → X.

Moreover, by the discussion in 3.3.12, to each such Aut(Fi)-principal ∞-bundle is canonically associated
a Disc(Fi)-fiber ∞-bundle E → X. This is the ∞-pullback

E //

��

Disc(Fi)//Disc(Aut(Fi))

��
X // BDisc(Aut(Fi))

.

223



Since by corollary 4.1.25 every discrete ∞-bundle with κ-small fibers over connected X arises this way,
essentially uniquely, we may canonically identify the morphism E → X with an object E ∈ H/X in the little
topos over X, which interprets as the ∞-topos of ∞-stacks over X, as discussed at the beginning of 3.3.13.
This way the objects of LConst(X) are indeed identified with ∞-stacks over X.

The following proposition says that the central statement of Galois theory holds for the notion of locally
constant ∞-stacks in a cohesive ∞-topos.

Proposition 3.5.21. For H locally and globally ∞-connected, we have

1. a natural equivalence
LConst(X) ' ∞Grpd(Π(X),∞Grpdκ)

of locally constant ∞-stacks on X with ∞-permutation representations of the fundamental ∞-groupoid
of X ( local systems on X);

2. for every point x : ∗ → X a natural equivalence of the endomorphisms of the fiber functor

x∗ : LConst(X)→∞Grpdκ

and the loop space of Π(X) at x
End(x∗) ' ΩxΠ(X) .

Proof. The first statement is essentially the (Π a Disc)-adjunction :

LConst(X) := H(X,Disc(Core∞Grpdκ))

' ∞Grpd(Π(X),Core∞Grpdκ)

' ∞Grpd(Π(X),∞Grpdκ)

.

Using this and that Π preserves the terminal object, so that the adjunct of (∗ → X → Disc Core∞Grpdκ) is
(∗ → Π(X)→∞Grpdκ), the second statement follows with an iterated application of the∞-Yoneda lemma:

The fiber functor x∗ : Func∞(Π(X),∞Grpd)→∞Grpd evaluates an∞-presheaf on Π(X)op at x ∈ Π(X).
By the∞-Yoneda lemma this is the same as homming out of j(x), where j : Π(X)op → Func(Π(X),∞Grpd)
is the ∞-Yoneda embedding:

x∗ ' HomPSh(Π(X)op)(j(x),−) .

This means that x∗ itself is a representable object in PSh∞(PSh∞(Π(X)op)op). If we denote by j̃ :
PSh∞(Π(X)op)op → PSh∞(PSh∞(Π(X)op)op) the corresponding Yoneda embedding, then

x∗ ' j̃(j(x)) .

With this, we compute the endomorphisms of x∗ by applying the ∞-Yoneda lemma two more times:

End(x∗) ' EndPSh(PSh(Π(X)op)op)(j̃(j(x)))

' End(PSh(Π(X))op)(j(x))

' EndΠ(X)op(x, x)

' AutxΠ(X)

=: ΩxΠ(X)

.

�

Next we discuss how this intrinsic Galois theory in a cohesive ∞-topos is in line with the categorical
Galois theory of Janelidze, as treated in [CJKP97]. This revolves around factorization systems associated
with the path functor Π from 3.5.3.
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Theorem 3.5.22. If H has an ∞-cohesive site of definition, def. 3.1.18, the functor Π : H → ∞Grpd
preserves ∞-pullbacks over discrete objects.

This was pointed out by Mike Shulman.
Proof. By prop. 5.2.5.1 in [LuHTT] the (Π a Disc)-adjunction passes for each A ∈ ∞Grpd to the slice as

(Π/DiscA a Disc/DiscA) : H/DiscA →∞Grpd/A .

Under the parameterized ∞-Grothendieck construction, prop. 3.1.21, we have that Π/DiscA becomes

ΠA : HA →∞GrpdA .

Since ∞-limits of functor ∞-categories are computed objectwise, and since Π preserves finite products by
the axioms of cohesion, ΠA preserves finite products and hence so does Π/DiscA. Since a binary product in
H/DiscA is an ∞-pullback over DiscA in H, this completes the proof. �

Remark 3.5.23. We find below that at least over some ∞-cohesive sites Π preserves further ∞-pullbacks.
See prop. 4.3.47.

Definition 3.5.24. For f : X → Y any morphism in H, write cΠf → Y for the ∞-pullback

cΠf //

��

ΠX

Πf

��
Y // ΠY

,

where the bottom morphism is the (Π a Disc)-unit. We say that cΠf is the Π-closure of f , and that f is
Π-closed if X ' cΠf .

Definition 3.5.25. We call a morphism f : X → Y a Π-equivalence if Π(f) is an equivalence in ∞Grpd.

Remark 3.5.26. Since Disc :∞Grpd→ H is full and faithful, we may equivalently speak of Π-equivalences.

Proposition 3.5.27. If H has an ∞-connected site of definition, then every morphism f : X → Y in H
factors as

X
f //

f ′ !!

Y

cΠf

== ,

where f ′ is a Π-equivalence.

Proof. The naturality of the adjunction unit together with the universality of the∞-pullback that defines
cΠf gives the factorization

X
f ′ //

f
%%

Y ×ΠY ΠX //

��

ΠX

Πf

��
Y // ΠY

.

By theorem 3.5.22 the functor Π preserves the above ∞-pullback. Since Π(X → ΠX) is an equivalence, it
follows that ΠX is also a pullback of the Π-image of the diagram, and hence Π(f ′) is an equivalence. �
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Proposition 3.5.28. For H with an ∞-cohesive site of definition, the pair of classes of morphisms

(Π-equivalences, Π-closed morphisms) ⊂ Mor(H)×Mor(H)

constitutes an orthogonal factorization system (5.2.8 in [LuHTT]).

Proof. The factorization is given by prop. 3.5.27. It remains to check orthogonality.
Let therefore

A //

��

X

��
B // Y

be any commuting diagram in H, where the left morphism is a Π-equivalence and the right morphism is
Π-closed. Then, by assumption, there exists a pullback diagram on the right in

A //

��

X

��

// ΠX

��
B // Y // ΠY

.

By the naturality and universality of the (Π a Disc)-unit, this is equivalent to

A //

��

ΠA

'
��

// ΠX

��
B // ΠB // ΠY

,

where now, again by assumption, the middle vertical morphism is an equivalence. Therefore there exists an
essentially unique lift in the right square of this diagram. This induces a lift in the total rectangle. Again
by the universality of the unit, all such lifts factor through ΠB and hence this lift, too, is essentially unique.
Finally by the universal property of the pullback X ' cΠf , this gives the required essentially unique lift in
the left of

A //

��

X

��

// ΠX

��
B

>>

// Y // ΠY

.

�
We now identifiy the Π-closed morphisms with covering spaces, hence with total spaces of locally constant
∞-stacks.

Observation 3.5.29. For f : X → Y a Π-closed morphism, its fibers Xy over global points y : ∗ → Y are
discrete objects.

Proof. By assumption and using the pasting law, prop. 2.3.1, it follows that the fibers of f are the fibers
of Πf . Since the terminal object is discrete and since Disc preserves ∞-pullbacks, these are the images
under Disc of fibers of Πf , and hence are discrete. �
Conversely we have:

Example 3.5.30. Let X ∈ H be any object, and let A ∈ ∞Grpd be any discrete ∞-groupoid. Then the
projection morphism p : X ×Disc(A)→ X out of the product is Π-closed.

Proof. Since Π preserves products, by the axioms of cohesion, and Disc preserves products as a right
adjoint and is moreover full and faithful, we have that Π(p) is the projection

Π(p) : Π(X)×Disc(A)→ Π(X) .
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Since ∞-limits commute with ∞-limits, it follows that

X ×Disc(A) //

��

Π(X)×Disc(A)

��
X // Π(X)

is an ∞-pullback. �

Remark 3.5.31. Morphisms of the form X ×Disc(A)→ X fit into pasting diagrams of ∞-pullbacks of the
form

X ×Disc(A) //

��

Disc(A) //

��

Disc(A//Aut(A))

��
X // ∗ // BDisc(Aut(A))

,

where the square on the right is the universal discrete A-bundle, by the discussion in 3.3.12. According
to def. 3.5.19 the composite morphism on the bottom classifies the trivial locally constant ∞-stack with
fiber A over X, hence the constant ∞-stack with fiber A over X. Therefore the above ∞-pullback exhibits
X ×Disc(A)→ X as the total space incarnation of that constant ∞-stack on X.

The following proposition generalizes this statement to all locally constant ∞-stacks over X.

Proposition 3.5.32. Let H have an ∞-cohesive site of definition, 3.1.2.1. Then for any X ∈ H the locally
constant ∞-stacks E ∈ LConst(X), regarded as ∞-bundle morphisms p : E → X by observation 3.5.20, are
precisely the Π-closed morphisms into X.

Proof. We may without restriction of generality assume that X has a single geometric connected com-
ponent. Then E → X is given by an ∞-pullback of the form

E //

p

��

Disc(Fi//Aut(Fi))

��
X

g // BDiscAut(Fi)

.

By theorem 3.5.22 the functor Π preserves this ∞-pullback, so that also

ΠE //

��

Disc(Fi//Aut(Fi))

��
ΠX

Πg // BDisc Aut(Fi)

is an ∞-pullback, where we used that, by the axioms of cohesion, Π sends discrete objects to themselves.
By def. 3.5.24 the factorization in question is given by forming the ∞-pullback on the left of

X ×ΠX ΠE //

��

ΠE //

��

Disc(Fi//Aut(Fi))

��
X // ΠX

Πg // BDiscAut(Fi)

.

By the universal property of the (Π a Disc)-reflection, the bottom composite is again equivalent to g, hence
by the pasting law, prop. 2.3.1, it follows that the pullback on the left is equivalent to E → X.
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Conversely, if the ∞-pullback diagram on the left is given, it follows with prop. 4.1.23 and using, by
definition of cohesion, that Disc is full and faithful, that an ∞-pullback square as on the right exists. Again
by the pasting law, this implies that the morphism on the left is the total space projection of a locally
constant ∞-stack over X. �

Remark 3.5.33. In the “1-categorical Galois theory” of [CJKP97] only the trivial discrete ∞-bundles arise
as pullbacks this way, and much of the theory deals with getting around this restriction. In our language,
this is because in the context of 1-categorical cohesion, as in [Lawv07], the ∞-functor Π reduces to the
1-functor Π0 ' τ0 ◦Π, discussed in 3.5.3, on a locally connected and connected 1-topos, which assigns only
the set of connected components, instead of the full path ∞-groupoid.

Clearly, the pullback over an object of the form Π0K is indeed a locally constant ∞-stack that is trivial
as a discretely fibered ∞-bundle. But this restriction is lifted by passing from cohesive 1-toposes to cohesive
∞-toposes.

We now characterize locally constant ∞-stacks over X as precisely the “relatively discrete” objects over
X. To that end, recall, by prop. 3.5.9, that for H a locally∞-connected∞-topos also all the slice∞-toposes
X := H/X for all objects X ∈ H are locally ∞-connected.

Definition 3.5.34. For X ∈ H an object in a cohesive ∞-topos H and

H/X

p! //
oo p∗

p∗
//∞Grpd

the corresponding locally ∞-connected terminal geometric morphism, write

H/X

p!/X //
oo p∗/X ∞Grpd/Π(X)

for the induced ∞-adjunction on the slices, by prop. 5.2.5.1 in [LuHTT], where the left adjoint p!/X sends
(E → X) to (Π(E)→ Π(X)).

Proposition 3.5.35. Let the cohesive ∞-topos H have an ∞-cohesive site of definition, def. 3.1.18 and let
X ∈ H be any object.

The full sub-∞-category of H/X on the Π-closed morphisms into X, def. 3.5.24, hence on the locally
constant ∞-stacks over X, prop. 3.5.32, is equivalent to the image of the moprhism p∗/X :∞Grpd/Π(X) →
H/X .

Proof. By prop 5.2.5.1 in [LuHTT], the ∞-functor p∗/X is the composite

p∗/X : ∞Grpd/Π(X)
Disc // H/Π

X×Π(X)(−)
// H/X .

This sends a morphism Q→ Π(X) to the pullback on the left of the pullback square

E //

��

Disc(Q)

��
X // Π(X)

.

Since Π preserves this ∞-pullback, by theorem 3.5.22, and sends X → Π(X) to an equivalence, it follows
that Π(E → X) is equivalent to Q→ Π(X) and hence the above pullback diagram looks like

E //

��

Π(E)

��
X // Π(X)

.
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The naturality of the (Π a Disc)-unit and the universality of the pullback imply that the top horizontal
morphism here is indeed the E-component of the (Π a Disc) unit.

This shows that, up to equivalence, precisely the Π-closed morphism E → X arise this way. �

Remark 3.5.36. A definition of locally constant objects in general ∞-toposes is given in section A.1 of
[Lur11]. The above prop. 3.5.35 together with theorem A.1.15 in [LuHTT] shows that restricted to the slices
H/X it coincides with the definition discussed here.

3.6 Structures in a cohesive ∞-topos

We discuss differential geometric and differential cohomological structures that exist in any cohesive∞-topos,
def. 3.1.7. These are obtained from the Π-geometric structures of a locally ∞-connected ∞-topos, discussed
in 3.5 by interpreting them in the gros cohomological context of a local ∞-topos, dscussed in 3.4.

• 3.6.1 – de Rham cohomology

• 3.6.2 – Exponentiated Lie algebras

• 3.6.3 – Maurer-Cartan forms and curvature characteristic forms

• 3.6.4 – Differential cohomology

• 3.6.5 – Chern-Weil homomorphism

• 3.6.6 – Twisted differential structures

• 3.6.7 – Higher holonomy

• 3.6.8 – Transgression

• 3.6.9 – Chern-Simons functionals

• 3.6.10 – Wess-Zumino-Witten functionals

• 3.6.11 – Geometric prequantization

3.6.1 de Rham cohomology

We discuss how in every locally ∞-connected ∞-topos H there is an intrinsic notion of nonabelian de Rham
cohomology.

We have already seen the notions of Principal bundles, 3.3.8, and of flat ∞-connections on principal
∞-bundles, 3.5.5, in any locally ∞-connected ∞-topos. In traditional differential geometry, flat connection
on the trivial principal bundle may be canonically identified with flat differential 1-forms on the base space.
In the following we take this idea to be the definition of flat ∞-group/∞-Lie algebra valued forms: flat
∞-connections on trivial principal ∞-bundles.

Definition 3.6.1. Let H be a locally ∞-connected ∞-topos. For X ∈ H an object, write ΠdRX :=
∗
∐
X ΠX for the ∞-pushout

X //

��

∗

��
Π(X) // ΠdRX

.
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For ptA : ∗ → A any pointed object in H, write [dRA := ∗
∏
A [A for the ∞-pullback

[dRA //

��

[A

��
∗ // A

.

Proposition 3.6.2. This construction yields a pair of adjoint ∞-functors

(ΠdR a [dR) : ∗/H oo
ΠdR

[dR

// H .

Proof. We check the defining natural hom-equivalence

∗/H(ΠdRX,A) ' H(X, [dRA) .

The hom-space in the under-∞-category ∗/H is computed ([LuHTT], prop. 5.5.5.12) by the ∞-pullback

∗/H(ΠdRX,A) //

��

H(ΠdRX,A)

��
∗

ptA // H(∗, A)

.

By the fact that the hom-functor H(−,−) : Hop ×H → ∞Grpd preserves ∞-limits in both arguments we
have a natural equivalence

H(ΠdRX,A) := H(∗
∐
X

Π(X), A)

' H(∗, A)
∏

H(X,A)

H(Π(X), A)
.

We paste this pullback to the above pullback diagram to obtain

∗/H(ΠdRX,A) //

��

H(ΠdRX,A) //

��

H(Π(X), A)

��
∗

ptA // H(∗, A) // H(X,A)

.

By the pasting law for ∞-pullbacks, prop. 2.3.1, the outer diagram is still a pullback. We may evidently
rewrite the bottom composite as in

∗/H(ΠdRX,A) //

��

H(Π(X), A)

��
∗ ' // H(X, ∗)

(ptA)∗ // H(X,A)

.

This exhibits the hom-space as the pullback

∗/H(ΠdR(X), A) ' H(X, ∗)
∏

H(X,A)

H(X, [A) ,

where we used the (Π a [)-adjunction. Now using again that H(X,−) preserves pullbacks, this is

· · · ' H(X, ∗
∏
A

[A) ' H(X, [dRA) .

�
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Observation 3.6.3. If H is also local, then there is a further right adjoint ΓdR

(ΠdR a [dR a ΓdR) : H

ΠdR
//

oo [dR

ΓdR

// ∗/H

given by

ΓdRX := ∗
∐
X

Γ(X) .

Definition 3.6.4. For X,A ∈ H we write

HdR(X,A) := H(ΠdRX,A) ' H(X, [dRA) .

A cocycle ω : X → [dRA we call a flat A-valued differential form on X.
We say that HdR(X,A):=π0HdR(X,A) is the de Rham cohomology of X with coefficients in A.

Observation 3.6.5. A cocycle in de Rham cohomology

ω : ΠdRX → A

is precisely a flat ∞-connection on a trivializable A-principal ∞-bundle. More precisely, HdR(X,A) is the
homotopy fiber of the forgetful functor from ∞-bundles with flat ∞-connection to ∞-bundles: we have an
∞-pullback diagram

HdR(X,A) //

��

∗

��
Hflat(X,A) // H(X,A)

.

Proof. This follows by the fact that the hom-functor H(X,−) preserves the defining ∞-pullback for
[dRA. �
Just for emphasis, notice the dual description of this situation: by the universal property of the ∞-colimit
that defines ΠdRX we have that ω corresponds to a diagram

X //

��

∗

��
Π(X)

ω // A

.

The bottom horizontal morphism is a flat connection on the∞-bundle which in turn is given by the composite
cocycle X → Π(X)

ω→ A. The diagram says that this is equivalent to the trivial bundle given by the trivial
cocycle X → ∗ → A.

Proposition 3.6.6. The de Rham cohomology with coefficients in discrete objects is trivial: for all S ∈
∞Grpd we have

[dRDiscS ' ∗ .
Proof. Using that in a ∞-connected ∞-topos the functor Disc is a full and faithful ∞-functor so that

unit Id → ΓDisc is an equivalence and using that by the zig-zag identity the counit component [DiscS :=
DiscΓDiscS → DiscS is also an equivalence, we have

[dRDiscS:= ∗
∏

DiscS

[DiscS

' ∗
∏

DiscS

DiscS

' ∗

,

since the pullback of an equivalence is an equivalence. �
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Proposition 3.6.7. For every X in a cohesive ∞-topos H, the object ΠdRX is globally connected in that
π0H(∗,ΠdRX) = ∗.

If X has at least one point (π0(ΓX) 6= ∅) and is geometrically connected (π0(ΠX) = ∗) then ΠdR(X) is
also locally connected: τ0ΠdR ' ∗ ∈ H.

Proof. Since Γ preserves ∞-colimits in a cohesive ∞-topos we have

H(∗,ΠdRX) ' ΓΠdRX

' ∗
∐
ΓX

ΓΠX

' ∗
∐
ΓX

ΠX

,

where in the last step we used that Disc is full and faithful, so that there is an equivalence ΓΠX :=
ΓDiscΠX ' ΠX.

To analyse this ∞-pushout we present it by a homotopy pushout in sSetQuillen. Denoting by ΓX and
ΠX any represetatives in sSetQuillen of the objects of the same name in ∞Grpd, this may be computed by
the ordinary pushout of simplicial sets

ΓX //

��

(ΓX)×∆[1]
∐

ΓX ∗

��
ΠX // Q

,

where on the right we have inserted the cone on ΓX in order to turn the top morphism into a cofibration.
From this ordinary pushout it is clear that the connected components of Q are obtained from those of ΠX
by identifying all those in the image of a connected component of ΓX. So if the left morphism is surjective
on π0 then π0(Q) = ∗. This is precisely the condition that pieces have points in H.

For the local analysis we consider the same setup objectwise in the injective model structure [Cop, sSet]inj,loc.
For any U ∈ C we then have the pushout QU in

X(U) //

��

(X(U))×∆[1]
∐
X(U) ∗

��
sSet(Γ(U),ΠX) // QU

,

as a model for the value of the simplicial presheaf presenting ΠdR(X). If X is geometrically connected then
π0sSet(Γ(U),Π(X)) = ∗ and hence for the left morphism to be surjective on π0 it suffices that the top left
object is not empty. Since the simplicial set X(U) contains at least the vertices U → ∗ → X of which there
is by assumption at least one, this is the case. �
Remark. In summary we see that in any cohesive ∞-topos the objects ΠdR(X) have the essential abstract
properties of pointed geometric de Rham homotopy types ([Toën06], section 3.5.1). In section 4 we will see
that, indeed, the intrinsic de Rham cohomology of the cohesive ∞ -topos H = Smooth∞Grpd

HdR(X,A):=π0H(ΠdRX,A)

reproduces ordinary de Rham cohomology in degree d > 1.
In degree 0 the intrinsic de Rham cohomology is necessarily trivial, while in degree 1 we find that it

reproduces closed 1-forms, not divided out by exact forms. This difference to ordinary de Rham cohomology
in the lowest two degrees may be understood in terms of the obstruction-theoretic meaning of de Rham
cohomology by which we essentially characterized it above: we have that the intrinsic Hn

dR(X,K) is the
home for the obstructions to flatness of Bn−2K-principal ∞-bundles. For n = 1 this are groupoid-principal
bundles over the groupoid with K as its space of objects. But the 1-form curvatures of groupoid bundles are
not to be regarded modulo exact forms.
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3.6.2 Exponentiated ∞-Lie algebras

We consider an intrinsic notion of exponentiated ∞-Lie algebras in every cohesive∞-topos. In order to have
a general abstract notion of the ∞-Lie algebras themselves we need the further axiomatics of infinitesimal
cohesion, discussed below in 3.2 and 3.7.6.

Definition 3.6.8. For a connected object B exp(g) in H that is geometrically contractible

Π(B exp(g)) ' ∗

we call its loop space object (see 3.3.6) exp(g) := Ω∗B exp(g) a Lie integrated ∞-Lie algebra in H.

Definition 3.6.9. Set
exp Lie := ΠdR ◦ [dR : ∗/H→ ∗/H .

Observation 3.6.10. If H is cohesive, then exp Lie is a left adjoint.

Proof. By the construction in def. 3.1.9. �

Example 3.6.11. For all X ∈ H the object ΠdR(X) is geometrically contractible.

Proof. Since on the locally ∞-connected and ∞-connected H the functor Π preserves ∞-colimits and
the terminal object, we have

ΠΠdRX:=Π(∗)
∐
ΠX

ΠΠX

' ∗
∐
ΠX

ΠDiscΠX

' ∗
∐
ΠX

ΠX ' ∗

,

where we used that on the ∞-connected H the functor Disc is full and faithful. �

Corollary 3.6.12. We have for every (∗ → A) ∈ ∗/H that exp LieA is geometrically contractible.

We shall write B exp(g) for exp LieBG, when the context is clear.

Proposition 3.6.13. Every de Rham cocycle (3.6.1) ω : ΠdRX → BG factors through the Lie integrated
∞-Lie algebra of G

B exp(g)

��
ΠdRX

ω //

99

BG

.

Proof. By the universality of the (ΠdR a [dR)-counit we have that ω factors through the counit ε :
exp LieBG→ BG

ΠdRX

ω

##

ΠdRω̃

xx
ΠdR[dRBG

ε // BG

,

where ω̃ : X → [dRBG is the adjunct of ω. �
Therefore instead of speaking of a G-valued de Rham cocycle, it is less redundant to speak of an exp(g)-valued
de Rham cocycle. In particular we have the following.

233



Corollary 3.6.14. Every morphism B exp(h) := exp LieBH → BG from a Lie integrated ∞-Lie algebra to
an ∞-group factors through the Lie integrated ∞-Lie algebra of that ∞-group

B exp(h) //

&&

B exp(g)

��
BG

.

3.6.3 Maurer-Cartan forms and curvature characteristic forms

In the intrinsic de Rham cohomology of the cohesive ∞-topos H there exist canonical cocycles that we may
identify with Maurer-Cartan forms and with universal curvature characteristic forms.

Definition 3.6.15. For G ∈ Group(H) an ∞-group in the cohesive ∞-topos H, write

θ : G→ [dRBG

for the G-valued de Rham cocycle on G induced by this pasting of ∞-pullbacks

G //

θ
��

∗

��
[dRBG //

��

[BG

��
∗ // BG

using prop. 3.6.13.
We call θ the Maurer-Cartan form on G.

For any object X, postcomposition the Maurer-Cartan form sends G-valued functions on X to g-valued
forms on X

[θ∗] : H0(X,G)→ H1
dR(X,G) .

Definition 3.6.16. For G = BnA an Eilenberg-MacLane object, we also write

curv : BnA→ [dRBn+1A

for its intrinsic Maurer-Cartan form and call this the intrinsic universal curvature characteristic form on
BnA.

These curvature characteristic forms serve to define differential cohomology in the next section.

3.6.4 Differential cohomology

We discuss an intrinsic realization of differential cohomology with coefficients in Eilenberg-MacLane objects
in any cohesive ∞-topos.

The definition we consider is based on homotopy pullbacks of differential forms along canonical curvature
maps as discussed in [HoSi05], but is formulated entirely internal to a cohesive∞-topos. Therefore it refines
the traditional description in two ways. First, the coefficient object may be a cohesive ∞-groupoid, where
in [HoSi05] it is just a topological space, hence, as explained below in 4.1, a discrete ∞-groupoid. Second,
the domain object may also be a cohesive ∞-groupoid, where in [HoSi05] it is restricted to be a manifold.
We give below an intrinsic characterization of domain objects that behave like manifolds for the purpose of
differential cohomology (“dR-projective objects”). On more general objects our definition subsumes also a
notion of equivariant differential cohomology.
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Consider a 0-truncated abelian group object A ∈ Grp(τ≤0H) ↪→ H. By the discussion in 3.3.6 we have
for all n ∈ N the corresponding Eilenberg-MacLane object BnA. By the discussion in 3.3.8 this classifies
Bn−1A-principal ∞-bundles in that for any X ∈ H we have an equivalence of n-groupoids

Bn−1ABund(X) ' H(X,BnA)

whose objects are Bn−1A-principal ∞-bundles on X, whose morphisms are gauge transformations between
these, and so on. The following definition refines this by equipping these ∞-bundles with the structure of a
connection.

Definition 3.6.17. For X ∈ H any object and n ≥ 1 write

Hdiff(X,BnA) := H(X,BnA)
∏

HdR(X,BnA)

Hn+1
dR (X,A)

for the cocycle ∞-groupoid of twisted cohomology, 3.3.9, of X with coefficients in A relative to the canonical
curvature characteristic morphism curv : BnA→ [dRBn+1A (3.6.3). By prop. 3.3.133 this is the∞-pullback

Hdiff(X,BnA)
[F ] //

c

��

Hn+1
dR (X,A)

��
H(X,BnA)

curv∗ // HdR(X,Bn+1A)

,

where the right vertical morphism π0HdR(X,Bn+1A) → HdR(X,Bn+1A) is the unique, up to equivalence,
effective epimorphism out of a 0-truncated object: a choice of cocycle representative in each cohomology
class, equivalently a choice of point in every connected component.

We call
Hn

diff(X,A):=π0Hdiff(X,BnA)

the degree-n differential cohomology of X with coefficient in A.
For ∇ ∈ Hdiff(X,BnA) a cocycle, we call

• [c(∇)] ∈ Hn(X,A) the characteristic class of the underlying Bn−1A-principal ∞-bundle;

• [F ](∇) ∈ Hn+1
dR (X,A) the curvature class of c (this is the twist).

We also say that ∇ is an ∞-connection on the principal ∞-bundle η(∇).

Observation 3.6.18. The differential cohomology Hn
diff(X,A) does not depend on the choice of morphism

Hn+1
dR (X,A) → HdR(X,Bn+1A) (as long as it is an isomorphism on π0, as required). In fact, for different

choices the corresponding cocycle ∞-groupoids Hdiff(X,BnA) are equivalent.

Proof. This is a special case of observation 3.3.132. The set

Hn+1
dR (X,A) =

∐
Hn+1

dR (X,A)

∗

is, as a 0-truncated ∞-groupoid, an ∞-coproduct of the terminal object ∞Grpd. By universal colimits in
this∞-topos we have that∞-colimits are preserved by∞-pullbacks, so that Hdiff(X,BnA) is the coproduct

Hdiff(X,BnA) '
∐

Hn+1
dR (X,A)

H(X,BnA)
∏

HdR(X,Bn+1A)

∗


of the homotopy fibers of curv∗ over each of the chosen points ∗ → HdR(X,Bn+1A). These homotopy fibers
only depend, up to equivalence, on the connected component over which they are taken. �
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Proposition 3.6.19. When restricted to vanishing curvature, differential cohomology coincides with flat
differential cohomology, 3.5.5,

Hn
diff(X,A)|[F ]=0 ' Hflat(X,B

nA) .

Moreover this is true at the level of cocycle ∞-groupoidsHdiff(X,BnA)
∏

Hn+1
dR (X,A)

{[F ] = 0}

 ' Hflat(X,B
nA) ,

hence there is a canonical embedding by a full and faithful morphism

Hflat(X,B
nA) �
� // Hdiff(X,BnA)

Proof. This is a special case of prop. 3.3.134. By the pasting law for∞-pullbacks, prop. 2.3.1, the claim
is equivalently that we have a pasting of ∞-pullback diagrams

Hflat(X,B
nA) //

��

∗

[F ]=0

��
Hdiff(X,BnA)

[F ] //

η

��

Hn+1
dR (X,A)

��
H(X,BnA)

curv∗ // HdR(X,Bn+1A)

.

By definition of flat cohomology, def. 3.5.16 and of intrinsic de Rham cohomology, def. 3.6.4, in H, the outer
rectangle is

H(X, [BnA) //

��

∗

��
H(X,BnA)

curv∗// H(X, [dRBn+1A)

.

Since the hom-functor H(X,−) preserves ∞-limits this is a pullback if

[BnA //

��

∗

��
BnA

curv// [dRBn+1A

is. Indeed, this is one step in the fiber sequence

· · · → [BnA→ BnA
curv→ [dRBn+1A→ [Bn+1A→ Bn+1A

that defines curv (using that [ preserves limits and hence looping and delooping).

Finally, ∗
[F ]=0 // Hn−1

dR (X,A) is, trivially, a monomorphism of sets, hence a full and faithfull morphism

of ∞-groupoids, and since these are stable under ∞-pullback, it follows that the canonical inclusion of flat
∞-connections into all ∞-connections is also full and faithful. �
The following establishes the characteristic short exact sequences that characterizes intrinsic differential
cohomology as an extension of curvature forms by flat ∞-bundles and of bare ∞-bundles by connection
forms.
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Proposition 3.6.20. Let imF ⊂ Hn+1
dR (X,A) be the image of the curvatures. Then the differential coho-

mology group Hn
diff(X,A) fits into a short exact sequence

0→ Hn
flat(X,A)→ Hn

diff(X,A)→ imF → 0

Proof. Form the long exact sequence in homotopy groups of the fiber sequence

Hflat(X,B
nA)→ Hdiff(X,BnA)

[F ]→ Hn+1
dR (X,A)

of prop. 3.6.19 and use that Hn+1
dR (X,A) is, as a set – a homotopy 0-type – to get the short exact sequence

on the bottom of this diagram

π1(HdR(X,A)) // π0(Hflat(X,B
nA)) // π0(Hdiff(X,BnA))

[F ] // π0(Hn+1
dR (X,A))

��
0 // Hn

flat(X,A) // Hn
diff(X,A) // im[F ]

.

�

Proposition 3.6.21. The differential cohomology group Hn
diff(X,A) fits into a short exact sequence of abelian

groups
0→ Hn

dR(X,A)/Hn−1(X,A)→ Hn
diff(X,A)

c→ Hn(X,A)→ 0 .

Proof. We claim that for all n ≥ 1 we have a fiber sequence

H(X,Bn−1A)→ HdR(X,BnA)→ Hdiff(X,BnA)→ H(X,BnA)

in ∞Grpd. This implies the short exact sequence using that by construction the last morphism is surjective
on connected components (because in the defining ∞-pullback for Hdiff the right vertical morphism is by
assumption surjective on connected components).

To see that we do have the fiber sequence as claimed, consider the pasting composite of ∞-pullbacks

HdR(X,Bn−1A) //

��

Hdiff(X,BnA) //

��

HdR(X,Bn+1A)

��
∗ // H(X,BnA)

curv // HdR(X,Bn+1A)

.

The square on the right is a pullback by def. 3.6.17. Since also the square on the left is assumed to be
an ∞-pullback it follows by the pasting law for ∞-pullbacks, prop. 2.3.1, that the top left object is the
∞-pullback of the total rectangle diagram. That total diagram is

ΩH(X, [dRBn+1A) //

��

H(X, [dRBn+1A)

��
∗ // H(X, [dRBn+1A)

,

because, as before, this ∞-pullback is the coproduct of the homotopy fibers, and they are empty over the
connected components not in the image of the bottom morphism and are the loop space object over the
single connected component that is in the image.

Finally using that
ΩH(X, [dRBn+1A) ' H(X,Ω[dRBn+1A)
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and
Ω[dRBn+1A ' [dRΩBn+1A

since both H(X,−) as well as [dR preserve ∞-limits and hence formation of loop space objects, the claim
follows. �

Often it is desireable to restrict attention to differential cohomology over domains on which the twisting
cocycles can be chosen functorially. This we consider now.

Write
Ω1

cl(−, A) := [dRBA .

For each n ∈ N, choose, recursively, an morphism

Ωn+1
cl (−, A)→ BΩncl(−, A)

out of a 0-truncated abelian group object.

Definition 3.6.22. Given such a choice, we say that an object X ∈ H is A-de Rham-projective if for all
n ∈ N the morphism

Ωn+1
cl (X,A) := H(X,Ωn+1

cl (−, A))→ H(X, [dRBn+1A)

is an effective epimorphism of ∞-groupoids.

Remark 3.6.23. Since a morphism of ∞-groupoids is an effective epimorphism precisely if it is surjective
on connected components, and since Ωn+1

cl (−, A) is by definition 0-truncated, this says that X is A-dR-
projective precisely if the set Ωn+1

cl (X,A) contains representatives for all the intrinsic degree-(n + 1) de
Rham cohomology classes of X, hence precisely if the induced morphism of sets

Ωn+1
cl (X,A)→ Hn+1

dR (X,A)

is an epimorphism.
In the discussion of models of cohesion in 4 we will see that dR-projectiveness has an interpretation in

terms of de Rham hypercohomology. An object is dR-projective if every de Rham hypercohomology class on
it has a representative by a globally defined differential form. A typical example of a dR-projective object
is a smooth manifold. A typical counterexample is a nontrivial orbifold.

Definition 3.6.24. For any n ∈ N write BnAconn for the ∞-pullback

BnAconn
//

��

Ωn+1
cl (−, A)

��
BnA

curv // [dRBn+1A

in H.
For X an A-dR-projective object we write

Hn
conn(X,A) := π0H(X,BnAconn)

for the cohomology group on X with coefficients in BnAconn.

The objects BnAconn represent differential cohomology in the following sense.

Observation 3.6.25. For every A-dR-projective object X there is a full and faithful morphism

Hdiff(X,BnA) ↪→ H(X,BnAconn) ,

hence in particular an inclusion
Hn

diff(X,A) ↪→ Hn
conn(X,A) .
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Proof. Since Ωn+1
cl (X,A)→ Hn+1

dR (X,A) is a surjection, by remark 3.6.23, there exists a factorization

Hn+1
dR (X,A) ↪→ Ωn+1

cl (X,A)→ H(X, [dRBn+1A)

of the canonical effective epimorphism (well defined up to homotopy), where the first morphism is an injection
of sets, hence a monomorphism of ∞-groupoids. Since these are stable under ∞-pullback, it follows that
also the top left morphism in the pasting diagram of ∞-pullbacks

Hdiff(X,BnA) //
� _

��

Hn+1
dR (X,A)� _

��
H(X,BnAconn) //

��

Ωn+1
cl (X,A)

��
H(X,BnA)

curv // H(X, [dRBn+1A)

is a monomorphism.
Notice that here the bottom square is indeed an ∞-pullback, by def. 3.6.24 combined with the fact that

the hom-functor H(X,−) : H→∞Grpd preserves ∞-pullbacks, and that with the top square defined to be
an ∞-pullback the total outer rectangle is an ∞-pullback by prop. 2.3.1. This identifies the top left object
as Hdiff(X,BnA) by def. 3.6.17. �
The reason that prop. 3.6.25 gives in inclusion is that Hn

conn(X,A) contains connections for all possible
curvature forms, while Hn

diff(X,A) contains only connections for one curvature representative in each de
Rham cohomology class. This is made precise by the following refinement of the exact sequences from prop.
3.6.20 and prop. 3.6.21.

Definition 3.6.26. Write
Ωncl,int(−, A) ↪→ Ωncl(−, A)

for the image factorization of the canonical morphism BnAconn → Ωncl(−, A) from def. 3.6.24.

Proposition 3.6.27. For X an A-dR-projective object we have a short exact sequence of groups

Hn
flat(X,A) // Hn

conn(X,A)
curv // Ωn+1

cl,int(X,A) .

Proof. As in the proof of prop. 3.6.19 we have a pasting diagram of ∞-pullbacks

∗ //

��

H(X, [BnA) //

��

∗

0

��
∗ // H(X,BnAconn) //

��

Ωn+1
cl,int(X,A) �

� // Ωn+1
cl (X,A)

��
H(X,BnA)

curv // H(X, [dRBn+1A)

.

After passing to connected components, this implies the claim. �

Details on how traditional ordinary differential cohomology is recovered by implementing the above in
the context of smooth cohesion are discussed in 4.4.13.
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3.6.5 Chern-Weil homomorphism

We discuss an intrinsic realization of the Chern-Weil homomomorphism [GHV] in cohesive ∞-toposes.

Definition 3.6.28. For G an ∞-group and

c : BG→ BnA

a representative of a characteristic class [c] ∈ Hn(BG,A) we say that the composite

cdR : BG
c→ BnA

curv→ [dRBn+1A

represents the curvature characteristic class [cdR] ∈ Hn+1
dR (BG,A). The induced map on cohomology

(cdR)∗ : H1(−, G)→ Hn+1
dR (−, A)

we call the (unrefined) ∞-Chern-Weil homomorphism induced by c.

The following construction universally lifts the ∞-Chern-Weil homomorphism from taking values in the
de Rham cohomology to values in the differential cohomology of H.

Definition 3.6.29. For X ∈ H any object, define the ∞-groupoid Hconn(X,BG) as the ∞-pullback

Hconn(X,BG)
(ĉi)i //

η

��

∏
[ci]∈Hni (BG,A);i≥1

Hdiff(X,BniA)

��
H(X,BG)

(ci)i // ∏
[ci]∈Hni (BG,A);i≥1

H(X,BniA)

.

We say

• a cocycle in ∇ ∈ Hconn(X,BG) is an ∞-connection

• on the principal ∞-bundle η(∇);

• a morphism in Hconn(X,BG) is a gauge transformation of connections;

• for each [c] ∈ Hn(BG,A) the morphism

[ĉ] : Hconn(X,BG)→ Hn
diff(X,A)

is the (full/refined) ∞-Chern-Weil homomorphism induced by the characteristic class [c].

Observation 3.6.30. Under the curvature projection [F ] : Hn
diff(X,A) → Hn+1

dR (X,A) the refined Chern-
Weil homomorphism for c projects to the unrefined Chern-Weil homomorphism.

Proof. This is due to the existence of the pasting composite

Hconn(X,BG)
(ĉi)i //

η

��

∏
[ci]∈Hni (BG,A);i≥1

Hdiff(X,BniA)
[F ] //

��

∏
[ci]∈Hni (BG,A);i≥1

Hni+1
dR (X,A)

��
H(X,BG)

(ci)i // ∏
[ci]∈Hni (BG,A);i≥1 H(X,BniA)

curv∗// ∏
[ci]∈Hni (BG,A);i≥1 HdR(X,Bni+1, A)

of the defining ∞-pullback for Hconn(X,BG) with the products of the definition ∞-pullbacks for the
Hdiff(X,BniA). �

As before for abelian differential cohomology in 3.6.4, nonabelian differential cohomology is in general
not representable, but becomes representable on a suitable collection of domains. To reflect this we expand
def. 3.6.24 as follows.
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Definition 3.6.31. Let c : BG→ BnA be a characteristic map, and let BnAconn be a differential refinement
as in def. 3.6.24. Then we write BGconn for an object that fits into a factorization

[BG
[c //

��

[BnA

��
BGconn

ĉ //

��

BnAconn

��
BG

c // BnA

of the naturality diagram of the (Disc a Γ)-counit.

Warning 3.6.32. The object BGconn here depends, in general, on the choices involved. But for the moment
we find it convenient not to indicate this in the notation but have it be implied by the corresponding context.

3.6.6 Twisted differential structures

We discuss the differential refinement of twisted cohomology, def. 3.3.9. Following [SSS09c] we speak of
twisted differential c-structures.

Definition 3.6.33. For c : BG→ BnA a characteristic map in a cohesive∞-topos H, define for any X ∈ H
the ∞-groupoid cStructw(X) to be the ∞-pullback

cStructw(X)
tw //

��

Hn(X,A)

��
H(X,BG)

c // H(X,BnA)

,

where the vertical morphism on the right is the essentially unique effective epimorphism that picks on point
in every connected component.

Let now H be a cohesive ∞-topos that canonically contains the circle group A = U(1), such as
Smooth∞Grpd and its variants. Then by 4.4.13 the intrinsic differential cohomology with U(1)-coefficients
reproduces traditional ordinary differential cohomology and by 4.4.14 we have models for the ∞-connection
coefficients BGconn. Using this we consider the differential refinement of def. 3.6.33 as follows.

Definition 3.6.34. For c : BG→ BnU(1) a characteristic map as above, and for ĉ : BGconn → BnU(1)conn

a differential refinement, we write ĉStructw(X) for the corresponding twisted cohomology, def. 3.3.131,

ĉStructw(X)
tw //

χ

��

Hn
diff(X,U(1))

��
H(X,BGconn)

ĉ // H(X,BnU(1)conn)

,

We say ĉStructw(X) is the ∞-groupoid of twisted differential c-structures on X.

3.6.7 Higher holonomy

The notion of ∞-connections in a cohesive ∞-topos induces a notion of higher holonomoy.
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Definition 3.6.35. We say an object Σ ∈ H has cohomological dimension ≤ n ∈ N if for all Eilenberg-
MacLane objects Bn+1A the corresponding cohomology on Σ is trivial

H(Σ,Bn+1A) ' ∗ .

Let dim(Σ) be the maximum n for which this is true.

Observation 3.6.36. If Σ has cohomological dimension ≤ n then its de Rham cohomology, def. 3.6.4,
vanishes in degree k > n

Hk>n
dR (Σ, A) ' ∗ .

Proof. Since [ is a right adjoint it preserves delooping and hence [BkA ' Bk[A. It follows that

Hk
dR(Σ, A) := π0H(Σ, [dRBkA)

' π0H(Σ, ∗
∏
BkA

Bk[A)

' π0

H(Σ, ∗)
∏

H(Σ,BkA)

H(Σ,Bk[A)


' π0(∗)

.

�
Let now A be fixed as in 3.6.4.

Definition 3.6.37. Let Σ ∈ H, n ∈ N with dimΣ ≤ n. We say that the composite∫
Σ

: Hflat(Σ,B
nA)

'// ∞Gprd(Π(Σ),Π(BnA))
τ≤n−dim(Σ)// τn−dim(Σ)∞Gprd(Π(Σ),Π(BnA))

of the adjunction equivalence followed by truncation as indicated is the flat holonomy operation on flat
∞-connections.

More generally, let

• ∇ ∈ Hdiff(X,BnA) be a differential coycle on some X ∈ H

• φ : Σ→ X a morphism.

Write
φ∗ : Hdiff(X,Bn+1A)→ Hdiff(Σ,BnA) ' Hflat(Σ,B

nA)

(using prop. 3.6.19) for the morphism on ∞-pullbacks induced by the morphism of diagrams

H(X,BnA) //

φ∗

��

HdR(X,Bn+1A) oo

φ∗

��

Hn+1
dR (X,A)

��
H(Σ,BnA) // HdR(X,Bn+1A) oo ∗

The holonomomy of ∇ over σ is the flat holonomy of φ∗∇:∫
φ

∇ :=

∫
Σ

φ∗∇ .

This is a special case of the more general notion of transgression, 3.6.8.
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3.6.8 Transgression

We discuss an intrinsic notion of transgression of differential cocycles to mapping spaces. This generalizes
the notion of holonomy from 3.6.7 to the case of higher codimension.

Let A ∈ ∞Grp(H) be an abelian group object and BnAconn a differential coefficient object, as in 3.6.4,
for n ∈ N.

Let Σ ∈ H be of cohomological dimension k ≤ n, def. 3.6.35.

Definition 3.6.38. For ĉ : BGconn → BnAconn a differentia characteristic map as in def. 3.6.31, we say
that the transgression of ĉ to [Σ,BGconn] is the composite

tgΣĉ : [Σ,BGconn]
[Σ,ĉ] // [Σ,BnAconn] // concn−kτn−k[Σ,BnAconn] ,

where [−,−] : H×H→ H is the cartesian internal hom, where τn−k is (n− k)-truncation, prop. 3.3.6, and
where concn−k is (n− k)-concretification from def. 3.4.9.

Remark 3.6.39. In the models we consider we find inclusions

Bn−kAconn ↪→ concn−kτn−k[Σ,BnAconn] .

In these cases truncation takes A-principal n-connections ĉ on BGconn to A-principal (n − k)-connections
tgΣĉ on [Σ,BGconn].

In particular for k = n in this case the transgression is of the form

tgΣĉ : [Σ,BGconn]→ A .

3.6.9 Chern-Simons functionals

Combining the refined∞-Chern-Weil homomorphism, 3.6.5 with the higher holonomy, 3.6.7, of the resulting
∞-connections produces a notion of higher Chern-Simons functionals internal to any cohesive ∞-topos. For
a review of standard Chern-Simons functionals see [Fre].

Definition 3.6.40. Let Σ ∈ H be of cohomological dimension dimΣ = n ∈ N and let c : X → BnA a
representative of a characteristic class [c] ∈ Hn(X,A) for some object X. We say that the composite

exp(Sc(−)) : H(Σ, X)
ĉ→ Hdiff(Σ,BnA)

'→ Hflat(Σ,B
nA)

∫
Σ→ τ≤0∞Grpd(Π(Σ),ΠBnA)

is the ∞-Chern-Simons functional induced by c on Σ.

Here ĉ denotes the refined Chern-Weil homomorphism, 3.6.5, induced by c, and
∫

Σ
is the holonomy over

Σ, 3.6.7, of the resulting n-bundle with connection.

Remark 3.6.41. In the language of σ-model quantum field theory the ingredients of this definition have
the following interpretation

• Σ is the worldvolume of a fundamental (dimΣ− 1)-brane ;

• X is the target space;

• ĉ is the background gauge field on X;

• the external hom Hconn(Σ, X) is the space of worldvolume field configurations φ : Σ→ X or trajectories
of the brane in X;

• exp(Sc(φ)) =
∫

Σ
φ∗ĉ is the value of the action functional on the field configuration φ.
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Traditionally, σ-models have been considered for X an ordinary (Riemannian) manifold, or at most an
orbifold, see for instance [DM99]. The observation that it makes sense to allow target objects X to be more
generally a gerbe, 3.3.13, is explored in [PaSh05] [HeSh10]. Here we see that once we pass to fully general
(higher) stacks, then also all (higher) gauge theories are subsumed as σ-models.

For if there is an ∞-group G such that the target space object X is the moduli ∞-stack of G-∞-
connections, def. 3.6.31, X ' BGconn, then a “trajectory” Σ → X ' BGconn is in fact a G-gauge field on
Σ. Hence in the context of ∞-stacks, the notions of gauge theories and of σ-models unify.

More in detail, assume that H has a canonical line object A1 and a natural numbers object Z. Then
the action functional exp(iS(−)) may lift to the internal hom with respect to the canonical cartesian closed
monoidal structure on any ∞-topos to a morphism of the form

exp(iSc(−)) : [Σ,BGconn]→ Bn−dimΣA1/Z .

We call the internal hom [Σ,BGconn] the moduli∞-stack of field configurations on Σ of the∞-Chern-Simons
theory defined by c and exp(iSc(−)) the action functional in codimension (n− dimΣ) defined on it.

A list of examples of Chern-Simons action functionals defined on moduli stacks obtained this way is given
in 4.4.16.

3.6.10 Wess-Zumino-Witten functionals

We discuss an canonical realization of Wess-Zumino-Witten action functionals and their higher analogs in
every cohesive ∞-topos. More precisely, to every ∞-Chern-Simons Lagrangian on BGconn as in 3.6.9 above
is associated a corresponding ∞-Wess-Zumino-Witten Lagrangian on G, given by a differentially refined
looping.

For a review of standard WZW functionals see for instance [Ga00].

Before giving the definition of intrinsic WZW functionals, it is useful to restate the content of prop.
3.3.148 in the following way.

Definition 3.6.42. Let G ∈ ∞Grp(H) be an ∞-group and

c : BG→ Bn+1A

a characteristic map classifying a Chern-Simons (BnA)-bundle BĜ→ BG.
We say that its image Ĝ→ G under forming loop space objects is the corresponding Wess-Zumino-Witten

(BnA)-principal bundle.

Remark 3.6.43. By prop. 3.3.73, the WZW ∞-bundle sits in the pasting diagram of ∞-pullbacks

Ĝ //

��

∗

��
G

Ωc //

��

BnA //

��

∗

��
∗ // BĜ //

��

BG

c

��
∗ // Bn+1A

.

In the following, the WZW action functional arises from a differential refinement of this situation. First
consider the following differential refinement of the codomain of Ωc.
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Definition 3.6.44. For ĉ : BGconn → Bn+1Aconn a differential refinement of c, write BnAconn|F=cdR(θ) for
the homotopy fiber

BnAconn|F=cdR(θ)
//

��

∗

��
[dRBG // [BG // BGconn

ĉ // Bn+1Aconn

,

where the left bottom morphism is the canonical one, and the middle bottom morphism that induced by
prop. 3.6.19.

We say that BnAconn|F=cdR(θ) is the coefficient object for WZW A-principal n-bundles with connection.
The notation here is motivated by the discussion to follow.

Definition 3.6.45. Write
η : BnAconn|F=cdR(θ) → BnA

for the morphism into the ∞-pullback

BnA //

��

BĜ

��

// ∗

��
∗ // BG

id // BG
c // Bn+1A

induced by the morphism of pullback diagrams given by

[dRBG //

��

[BG //

��

BGconn
ĉ //

��

Bn+1Aconn
oo

��

∗

��
∗ // BG

id // BG
c // Bn+1A oo ∗

.

For a given WZW connectionX → BnAconn|F=cdR(θ), we say that the compositeX → BnAconn|F=cdR(θ)
η→

BnA is the underlying WZW n-bundle.

Definition 3.6.46. For ĉ : BGconn → Bn+1Aconn a differential refinement of c, def. 3.6.31, inducing an
∞-Chern-Simons functional, by 3.6.9, we say that the morphism

WZWĉ : G→ BnAconn|F=cdR(θ)

in the pasting diagram of ∞-pullbacks

G WZWc
//

θ

,,

��

BnAconn|F=cdR(θ)
//

��

[dRBG

��
∗ //

��

// [BG

��
BGconn

ĉ=:CSc

��
∗ // Bn+1Aconn

is the corresponding WZW Lagrangian.
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Here the total top rectangle is the ∞-pullback that defines the canonical form θ : G → [dRBG, def.
3.6.15, the morphism [BG → BGconn is that induced by prop. 3.6.19, and the object BnAconn|F=cdR(θ) is
from def. 3.6.44.

Proposition 3.6.47. The WZW Lagrangian WZWc from def. 3.6.46 is a differential refinement of the
morphism Ωc, from remark 3.6.43, which classifies the WZW n-bundle, in that we have a commuting diagram

G
WZWc //

id

��

BnAconn|F=cdR(θ)

η

��
G

Ωc // BnA

in H, where the right vertical morphism is from def. 3.6.45.

Proof. Paste the morphism of diagrams that defines η in def. 3.6.45 to the right total rectangle in def.
3.6.46. Pulling the result back one more step to the left, there appears in the top left a diagram of the form
as in the claim, whose top and right morphism are as in the claim. It remains to see that the morphism
G→ G appearing is the identity. Since the way it it appears under this pullback it is a morphism of pullbacks
induced by a morphism of pullback diagrams, there is, up to equivalence, only a unique such morphism which
makes all diagrams in sight commute. One sees that the identity morphism has this property, and hence by
uniqueness it must be the morphism in question. �

Definition 3.6.48. For Σ of dimension n we say that the composition with the holonomy over Σ, def.
3.6.37,

exp(SWZWĉ
) : H(Σ, G)

WZWĉ // H(Σ,BnAconn|F=cdR(θ))
� � // H(Σ,Bn+1Aconn)

∫
Σ // A

is the corresponding exponentiated WZW action functional induced by ĉ.

3.6.11 Geometric prequantization

We discuss a canonical notion of geometric prequatization that exists in any cohesive ∞-topos.
Quantization is supposed to be a process that reads in an action functional and produces from it, possibly

non-uniquely, a quantum field theory. One formalization of what this means is geometric quantization
[EMRV98]. In this context in a first step – called geometric prequantization – one refines symplectic structure
to differential cohomology classes.

For discussion of background and classical references see 4.4.17 below, where the general theory is worked
out in the context of smooth cohesion. In 4.4.17.1 we make the connection to the traditional theory of
symplectic prequantization, in 4.4.17.2 to the younger theory of multisymplecitc prequantization, and in 5.8,
we discuss further and higher examples.

Fix a 0-truncated abelian group object A ∈ Grp(H) as in 3.6.4.
Let in the following X ∈ H be an n-truncated object equipped with a de Rham cocycle, def. 3.6.4, of

degree n+ 2
ω : X → [dRBn+2A .

Here we will call this structure (X,ω) a presymplectic cohesive n-groupoid.
A lift

ω̂ : X → Bn+1Aconn

of (X,ω) through the curvature exact sequence, prop. 3.6.20,

Hdiff(X,Bn+1A)→ H(X, [dRBn+2A)
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to A-valued differential cocycles we call a choice of prequantum A-principal (n+ 1)-bundle for ω.
We may regard ω̂ as an object in the slice ∞-topos over Bn+2Aconn

H/Bn+2Aconn

p! //
oo p∗

p∗
// H .

Definition 3.6.49. Given ω̂ : X → BnU(1)conn, we call the ∞-group

Poisson(X, ω̂) := AutH/Bn+2Aconn
(X, ω̂) ∈ H

of auto-equivalences of (X, ω̂) in the slice ∞-topos the Poisson ∞-group of (X, ω̂).

• Its image
HamSympl(X, ω̂) := imp!

(AutH/Bn+2Aconn
(X, ω̂))

in ∞Grp(H) we call the ∞-group of Hamiltonian symplectomorphisms of (X,ω).

• Its ∞-Lie algebra
poisson(X, ω̂) := Lie(AutH/Bn+2Aconn

(X, ω̂))

we call the Poisson ∞-Lie algebra of ω.

• The ∞-Lie algebra of the Hamiltonian symplectomorphisms

XHam(X, ω̂) := Lie(p!(AutH/Bn+2Aconn
(X, ω̂))

we call the ∞-Lie algebra of Hamiltonian vector fields of (X,ω).

Remark 3.6.50. If X has a linear structure (the structure of a vector space) and ω is constant on X, then
we can consider the sub ∞-Lie algebra of poisson(X, ω̂) on the constant and linear elements. We discuss
realizations of this below in 4.4.17.1. This sub ∞-Lie algebra we call the Heisenberg ∞-Lie algebra

heis(X, ω̂) ↪→ poisson(X, ω̂) .

The corresponding sub-∞-group we call the Heisenberg ∞-group

Heis(X, ω̂) ↪→ Poisson(X, ω̂) .

Proposition 3.6.51. The Poisson ∞-group of any ω̂ : X → Bn+1Aconn is an extension of the Hamiltonian
symplectomorphisms by the smooth group of flat BnA-principal bundles on X, in that there is a fiber sequence

[X, [BnA]→ Poisson(X, ω̂)→ HamSympl(X, ω̂) ,

where [−,−] : Hop ×H→ H denotes the internal hom of H.

Proof. The H-valued hom of H/BnAconn
is given (use for instance prop. 5.5.5.12 in [LuHTT]) by the

∞-pullback

H/BnAconn
(ω̂, ω̂) //

��

[X,X]

ω̂◦(−)

��
∗ ω̂ // [X,Bn+1Aconn]

.

If we write Eq(X,X) ↪→ [X,X] for the subobject on the equivalences, then the Poisson ∞-group is given by
the ∞-pullback

Poisson(X, ω̂) //

��

Eq(X,X)

ω̂◦(−)

��
∗ ω̂ // [X,Bn+1Aconn]

.
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The ∞-group of Hamiltonian symplectomorphism is by definition of image the object that factors the top
horizontal morphism appearing here into an effective epimorphism followed by a monomorphism

Poisson(X, ω̂) // // HamSympl(X, ω̂) �
� // Eq(X,X) .

The fiber of the effective epimorphism over the trivial equivalence is then identified as [X, [BnA] by the
pasting law, prop. 2.3.1, applied to the following pasting diagram of ∞-pullbacks:

[X, [BnA] //

��

∗

id
��

∗

id
��

Poisson(X, ω̂) //

��

HamSympl(X, ω̂) �
� // Eq(X,X)

ω̂◦(−)

��
∗ ω̂ // [X,Bn+1Aconn]

.

�
We discuss now how the Poisson∞-group naturally acts on sections, prop. 3.3.136, of associated∞-bundles,
def. 3.3.166, over X which are associated to the underlying∞-group BnA by a representation ρ, def. 3.3.155.

By that definition such a representation is a choice of fiber sequence

V → V//BnA
ρ→ Bn+1A

in H. For a given prequantum A-principal (n+ 1)-bundle P → X classified by c : X → Bn+1A write in the
following

E := P ×BnA V

for the associated prequantum V -bundle, according to def. 3.3.166. Moreover, write

ΓX(E) := H/Bn+1A(X,V//BnA)

for the ∞-groupoid of sections of the corresponding associated V -fiber bundle, according to prop. 3.3.136.

Definition 3.6.52. Let
AutH/BnAconn

(X)× ΓX(E)→ ΓX(E)

be the canonical action of the Poisson ∞-group on the space of sections induced by composition in the slice
H/BnA via the map

AutH/BnAconn
(X)→ AutH/BnA

(X) ↪→ H/BnA(g, g) ,

where the first morphism is induced by postcomposition with BnAconn → BnA, and where g is the cocycle
underlying the given prequantum (n+ 1)-bundle; and via the identification

ΓX(E) ' H/BnA(g, ρ) .

Remark 3.6.53. This action sends a pair consisting of section given by a diagram

V//BnA

ρ

��
X

g //

σ
;;

Bn+1A

and a group element given by a diagram

X
φ //

ω̂ %%

X

ω̂yy
Bn+1Aconn

αnv
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to the section given by the pasting diagram

V//BnA

ρ

��

X

ω̂
%%

σ

44

g

**
X

ω̂
//

φ

??

Bn+1Aconn
// Bn+1A

α��

.

Definition 3.6.54. The image of a Hamiltonian symplectomorphism (φ, α) under

AutH/BnAconn
(X, ω̂)→ End(ΓX(E))

we call the prequantum operator of (φ, α).
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3.7 Structures in a differential ∞-topos

We discuss a list of differential geometric notions that can be formulated in the presence of the axioms for
infinitesimal cohesion, 3.6. These structures parallel the structures in a general cohesive ∞-topos, 3.6.

• 3.7.1 – Infinitesimal path ∞-groupoid and de Rham spaces;

• 3.7.2 – Jet ∞-bundles;

• 3.7.3 – Formally smooth/étale/unramified morphisms;

• 3.7.4 – Formally étale groupoids;

• 3.7.5 – Flat infinitesimal ∞-connections and local systems;

• 3.7.6 – Formal cohesive ∞-groupoids.

3.7.1 Infinitesimal path ∞-groupoid and de Rham spaces

We discuss the infinitesimal analog of the path ∞-groupoid, 3.5.3, which exists in a context of infinitesimal
cohesion, def. 3.2.1.

Let (i! a i∗ a i∗ a i1) : H→ Hth be an infinitesimal neighbourhood of a cohesive ∞-topos.

Definition 3.7.1. For (i! a i∗ a i∗ a i!) : H ↪→ Hth an infinitesimal cohesive neighbourhood, define the
triple of adjoint ∞-functors

(Red a Πinf a [dR) : (i!i
∗ a i∗i∗ a i∗i!) : Hth → Hth .

For X ∈ Hth we say that

• Πinf(X) is the infinitesimal path ∞-groupoid of X;

The (i∗ a i∗)-unit
X → Πinf(X)

we call the constant infinitesimal path inclusion.

• Red(X) is the reduced cohesive ∞-groupoid underlying X.

The (i∗ a i∗)-counit
RedX → X

we call the inclusion of the reduced part of X.

Remark. This is an abstraction of the setup considered in [SiTe]. In traditional contexts as considered
there, the object Πinf(X) is called the de Rham space of X or the de Rham stack of X. Here we may
tend to avoid this terminology, since by 3.6.1 we have a good notion of intrinsic de Rham cohomology in
every cohesive ∞-topos already without equipping it with infinitesimal cohesion. From this point of view
the object Πinf(X) is not primarily characterized by the fact that (in some models, see 4.5.2 below) it does
co-represent de Rham cohomology – because the object ΠdR(X) from def. 3.6.1 does, too – but by the fact
that it does so in an explicitly synthetic infinitesimal way in the sense of [Kock10].

Observation 3.7.2. There is a canonical natural transformation

Πinf(X)→ Π(X)
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that factors the finite path inclusion through the infinitesimal path inclusion

Πinf(X)

��
X

;;

// Π(X)

.

Proof. By def. 3.2.6 this is just the formula for the unit of the composite adjunction

(ΠHth
a [Hth

) : Hth

Πinf //
oo
Discinf

H
Π //
oo
Disc

∞Grpd ,

more explicitly given by

Discinf ◦Πinf(X)

��
X //

44

Discinf ◦DiscH ◦ΠH ◦Πinf(X)

.

�

3.7.2 Jet bundles

In the presence of infinitesimal cohesion there is a canonical higher analog notion of jet bundles: the gener-
alization of tangent bundles to higher order infinitesimals (higher order tangents).

Definition 3.7.3. For any object X ∈ H write

Jet : H/X
i∗←→
i∗

H/Πinf(X)

for the base change geometric morphism, prop. 2.2.4, induced by the constant infinitesimal path inclusion
i : X → Πinf (X), def. 3.7.1.

For (E → X) ∈ H/X we call Jet(E) → Πinf(X) as well as its pullback i∗Jet(E) → X (depending on
context) the jet ∞-bundle of E → X.

In the context over an algebraic site this reduces to the construction in section 2.3.2 of [BeDr04], see
[Paug11] for a review.

3.7.3 Formally smooth/étale/unramified morphisms

In every context of infinitesimal cohesion, there are canonical induced notions of morphisms being formally
étale, meaning that at least on infinitesimal neighbourhoods of every point they behave like the analog of
what in topology is a local homeomorphism/étale map. Close cousins of this are the notions of formally
smooth and of formally unramified morphisms.

Definition 3.7.4. We say an object X ∈ Hth is formally smooth if the constant infinitesimal path inclusion,
def. 3.7.1,

X → Πinf(X)

is an effective epimorphism.

In this form this is the direct∞-categorical analog of the characterization of formal smoothness in [SiTe].
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Proposition 3.7.5. An object X ∈ Hth is formally smooth according to def. 3.7.4 precisely if the canonical
morphism

φ : i!X → i∗X

is an effective epimorphism.

Proof. The canonical morphism is the composite

φ := i!
ηi!→ Πinf i! := i∗i

∗i!
'→ i∗ .

By the condition that i! is a full and faithful ∞-functor, the second morphism here is an equivalence, as
indicated, and hence the component of the composite on X being an effective epimorphism is equivalent to
the component i!X → Πinf i!X being an effective epimorphism. �

Remark 3.7.6. In this form this characterization of formal smoothness is the evident generalization of the
condition given in section 4.1 of [RoKo04]. (Notice that the notation there is related to the one used here
by u∗ = i!, u∗ = i∗ and u! = i∗.)

Therefore we have the following more general definition.

Definition 3.7.7. For f : X → Y a morphism in H, we say that

1. f is a formally smooth morphism if the canonical morphism

i!X → i!Y
∏
i∗Y

i∗Y

is an effective epimorphism;

2. f is a formally étale morphism if this morphism is an equivalence, equivalently if the naturality square

i!X
i!f //

φX

��

i!Y

φY

��
i∗X

i∗f // i∗Y

is an ∞-pullback square.

3. f is a formally unramified morphism if this is a (-1)-truncated morphism. More generally, f is an order-k
formally unramified morphisms for (−2) ≤ k ≤ ∞ if this is a k-truncated morphism ([LuHTT], 5.5.6).

Remark 3.7.8. An order-(−2) formally unramified morphism is equivalently a formally étale morphism.
Only for 0-truncated X does formal smoothness together with formal unramifiedness imply formal étaleness.

Remark 3.7.9. The idea of characterizing étale morphisms with respect to a notion of infinitesimal extension
as those making certain naturality squares into pullback squares goes back to lectures by André Joyal in the
1970s, as is recalled in the introduction of [Dub00]. Notice that in sections 3 and 4 there the analog of our
functor i! is assumed to be the inverse image of a geometric morphism, whereas here we only require it to be
a left adjoint and to preserve finite products, as opposed to all finite limits. Indeed, it will fail to preserve
general pullbacks in most models for infinitesimal cohesion of interest, such as the one discussed below in
4.5.

The characterization of formal étaleness by cartesian naturality squares induced specifically by adjoint
triples of functors, as in our def. 3.7.4, appears around prop. 5.3.1.1 of [RoKo04].

We now consider general properties of classes of formally étale morphisms.
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Proposition 3.7.10. The collection of formally étale morphisms in H, def. 3.7.7, is closed under the
following operations.

1. Every equivalence is formally étale.

2. The composite of two formally étale morphisms is itself formally étale.

3. If
Y

g

��
X

f
>>

h // Z

is a diagram such that g and h are formally étale, then also f is formally étale.

4. Any retract of a formally étale morphisms is itself formally étale.

5. The ∞-pullback of a formally étale morphisms is formally étale if the pullback is preserved by i!.

The statements about closure under composition and pullback appears as prop. 5.4, prop. 5.6 in
[RoKo04]. The extra assumption that i! preserves the pullback is implicit in their setup.
Proof. The first statement follows trivially because ∞-pullbacks are well defined up to equivalence. The
second two statements follow by the pasting law for ∞-pullbacks, prop. 2.3.1: let f : X → Y and g : Y → Z
be two morphisms and consider the pasting diagram

i!X
i!f //

��

i!Y
i!g //

��

Z

��
i∗X

i∗f // i∗Y
i∗g // i∗Z

.

If f and g are formally étale then both small squares are pullback squares. Then the pasting law says that
so is the outer rectangle and hence g ◦ f is formally étale. Similarly, if g and g ◦ f are formally étale then
the right square and the total reactangle are pullbacks, so the pasting law says that also the left square is a
pullback and so also f is formally étale.

For the fourth claim, let Id ' (g → f → g) be a retract in he arrow ∞-category HI . By applying the
natural transformation φ : i! → i∗ this becomes a retract

Id ' ((i!g → i∗g)→ (i!f → i∗f)→ (i!g → i∗g))

in the category of squares H�. By assumption the middle square is an ∞-pullback square and we need
to show that the also the outer square is. This follows generally: a retract of an ∞-limiting cone is itself
∞-limiting. To see this, we invoke the presentation of ∞-limits by derivators (thanks to Mike Shulman for
this argument): we have

1. ∞-limits in H are computed by homotopy limits in an presentation by a model category K :=
[Cop, sSet]loc [LuHTT];

2. for j : J → J/ the inclusion of a diagram into its cone (the join with an initial element), the homotopy
limit over C is given by forming the right Kan extension j∗ : Ho(KJ(W J)−1)→ Ho(KJ/(W J/)−1),

3. a J/-diagram F is a homotopy limiting cone precisely if the unit

F → j∗j
∗F

us an isomorphism.
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Therefore we have a retract in [∆[1], [�,K]]

(i!g → i!g) //

��

(i!f → i!f) //

��

(i!g → i!g)

��
j∗j∗(i!g → i!g) // j∗j∗(i!f → i!f) // j∗j∗(i!g → i!g)

,

where the middle morphism is an isomorphism. Hence so is the outer morphism and therefore also g is
formally étale.

For the last claim, consider an ∞-pullback diagram

A×Y X

p

��

// X

f

��
A // Y

where f is formally étale. Applying the natural transformation φ : i! → i∗ to this yields a square of squares.
Two sides of this are the pasting composite

i!A×Y X //

i!p

��

i!X
φX //

i!f

��

i∗X

i∗f

��
i!A // i!Y

φY // i∗Y

and the other two sides are the pasting composite

i!A×Y X
φA×Y X//

i!p

��

i∗A×Y A //

i∗p

��

i∗X

i∗f

��
i!A

φA // i∗A // i∗Y

.

Counting left to right and top to bottom, we have that

• the first square is a pullback by assumption that i! preserves the given pullback;

• the second square is a pullback, since f is formally étale.

• the total top rectangle is therefore a pullback, by the pasting law;

• the fourth square is a pullback since i∗ is right adjoint and so also preserves pullbacks;

• also the total bottom rectangle is a pullback, since it is equal to the top total rectangle;

• therefore finally the third square is a pullback, by the other clause of the pasting law. Hence p is
formally étale.

�

We consider now types of ∞-pullbacks that are preserved by i!.

Proposition 3.7.11. If U // // X is an effecive epimorphism in H that it is addition formally étale, def.
3.7.7, then also its image i!U → i!X in Hth is an effective epimorphism.
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Proof. Because i∗ is left and right adjoint it preserves all small ∞-limits and ∞-colimits and therefore
preserves effective epimorphisms. Since these are stable under ∞-pullback, it follows by definition of formal
étaleness that with i∗U → i∗X also i!U → i!X is an effective epimorphism. �

Proposition 3.7.12. If in an infinitesimal cohesive neighbourhood i : H ↪→ Hth both H as well as Hth have
an ∞-cohesive site of definition, then the functor i! preserves pullbacks over discrete objects.

Proof. Since it preserves finite products by assumption, the claim follows as in the proof of theorem
3.5.22. �

Proposition 3.7.13. If in an infinitesimal cohesive neighbourhood i : H ↪→ Hth both H as well as Hth have
an ∞-cohesive site of definition, then the morphism E → X in H out of the total space of a locally constant
∞-stack over X, 3.5.6 is formally étale.

Proof. First observe that every discrete morphism Disc(A
f→ B) is formally étale: since every discrete

∞-groupoid is an ∞-colimit over the ∞-functor constant on the point, φ∗ : i!∗ → i∗∗ is an equivalence, and
i! → i∗ preserves ∞-colimits, so we have that φDic(A) and φDisc(B) are equivalences. Therefore the relevant
diagram is an ∞-pullback.

Next, by definition, E → X is a pullback of a discrete morphism. By prop. 3.7.12 this pullback is
preserved by i! and so by prop. 3.7.10 also E → X is locally étale. �

Remark 3.7.14. The properties listed in prop. 3.7.10 correspond to the axioms on the “admissible maps”
modelling a notion of local homeomorphism in a geometry for structured ∞-toposes according to def. 1.2.1
of [Lu09a]. This means that the intrinsic notion of local étaleness induced from a notion of infinitesimal
cohesion itself canonically induces a notion of ∞-toposes equipped with cohesive ∞-structure sheaves.

In order to interpret the notion of formal smoothness, we turn now to the discussion of infinitesimal
reduction.

Observation 3.7.15. The operation Red is an idempotent projection of Hth onto the image of H under i!:

Red Red ' Red .

Accordingly also
ΠinfΠinf ' Πinf

and
[inf[inf ' [inf .

Proof. By definition of infinitesimal neighbourhood we have that i! is a full and faithful ∞-functor. It
follows that i∗i! ' id and hence

RedRed ' i!i∗i!i∗

' i!i∗

' Red

.

�

Observation 3.7.16. For every X ∈ Hth, we have that Πinf(X) is formally smooth according to def. 3.7.4.

Proof. By prop. 3.7.15 we have that

Πinf(X)→ ΠinfΠinfX

is an equivalence. As such it is in particular an effective epimorphism. �
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3.7.4 Formally étale groupoids

We discuss an intrinsic realization of the notion of formally étale groupoids internal to a differential ∞-
topos. In typical models, for instance that discussed below in 4.5, formal étaleness automatically implies
global étaleness, and so the following formulation captures the notion of étale groupoid objects in a differential
∞-topos. For a classical texts on étale 1-groupoids see [MoMr03].

Recall from 3.3.5 that groupoid objects G in an ∞-topos H are equivalent to effective epimorphisms

U
p // // X in H, which we think of as being an atlas for X ∈ H.

Definition 3.7.17. For H
i
↪→ Hth a differential ∞-topos, def. 3.2.1, we say that a groupoid object is

formally étale if the corresponding atlas U
p // // X is a formally étale morphism, def. 3.7.7.

Remark 3.7.18. When H is presented by a category of simplicial (pre)sheaves, 2.2.2, then for any simplicial
presheaf X there is, by remark 2.3.28, a canonical atlas, given by the inclusion constX0 → X. If the
presentation of X and the induced canonical atlas is understood explicitly, we often speak just of X itself
being a formally étale groupoid or a formally étale ∞-stack.

Observation 3.7.19. If U
p // // X is a formally étale groupoid, then both i∗U

i∗p // // i∗X and i!U
i!p // // i!X

are effective epimorphisms in Hth.

Proof. Since i∗ is both left and right ∞-adjoint, it preserves all the ∞-limits and ∞-colimits that define
effective epimorphisms. Then since these are stable under ∞-pullback, and since p : U → X being formally
étale by definition means that i!p is an∞-pullback of i∗, it follows that also i!p is an effective epimorphism. �

3.7.5 Flat infinitesimal connections and local systems

We discuss the infinitesimal analog of intrinsic flat cohomology, 3.5.5.

Definition 3.7.20. For X,A ∈ Hth we say that

Hinfflat(X,A) := π0H(Πinf(X), A) ' π0H(X, [infA)

is the infinitesimal flat cohomology of X with coefficient in A.

Remark 3.7.21. In traditional contexts, such as considered in [SiTe], this is de Rham cohomology. To
distinguish the abstract notion from the closely related but slightly different intrinsic de Rham cohomology
of def. 3.6.1 we shall also say synthetic de Rham cohomology for the notion of def. 3.7.20. In this case we
shall write

HdR,th(X,A) := π0Hth(Πinf(X), A) .

Remark 3.7.22. By observation 3.7.2 we have canonical natural morphisms

Hflat(X,A)→ Hinfflat(X,A)→ H(X,A)

The objects on the left are principal ∞-bundles equipped with flat ∞-connection. The first morphism
forgets their higher parallel transport along finite volumes and just remembers the parallel transport along
infinitesimal volumes. The last morphism finally forgets also this connection information.

Definition 3.7.23. For A ∈ Hth a 0-truncated abelian ∞-group object we say that the de Rham theorem
for A-coefficients holds in Hth if for all X ∈ Hth the infinitesimal path inclusion of observation 3.7.2

Πinf(X)→ Π(X)

is an equivalence in A-cohomology, hence if for all n ∈ N we have that

π0Hth(Π(X),BnA)→ π0Hth(Πinf(X),BnA)

is an isomorphism.
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If we follow the notation of remark 3.7.21 and moreover write |X| = |ΠX| for the intrinsic geometric
realization, def. 3.5.2, then this becomes

H•dR,th(X,A) ' H•(|X|, Adisc) ,

where on the right we have ordinary cohomology in Top (for instance realized as singular cohomology) with
coefficients in the discrete group Adisc := ΓA underlying the cohesive group A.

In certain contexts of infinitesimal neighbourhoods of cohesive ∞-toposes the de Rham theorem in this
form has been considered in [SiTe]. We discuss a realization below in 4.5.2.

3.7.6 Formal groupoids

The infinitesimal analog of an exponentiated ∞-Lie algebra, 3.6.2, is a formal cohesive ∞-group.

Definition 3.7.24. An object X ∈ Hth is a formal cohesive ∞-groupoid if ΠinfX ' ∗.
An ∞-group object g ∈ Hth that is infinitesimal we call a formal ∞-group.
For X ∈ H any object, we say a ∈ Hth is an formal cohesive ∞-groupoid over X if Πinf(a) ' Πinf(X);

equivalently: if there is a morphism
a→ Πinf(X)

equivalent to the infinitesimal path inclusion, def. 3.7.1, for a.

Proposition 3.7.25. An infinitesimal cohesive ∞-groupoid, def. 3.7.24 – X ∈ Hth with Πinf(X) ' ∗ – is
both geometrically contractible and has as underlying discrete ∞-groupoid the point:

• ΠX ' ∗

• ΓX ' ∗.

Proof. The first statement is implied by the fact both i! as well as i∗ are full and faithful, by definition
of infinitesimal neighbourhood. This means that if Πinf(X) ' ∗ then already i∗X = Πinf(X) ' ∗. Since
ΠHth

' ΠHΠinf and ΠH preserves the terminal object by cohesiveness, this implies the first claim.
The second statement follows by

ΓX ' Hth(∗, X)

' Hth(Red∗, X)

' Hth(∗,Πinf(X))

' Hth(∗, ∗)
' ∗

.

�

Observation 3.7.26. For all X ∈ H, we have that X and Πinf(X) are formal cohesive ∞-groupoids over
X, X by the constant infinitesimal path inclusion and Πinf(X) by the identity.

Proof. For X this is tautological, for Π(X) it follows from prop. 3.7.15 and the (i∗ a i∗)-zig-zag-identity.
�

Proposition 3.7.27. The delooping Bg of a formal ∞-group g, def. 3.7.24, is a formal ∞-groupoid over
the point.

Proof. Since both i∗ and i∗ are right adjoint, Πinf commutes with delooping. Therefore

ΠinfBg ' BΠinfg

' B∗
' ∗
' Πinf∗

.
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4 Models

In this section we construct specific cohesive ∞-toposes, 3.1, and discuss the nature of the general abstract
structures, 3.6, in these models.

• 4.1 – discrete cohesion;

• 4.2 – fiberwise contractible cohesion;

• 4.3 – Euclidean-topological cohesion;

• 4.4 – smooth cohesion;

• 4.5 – synthetic differential cohesion;

• 4.6 – super cohesion.
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4.1 Discrete ∞-groupoids

For completeness, and because it serves to put some concepts into a useful perspective, we record aspects of
the case of discrete cohesion.

Observation 4.1.1. The terminal ∞-sheaf ∞-topos ∞Grpd is trivially a cohesive ∞-topos, where each of
the defining four ∞-functors (Π a Disc a Γ a coDisc) :∞Grpd→∞Grpd is an equivalence of ∞-categories.

Definition 4.1.2. In the context of cohesive ∞-toposes we say that ∞Grpd defines discrete cohesion and
refer to its objects as discrete ∞-groupoids.

More generally, given any other cohesive ∞-topos

(Π a Disc a Γ a coDisc) : H→∞Grpd

the inverse image Disc of the global section functor is a full and faithful∞-functor and hence embeds∞Grpd
as a full sub-∞-category of H. We say X ∈ H is a discrete ∞-groupoid if it is in the image of Disc.

This generalizes the traditional use of the terms discrete space and discrete group:

• a discrete space is equivalently a 0-truncated discrete ∞-groupoid;

• a discrete group is equivalently a 0-truncated group object in discrete ∞-groupoids.

We now discuss some of the general abstract structures in cohesive ∞-toposes, 3.6, in the context of
discrete cohesion.

• 4.1.1 – Geometric homotopy

• 4.1.2 – Groups

• 4.1.3 – Cohomology

• 4.1.4 – Principal bundles

• 4.1.5 – Twisted cohomology

• 4.1.6 – Representations and associated bundles

4.1.1 Geometric homotopy

We discuss geometric homotopy and path∞-groupoids, 3.5.1, in the context of discrete cohesion, 4.1. Using
sSetQuillen as a presentation for∞Grpd this is entirely trivial, but for the equivalent presentation by TopQuillen

it becomes effectively a discussion of the classical Quillen equivalence TopQuillen ' sSetQuillen from the point
of view of cohesive ∞-toposes. It may be useful to make this explicit.

By the homotopy hypothesis-theorem the∞-toposes Top and∞Grpd are equivalent, hence indistinguish-
able by general abstract constructions in∞-topos theory. However, in practice it can be useful to distinguish
them as two different presentations for an equivalence class of ∞-toposes. For that purposes consider the
following

Definition 4.1.3. Define the quasi-categories

Top := N(TopQuillen)◦

and
∞Grpd := N(sSetQuillen)◦ .
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Here on the right we have the standard model structure on topological spaces, TopQuillen, and the standard
model structure on simplicial sets, sSetQuillen, and N((−)◦) denotes the homotopy coherent nerve of the
simplicial category given by the full sSet-subcategory of these simplicial model categories on fibrant-cofibrant
objects.

For

(| − | a Sing) : TopQuillen

oo |−|

Sing
// sSetQuillen

the standard Quillen equivalence given by the singular simplicial complex-functor and geometric realization,
write

(L| − | a RSing) : Top
oo L|−|

RSing
//∞Grpd

for the corresponding derived∞-functors (the image under the homotopy coherent nerve of the restriction of
| − | and Sing to fibrant-cofibrant objects followed by functorial fibrant-cofibrant replacement) that constitute
a pair of adjoint ∞-functors modeled as morphisms of quasi-categories.

Since this is an equivalence of ∞-categories either functor serves as the left adjoint and right ∞-adjoint
and so we have

Observation 4.1.4. Top is exhibited as a cohesive ∞-topos by

(Π a Disc a Γ a coDisc) : Top

LSing //
oo R|−|

LSing //
oo

R|−|

∞Grpd

In particular a presentation of the intrinsic fundamental ∞-groupoid is given by the familiar singular sim-
plicial complex construction

Π(X) ' RSingX .

Notice that the topology that enters the explicit construction of the objects in Top here does not show
up as cohesive structure. A topological space here is a model for a discrete ∞-groupoid, the topology only
serves to allow the construction of SingX. For discussion of ∞-groupoids equipped with genuine topological
cohesion see 4.3.

4.1.2 Groups

Discrete ∞-groups may be presented by simplicial groups. See 3.3.6.2.
(...)

4.1.3 Cohomology

We discuss the general notion of cohomology in cohesive∞-toposes, 3.3.7, in the context of discrete cohesion.
Cohomology in Top is the ordinary notion of (nonabelian) cohomology. The equivalence to∞Grpd makes

manifest in which way this is equivalently the cohomology of groups for connected, homotopy 1-types, the
cohomology of groupoids for general 1-types and generally, of course, the cohomology of ∞-groups.

4.1.3.1 Group cohomology

Proposition 4.1.5. For G a (discrete) group, A a (discrete) abelian group, the group cohomology of G with
coefficients in the trivial G-module A is

Hn
grp(G,A) ' π0Disc∞Grpd(BG,BnA) .

The case of group cohomology with coefficients in a non-trivial module is a special case of twisted coho-
mology in Disc∞Grpd. This is discussed below in 4.1.5.1.
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4.1.4 Principal bundles

We discuss the general notion of principal ∞-bundles in cohesive ∞-toposes, 3.3.8, in the context of discrete
cohesion.

There is a traditional theory of strictly principal Kan simplicial bundles, i.e. simplicial bundles with G
action for which the shear map is an isomorphism instead of more generally a weak equivalence. A classical
reference for this is [May67]. A standard modern reference is section V of [GoJa99]. We now compare this
classical theory of strictly principal simplicial bundles to the theory of weakly principal simplicial bundles
from 3.3.8.4.

Definition 4.1.6. Let G be a simplicial group and X a Kan simplicial set. A strictly G-principal bundle
over X is a morphism of simplicial sets P → X equipped with a G-action on P over X such that

1. the G action is degreewise free;

2. the canonical morphism P/G → X out of the ordinary (1-categorical) quotient is an isomorphism of
simplicial sets.

A morphism of stricly G-principal bundles over X is a map P → P ′ respecting both the G-action as well as
the projection to X.

Write sGBund(X) for the category of strictly G-principal bundles.

In [GoJa99] this is definition V3.1, V3.2.

Lemma 4.1.7. Every morphism in sGBund(X) is an isomorphism.

In [GoJa99] this is remark V3.3.

Observation 4.1.8. Every strictly G-principal bundle is evidently also a weakly G-principal bundle, def.
3.3.112. In fact the strictly principal G-bundles are precisely those weakly G-principal bundles for which the
shear map is an isomorphism. This identification induces a full inclusion of categories

sGBund(X) ↪→ wGBund(X) .

Lemma 4.1.9. Every morphism of weakly principal Kan simplicial bundles is a weak equivalence on the
underlying Kan complexes.

Proposition 4.1.10. For G a simplicial group, the category sSetG of G-actions on simplicial sets and G-
equivariant morphisms carries the structure of a simplicial model category where the fibrations and weak
equivalences are those of the underlying simplicial sets.

This is theorem V2.3 in [GoJa99].

Corollary 4.1.11. For G a simplicial group and X a Kan complex, the slice category sSetG/X carries a
simplicial model structure where the fibrations and weak equivalences are those of the underlying simplicial
sets after forgetting the map to X.

Lemma 4.1.12. Let G be a simplicial group and P → X a weakly G-principal simplicial bundle. Then the
loop space Ω(P→X)Ex∞N(wGBund(X)) has the same homotopy type as the derived hom space RHomsSetG/X(P, P ).

Proof. By theorem V2.3 of [GoJa99] and lemma 4.1.9 the free resolution P f of P from corollary 3.3.130
is a cofibrant-fibrant resolution of P in the slice model structure of corollary 4.1.11. Therefore the derived
hom space is presented by the simplicial set of morphisms HomsSetG/X(P f ·∆•, P f ) and all these morphisms
are equivalences. Therefore by prop. 2.3 in [DwKa84a] this simplicial set is equivalent to the loop space of
the nerve of the subcategory of sSetG/X on the weak equivalences connected to P f . By lemma 4.1.9 this
subcategory is equivalent (isomorphic even) to the connected component of wGBund(X) on P . �
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Proposition 4.1.13. Under the simplicial nerve, the inclusion of observation 4.1.8 yields a morphism

NsGBund(X)→ NwGBund(X) ∈ sSetQuillen

which is

• for all G and X an isomorphism on connected components;

• not in general a weak equivalence.

Proof. Let P → X be a weakly G-principal bundle. To see that it is connected in wGBund(X) to some
strictly G-principal bundle, first observe that by corollary 3.3.130 it is connected via a morphism P f → P
to the bundle

P f := Rec(X ← P/hG
f→WG) ,

which has free G-action, but does not necessarily satisfy strict principality. Since, by theorem 3.3.124, the
morphism P/hG→ X is an acyclic fibration of simplicial sets it has a section σ : X → P/hG (every simplicial
set is cofibrant in sSetQuillen). The bundle

P s := Rec(X
id← X

f◦σ→ WG)

is strictly G-principal, and with the morphism

(P s → P f ) := Rec



P/hG

∼

||||

f

##
X WG

X

id

bbbb
σ

OO

f◦σ

;;


we obtain (non-naturally, due to the choice of section) in total a morphism P s → P f → P of weakly
G-principal bundles from a strictly G-principal replacement P s to P .

To see that the full embedding of strictly G-principal bundles is also injective on connected components,
notice that by lemma 4.1.12 if a weakly G-principal bundle P with degreewise free G-action is connected by
a zig-zag of morphisms to some other weakly G-principal bundle P , then there is already a direct morphism
P → P ′. Since all strictly G-principal bundles have free action by definition, this shows that two of them
that are connected in wGBund(X) are already connected in sGBund(X).

To see that in general NsGBund(X) nevertheless does not have the correct homotopy type, it is sufficient
to notice that the category sGBund(X) is always a groupoid, by lemma 4.1.7. Therefore NsGBund(X) it is
always a homotopy 1-type. But by theorem 3.3.128 the object NwGBund(X) is not an n-type if G is not
an (n− 1)-type. �

Corollary 4.1.14. For all Kan complexes X and simplicial groups G there is an isomorphism

π0NsGBund ' H1(X,G) := π0∞Grpd(X,BG)

between the isomorphism classes of strictly G-principal bundles over X and the first nonabelian cohomology
of X with coefficients in G.

But this isomorphism on cohomology does not in general lift to an equivalence on cocycle spaces.

Proof. By prop. 4.1.13 and remark 3.3.129. �

Remark 4.1.15. The first statement of corollary 4.1.14 is the classical classification result for strictly
principal simplicial bundles, for instance theorem V3.9 in [GoJa99].
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4.1.5 Twisted cohomology

We discuss the notion of twisted cohomology, 3.3.9, in the context of discrete cohesion.

4.1.5.1 Group cohomology with coefficients in nontrivial modules We discuss ∞-group coho-
mology for discrete ∞-groups with coefficients in a module, 3.3.12.

For G a (discrete) group and A a (discrete) group equipped with a G-action, write BnA//G for the
n-groupoid which is given by the crossed complex, def. 1.3.21 of groups

BnA//G := [A→ 1→ · · · → 1→ G]

coming from the given G-action on A. There is a canonical morphism

BnA//G→ BG .

Proposition 4.1.16. We have a fiber sequence

BnA→ BnA//G→ BG

in Disc∞Grpd.

In view of remark 3.3.135 this fiber sequence exhibits a BnA-fiber bundle which is associated to the
universal G-principal ∞-bundle, 4.1.4.

In generalization of prop. 4.1.5 we have

Proposition 4.1.17. The group cohomology of G with coefficients in the module A is naturally identified
with the id-twisted cohomology of BG, relative to BnA//G,

Hn
grp(G,A) ' π0Disc∞Grpd[id](BG,B

nA//G) .

Remark 4.1.18. Equivalently this says that group cohomology with coefficients in nontrivial modules A
describes the sections of the bundle BnA//G.
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4.1.6 Representations and associated bundles

We discuss canonical representations of automorphism ∞-groups in Disc∞Grpd, following 3.3.12.

For all of the following, fix a regular uncountable cardinal κ.

Definition 4.1.19. Write Core∞Grpdκ for the core (the maximal ∞-groupoid inside) the full sub-∞-
category of ∞Grpd on the κ-small ∞-groupoids, [LuHTT] def. 5.4.1.3. We regard this canonically as an
object

Core∞Grpdκ ∈ ∞Grpd .

Remark 4.1.20. We have
Core∞Grpdκ '

∐
i

BAut(Fi) ,

where the coproduct ranges over all κ-small homotopy types [Fi] and where Aut(Fi) is the automorphism
∞-group of any representative Fi of [Fi].

Lemma 4.1.21. For X a κ-small ∞-groupoid, and f : Y → X a morphism in ∞Grpd, the following are
equivalent

1. for all objects x ∈ X the homotopy fiber Yx := Y ×X {x} of f is κ-small;

2. Y is κ-small.

Proof. The implication 1. ⇒ 2. is stated for ∞-categories, and assuming that f is presented by a
Cartesian fibration of simplicial sets, as prop. 5.4.1.4 in [LuHTT]. But by prop. 2.4.2.4 there, every
Cartesian fibration between Kan complexes is a right fibration; and by prop. 2.1.3.3 there over a Kan
complex every right fibration is a Kan fibration. Finally, by the Quillen model structure every morphism of
∞-groupoids is presented by a Kan fibration. Therefore the condition that f be presented by a Cartesian
morphism is automatic in our case.

For the converse, assume that all homotopy fibers are κ-small. We may write X as the ∞-colimit of the
functor constant on the point, over itself ([LuHTT], corollary 4.4.4.9 )

X ' lim
−→x∈X

{x} .

Since ∞Grpd is an ∞-topos, its ∞-colimits are preserved by ∞-pullback. Therefore we have an ∞-pullback
diagram

lim
−→x∈X

Yx
' //

f

��

Y

f

��
lim
−→x∈X

{x} ' // X

.

that exhibits Y as the ∞-colimit over X of the homotopy fibers of f . By corollary 5.4.1.5 in [LuHTT], the
κ-small ∞-groupoids are precisely the κ-compact objects of ∞Grpd. By corollary 5.3.4.15 there, κ-compact
objects are closed under κ-small ∞-colimits. Therefore the above ∞-colimit exhibits Y as a κ-small ∞-
groupoid. �

Definition 4.1.22. Write ̂Core∞Grpdκ → Core∞Grpdκ for the ∞-pullback

̂Core∞Grpdκ //

��

Z|∞Grpd

��
Core∞Grpd //∞Grpd
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of the universal right fibration Z|∞Grpd →∞Grpd, as in [LuHTT] above prop. 3.3.2.5., along the canonical
map that embeds κ-small ∞-groupoids into all ∞-groupoids.

Proposition 4.1.23. The morphism ̂Core∞Grpdκ → Core∞Grpdκ is the κ-compact object-classifier, sec-
tion 6.1.6 of [LuHTT], in ∞Grpd.

Proof. By prop. 3.3.2.5 in [LuHTT] the universal right fibration classifies right fibrations; and for
[X] : ∗ → ∞Grpd the name of an ∞-groupoid X, the homotopy fiber

Z ×∞Grpd {[X]} ' X

is equivalent to X. As in the proof of lemma 4.1.21, every morphism between ∞-groupoids is represented
by a Cartesian fibration. Since moreover every morphism out of an ∞-groupoid into ∞Grpd factors essen-

tially unqiquely through Core∞Grpd it follows that ̂Core∞Grpdκ → Core∞Grpdκ classifies morphisms of
∞-groupoids with κ-small homotopy fibers. By lemma 4.1.21 and using again that κ-compact objects in
∞Grpd are κ-small ∞-groupoids, these are precisely the relatively κ-compact morphisms from def. 6.1.6.4
of [LuHTT]. �

Remark 4.1.24. By remark 4.1.20 we have that ̂Core∞Grpdκ → Core∞Grpdκ decomposes as a coproduct
of morphisms

∐
[Fi]

ρi indexed by the κ-small homotopy types. According to prop. 4.1.23 the (essentially

unique) homotopy fiber of ρi is equivalent to the κ-small ∞-groupoid Fi itself. Therefore by def. 3.3.155 we
may write

ρi : Fi//Aut(Fi)→ BAut(Fi)

and identify this with the canonical representation of Aut(Fi) on Fi, exhibited, by example 3.3.168, as the
universal Fi-fiber bundle which is ρi-associated to the universal Aut(Fi)-principal bundle.

In terms of this perspective we have the following classical result.

Corollary 4.1.25. For X a connected ∞-groupoid, every morphism P → X in ∞Grpd with κ-small small
homotopy fibers F (over one and hence, up to equivalence, over each object x ∈ X) arises as the F -fiber
bundle ρ-associated to an Aut(F )-principal ∞-bundle, 3.3.8, given by an ∞-pullback of the form

P //

��

F//Aut(F )

��
X // BAut(F )

.

More discussion of discrete principal and discrete associated ∞-bundles is in 3.5.6 and 4.1.4.

4.2 Bundles of geometrically contractible ∞-groupoids

We discuss a class of examples of cohesive ∞-toposes that are obtained from a given cohesive ∞-topos H by
passing to the∞-topos HD of interval-shaped diagrams in it. The cohesive interpretation of an object in HD

is as a bundle of H-cohesive ∞-groupoids all whose fibers are regarded as being geometrically contractible.

Proposition 4.2.1. Let H be a cohesive ∞-topos. Let D be a small category with initial object ⊥ and
terminal object >.

There is an adjoint triple of ∞-functors

D
⊥ //
oo p
>
// ∗
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obtained from the inclusion of the terminal and the initial object.
The ∞-functor ∞-category HD (D-shaped diagrams in H) is a cohesive ∞-topos, exhibited by the com-

posite adjoint quadruple

(Π a Disc a Γ a coDisc) : HD

>∗ //
oo p∗

⊥∗ //
oo

⊥∗
? _
H

ΠH //
oo DiscH

ΓH
//

oo
coDiscH

? _
∞Grpd .

Proof. Each of the first three functors induces an adjoint triple (p! a p∗ a p∗), etc., where p∗ is given by
precomposition, p! by left ∞-Kan extension and p∗ by right ∞-Kan extension (use for instance [LuHTT],
A.2.8). In particular therefore >∗ preserves finite products (together with all small ∞-limits). The adjoint-
ness (⊥ a p a >) implies that p! ' >∗ and ⊥! ' p∗. This yields the adjoint quadruple as indicated. Finally
it is clear that >∗p∗ ' id, which means that p∗ is full and faithful, and by adjointness so is ⊥∗. �
The following simple example not only illustrates the above proposition, but also serves as a useful toy
example for the notion of cohesion itself.

Example 4.2.2. For H any cohesive ∞-topos, also its arrow category H∆[1] is cohesive.
In particular, for H =∞Grpd (see 4.1 below for a discussion of∞Grpd as a cohesive∞-topos), the arrow

∞-category∞Grpd∆[1] is cohesive. This is equivalently the∞-category of∞-presheaves on the interval ∆[1],
which in turn is equivalent to the ∞-category of ∞-sheaves on the topological spaces called the Sierpinski
space

Sierp = ({0, 1},Opens = (∅ ↪→ {1} ↪→ {0, 1}))

(see for instance [John03], B.3.2.11):

∞Grpd∆[1] ' PSh∞(∆[1]) ' Sh∞(Sierp) .

We call this the Sierpinski ∞-topos.
Notice that the Sierpinski space, as a topological space,

1. is contractible;

2. is locally contractible;

3. has a focal point (a point whose only open neighbourhood is the entire space).

The Sierpinski ∞-topos is 0-localic, being the image of the Sierpinski space under the embedding of topo-
logical spaces into ∞-toposes. Accordingly the cohesion of Sh∞(Sierp) may be traced back to these three
properties, which imply, in this order, that Sh∞(Sierp) is, as an ∞-topos,

1. ∞-connected;

2. locally ∞-connected;

3. local.

So the Sierpinski space is the “abstract cohesive blob” on which the cohesion of Sh∞(Sierp) is modeled: it
is the abstract “point with an open neighbourhood”.

While the cohesion encoded by the Sierpinski ∞-topos is very simple, it may be instructive to make the
geometric interpretation fully explicit (the reader may want to compare the following with the more detailed
discussions of the meaning of the functor Π on a cohesive ∞-topos below in 3.5.1):

an object of Sh∞(Sierp) is a morphism [P → X] in ∞Grpd. The functor Π sends this to its domain

Π([P → X]) ' X .
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In particular
Π([P → ∗]) ' ∗ .

Therefore Π sees [P → ∗] as being cohesively/geometrically contractible and sees a bundle [P → X] as
having cohesively/geometrically contractible fibers. At the same time, for X ∈ ∞Grpd, we have

Disc(X) ' [X
id→ X] ,

which says that the base of such a bundle is regarded by the cohesion of the Sierpinski ∞-topos as being
discrete. Accordingly, we may interpret [P → X] as describing a discrete ∞-groupoid X to which are
attached cohesively contractible blobs, being the fibers of the morphism P → X.

Even though they are geometrically contractible, these fibers have inner structure: this is seen by Γ,
which takes the underlying ∞-groupoid to be the total space of the bundle

Γ([P → X]) ' P .

Finally a codiscrete object is one of the form

coDisc(Q) ' [Q→ ∗] ,

which is entirely cohesively contractible, for any inner structure.

Observation 4.2.3. Let H be a cohesive ∞-topos and regard the Sierpinski ∞-topos HI , def. 4.2.2, as a
cohesive ∞-topos over H. Then

1. the full sub-∞-category of HI on those objects for which pieces have points, def. 3.1.11, is canonically
identified with the ∞-category of effective epimorphisms in H, hence with the ∞-category of groupoid
objects in H, def. 3.3.42;

2. the full sub-∞-category of HI on those objects which have one point per piece, def. 3.1.11, is canonically
identified with H itself.

4.3 Euclidean-topological ∞-groupoids

We discuss Euclidean-topological cohesion, modeled on Euclidean topological spaces and continuous maps
between them. This subsumes the homotopy theory of simplicial topological spaces.

Definition 4.3.1. Let CartSptop be the site whose underlying category has as objects the Cartesian spaces
Rn, n ∈ N equipped with the standard Euclidean topology and as morphisms the continuous maps between
them; and whose coverage is given by good open covers.

Proposition 4.3.2. The site CartSptop is an ∞-cohesive site (def 3.1.18).

Proof. Clearly CartSploc has finite products, given by Rk × Rl ' Rk+l, and clearly every object has a
point ∗ = R0 → Rn. In fact CartSptop(∗,Rn) is the underlying set of the Cartesian space Rn.

Let {Ui → U} be a good open covering family in CartSptop. By the very definition of good cover it

follows that the Čech nerve C(
∐
i Ui → U) ∈ [CartSpop, sSet] is degreewise a coproduct of representables.

The condition lim
−→

C(
∐
i Ui)

'→ lim
−→

U = ∗ follows from the nerve theorem [Bors48], which asserts that

lim
−→

C(
∐
i Ui → U) ' SingU , and using that, as a topological space, every Cartesian space is contractible.

The condition lim
←−

C(
∐
i Ui)

'→ lim
←−

U = CartSploc(∗, U) is immediate. Explicitly, for (xi0 ∈ Ui0 , · · · , xin ∈
Uin) a sequence of points in the covering patches of U such that any two consecutive ones agree in U , then
they all agree in U . So the morphism of simplicial sets in question has the right lifting property against all
boundary inclusions ∂∆[n]→ ∆[n] and is therefore is a weak equivalence. �
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Definition 4.3.3. Define
ETop∞Grpd := Sh∞(CartSptop)

to be the ∞-category of ∞-sheaves on CartSptop.

Proposition 4.3.4. The ∞-category ETop∞Grpd is a cohesive ∞-topos.

Proof. This follows with prop. 4.3.2 by prop. 3.1.19. �

Definition 4.3.5. We say that ETop∞Grpd defines Euclidean-topological cohesion. An object in ETop∞Grpd
we call a Euclidean-topological ∞-groupoid.

Definition 4.3.6. Write TopMfd for the category whose objects are topological manifolds that are

• finite-dimensional;

• paracompact;

• with an arbitrary set of connected components (hence not assumed to be second-countable);

and whose morphisms are continuous functions between these. Regard this as a (large) site with the standard
open-cover coverage.

Proposition 4.3.7. The ∞-topos ETop∞Grpd is equivalently that of hypercomplete ∞-sheaves ([LuHTT],
section 6.5) on TopMfd

ETop∞Grpd ' Ŝh∞(TopMfd) .

Proof. Since every topological manifold admits an cover by open balls homeomorphic to a Cartesian
space, we have that CartSptop is a dense sub-site of TopMfd. By theorem C.2.2.3 in [John03] it follows that
the sheaf toposes agree

Sh(CartSptop) ' Sh(TopMfd) .

From this it follows directly that the Joyal model structures on simplicial sheaves over both sites (see [Jard87])
are Quillen equivalent. By [LuHTT], prop 6.5.2.14, these present the hypercompletions

Ŝh∞(CartSptop) ' Ŝh∞(TopMfd) .

of the corresponding ∞-sheaf ∞-toposes. But by corollary 3.1.10 we have that ∞-sheaves on CartSptop are
already hypercomplete, so that

Sh∞(CartSptop) ' Ŝh∞(TopMfd) .

�

Definition 4.3.8. Let TopcgH be the 1-category of compactly generated and Hausdorff topological spaces
and continuous functions between them.

Proposition 4.3.9. The category TopcgH is cartesian closed.

See [Stee67]. We write [−,−] : Topop
cgH × TopcgH → TopcgH for the corresponding internal hom-functor.

Definition 4.3.10. There is an evident functor

j : TopcgH → ETop∞Grpd

that sends each topological space X to the 0-truncated ∞-sheaf (ordinary sheaf) represented by it

j(X) : (U ∈ CartSptop) 7→ HomTopcgH(U,X) ∈ Set ↪→∞Grpd .
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Corollary 4.3.11. The functor j exhibits TopMfd as a full sub-∞-category of ETop∞Grpd

j : TopMfd ↪→ ETop∞Grpd

Proof. By prop. 4.3.7 this is a special case of the ∞-Yoneda lemma. �

Remark 4.3.12. While, according to prop. 4.3.7, the model categories [CartSpop
top, sSet]proj,loc and

[TopMfdop, sSet]proj,loc are both presentations of ETop∞Grpd, they lend themselves to different computa-
tions: in the former there are more fibrant objects, fewer cofibrant objects than in the latter, and vice
versa.

In 3.1.2.2 we gave a general discussion concerning this point, here we amplify specific detail for the present
case.

Proposition 4.3.13. Let X ∈ [TopMfdop, sSet] be an object that is globally fibrant, separated and locally
trivial, meaning that

1. X(U) is a non-empty Kan complex for all U ∈ TopMfd;

2. for every covering {Ui → U} in TopMfd the descent morphism X(U)→ [TopMfdop, sSet](C({Ui}), X)
is a full and faithful ∞-functor;

3. for contractible U we have π0[TopMfdop, sSet](C({Ui}), X) ' ∗.

Then the restriction of X along CartSptop ↪→ TopMfd is a fibrant object in the local model structure
[CartSpop

top, sSet]proj,loc.

Proof. The fibrant objects in the local model structure are precisely those that are Kan complexes over
every object and for which the descent morphism is an equivalence for all covers. The first condition is given
by the first assumption. The second and third assumptions imply the second condition over contractible
manifolds, such as the Cartesian spaces. �

Example 4.3.14. Let G be a topological group, regarded as the presheaf over TopMfd that it represents.
Write W̄G for the simplicial presheaf on TopMfd given by the nerve of the topological groupoid (G

→→ ∗).
(We discuss this in more detail in 4.3.2 below.)

The fibrant resolution of W̄G in [TopMfdop, sSet]proj,loc is (the rectification of) its stackification: the
stack GBund of topological G-principal bundles. But the canonical morphism

W̄G→ GBund

is a full and faithful functor (over each object U ∈ TopMfd): it includes the single object of W̄G as the
trivial G-principal bundle. The automorphisms of the single object in W̄G over U are G-valued continuous
functions on U , which are precisely the automorphisms of the trivial G-bundle. Therefore this inclusion is
full and faithful, the presheaf W̄G is a separated prestack.

Moreover, it is locally trivial: every Čech cocycle for a G-bundle over a Cartesian space is equivalent
to the trivial one. Equivalently, also π0GBund(Rn) ' ∗. Therefore W̄G, when restricted CartSptop, does
become a fibrant object in [CartSpop

top, sSet]proj,loc.
On the other hand, letX ∈ TopMfd be any non-contractible manifold. Since in the projective model struc-

ture on simplicial presheaves every representable is cofibrant, this is a cofibrant object in [Mfdop, sSet]proj,loc.However,
it fails to be cofibrant in [CartSpop

top, sSet]proj,loc. Instead, there a cofibrant replacement is given by the Čech
nerve C({Ui}) of any good open cover {Ui → X}.

This yields two different ways for computing the first nonabelian cohomology

H1
ETop(X,G) := π0ETop∞Grpd(X,BG)

in ETop∞Grpd on X with coefficients in G:
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1. · · · ' π0[Mfdop, sSet](X, GBund) ' π0GBund(X);

2. · · · ' π0[CartSpop
top, sSet](C({Ui}), W̄G) ' H1(X,G).

In the first case we need to construct the fibrant replacement GBund. This amounts to constructing G-
principal bundles over all paracompact manifolds and then evaluate on the given one, X, by the 2-Yoneda
lemma. In the second case however we cofibrantly replace X by a good open cover, and then find the Čech
cocycles with coefficients in G on that.

For ordinary G-bundles the difference between the two computations may be irrelevant in practice,
because ordinary G-principal bundles are very well understood. However, for more general coefficient objects,
for instance general topological simplicial groupsG, the first approach requires to find the full∞-sheafification
to the∞-sheaf of all principal∞-bundles, while the second approach requires only to compute specific coycles
over one specific base object. In practice the latter is often all that one needs.

We discuss a few standard techniques for constructing cofibrant resolutions in [CartSpop
top, sSet]proj,loc.

Proposition 4.3.15. Let
X ∈ TopMfd ↪→ [CartSpop

top, sSet]proj,loc

be a topological manifold and let {Ui → X} be a good open cover. Then the Čech nerve

C({Ui}) :=

∫ [n]∈∆

∆[n] ·
∐

i0,··· ,in

j(Ui0) ∩ · · · ∩ j(Uin)

(where j : TopMfd ↪→ [CartSpop, sSet] is the Yoneda embedding) equipped with the canonical projection
C({Ui})→ X is a cofibrant resolution of X.

Proof. The morphism is clearly a stalkwise weak equivalence. Therefore it is a weak equivalence in the
local model structure by theore, 2.2.12.

Moreover, by the very definition of good open cover the non-empty finite intersections of the Ui are
themselves represented by objects in CartSpop. Therefore the Čech nerve is degreewise a coproduct of rep-
resentables. Also, its degeneracies split off as a direct summand in each degree. By [Dugg01] this means
that it is cofibrant in the global projective model structure. But the cofibrations do not change under left
Bousfield localization to the local model structure, therefore it is cofibrant also there. �

Proposition 4.3.16.
X• ∈ TopMfd∆op

↪→ [CartSpop
top, sSet]proj,loc

be a simplicial manifold, such that there is a choice U of good open covers {Un,i → Xn}i in each degree which
are simplicially compatible in that they arrange into a morphism of bisimplicial presheaves

C(U)•,• → X• .

Then ∫ [n]∈∆

∆[n] · C(U)n,• → X• ,

where ∆ : ∆op → sSet is given by ∆[n] := N(∆/[n]), is a cofibrant resolution in [CartSpop
top]proj,loc.

Proof. First consider ∫ [n]∈∆

∆[n] · C(U)n,• → X•

with the ordinary simplex in the integrand. Over ach object U ∈ CartSptop the coend appearing here is
isomorphic to the diagonal of the given bisimplicial set. Since the diagonal sends degreewise weak equivalences
to weak equivalences, prop. 4.3.15 implies that this is a weak equivalence in the local model structure.
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Let ∆→ ∆ be the canonical projection. We claim that the induced morphism∫ [n]∈∆

∆[n] · C(U)n,• →
∫ [n]∈∆

∆[n] · C(U)n,•

is a global projective weak equivalence, and hence in particular also a local projective weak equivalence.
This follows from the fact that∫ ∆

(−) · (−) : [∆, sSetQuillen]Reedy × [∆op, [CartSpopop , sSet]inj]Reedy → [CartSpopop , sSet]inj]Reedy

is a left Quillen bifunctor prop. 2.3.16. Since every object in [∆op, [CartSpopop , sSet]inj]Reedy is cofibrant, and
since ∆→ ∆ is a Reedy equivalence between Reedy cofibrant objects, the coend over the tensoring preserves
this weak equivalence and produces a global injective weak equivalence which is also a global projective weak
equivalence.

This shows that the morphism is question is a weak equivalence. To see that it is a cofibrant resolution
use that ∆ is also cofibrant in [∆, sSet]proj and that also∫ ∆

(−) · (−) : [∆, sSetQuillen]proj × [∆op, [CartSpopop , sSet]proj]inj → [CartSpopop , sSet]proj]

is a left Quillen bifunctor, prop. 2.3.16. By prop. 4.3.15 we have a cofibration ∅ ↪→ C(U)•,• in [∆op, [CartSpopop , sSet]proj]inj,

which is therefore preserved by
∫∆

∆ · (−). Again using that global projective cofibrations are also local
projective cofibrations, the claim follows. �
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We now discuss some of the general abstract structures in any cohesive∞-topos, 3.6, realized in ETop∞Grpd.

• 4.3.1 – Stalks

• 4.3.2 – Cohesive ∞-groups

• 4.3.4 – Geometric homotopy

• 4.3.5 – Paths and geometric Postnikov towers

• 4.3.6 – Cohomology

• 4.3.7 – Principal ∞-bundles

• 4.3.9 – Universal coverings and geometric Whitehead towers

4.3.1 Stalks

We discuss the points of ETop∞Grpd.

Proposition 4.3.17. For every n ∈ N there is a topos point

p(n) : Set
oo p(n)∗

p(n)∗

// Sh(Mfd)

as well as a corresponding ∞-topos point

p(n) : ∞Grpd
oo p(n)∗

p(n)∗

// ETop∞Grpd ,

where the inverse image p(n)∗ forms the stalk at the origin of Rn:

p(n)∗ : X 7→ lim
−→
k∈N

X(Dn(1/k)) .

Here for r ∈ R≥0 we denote by Dn(r) ↪→ Rn the inclusion of the standard open n-disk of radius r. In
particular

p(0) ' (Γ a coDisc) .

The collection of topos points {p(n)}n∈N exhibits the topos Sh(Mfd) and the ∞-topos ETop∞Grpd (hence
the sites CartSp and Mfd) as having enough points, def. 2.2.9.

These points form a tower of retractions

p(0)
oo
� � //

((

p(1)
oo
� � //

""

· · · oo� � // p(n)
oo
� � //

||

· · ·

p(∞)

.

The inductive limit p(∞) := lim
−→
n

p(n) over the tower of inclusions is the topos point whose inverse image is

given by
p(∞)∗X = lim

−→
n

lim
−→
k

X(Dn(1/k)) .

This point alone forms a set of enough points: a morphism f : X → Y is an equivalence precisely if p(∞)∗f
is.
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Proof. For convenience, we discuss this in terms of the 1-topos. The discussion for the ∞-topos is
verbatim the same.

First it is clear that for all n ∈ N the functor p(n)∗ is indeed the inverse image of a geometric morphism:
being given by a filtered colimit, it commutes with all colimits and with finite limits.

To see that these points are enough to detect isomorphisms of sheaves, notice the following construction.
For A ∈ Sh(Mfd) and X ∈ Mfd, we obtain a sheaf Ã ∈ Sh(Mfd/opX) on the slice site of open embeddings
into X by restriction of A. The topos Sh(Mfd/opX) clearly has enough points, given by the ordinary stalks
at the ordinary points x ∈ X, formed as

px(n)∗Ã = lim
−→k

Ã(Dn
x (1/k)) ,

where Dn
x (r) ↪→ Rn

φ
↪→ X is a disk of radius r around x in any coordinate patch φ containing X. (Because if

a morphism of sheaves on Mfd/opX is an isomorphism on an open disk around every point of X, then it is
an isomorphism on the covering given by the union of all these disks, hence is an isomorphism of sheaves).
Notice that by defintion of Ã the above stalk is in fact independent of the point x and coincides with p(n)∗

applied to the original A:
· · · ' lim

−→k

A(Dn(1/k)) =: p(n)∗A .

So if for a morphism f : A → B in Sh(Mfd) all the p(n)∗f are isomorphisms, then for every X ∈ Mfd the
induced morphism f̃ : Ã→ B̃ is an isomorphism, hence is an isomorphism f̃(X) = f(X) on global sections.
Since this is true for all X, it follows that f is already an isomorphism. This shows that {p(n)}n∈N is a set
of enough points of Sh(Mfd).

To see that these points sit in a sequence of retractions as stated, choose a tower of inclusions

R0 ↪→ R1 ↪→ R2 ↪→ · · · ∈ Mfd ,

where each morphism is isomorphic to Rn × R0 (id,0)→ Rn × R1.
This induces for each n ∈ N and r ∈ R an inclusion of disks Dn(r) → Dn+1(r), which regards Dn(r) as

an equatorial plane of Dn+1(r), and it induces a projection Dn+1(r), which together exhibit a retraction

Dn //

id

55Dn+1 // Dn .

All this is natural with respect to the inclusions Dn( 1
k+1 )→ Dn( 1

k ). Therefore we have induced morphisms

lim
−→k

X(Dn(1/k)) //

id

22
lim
−→k

X(Dn+1(1/k)) // lim
−→k

X(Dn(1/k)) .

Since these are natural in X, they consistute natural transformations

p(n)∗ //

id

44p(n+ 1)∗ // p(n)∗

of inverse images, hence morphisms

p(n) //

id

44p(n+ 1) // p(n)

of geometric morphisms.
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Finally, since equivalences are stable under retract, it follows that p(n)∗f is an equivalence if p(n + 1)∗

is. Similarly, for every n ∈ N we have a retract

p(n) //

id

66p(∞) // p(n)

seen by noticing that each p(n) naturally forms a co-cone under the above tower of inclusions. So an iso-
morphism under p(∞)∗ implies one under all the p(n). �

4.3.2 Groups

We discuss cohesive ∞-group objects, def 3.3.6, realized in ETop∞Grpd: Euclidean-topological ∞-groups.

Recall that by prop. 3.3.67 every ∞-group object in ETop∞Grpd has a presentation by a presheaf of
simplicial groups. Among the presentations for concrete ∞-groups in ETop∞Grpd are therefore simplicial
topological groups.

Write sTopcgH for the category of simplicial objects in TopcgH, def. 4.3.8. For X,Y ∈ sTopcgH, write

sTopcgH(X,Y ) :=

∫
[k]∈∆

[Xk, Yk] ∈ TopcgH

for the hom-object, where in the integrand of the end [−,−] is the internal hom of TopcgH.

Definition 4.3.18. We say a morphism f : X → Y of simplicial topological spaces is a global Kan fibration
if for all n ∈ N and 0 ≤ k ≤ n the canonical morphism

Xn → Yn ×sTopcgH(Λ[n]i,Y ) sTopcgH(Λ[n]i, X)

in TopcgH has a section, where Λ[n]i ∈ sSet ↪→ sTopcgH is the ith n-horn regarded as a discrete simplicial
topological space.

We say a simplicial topological space X• is a (global) Kan simplicial space if the unique morphism X• → ∗
is a global Kan fibration, hence if for all n ∈ N and all 0 ≤ i ≤ n the canonical continuous function

Xn → sTopcgH(Λ[n]i, X)

into the topological space of ith n-horns admits a section.

This global notion of topological Kan fibration is considered for instance in [BrSz89], def. 2.1, def. 6.1. In
fact there a stronger condition is imposed: a Kan complex in Set automatically has the lifting property not
only against all full horn inclusions but also against sub-horns; and in [BrSz89] all these fillers are required
to be given by global sections. This ensures that with X globally Kan also the internal hom [Y,X] ∈ sTopcgH

is globally Kan, for any simplicial topological space Y . This is more than we need and want to impose here.
For our purposes it is sufficient to observe that if f is globally Kan in the sense of [BrSz89], def. 6.1, then
it is so also in the above sense.

For G a simplicial group, there is a standard presentation of its universal simplicial bundle by a mor-
phism of Kan complexes traditionally denoted WG→ W̄G. This construction has an immediate analog for
simplicial topological groups. A review is in [RoSt12].

Proposition 4.3.19. Let G be a simplicial topological group. Then

1. G is a globally Kan simplicial topological space;

2. W̄G is a globally Kan simplicial topological space;

3. WG→ W̄G is a global Kan fibration.
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Proof. The first and last statement appears as [BrSz89], theorem 3.8 and lemma 6.7, respectively, the
second is noted in [RoSt12]. �
Let for the following Tops ⊂ TopcgH be any small full subcategory. Under the degreewise Yoneda embedding
sTops ↪→ [Topop

s , sSet] simplicial topological spaces embed into the category of simplicial presheaves on Tops.
We equip this with the projective model structure on simplicial presheaves [Topop

s , sSet]proj.

Proposition 4.3.20. Under this embedding a global Kan fibration, def. 4.3.18, f : X → Y in sTops maps
to a fibration in [Topop

s , sSet]proj.

Proof. By definition, a morphism f : X → Y in [Topop
s , sSet]proj is a fibration if for all U ∈ Tops and all

n ∈ N and 0 ≤ i ≤ n diagrams of the form

Λ[n]i · U //

��

X

f

��
∆[n] · U // Y

have a lift. This is equivalent to saying that the function

Hom(∆[n] · U,X)→ Hom(∆[n] · U, Y )×Hom(Λ[n]i·U,Y ) Hom(Λ[n]i · U,X)

is surjective. Notice that we have

Hom[Topop
s ,sSet](∆[n] · U,X) = HomsTops(∆[n] · U,X)

=

∫
[k]∈∆

HomTops(∆[n]k × U,Xk)

=

∫
[k]∈∆

HomTops(U, [∆[n]k, Xk])

= HomTop(U,

∫
[k]∈∆

[∆[n]k, Xk])

= HomTops(U, sTop(∆[n], X))

= HomTops(U,Xn)

and analogously for the other factors in the above morphism. Therefore the lifting problem equivalently says
that the function

HomTop(U, Xn → Yn ×sTops(Λ[n]i,Y ) sTops(Λ[n]i, X) )

is surjective. But by the assumption that f : X → Y is a global Kan fibration of simplicial topological
spaces, def. 4.3.18, we have a section σ : Yn ×sTops(Λ[n]i),Y sTops(Λ[n]i, X)→ Xn. Therefore HomTops(U, σ)
is a section of our function. �
In section 4.3.4 we use this in the discussion of geometric realization of simplicial topological groups.

In summary, we find that WG→ W̄G is a presentation of the universal G-principal ∞-bundle, 1.3.2. ).

Proposition 4.3.21. Let G ∈ ETop∞Grpd be a group object presented in [CartSpop
top, sSet]proj,loc by a

simplicial topological group (to be denoted by the same symbol) which is degreewise a topological manifold.
Then its delooping BG, def. 3.3.51, is presented by W̄G.

Proof. By prop. 4.3.19 and prop. 4.3.20 the morphism WG→ W̄G is a fibration presentation of ∗ → BG
in [CartSpop

top, sSet]proj. Since W̄G is evidently connected, and since we have an ordinary pullback diagram

G //

��

WG

��
∗ // W̄G

,
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it follows with the discussion in 2.3.2.1 that this presents in ETop∞Grpd the ∞-pullback

G //

��

∗

��
∗ // BG

that defines the delooping BG. �

4.3.3 Representations

We discuss the intrinsic notion of ∞-group representations, 3.3.12, realized in the context ETop∞Grpd.

We make precise the role of topological action groupoids, introduced informally in 1.3.1.1.

Proposition 4.3.22. Let X be a toplogical manifold, and G a topological group. Then the category of
continuous G-actions on X in the traditional sense is equivalent to the category of G-actions on X in the
cohesive ∞-topos ETop∞Grpd, according to def. 3.3.155.

Proof. For ρ : X ×G→ X a given G-action, define the action groupoid

X//G := ( X ×G
ρ //

p1

// X )

with the evident composition operation. This comes with the evident morphism of topological groupoids

X//G→ ∗//G ' BG ,

with BG as in prop. 4.4.19. It is immediate that regarding this as a morphism in [CartSpop
top, sSet]proj

in the canonical way, this is a fibration. Therefore, by 2.3.12, the homotopy fiber of this morphism in
Smooth∞Grpds is given by the ordinary fiber of this morphism in simplicial presheaves. This is manifestly
X.

Accordingly this construction constitutes an embedding of the traditional G actions on X into the cat-
egory RepG(X) from def. 3.3.155. By turning this argument around, one finds that this embedding is
essentially surjective. �

Remark 4.3.23. Let X,∈∈ TopMfd, G a topological group, and let ρ : X×G→ X be a continuous action.
Write X//G ∈ ETop∞Grpd for the corresponding action groupoid. As a simplicial topological space the
action groupoid is

X//G =

 X ×G×G
(ρ,id) //
(id,·) //

(p1,p2)
// X ×G

ρ //
p1

// X


4.3.4 Geometric homotopy

We discuss the intrinsic geometric homotopy, 3.5.1, in ETop∞Grpd.

4.3.4.1 R1-homotopy

Proposition 4.3.24. The real line R1 ∈ TopMfd ↪→ ETop∞Grpd is a geometric interval, def. 3.5.6,
exhibitng the cohesion of ETop∞Grpd.
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Proof. Since CartSptop is a site of definition for ETop∞Grpd and is both ∞-cohesive (prop. 4.3.2) and
the syntactic category of a Lawvere algebraic theory, with

A1 = R1 ,

the claim follows with prop. 3.5.8. �

Remark 4.3.25. The statement of prop. 4.3.24 is the central claim of the notes [Dugg99], where it essentially
appears stated as theorem 3.4.3.

4.3.4.2 Geometric realization of topological ∞-groupoids We start by recalling some facts about
geometric realization of simplicial topological spaces.

Definition 4.3.26. For X• ∈ sTopcgH a simplicial topological space, write

• |X•| :=
∫ [k]∈∆

∆k
Top ×Xk for its geometric realization;

• ‖X•‖ :=
∫ [k]∈∆+ ∆k

Top ×Xk for its fat geometric realization,

where in the second case the coend is over the subcategory ∆+ ↪→ ∆ spanned by the face maps.

See [RoSt12] for a review.

Proposition 4.3.27. Ordinary geometric realization | − | : sTopcgH → TopcgH preserves pullbacks. Fat
geometric realization preserves pullbacks when regarded as a functor ‖ − ‖ : sTopcgH → TopcgH/‖ ∗ ‖.

Definition 4.3.28. We say

• a simplicial topological space X ∈ sTopcgH, def. 4.3.8, is good if all degeneracy maps si : Xn → Xn+1

are closed Hurewicz cofibrations;

• a simplicial topological group G is well pointed if all units in : ∗ → Gn are closed Hurewicz cofibrations.

The notion of good simplicial topological spaces goes back to [Sega73]. For a review see [RoSt12].

Proposition 4.3.29. For X ∈ sTops a good simplicial topological space, its ordinary geometric realization
is equivalent to its homotopy colimit, when regarded as a simplicial diagram:

sTops
� � // [Topop

s , sSet]proj
hocolim // TopQuillen .

Proof. Write ‖ − ‖ for the fat geometric realization. By standard facts about geometric realization of
simplicial topological spaces [Sega70] we have the following zig-zag of weak homotopy equivalences

‖X•‖

'
��

‖ |Sing(X•)| ‖
'oo

'
��
'
��

|X•| | |Sing(X•)| |
iso
|diagSing(X•)•|

' // |hocolimnSingXn|

.

By the Bousfield-Kan map, the object on the far right is manifestly a model for the homotopy colimit
hocolimnXn. �

Proposition 4.3.30. For X ∈ TopMfd and {Ui → X} a good open cover, the Čech nerve C({Ui}) :=∫ [k]∈∆
∆[k] ·

∐
i0,··· ,in Ui0 ×X · · · × Uin is cofibrant in [CartSpop

top, sSet]proj,loc and the canonical projection
C({Ui})→ X is a weak equivalence.
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Proof. Since the open cover is good, the Čech nerve is degreewise a coproduct of representables, hence
is a split hypercover in the sense of [DuHoIs04], def. 4.13. Moreover

∐
i Ui → X is directly seen to be a

generalized cover in the sense used there (below prop. 3.3) By corollary A.3 there, C({Ui})→ X is a weak
equivalence. �

Proposition 4.3.31. Let X be a paracompact topological space that admits a good open cover by open
balls (for instance a topological manifold). Write i(X) ∈ ETop∞Grpd for its incarnation as a 0-truncatd
Euclidean-topological ∞-groupoid. Then Π(X) := Π(i(X)) ∈ ∞Grpd is equivalent to the standard funda-
mental ∞-groupoid of X, presented by the singular simplicial complex SingX : [k] 7→ HomTopcgH

(∆k, X)

Π(X) ' SingX .

Equivalently, under geometric realization L| − | : ∞Grpd → Top we have that there is a weak homotopy
equivalence

X ' |Π(X)| .

Proof. By the proof of prop. 3.1.19 we have an equivalence Π(−) ' L lim
−→

to the derived functor of the

sSet-colimit functor lim
−→

: [CartSpop, sSet]proj,loc → sSetQuillen.

To compute this derived functor, let {Ui → X} be a good open cover by open balls, hence homeomor-
phically by Cartesian spaces. By goodness of the cover the Čech nerve C(

∐
i Ui → X) ∈ [CartSpop, sSet] is

degreewise a coproduct of representables, hence a split hypercover. By [DuHoIs04] we have that in this case
the canonical morphism

C(
∐
i

Ui → X)→ X

is a cofibrant resolution of X in [CartSpop, sSet]proj,loc. Accordingly we have

Π(X) ' (L lim
−→

)(X) ' lim
−→

C(
∐
i

Ui → X) .

Using the equivalence of categories [CartSpop, sSet] ' [∆op, [CartSpop,Set] and that colimits in presheaf
categories are computed objectwise, and finally using that the colimit of a representable functor is the point
(an incarnation of the Yoneda lemma) we have that Π(X) is presented by the Kan complex that is obtained
by contracting in the Čech nerve C(

∐
i Ui) each open subset to a point.

The classical nerve theorem [Bors48] asserts that this implies the claim. �
Regarding Top itself as a cohesive ∞-topos by 4.1.1, the above proposition may be stated as saying that for
X a paracompact topological space with a good covering, we have

ΠETop∞Grpd(X) ' ΠTop(X) .

Proposition 4.3.32. Let X• be a good simplicial topological space that is degreewise paracompact and
degreewise admits a good open cover, regarded naturally as an object X• ∈ sTopcgH → ETop∞Grpd.

We have that the intrinsic Π(X•) ∈ ∞Grpd coincides under geometric realization L|− | :∞Grpd
'→ Top

with the ordinary geometric realization of simplicial topological spaces |X•|Top∆op from def. 4.3.27:

|Π(X•)| ' |X•| .

Proof. Write Q for Dugger’s cofibrant replacement functor, prop. 2.2.18, on [CartSpop, sSet]proj,loc. On
a simplicially constant simplicial presheaf X it is given by

QX :=

∫ [n]∈∆

∆[n] ·

( ∐
U0→···→Un→X

U0

)
,
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where the coproduct in the integrand of the coend is over all sequences of morphisms from representables
Ui to X as indicated. On a general simplicial presheaf X• it is given by

QX• :=

∫ [k]∈∆

∆[k] ·QXk ,

which is the simplicial presheaf that over any Rn ∈ CartSp takes as value the diagonal of the bisimplicial
set whose (n, r)-entry is

∐
U0→···→Un→Xk CartSptop(Rn, U0). Since coends are special colimits, the colimit

functor itself commutes with them and we find

Π(X•) ' (L lim
−→

)X•

' lim
−→

QX•

'
∫ [n]∈∆

∆[k] · lim
−→

(QXk) .

By general facts about the Reedy model structure on bisimplicial sets, this coend is a homotopy colimit over
the simplicial diagram lim

−→
QX• : ∆→ sSetQuillen

· · · ' hocolim∆ lim
−→

QX• .

By prop. 4.3.31 we have for each k ∈ N weak equivalences lim
−→

QXk ' (L lim
−→

)Xk ' SingXk, so that

· · · ' hocolim∆SingX•

'
∫ [k]∈∆

∆[k] · SingXk

' diag Sing(X•)•

.

By prop. 4.3.29 this is the homotopy colimit of the simplicial topological space X•, given by its geometric
realization if X• is proper. �

4.3.4.3 Examples We discuss some examples related to the geometric realization of topological ∞-
groupoids.

Proposition 4.3.33. Let K and G be topological groups whose underlying topological space is a manifold.
Consider a morphism of topological groups f : K → G that is a homotopy equivalence of the underlying
topological manifolds. Then

ΠBf : Π(BK) // Π(BG)

is a weak equivalence.

Proof. By prop. 4.3.21 the delooping BG is presented in [CartSptopop , sSet]proj,loc by (BGch) : n 7→ G×n.
Therefore Π(K×n) → Π(G×n) is an equivalence in ∞Grpd. By the discussion in 3.3.6 we have that the
delooping BK is the ∞-colimit

BK ' lim
→ n

K×n

and similarly for BG. The morphism of moduli stacks is the ∞-colimit of the component inclusions

c ' lim
→ n

(K×n → G×n) .

Since Π is left adjoint, it commutes with these colimits, so that Π(c) is exhibited as an ∞-colimit over
equivalences, hence as an equivalence. �
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Proposition 4.3.34. Let X be a topological manifold, equipped with a continuous action ρ : X ×G→ X of
a group in TopMfd. Then the geometric realization of the corresponding action groupoid, def. 4.3.22, is the
Borel space

Π(X//G) ' |X//G| = X ×G EG .

Proof. By remark 4.3.23 the action groupoid as an object in TopMfd∆op

↪→ [CartSpTop, sSet] is

X//G =

 X ×G×G
(ρ,id) //
(id,·) //

(p1,p2)
// X ×G

ρ //
p1

// X

 .

Accordingly

EG := G//G =

 G×G×G
(·,id) //
(id,·) //

(p1,p2)
// G×G

· //
p1

// X

 .

Therefore we have an isomorphism
X//G = X ×G EG .

By prop. 4.3.27 geometric realization preserves the product involved here, and, being given by a coend, it
preserves the quotient involved, so that we have isomorphisms

|X//G| = |X ×G EG| = X ×G EG .

�
Below in 4.3.6.3 we discuss how the cohomology of the Borel space is related to the equivariant cohomology
of X.

4.3.5 Paths and geometric Postnikov towers

We discuss the general abstract notion of path ∞-groupoid, 3.5.3, realized in ETop∞Grpd.

Proposition 4.3.35. Let X be a paracompact topological space, canonically regarded as an object of ETop∞Grpd,
then the path ∞-groupoid Π(X) is presented by the simplicial presheaf Disc SingX ∈ [CartSpop, sSet] which
is constant on the singular simplicial complex of X:

Disc SingX : (U, [k]) 7→ SingX .

Proof. By definition we have Π(X) = Disc Π(X). By prop. 4.3.31 Π(X) ∈ ∞Grpd is presented by
SingX. By prop. 3.1.19 the ∞-functor Disc is presented by the left derived functor of the constant presheaf
functor. Since every object in sSetQuillen is cofibrant this is just the plain constant presheaf functor. �
A more natural presentation of the idea of a topological path ∞-groupoid may be one that remembers the
topology on the space of k-dimensional paths:

Definition 4.3.36. For X a paracompact topological space, write SingX ∈ [CartSpop, sSet] for the simpli-
cial presheaf given by

SingX : (U, [k]) 7→ HomTop(U ×∆k, X) .

Proposition 4.3.37. Also SingX is a presentation of ΠX.

Proof. For each U ∈ CartSp the canonical inclusion of simplicial sets

SingX → Sing(X)(U)

is a weak homotopy equivalence, because U is continuously contractible. Therefore the canonical inclusion
of simplicial presheaves

Disc SingX → SingX

is a weak equivalence in [CartSpop, sSet]proj,loc. �
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Remark 4.3.38. Typically one is interested in mapping out of Π(X). While Disc SingX is always cofibrant
in [CartSpop, sSet]proj, the relevant resolutions of Sing(X) may be harder to determine.

4.3.6 Cohomology

We dicuss aspects of the intrinsic cohomology (3.3.7) in ETop∞Grpd.

4.3.6.1 Čech cohomology We expand on the way that the intrinsic cohomology in ETop∞Grpd is
expressed in terms of traditional Čech cohomology over manifolds, further specializing the general discussion
of 2.2.3.

Proposition 4.3.39. For X ∈ TopMfd and A ∈ [CartSpop, sSet]proj,loc a fibrant representative of an object
in ETop∞Grpd, the intrinsic cocycle ∞-groupoid ETop∞Grpd is given by the Čech cohomology cocycles on
X with coefficients in A.

Proof. Let {Ui → X} be a good open cover. By prop. 4.3.30 its Čech nerve C({Ui})
'→ X is a cofibrant

replacement for X (it is a split hypercover [Dugg01] and hence cofibrant because the cover is good, and it is a
weak equivalence because it is a generalized cover in the sense of [DuHoIs04]). Since [CartSpop, sSet]proj,loc is
a simplicial model category, it follows that the cocycle ∞-groupoid in question is given by the Kan complex
[CartSpop, sSet](C({Ui}), A). One checks that its vertices are Čech cocycles as claimed, its edges are Čech
homotopies, and so on. �

4.3.6.2 Nonabelian cohomology with constant coefficients

Definition 4.3.40. Let A ∈ ∞Grpd be any discrete ∞-groupoid. Write |A| ∈ TopcgH for its geometric
realization. For X any topological space, the nonabelian cohomology of X with coefficients in A is the set
of homotopy classes of maps X → |A|

HTop(X,A) := π0Top(X, |A|) .

We say Top(X, |A|) itself is the cocycle ∞-groupoid for A-valued nonabelian cohomology on X.
Similarly, for X,A ∈ ETop∞Grpd two Euclidean-topological ∞-groupoids, write

HETop(X,A) := π0ETop∞Grpd(X,A)

for the intrinsic cohomology of ETop∞Grpd on X with coefficients in A.

Proposition 4.3.41. Let A ∈ ∞Grpd , write DiscA ∈ ETop∞Grpd for the corresponding discrete topo-
logical ∞-groupoid. Let X be a paracompact topological space admitting a good open cover, regarded as
0-truncated Euclidean-topological ∞-groupoid.

We have an isomorphism of cohomology sets

HTop(X,A) ' HETop(X,DiscA)

and in fact an equivalence of cocycle ∞-groupoids

Top(X, |A|) ' ETop∞Grpd(X,DiscA) .

Proof. By the (Π a Disc)-adjunction of the locally ∞-connected ∞-topos ETop∞Grpd we have

ETop∞Grpd(X,DiscA) ' ∞Grpd(Π(X), A) '
|−| // Top(|ΠX|, |A|) .

From this the claim follows by prop. 4.3.31. �
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4.3.6.3 Equivariant cohomology

Proposition 4.3.42. Given an action ρ : X×G→ X of a topological group G on a topological manifold X,
as in prop. 4.3.34, n ∈ N and K a discrte group, abelian if n ≥ 2, then the G-equivariant cohomology, def.
3.3.164, of X with coefficients in K is the cohomology of the Borel space, prop. 4.3.34, with values in K

Hn
G(X,K) ' Hn(X ×G EG,K) .

Proof. The equivariant cohomology is the cohomology of the action groupoid

Hn
G(X,K) ' π0ETop∞Grpd(X//G,BnK) .

Since K is assumed discrete, this is equivalently, as in prop. 4.3.41,

· · · ' π0∞Grpd(Π(X//G),BnK)

By prop. 4.3.34 this is
· · · ' π0Top(X ×G EG,BnK) ' Hn(X ×G EG,K) .

�

4.3.7 Principal bundles

We discuss principal ∞-bundles, 3.3.8, with topological structure and presented by topological simplicial
principal bundles.

Proposition 4.3.43. If G is a well-pointed simplicial topological group, def. 4.3.28, then both WG and W̄G
are good simplicial topological spaces.

Proof. For W̄G this is [RoSt12] prop. 19. For WG this follows with their lemma 10, lemma 11, which
says that WG = Dec0W̄G and the observations in the proof of prop. 16 that Dec0X is good if X is. �

Proposition 4.3.44. For G a well-pointed simplicial topological group, the geometric realization of the
universal simplicial principal bundle WG→ W̄G

|WG| → |W̄G|

is a fibration resolution in TopQuillen of the point inclusion ∗ → B|G| into the classifying space of the
geometric realization of G.

This is [RoSt12], prop. 14.

Proposition 4.3.45. Let X• be a good simplicial topological space and G a well-pointed simplicial topological
group. Then for every morphism

τ : X → W̄G

the corresponding topological simplicial principal bundle P over X is itself a good simplicial topological space.

Proof. The bundle is the pullback P = X ×W̄GWG in sTopcgH

P //

��

W̄G

��
X

τ // W̄G

.
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By assumption on X and G and using prop. 4.3.43 we have that X, W̄G and WG are all good simplicial
spaces. This means that the degeneracy maps of P• are induced degreewise by morphisms between pullbacks
in TopcgH that are degreewise closed cofibrations, where one of the morphisms in each pullback is a fibration.
This implies that also these degeneracy maps of P• are closed cofibrations. �

Proposition 4.3.46. The homotopy colimit operation

sTops ↪→ [Topop
s , sSet]proj

hocolim→ TopQuillen

preserves homotopy fibers of morphisms τ : X → W̄G with X good and G well-pointed (def. 4.3.28) and
globally Kan (def. 4.3.18).

Proof. By prop. 4.3.19 and prop. 4.3.20 we have that WG → W̄G is a fibration resolution of the
point inclusion ∗ → W̄G in [Topop, sSet]proj. By general properties of homotopy limits this means that the
homotopy fiber of a morphism τ : X → W̄G is computed as the ordinary pullback P in

P //

��

WG

��
X

τ // W̄G

(since all objects X, W̄G and WG are fibrant and at least one of the two morphisms in the pullback diagram
is a fibration) and hence

hofib(τ) ' P .
By prop. 4.3.19 and prop. 4.3.45 it follows that all objects here are good simplicial topological spaces.
Therefore by prop. 4.3.29 we have

hocolimP• ' |P•|
in Ho(TopQuillen). By prop. 4.3.27 we have that

· · · = |X•| ×|W̄G| |WG| .

But prop. 4.3.44 says that this is again the presentation of a homotopy pullback/homotopy fiber by an
ordinary pullback

|P | //

��

|WG|

��
|X| τ // |W̄G|

,

because |WG| → |W̄G| is again a fibration resolution of the point inclusion. Therefore

hocolimP• ' hofib(|τ |) .

Finally by prop. 4.3.29 and using the assumption that X and W̄G are both good, this is

· · · ' hofib(hocolimτ) .

In total we have shown
hocolim(hofib(τ)) ' hofib(hocolim(τ)) .

�

We now generalize the model of discrete principal ∞-bundles by simplicial principal bundles over simpli-
cial groups, from 4.1.3, to Euclidean-topological cohesion.

Recall from theorem 3.5.22 that over any ∞-cohesive site Π preserves homotopy pullbacks over discrete
objects. The following proposition says that on ETop∞Grpd it preserves also a large class of ∞-pullbacks
over non-discrete objects.
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Theorem 4.3.47. Let G be a well-pointed simplicial group object in TopMfd. Then the ∞-functor Π :
ETop∞Grpd→∞Grpd preserves homotopy fibers of all morphisms of the form X → BG that are presented
in [CartSpop

top, sSet]proj by morphism of the form X → W̄G with X fibrant

Π(hofib(X → W̄G)) ' hofib(Π(X → W̄G)) .

Proof. By prop. 2.3.12 we may discuss the homotopy fiber in the global model structure on simplicial

presheaves. Write QX
'→ X for the global cofibrant resolution given by QX : [n] 7→

∐
{Ui0→···→Uin→Xn}

Ui0 ,

where the Uik range over CartSptop [Dugg01]. This has degeneracies splitting off as direct summands, and
hence is a good simplicial topological space that is degreewise in TopMfd. Consider then the pasting of two
pullback diagrams of simplicial presheaves

P ′

����

' // P //

����

WG

����
QX

' // X // W̄G

.

Here the top left morphism is a global weak equivalence because [CartSpop
top, sSet]proj is right proper. Since the

square on the right is a pullback of fibrant objects with one morphism being a fibration, P is a presentation
of the homotopy fiber of X → W̄G. Hence so is P ′, which is moreover the pullback of a diagram of good
simplicial spaces. By prop. 4.3.32 we have that on the outer diagram Π is presented by geometric realization
of simplicial topological spaces | − |. By prop. 4.3.44 we have a pullback in TopQuillen

|P | //

��

|WG|

����
|QX| // |W̄G|

which exhibits |P | as the homotopy fiber of |QX| → |W̄G|. But this is a model for |Π(X → W̄G)|. �

4.3.8 Gerbes

We discuss ∞-gerbes, 3.3.13, in the context of Euclidean-topological cohesion, with respect to the cohesive
∞-topos H := ETop∞Grpd from def. 4.3.3.

For X ∈ TopMfd write
X := H/X

for the slice of H over X, as in remark 3.3.71. This is equivalently the ∞-category of ∞-sheaves on X itself

X ' Sh∞(X) .

By remark 3.3.71 this comes with the canonical étale essential geometric morphism

(X! a X∗ a X∗) : H/X

X! //
oo X∗

X∗

// H .

Any topological group G is naturally an object G ∈ Grp(H) ⊂ ∞Grp(H) and hence as an object

X∗G ∈ Grp(X ) .

285



Under the identification X ' Sh∞(X) this is the sheaf of grpups which assigns sets of continuous functions
from open subsets of X to G:

X∗G : (U ⊂ X) 7→ C(U,G) .

Since the inverse image X∗ commutes with looping and delooping, we have

X∗BG ' BX∗G .

On the left BG is the abstract stack of topological G-principal bundles, regarded over X, on the right is the
stack over X of X∗G-torsors.

More generally, an arbitrary group object G ∈ Grp(X ) is (up to equivalence) any sheaf of groups on X,
and BG ∈ X is the corresponding stack of G-torsors over X. (A detailed discussion of these is for instance
in [Br06]. )

Definition 4.3.48. Let G = U(1) := R/Z and n ∈ N, n ≥ 1. Write Bn−1U(1) ∈ ∞Grp(H) for the
topological circle n-group.

A Bn−1U(1)-n-gerbe we call a circle n-gerbe.

Proposition 4.3.49. The automorphism ∞-groups, def. 3.3.180, of the circle n-groups, def. 4.3.48, are
given by the following crossed complexes (def. 1.3.22)

AUT(U(1)) ' [U(1)
0→ Z2] ,

AUT(BU(1)) ' [U(1)
0→ U(1)

0→ Z2] .

Here Z2 acts on the U(1) by the canonical action via Z2 ' AutGrp(U(1)).
The outer automorphism ∞-groups, def. 3.3.186 are

Out(U(1)) ' Z2 ;

Out(BU(1)) ' [U(1)
0→ Z2] .

Hence both ∞-groups are, of course, their own center.

With prop. 3.3.182 it follows that

π0U(1)Gerbe(X) ' H1(X, [U(1)
0→ Z2)

π0BU(1)Gerbe(X) ' H1(X, [U(1)
0→ U(1)

0→ Z2) .

Notice that this classification is different (is richer) than that of U(1) bundle gerbes and U(1) bundle 2-
gerbes. These are really models for BU(1)-principal 2-bundles and B2U(1)-principal 3-bundles on X, and
hence instead have the classification of prop. 3.3.98:

π0BU(1)Bund(X) ' H1(X, [U(1)→ 1]) ' H2(X,U(1)) ,

π0B
2U(1)Bund(X) ' H1(X, [U(1)→ 1→ 1]) ' H3(X,U(1)) .

Alternatively, this is the classification of the U(1)-1-gerbes and BU(1)-2-gerbes with trivial band, def. 3.3.190,
in H1(X,Out(U(1))) and H1(X,Out(BU(1))).

π0U(1)Gerbe∗∈H1(X,Out(U(1)))(X) ' H2(X,U(1)) ,

π0BU(1)Gerbe∗∈H1(X,Out(U(1)))(X) ' H3(X,U(1)) .
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4.3.9 Universal coverings and geometric Whitehead towers

We discuss geometric Whitehead towers (3.5.4) in ETop∞Grpd.

Proposition 4.3.50. Let X be a pointed paracompact topological space that admits a good open cover. Then
its ordinary Whitehead tower X(∞) → · · ·X(2) → X(1) → X(0) = X in Top coincides with the image under
the intrinsic fundamental ∞-groupoid functor |Π(−)| of its geometric Whitehead tower ∗ → · · ·X(2) →
X(1) → X(0) = X in ETop∞Grpd:

|Π(−)| : (X(∞) → · · ·X(2) → X(1) → X(0) = X) ∈ ETop∞Grpd

7→ (∗ → · · ·X(2) → X(1) → X(0) = X) ∈ Top
.

Proof. The geometric Whitehead tower is characterized for each n by the fiber sequence

X(n) → X(n−1) → Bnπn(X)→ Πn(X)→ Π(n−1)(X) .

By the above prop. 4.3.31 we have that Πn(X) ' Disc(SingX). Since Disc is right adjoint and hence
preserves homotopy fibers this implies that Bπn(X) ' BnDiscπn(X), where πn(X) is the ordinary nth
homotopy group of the pointed topological space X.

Then by prop. 4.3.47 we have that under |Π(−)| the space X(n) maps to the homotopy fiber of
|Π(X(n−1))| → Bn|Discπn(X)| = Bnπn(X).

By induction over n this implies the claim. �
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4.4 Smooth ∞-groupoids

We discuss smooth cohesion.

Definition 4.4.1. Write SmoothMfd for the category whose objects are smooth manifolds that are

• finite-dimensional;

• paracompact;

• with arbitrary set of connected components;

and whose morphisms are smooth functions between these.

Notice the evident forgetful functor

i : SmoothMfd→ TopMfd

to the category of topological manifolds, from def. 4.3.6.

Definition 4.4.2. For X ∈ SmoothMfd, say an open cover {Ui → X} is a differentiably good open cover if
each non-empty finite intersection of the Ui is diffeomorphic to a Cartesian space Rn.

Proposition 4.4.3. Every paracompact smooth manifold admits a differentiably good open cover.

Proof. This is a folk theorem. A detailed proof is in the appendix of [FSS10]. �
Notice that the statement here is a bit stronger than the familiar statement about topologically good open
covers, where the intersections are only required to be homeomorphic to a ball.

Definition 4.4.4. Regard SmoothMfd as a large site equipped with the coverage of differentiably good open
covers. Write CartSpsmooth ↪→ SmoothMfd for the full sub-site on Cartesian spaces.

Observation 4.4.5. Differentiably good open covers do indeed define a coverage and the Grothendieck
topology generated from it is the standard open cover topology.

Proof. For X a paracompact smooth manifold, {Ui → X} an open cover and f : Y → X any smooth
function from a paracompact manifold Y , the inverse images {f−1(Ui)→ Y } form an open cover of Y . Since∐
i f
−1(U1) is itself a paracompact smooth manifold, there is a differentiably good open cover {Kj →

∐
i Ui},

hence a differentiably good open cover {Kj → Y } such that for all j there is an i(j) such that we have a
commuting square

Kj
//

��

Ui(j)

��
Y

f // X

.

�

Proposition 4.4.6. CartSpsmooth is an ∞-cohesive site.

Proof. By the same kind of argument as in prop. 4.3.2. �

Definition 4.4.7. The ∞-topos of smooth ∞-groupoids is the ∞-sheaf ∞-topos on CartSpsmooth:

Smooth∞Grpd := Sh∞(CartSpsmooth) .

Since CartSpsmooth is similar to the site CartSptop from def. 4.3.1, various properties of Smooth∞Grpd
are immediate analogs of the corresponding properties of ETop∞Grpd from def. 4.3.3.
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Proposition 4.4.8. Smooth∞Grpd is a cohesive ∞-topos.

Proof. With prop. 4.4.6 this follows by prop. 3.1.19. �

Proposition 4.4.9. Smooth∞Grpd is equivalent to the hypercompletion of the ∞-sheaf ∞-topos over
SmoothMfd:

Smooth∞Grpd ' Ŝh∞(SmoothMfd) .

Proof. Observe that CartSpsmooth is a small dense sub-site of SmoothMfd. With this the claim follows
as in prop. 4.3.7. �

Corollary 4.4.10. The canonical embedding of smooth manifolds as 0-truncated objects of Smooth∞Grpd
extends to a full and faithful ∞-functor

SmoothMfd ↪→ Smooth∞Grpd.

Proof. With prop. 4.4.9 this follows from the ∞-Yoneda lemma. �

Remark 4.4.11. By example 2.2.21 there is an equivalence of ∞-categories

Smooth∞Grpd ' LWSmthMfd∆op

,

where on the right we have the simplicial localization of the category of simplicial smooth manifolds (with
arbitrary set of connected components) at the stalkwise weak equivalences.

This says that every smooth ∞-groupoid has a presentation by a simplicial smooth manifold (not in
general a locally Kan simplicial manifold, though) and that this identification is even homotopy-full and
faithful.

Consider the canonical forgetful functor

i : CartSpsmooth → CartSptop

to the site of definition for the cohesive ∞-topos ETop∞Grpd of Euclidean-topological ∞-groupoids, def.
4.3.3.

Proposition 4.4.12. The functor i extends to an essential geometric morphism

(i! a i∗ a i∗) : Smooth∞Grpd

i! //oo i∗

i∗
// ETop∞Grpd

such that the ∞-Yoneda embedding is factored through the induced inclusion SmoothMfd
i
↪→ Mfd as

SmoothMfd �
� //

i

��

Smooth∞Grpd

i!

��
Mfd �

� // ETop∞Grpd

Proof. Using the observation that i preserves coverings and pullbacks along morphism in covering fami-
lies, the proof follows the steps of the proof of prop. 3.2.3. �
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Corollary 4.4.13. The essential global section ∞-geometric morphism of Smooth∞Grpd factors through
that of ETop∞Grpd

(ΠSmooth a DiscSmooth a ΓSmooth) : Smooth∞Grpd

i! //
oo i∗

i∗
// ETop∞Grpd

ΠETop //
oo DiscETop

ΓETop

// ∞Grpd

Proof. This follows from the essential uniqueness of the global section ∞-geometric morphism, prop
2.2.2, and of adjoint ∞-functors. �
The functor i! here is the forgetful functor that forgets smooth structure and only remembers Euclidean
topology-structure.
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We now discuss the various general abstract structures in a cohesive∞-topos, 3.6, realized in Smooth∞Grpd.

• 4.4.1 – Concrete objects

• 4.4.2 – Cohesive ∞-groups

• 4.4.3 – Geometric homotopy

• 4.4.4 – Paths and geometric Postnikov towers

• 4.4.5 – Cohomology

• 4.4.6 – Principal ∞-bundles

• 4.4.7 – Twisted cohomology

• 4.4.8 – ∞-Group representations

• 4.4.9 – Flat ∞-connections and local systems

• 4.4.10 – de Rham cohomology

• 4.4.11 – Exponentiated ∞-Lie algebras

• 4.4.12 – Maurer-Cartan forms and curvature characteristic forms

• 4.4.13 – Differential cohomology

• 4.4.14 – ∞-Chern-Weil homomorphism

• 4.4.15 – Higher holonomy

• 4.4.16 – ∞-Chern-Simons functionals

• 4.4.17 – Geometric prequantization

4.4.1 Concrete objects

We discuss the general notion of concrete objects in a cohesive ∞-topos, 3.4.2, realized in Smooth∞Grpd.
The following definition generalizes the notion of smooth manifold and has been used as a convenient

context for differential geometry. It goes back to [Sour79] and, in a slight variant, to [Chen77]. The formu-
lation of differential geometry in this context is carefully exposed in [Igle]. The sheaf-theoretic formulation
of the definition that we state is amplified in [BaHo09].

Definition 4.4.14. A sheaf X on CartSpsmooth is a diffeological space if it is a concrete sheaf in the sense
of [Dub79]: if for every U ∈ CartSpsmooth the canonical function

X(U) ' Sh(U,X)
Γ→ Set(Γ(U),Γ(X))

is an injection.

The following observations are due to [CarSch].

Proposition 4.4.15. Write Conc(Smooth∞Grpd)≤0 for the full subcategory on the 0-truncated concrete
objects, according to def. 3.4.6. This is equivalent to the the full subcategory of Sh(CartSpsmooth) on the
diffeological spaces:

DiffeolSpace ' Conc(Smooth∞Grpd)≤0 .
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Proof. Let X ∈ Sh(CartSpsmooth) ↪→ Smooth∞Grpd be a sheaf. The condition for it to be a concrete
object according to def. 3.4.6 is that the (Γ a coDisc)-unit

X → coDiscΓX

is a monomorphism. Since monomorphisms of sheaves are detected objectwise this is equivalent to the
statement that for all U ∈ CartSpsmooth the morphism

X(U) ' Smooth∞Grpd(U,X)→ Smooth∞Grpd(U, coDiscΓX) ' ∞Grpd(ΓU,ΓX)

is a monomorphism of sets, where in the first step we used the ∞-Yoneda lemma and in the last one the
(Γ a coDisc)-adjunction. This is manifestly the defining condition for concrete sheaves that define diffeolog-
ical spaces. �

Corollary 4.4.16. The canonical embedding SmoothMfd ↪→ Smooth∞Grpd from prop. 4.4.10 factors
through diffeological spaces: we have a sequence of full and faithful ∞-functors

SmoothMfd ↪→ DiffeolSpace ↪→ Smooth∞Grpd .

Definition 4.4.17. Write DiffeolGrpd ↪→ SmoothGrpd for the full sub-∞-category on those smooth ∞-
groupoids that are represented by a groupoid object internal to diffeological spaces.

Proposition 4.4.18. There is a canonical equivalence

DiffeolGrpd ' Conc(Smooth∞Grpd)≤1

identifying diffeological groupoids with the concrete 1-truncated smooth ∞-groupoids.

Proof. By definition, an object X ∈ Smooth∞Grpd is concrete precisely if there exists a 0-concrete
object U , and an effective epimorphism U → X such that U ×X U is itself 0-concrete. By prop. 4.4.15 both
U and U ×X U are equivalent to diffeological spaces. Therefore the groupoid object ( U ×X U //

//
U )

internal to Smooth∞Grpd comes from a groupoid object internal to diffeological spaces. By Giraud’s axioms
for ∞-toposes, X is equivalent to (the ∞-colimit over) this groupoid object:

X ' lim
→

( U ×X U //
//
U ) .

�

4.4.2 Groups

We discuss some cohesive ∞-group objects, according to 3.3.6, in Smooth∞Grpd.

Let G ∈ SmoothMfd be a Lie group. Under the embedding SmoothMfd ↪→ Smooth∞Grpd this is
canonically identifed as a 0-truncated ∞-group object in Smooth∞Grpd. Write BG ∈ Smooth∞Grpd for
the corresponding delooping object.

Proposition 4.4.19. A fibrant presentation of the delooping object BG in the projective local model structure
on simplicial presheaves [CartSpop

smooth, sSet]proj,loc is given by the simplicial presheaf that is the nerve of the
one-object Lie groupoid

BGch := (G
→→ ∗)

regarded as a simplicial manifold and canonically embedded into simplicial presheaves:

BGch : U 7→ N(C∞(U,G)
→→ ∗) .
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Proof. This is essentially a special case of prop. 4.3.13. The presheaf is clearly objectwise a Kan
complex, being objectwise the nerve of a groupoid. It satisfies descent along good open covers {Ui → Rn} of
Cartesian spaces, because the descent∞-groupoid [CartSpop

smooth, sSet](C({Ui}),BG) is · · · ' GBund(Rn) '
GTrivBund(Rn): an object is a Čech 1-cocycle with coefficients in G, a morphism a Čech coboundary. This
yields the groupoid of G-principal bundles over U , which for the Cartesian space U is however equivalent to
the groupoid of trivial G-bundles over U .

To show that BG is indeed the delooping object of G it is sufficient by prop. 2.3.12 to compute the
∞-pullback G ' ∗ ×BG ∗ ∈ Smooth∞Grpd in the global model structure [CartSpop, sSet]proj. This is
accomplished by the ordinary pullback of the fibrant replacement diagram

G //

��

N(G×G
p1·p2→→
p1

G)

p2

��
∗ // N(G

→→ ∗)

.

�

Proposition 4.4.20. For G a Lie group, BG is a 1-concrete object in H.

Proof. Since BGch is fibrant in [CartSpop, sSet]proj,loc and since G presents a concrete sheaf, this follows
with prop. 3.4.12. �

Definition 4.4.21. Write equivalently
U(1) = S1 = R/Z

for the circle Lie group, regarded as a 0-truncated ∞-group object in Smooth∞Grpd under the embedding
prop. 4.4.10.

For n ∈ N the n-fold delooping BnU(1) ∈ Smooth∞Grpd we call the circle Lie (n+ 1)-group.

Write
U(1)[n] := [· · · → 0→ C∞(−, U(1))→ 0→ · · · → 0] ∈ [CartSpop

smooth,Ch•≥0]

for the chain complex of sheaves concentrated in degree n on U(1). Recall the right Quillen functor Ξ :
[CartSpopsmooth,Ch+]proj → [CartSpop

smooth, sSet]proj from prop. 2.2.31.

Proposition 4.4.22. The simplicial presheaf Ξ(U(1)[n]) is a fibrant representative in [CartSpop
smooth, sSet]proj,loc

of the circle Lie (n+ 1)-group BnU(1).

Proof. First notice that since U(1)[n] is fibrant in [CartSpop
smooth,Ch•]proj we have that ΞU(1)[n] is

fibrant in the global model structure [CartSpop, sSet]proj. By prop. 2.3.12 we may compute the ∞-pullback
that defines the loop space object in Smooth∞Grpd in terms of a homotopy pullback in this global model
structure.

To that end, consider the global fibration resolution of the point inclusion ∗ → Ξ(U(1)[n]) given under Ξ
by the morphism of chain complexes

[C∞(−, U(1))
Id //

Id

��

C∞(−, U(1)) //

��

0 //

��

· · · // 0]

��
[C∞(−, U(1)) // 0 // 0 // · · · // 0]

.
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The underlying morphism of chain complexes is clearly degreewise surjective, hence a projective fibration,
hence its image under Ξ is a projective fibration. Therefore the homotopy pullback in question is given by
the ordinary pullback

Ξ[0→ C∞(−, U(1))→ 0→ · · · → 0] //

��

Ξ[C∞(−, U(1))
Id→ C∞(−, U(1))→ 0→ · · · → 0]

��
Ξ[0→ 0→ 0→ · · · → 0] // Ξ[C∞(−, U(1))→ 0→ 0→ · · · → 0]

,

computed in [CartSpop,Ch+] and then using that Ξ is the right adjoint and hence preserves pullbacks. This
shows that the loop object ΩΞ(U(1)[n]) is indeed presented by Ξ(U(1)[n− 1]).

Now we discuss the fibrancy of U(1)[n] in the local model structure. We need to check that for all
differentiably good open covers {Ui → U} of a Cartesian space U we have that the mophism

C∞(U,U(1))[n]→ [CartSpop, sSet](C({Ui}),Ξ(U(1)[n]))

is an equivalence of Kan complexes, where C({Ui}) is the Čech nerve of the cover. Observe that the Kan
complex on the right is that whose vertices are cocycles in degree-n Čech cohomology (see [FSS10] for more
on this) with coefficients in U(1) and whose morphisms are coboundaries between these.

We proceed by induction on n. For n = 0 the condition is just that C∞(−, U(1)) is a sheaf, which clearly
it is. For general n we use that since C({Ui}) is cofibrant, the above is the derived hom-space functor which
commutes with homotopy pullbacks and hence with forming loop space objects, so that

π1[CartSpop
smooth, sSet](C({Ui}),Ξ(U(1)[n])) ' π0[CartSpop

smooth, sSet](C({Ui}),Ξ(U(1)[n− 1]))

by the above result on delooping. So we find that for all 0 ≤ k ≤ n that πk[CartSpop, sSet](C({Ui}),Ξ(U(1)[n]))
is the Čech cohomology of U with coefficients in U(1) in degree n− k. By standard facts about Čech coho-
mology (using the short exact sequence of abelian groups Z→ U(1)→ R and the fact that the cohomology
with coefficients in R vanishes in positive degree, for instance by a partition of unity argument) we have that
this is given by the integral cohomology groups

π0[CartSpop, sSet](C({Ui}),Ξ(U(1)[n])) ' Hn+1(U,Z)

for n ≥ 1. For the contractible Cartesian space all these cohomology groups vanish.
So we find that Ξ(U(1)[n])(U) and [CartSpop

smooth, sSet](C({Ui}),ΞU(1)[n]) both have homotopy groups
concentrated in degree n on U(1). The above looping argument together with the fact that U(1) is a sheaf
also shows that the morphism in question is an isomorphism on this degree-n homotopy group, hence is
indeed a weak homotopy equivalence. �
Notice that in the equivalent presentation of Smooth∞Grpd by simplicial presheaves on the large site
SmoothMfd the objects Ξ(U(1)[n]) are far from being locally fibrant. Instead, their locally fibrant re-
placements are given by the n-stacks of circle n-bundles.

4.4.3 Geometric homotopy

We discuss the intrinsic fundamental ∞-groupoid construction, 3.5.1, and the induced notion of geometric
realization, realized in Smooth∞Grpd.

Proposition 4.4.23. If X ∈ Smooth∞Grpd is presented by X• ∈ SmoothMfd∆op

↪→ [CartSpop
smooth, sSet],

then its image i!(X) ∈ ETop∞Grpd under the relative topological cohesion morphism, prop. 4.4.12, is

presented by the underlying simplicial topological space X• ∈ TopMfd∆op

↪→ [CartSpop
top, sSet].
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Proof. Let first X ∈ SmoothMfd ↪→ SmoothMfd∆op

be simplicially constant. Then there is a differen-
tiably good open cover, 4.4.3, {Ui → X} such that the Čech nerve projection∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Ui0 ×X · · · ×X Uik

 '→ X

is a cofibrant resolution in [CartSpop
smooth, sSet]proj,loc which is degreewise a coproduct of representables. That

means that the left derived functor LLani on X is computed by the application of Lani on this coend, which
by the fact that this is defined to be the left Kan extension along i is given degreewise by i, and since i
preserves pullbacks along covers, this is

(LLani)X ' Lani

∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Ui0 ×X · · · ×X Uik


=

∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

Lani(Ui0 ×X · · · ×X Uik)

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

i(Ui0 ×X · · · ×X Uik)

'
∫ [k]∈∆

∆[k] ·
∐

i0,··· ,ik

(i(Ui0)×i(X) · · · ×i(X) i(Uik))

' i(X)

,

The last step follows from observing that we have manifestly the Čech nerve as before, but now of the
underlying topological spaces of the {Ui} and of X.

The claim then follows for general simplicial spaces by observing thatX• =
∫ [k]∈∆

∆[k]·Xk ∈ [CartSpop
smooth, sSet]proj,loc

presents the ∞-colimit over X• : ∆op → SmoothMfd ↪→ Smooth∞Grpd and the left adjoint ∞-functor i!
preserves these. �

Corollary 4.4.24. If X ∈ Smooth∞Grpd is presented by X• ∈ SmoothMfd∆op

↪→ [CartSpop
smooth, sSet],

then the image of X under the fundamental ∞-groupoid functor, 3.5.1,

Smooth∞Grpd
Π //∞Grpd

|−|
'
// Top

is weakly homotopy equivalent to the geometric realization of (a Reedy cofibrant replacement of) the underlying
simplicial topological space

|Π(X)| ' |QX•| .

In particular if X is an ordinary smooth manifold then

Π(X) ' SingX

is equivalent to the standard fundamental ∞-groupoid of X.

Proof. By prop. 4.4.13 the functor Π factors as ΠX ' ΠETopi!X. By prop. 4.4.23 this is ΠEtop applied
to the underlying simplicial topological space. The claim then follows with prop. 4.3.32. �

Corollary 4.4.25. The ∞-functor Π : Smooth∞Grpd → ∞Grpd preserves homotopy fibers of morphisms
that are presented in [CartSpop

smooth, sSet]proj by morphisms of the form X → W̄G with X fibrant and G a
simplicial group in SmoothMfd.
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Proof. By prop. 4.4.13 the functor factors as ΠSmooth ' ΠETop ◦ i!. By prop. 4.4.23 i! assigns the
underlying topological spaces. If we can show that this preserves the homotopy fibers in question, then the
claim follows with prop. 4.3.47. We find this as in the proof of the latter proposition, by considering the
pasting diagram of pullbacks of simplicial presheaves

P ′

����

' // P //

����

WG

����
QX

' // X // W̄G

.

Since the component maps of the right vertical morphisms are surjective, the degreewise pullbacks in
SmoothMfd that define P ′ are all along transversal maps, and thus the underlying objects in TopMfd are the
pullbacks of the underlying topological manifolds. Therefore the degreewise forgetful functor SmoothMfd→
TopMfd presents i! on the outer diagram and sends this homotopy pullback to a homotopy pullback. �

4.4.4 Paths and geometric Postnikov towers

We discuss the general abstract notion of path ∞-groupoid, 3.5.3, realized in Smooth∞Grpd.
The presentation of Π(X) in ETop∞Grpd, 4.3.5 has a direct refinement to smooth cohesion:

Definition 4.4.26. For X ∈ SmthMfd write SingX ∈ [CartSpop, sSet] for the simplicial presheaf given by

SingX : (U, [k]) 7→ HomSmthMfd(U ×∆k, X) .

Proposition 4.4.27. The simplicial presheaf SingX is a presentation of Π(X) ∈ Smooth∞Grpd.

Proof. This reduces to the argument of prop. 4.3.37 after using the Steenrod approximation theorem
[Wock09] to refine continuous paths to smooth paths �

4.4.5 Cohomology

We discuss the intrinsic cohomology, 3.3.7, in Smooth∞Grpd.

• 4.4.5.1 – Cohomology with constant coefficients;

• 4.4.5.2 – Refined Lie group cohomology.

4.4.5.1 Cohomology with constant coefficients

Proposition 4.4.28. Let A ∈ ∞Grpd, write DiscA ∈ Smooth∞Grpd for the corresponding discrete smooth

∞-groupoid. Let X ∈ SmoothMfd
i
↪→ Smooth∞Grpd be a paracompact topological space regarded as a

0-truncated Euclidean-topological ∞-groupoid.
We have an isomorphism of cohomology sets

HTop(X,A) ' HSmooth(X,DiscA)

and in fact an equivalence of cocycle ∞-groupoids

Top(X, |A|) ' Smooth∞Grpd(X,DiscA) .

More generally, for X• ∈ SmoothMfd∆op

presenting an object X ∈ Smooth∞Grpd we have

HSmooth(X•,DiscA) ' HTop(|X|, |A|) .

Proof. This follows from the (Π a Disc)-adjunction and prop. 4.4.24. �
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4.4.5.2 Refined Lie group cohomology The cohomology of a Lie group G with coefficients in a Lie
group A was historically originally defined in terms of cocycles given by smooth functions G×n → A, by
naive analogy with the situation discussed in 4.1.3.1. In the language of simplicial presheaves on CartSp
these are morphisms of simplicial presheaves of the form BGch → BnA, with the notation as in 4.4.2. This
is clearly not a good definition, in general, since while BnA will be fibrant in [CartSpop, sSet]proj,loc, the
object BGch in general fails to be cofibrant, hence the above naive definition in general misses cocycles.

A refined definition of Lie group cohomology was proposed in [Sega70] and later independently in [Bryl00].
The following theorem asserts that the definitions given there do coincide with the intrinsic cohomology of
the stack BG in the cohesive ∞-topos Smooth∞Grpd.

Theorem 4.4.29. For G ∈ SmoothMfd ↪→ Smooth∞Grpd a Lie group and A either

1. a discrete abelian group

2. the additive Lie group of real numbers R

the intrinsic cohomology of G in Smooth∞Grpd coincides with the refined Lie group cohomology of Segal
[Sega70][Bryl00]

Hn
Smooth∞Grpd(BG,A) ' Hn

Segal(G,A) .

In particular we have in general

Hn
Smooth∞Grpd(BG,Z) ' Hn

Top(BG,Z)

and for G compact and n ≥ 1 also

Hn
Smooth∞Grpd(BG,U(1)) ' Hn+1

Top (BG,Z) .

Proof. The statement about constant coefficients is a special case of prop. 4.4.28. The statement about
real coefficients is a special case of a more general statement in the context of synthetic differential ∞-
groupoids that will be proven as prop. 4.5.31. The last statement finally follows from this using that
Hn

Segal(G,R) ' 0 for positive n and G compact and using the fiber sequence, def. 3.3.72, induced by the
short sequence Z→ R→ R/Z ' U(1). �

4.4.6 Principal bundles

We discuss principal ∞-bundles, 3.3.8, realized in smooth ∞-groupoids.

The following proposition asserts that the notion of smooth principal ∞-bundle reproduces traditional
notions of smooth bundles and smooth higher bundles.

Proposition 4.4.30. For G a Lie group and X ∈ SmoothMfd, we have that

Smooth∞Grpd(X,BG) ' GBund(X)

is equivalent to the groupoid of smooth principal G-bundles and smooth morphisms between these, as tradi-
tionally defined, where the equivalence is established by sending a morphism g : X → BG in Smooth∞Grpd
to the corresponding principal ∞-bundle P → X according to prop. 3.3.89.

For n ∈ N and G = Bn−1U(1) the circle Lie n-group, def. 4.4.21, and X ∈ SmoothMfd, we have that

Smooth∞Grpd(X,BnU(1)) ' U(1)(n− 1)BundGerb(X)

is equivalent to the n-groupoid of smooth U(1)-bundle (n− 1)gerbes.
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Proof. Presenting Smooth∞Grpd by the local projective model structure [CartSpop, sSet]proj,loc on sim-
plicial presheaves over the site of Cartesian spaces, we have that BG is fibrant, by prop. 4.4.19, and that a cofi-
brant replacement for X is given by the Čech nerve C({Ui}) of any differentiably good open cover {Ui → X}.
The cocycle ∞-groupoid in question is then presented by the simplicial set [CartSpop, sSet](C({Ui}),BG)
and this is readily seen to be the groupoid of Čech cocycles with coefficients in BG relative to the chosen
cover.

This establishes that the two groupoids are equivalent. That the equivalence is indeed established by
forming homotopy fibers of morphisms has been discussed in 1.3.1 (observing that by the discussion in 1.3.2
the ordinary pullback of the morphism EG → BG serves as a presentation for the homotopy pullback of
∗ → BG). �
This establishes the situation for smooth nonabelian cohomology in degree 1 and smooth abelian cohomology
in arbitrary degree. We turn now to a discussion of smooth nonabelian cohomology “in degree 2”, the case
where G is a Lie 2-group: G-principal 2-bundles.

When G = AUT(H) the automorphism 2-group of a Lie group H (see below) these structures have the
same classification as smooth H-1-gerbes, def. 3.3.178. To start with, note the general abstract notion of
smooth 2-groups:

Definition 4.4.31. A smooth 2-group is a 1-truncated group object in H = Sh∞(CartSp). These are
equivalently given by their (canonically pointed) delooping 2-groupoids BG ∈ H, which are precisely, up to
equivalence, the connected 2-truncated objects of H.

For X ∈ H any object, G2Bundsmooth(X) := H(X,BG) is the 2-groupoid of smooth G-principal 2-
bundles on G.

We consider the presentation of smooth 2-groups by Lie crossed modules, def. 1.3.6, according to prop.

3.3.69. Write [G1
δ→ G0] for the 2-group which is the groupoid

G0 ×G1
p1

//
p1(−)·δ(p2(−)) //

G0

equipped with a strict group structure given by the semidirect product group structure on G0 ×G1 that is
induced from the action ρ. The commutativity of the above two diagrams is precisely the condition for this
to be consistent. Recall the examples of crossed modules, starting with example 1.3.11.

We discuss sufficient conditions for the delooping of a crossed module of presheaves to be fibrant in the
projective model structure. Recall also the conditions from prop. 3.1.33.

Proposition 4.4.32. Suppose that the smooth crossed module (G1 → G0) is such that the quotient π0G =
G0/G1 is a smooth manifold and the projection G0 → G0/G1 is a submersion.

Then B(G1 → G0) is fibrant in [CartSpop, sSet]proj,loc.

Proof. We need to show that for {Ui → Rn} a good open cover, the canonical descent morphism

B(C∞(Rn, G1)→ C∞(Rn, G0))→ [CartSpop, sSet](C({Ui}),B(G1 → G0))

is a weak homotopy equivalence. The main point to show is that, since the Kan complex on the left is
connected by construction, also the Kan complx on the right is.

To that end, notice that the category CartSp equipped with the open cover topology is a Verdier site
in the sense of section 8 of [DuHoIs04]. By the discussion there it follows that every hypercover over Rn
can be refined by a split hypercover, and these are cofibrant resolutions of Rn in both the global and the
local model structure [CartSpop, sSet]proj,loc. Since also C({Ui}) → Rn is a cofibrant resolution and since
BG is clearly fibrant in the global structure, it follows from the existence of the global model structure that
morphisms out of C({Ui}) into B(G1 → G0) capture all cocycles over any hypercover over Rn, hence that

π0[CartSpop, sSet](C({Ui}),B(G1 → G0)) ' H1
smooth(Rn, (G1 → G0))
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is the standard Čech cohomology of Rn, defined as a colimit over refinements of covers of equivalence classes
of Čech cocycles.

Now by prop. 4.1 of [NiWa11] (which is the smooth refinement of the statement of [BSt] in the continuous
context) we have that under our assumptions on (G1 → G0) there is a topological classifying space for this
smooth Čech cohomology set. Since Rn is topologically contractible, it follows that this is the singleton set
and hence the above descent morphism is indeed an isomorphism on π0.

Next we can argue that it is also an isomorphism on π1, by reducing to the analogous local trivialization
statement for ordinary principal bundles: a loop in [CartSpop, sSet](C({Ui}),B(G1 → G0)) on the trivial
cocycle is readily seen to be a G0//(G0nG1)-principal groupoid bundle, over the action groupoid as indicated.
The underlying G0 nG1-principal bundle has a trivialization on the contractible Rn (by classical results or,
in fact, as a special case of the previous argument), and so equivalence classes of such loops are given gy
G0-valued smooth functions on Rn. The descent morphism exhibits an isomorphism on these classes.

Finally the equivalence classes of spheres on both sides are directly seen to be smooth ker(G1 → G0)-
valued functions on both sides, identified by the descent morphism. �

Corollary 4.4.33. For X ∈ SmoothMfd ⊂ H a paracompact smooth manifold, and (G1 → G0) as above,
we have for any good open cover {Ui → X} that the 2-groupoid of smooth (G1 → G0)-principal 2-bundles is

(G1 → G0)Bund(X) := H(X,B(G1)) ' [CartSpop, sSet](C({Ui}),B(G1 → G0))

and its set of connected components is naturally isomorphic to the nonabelian Čech cohomology

π0H(X,B(G1 → G0)) ' H1
smooth(X, (G1 → G0)) .

In particular, for G = AUT(H), BG ∈ H is the moduli 2-stack for smooth H-gerbes, def. 3.3.171.

Proposition 4.4.34. For A→ Ĝ→ G a central extension of Lie groups such that Ĝ→ G is a locally trivial
A-bundle, we have a long fiber sequence in Smooth∞Grpd of the form

A→ Ĝ→ G→ BA→ BĜ→ BG
c→ B2A ,

where the morphism c is presented by the span of simplicial presheaves

B(A→ Ĝ)c //

'
��

B(A→ 1)c B2Ac

BGch

coming from crossed complexes, def. 1.3.21, as indicated.

Proof. We need to show that

BĜch

��

// ∗

��
BGch

c // B2A

is an ∞-pullback. To that end, we notice that we have an equivalence

B(A→ Ĝ)c
'→ BGch

and that the morphism of simplicial presheaves B(A
id→ A)c → B2Ac is a fibration replacement of ∗ → B2Ac,

both in [CartSpop, sSet]proj.
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By prop. 2.3.12 it is therefore sufficient to observe the ordinary pullback diagram

B(1→ A)c

��

// B(A
id→ A)c

��
B(A→ Ĝ) // B(A→ 1)c

.

�

4.4.7 Twisted cohomology and twisted bundles

We give an extensive discussion of twisted cohomology, 3.3.9, and the corresponding twisted principal ∞-
bundles, realized in Smooth∞Grpd, below in 5.4. Most of the discussion there which does not involve
differential refinement also goes through verbatim in ETop∞Grpd, 4.3.

Notably in 5.4.2 we discuss as a simple consistency check that the general theory of twisted ∞-bundles
as sections of associated ∞-bundles reproduces the ordinary notion of smooth sections of a vector bundle.
Then in 5.4.3 we discuss that twisted vector bundles and hence twisted K-cocycles do arise as 2-sections of
certain canonically associated 2-bundles to circle 2-bundles. This serves to show how the case of twisted
cohomology that traditionally is at the focus the attention is reproduced. After that we discuss in 5.4 a
wealth of further examples.

4.4.8 ∞-Group representations

We discuss the intrinsic notion of ∞-group representations, 3.3.12, realized in the context Smooth∞Grpd.

We make precise the role of action Lie groupoids, introduced informally in 1.3.1.1.

Proposition 4.4.35. Let X be a smooth manifold, and G a Lie group. Then the category of smooth G-
actions on X in the traditional sense is equivalent to the category of G-actions on X in the cohesive ∞-topos
Smooth∞Grpd, according to def. 3.3.155.

Proof. For ρ : X ×G→ X a given G-action, define the action Lie groupoid

X//G := ( X ×G
ρ //
p1 // X )

with the evident composition operation. This comes with the evident morphism of Lie groupoids

X/!G→ ∗//G ' BG ,

with BG as in prop. 4.4.19. It is immediate that regarding this as a morphism in [CartSpop, sSet]proj

in the canonical way, this is a fibration. Therefore, by 2.3.12, the homotopy fiber of this morphism in
Smooth∞Grpds is given by the ordinary fiber of this morphism in simplicial presheaves. This is manifestly
X.

Accordingly this construction constitutes an embedding of the traditional G actions on X into the cat-
egory RepG(X) from def. 3.3.155. By turning this argument around, one finds that this embedding is
essentially surjective. �

4.4.9 Flat connections and local systems

We discuss the intrinsic notion of flat ∞-connections, 3.5.5, in Smooth∞Grpd.
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Proposition 4.4.36. Let X,A ∈ Smooth∞Grpd be any two objects and write |X| ∈ Top for the intrinsic
geometric realization, def. 3.5.2. We have that the flat cohomolog in Smooth∞Grpd of X with coefficients
in A is equivalent to the ordinary cohomology in Top of |X| with coefficients in underlying discrete object of
A:

HSmooth,flat(X,A) ' H(|X|, |ΓA|) .

Proof. By definition we have

Hflat(X,A) ' H(ΠX,A) ' H(DiscΠX,A) .

Using the (Disc) a Γ-adjunction this is

· · ·π0∞Grpd(ΠX,ΓA) .

Finally applying the equivalence | · | :∞Grpd→ Top this is

· · · ' H(|ΠX|, |ΓA|) .

The claim hence follows as in prop. 4.4.28. �

Let G be a Lie group regarded as a 0-truncated ∞-group in Smooth∞Grpd. Write g for its Lie algebra.
Write BG ∈ Smooth∞Grpd for its delooping. Recall the fibrant presentation BGch ∈ [CartSpop

smooth, sSet]proj,loc

from prop. 4.4.19.

Proposition 4.4.37. The object [BG ∈ Smooth∞Grpd has a fibrant presentation [BGch ∈ [CartSpop, sSet]proj,loc

given by the groupoid of Lie-algebra valued forms

[BGch = N

 C∞(−, G)× Ω1
flat(−, g)

Adp1 (p2)+p−1
1 dp1//

p2
// Ω1

flat(−, g)


and this is such that the canonical morphism [BG→ BG is presented by the canonical morphism of simplicial
presheaves [BGch → BGch which is a fibration in [CartSpop

smooth, sSet]proj.

This means that a U -parameterized family of objects of [BGch is given by a Lie-algebra valued 1-form
A ∈ Ω1(U) ⊗ g whose curvature 2-form FA = ddRA + [A,∧A] = 0 vanishes, and a U -parameterized family
of morphisms g : A→ A′ is given by a smooth function g ∈ C∞(U,G) such that A′ = AdgA+ g−1dg, where
AdgA = g−1Ag is the adjoint action of G on its Lie algebra, and where g−1dg := g∗θ is the pullback of the
Maurer-Cartan form on G along g.
Proof. By the proof of prop. 3.1.19 we have that [BG is presented by the simplicial presheaf that is constant
on the nerve of the one-object groupoid

Gdisc
→→ ∗ ,

for the discrete group underlying the Lie group G. The canonical morphism of that into BGch is however
not a fibration. We claim that the canonical inclusion N(Gdisc

→→)→ [BGc factors the inclusion into BGch

by a weak equivalence followed by a global fibration.
To see the weak equivalence, notice that it is objectwise an equivalence of groupoids: it is essentially

surjective since every flat g-valued 1-form on the contractible Rn is of the form gdg−1 for some function
g : Rn → G (let g(x) = P exp(

∫ x
0

)A be the parallel transport of A along any path from the origin to
x). Since the gauge transformation automorphism of the trivial g-valued 1-form are precisely given by the
constant G-valued functions, this is also objectwise a full and faithful functor. Similarly one sees that the
map [BGch → BG is a fibration.

Finally we need to show that [BGch is fibrant in [CartSpop
smooth, sSet]proj,loc. This is implied by theo-

rem 3.1.26. More explicitly, this can be seen by observing that this sheaf is the coefficient object that in
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Čech cohomology computes G-principal bundles with flat connection and then reasoning as above: every G-
principal bundle with flat connection on a Cartesian space is equivalent to a trivial G-principal bundle whose
connection is given by a globally defined g-valued 1-form. Morphisms between these are precisely G-valued
functions that act on the 1-forms by gauge transformations as in the groupoid of Lie-algebra valued forms. �

Let now BnU(1) be the circle (n + 1)-Lie group, def. 4.4.21. Recall the notation and model category
presentations as discussed there.

Proposition 4.4.38. For n ≥ 1 a fibration presentation in [CartSpop, sSet]proj of the canonical morphism
[BnU(1) → BnU(1) in Smooth∞Grpd is given by the image under Ξ : [CartSpop,Ch+] → [CartSpop, sSet]
of the morphism of chain complexes

C∞(−, U(1))
ddR //

��

Ω1(−)
ddR //

��

· · · ddR // Ωncl(−)

��
C∞(−, U(1)) // 0 // · · · // 0

,

where at the top we have the flat Deligne complex.

Proof. It is clear that the morphism of chain complexes is an objectwise surjection and hence maps to
a projective fibration under Ξ. It remains to observe that the flat Deligne complex is a presentation of
[BnU(1):

By the proof of prop. 3.1.19 we have that [ = Disc ◦ Γ is presented in the model category on fibrant
objects by first evaluating on the point and then extending back to a constant simplicial presheaf. Since
ΞU(1)[n] is indeed globally fibrant, a fibrant presentation of [BnU(1) is given by the constant presheaf
U(1)const[n] : U 7→ Ξ(U(1)[n]).

The inclusion U(1)const[n]→ U(1)[n] is not yet a fibration. But by a basic fact of abelian sheaf cohomology

– using the Poincaré lemma – we have a global weak equivalence U(1)const[n]
'→ [C∞(−, U(1))

ddR→ · · · ddR→
Ωncl(−)] that factors this inclusion by the above fibration. This completes the proof.

For emphasis, we repeat this argument in more detail. The factorization of U(1)const[n] → U(1)[n] into
a weak equivalence followed by a fibration that we are looking at is over each object Rq ∈ CartSp in the site
given by the morphisms of chain complexes whose components are show on the following diagram.

U(1) //
� _

��

0

��

// 0

��

// · · · // 0

��
C∞(Rq, U(1))

ddRlog //

id

��

Ω1(Rq) ddR //

��

Ω2(Rq) ddR //

��

· · · ddR // Ωncl(Rq)

��
C∞(Rq, U(1)) // 0 // 0 // · · · // 0

.

It is clear that this commutes. It is also clear that the lower vertical morphisms are all surjections, so the
lower row exhibits a fibration of chain complexes. In order for the top row to exhibit a weak equivalence of
chain complexes – a quasi-isomorphism – we need it to induce an isomorphism on all chain homology groups.

The chain homology of the top complex is evidently concentrated in degree n, where it is U(1), as a
discrete group.

The chain homology of the middle complex in degree n is the kernel of the differential ddRlog : C∞(Rq, U(1))→
Ω1(Rq). This kernel manifestly consists of the constant U(1)-valued functions. Since Rq is connected, these
are naturally identified with the group U(1) itself. This identification is indeed what the top left vertical
morphism exhibits.
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The chain homology of the middle complex in degree 0 ≤ k < n is the de Rham cohomology Hn−k
dR (Rq).

But this vanishes, since Rq is smoothly contractible (the Poincaré lemma).
Therefore the homology groups of the top and of the middle chain complex coincide. And by this discus-

sion, the top vertical morphisms induce isomorphisms on these homology groups. �

4.4.10 de Rham cohomology

We discuss intrinsic notion of de Rham cohomology in a cohesive ∞-topos, 3.6.1, realized in the context
Smooth∞Grpd. Here it reproduces the ordinary notion of de Rham cohomology with abelian and nonabelian
group coefficients, as well as its equivariant and simplicial versions.

Let G be a Lie group. Write g for its Lie algebra.

Proposition 4.4.39. The object [dRBG ∈ Smooth∞Grpd has a fibrant presentation in [CartSpop
smooth, sSet]proj,loc

by the sheaf [BGch := Ω1
flat(−, g) of flat Lie algebra-valued forms

[BGch : U 7→ Ω1
flat(U, g) .

Proof. By prop. 4.4.37 we have a fibration [BGch → BGch in [CartSpop
smooth, sSet]proj modeling the

canonical inclusion [BG→ BG. Therefore we may get a presentation for the defining ∞-pullback

[dRBG := ∗ ×BG [BG

in Smooth∞Grpd by the ordinary pullback

[dRBGch ' ∗ ×BGch
[BGch

in [CartSpop, sSet]proj. The resulting simplicial presheaf is fibrant in [CartSpop, sSet]proj,loc because it is a
sheaf. �

For n ∈ N, let now BnU(1) be the circle Lie (n+ 1)-group of def. 4.4.21. Recall the notation and model
category presentations from the discussion there.

Proposition 4.4.40. A fibrant representative in [CartSpop, sSet]proj,loc of the de Rham coefficent object
[dRBnU(1) from def. 3.6.1 is given by the truncated ordinary de Rham complex of smooth differential forms

[dRBnU(1)chn := Ξ[Ω1(−)
ddR→ Ω2(−)

ddR→ · · · → Ωn−1(−)
ddR→ Ωncl(−)] .

Proof. By definition and using prop. 2.3.12 the object [dRBnU(1) is given by the homotopy pullback
in [CartSpop, Ch•≥0]proj of the inclusion U(1)const[n] → U(1)[n] along the point inclusion ∗ → U(1)[n]. We
may compute this as the ordinary pullback after passing to a resolution of this inclusion by a fibration. By
prop. 4.4.38 such a fibration replacement is given by the map from the flat Deligne complex. Using this we
find the ordinary pullback diagram

Ξ[0→ Ω1(−)→ · · · → Ωncl(−)] //

��

Ξ[C∞(−, U(1))→ Ω1(−)→ · · · → Ωncl(−)]

��
Ξ[0→ 0→ · · · → 0] // Ξ[C∞(−, U(1))→ 0→ · · · → 0]

.

�
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Proposition 4.4.41. Let X be a smooth manifold regarded under the embedding SmoothMfd ↪→ Smooth∞Grpd.
Write Hn

dR(X) for the ordinary de Rham cohomology of X.
For n ∈ N we have isomorphisms

π0Smooth∞Grpd(X, [dRBnU(1)) '

 Hn
dR(X) |n ≥ 2

Ω1
cl(X) |n = 1

0 |n = 0

Proof. Let {Ui → X} be a differentiably good open cover. The Čech nerve C({Ui})→ X is a cofibrant
resolution of X in [CartSpop, sSet]proj,loc. Therefore we have for all n ∈ N

Smooth∞Grpd(X, [dRBnU(1)) ' [CartSpop, sSet](C({Ui}),Ξ[Ω1(−)
ddR→ · · · → Ωncl(−)]) .

The right hand is the ∞-groupoid of cocylces in the Čech hypercohomology of the truncated complex of
sheaves of differential forms. A cocycle is given by a collection

(Ci, Bij , Aijk, · · · , Zi1,··· ,in)

of differential forms, with Ci ∈ Ωncl(Ui), Bij ∈ Ωn−1(Ui ∩ Uj), etc. , such that this collection is annihilated
by the total differential D = ddR± δ, where ddR is the de Rham differential and δ the alternating sum of the
pullbacks along the face maps of the Čech nerve.

It is a standard result of abelian sheaf cohomology that such cocycles represent classes in de Rham
cohomology of n ≥ 2. For n = 1 and n = 0 our truncated de Rham complex degenerates to [dRBU(1)chn =
Ξ[Ω1

cl(−)] and [dRU(1)chn = Ξ[0], respectively, which obviously has the cohomology as claimed above. �
Recall from the discussion in 3.6.1 that the failure of the intrinsic de Rham cohomology of Smooth∞ to
coincide with traditional de Rham cohomology in degree 0 and 1 is due to the fact that the intrinsic de
Rham cohomology in degree n is the home for curvature classes of circle (n − 1)-bundles. For n = 1 these
curvatures are not to be taken module exact forms. And for n = 0 they vanish.

We discuss the equivariant version, def. 3.3.164, of smooth de Rham cohomology.

Proposition 4.4.42. Let X be a smooth manifold equipped with a smooth action by a Lie group G. Write
X//G for the corresponding action Lie groupoid, prop. 5.4.1. Then for n ≥ 2 we have an isomorphism

π0Smooth∞Grpd(X//G, [dRBnR) ' Hn
dR,G(X) ,

where on the right we have ordinary G-equivariant de Rham cohomology of X.

4.4.11 Exponentiated ∞-Lie algebras

We discuss the intrinsic notion of exponentiated ∞-Lie algebras, 3.6.2, realized in Smooth∞Grpd.
Recall the characterization of L∞-algebras, def. 1.3.72, by dual dg-algebras, prop. 1.3.74 – their

Chevalley-Eilenberg algebras–, and the characterization of the category L∞Alg as the full subcategory

L∞
CE
↪→ dgAlgop .

We describe now a presentation of the exponentiation of an L∞ algebra to a smooth ∞-group. The
following somewhat technical definition serves to control the smooth structure on these exponentiated objects.

Definition 4.4.43. For k ∈ N regard the k-simplex ∆k as a smooth manifold with corners in the standard
way. We think of this embedded into the Cartesian space Rk in the standard way with maximal rotation
symmetry about the center of the simplex, and equip ∆k with the metric space structure induced this way.

A smooth differential form ω on ∆k we say has sitting instants along the boundary if, for every (r < k)-
face F of ∆k there is an open neighbourhood UF of F in ∆k such that ω restricted to U is constant in the
directions perpendicular to the r-face on its value restricted to that face.
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More generally, for any U ∈ CartSp a smooth differential form ω on U×∆k is said to have sitting instants
if there is 0 < ε ∈ R such that for all points u : ∗ → U the pullback along (u, Id) : ∆k → U ×∆k is a form
with sitting instants on ε-neighbourhoods of faces.

Smooth forms with sitting instants form a sub-dg-algebra of all smooth forms. We write Ω•si(U ×∆k) for
this sub-dg-algebra.

We write Ω•si,vert(U ×∆k) for the further sub-dg-algebra of vertical differential forms with respect to the

projection p : U ×∆k → U , hence the coequalizer

Ω•≥1(U)
p∗ //
0
// Ω•si(U ×∆k) // Ω•si,vert(U ×∆k) .

Definition 4.4.44. For g ∈ L∞ write exp(g) ∈ [CartSpop
smooth, sSet] for the simplicial presheaf defined over

U ∈ CartSp and n ∈ N by

exp(g) : (U, [n]) 7→ HomdgAlg(Ω•si,vert(U ×∆n),CE(g))

with the evident structure maps given by pullback of differential forms.

This definition of the ∞-groupoid associated to an L∞-algebra realized in the smooth context appears
in [FSS10] and in similar form in [Royt10] as the evident generalization of the definition in Banach spaces
in [Henr08] and for discrete ∞-groupoids in [Getz09], which in turn goes back to [Hini97].

Proposition 4.4.45. The objects exp(g) ∈ [CartSpop
smooth, sSet] are

1. connected;

2. Kan complexes over each U ∈ CartSp.

Proof. That exp(g)0 = ∗ follows from degree-counting: Ω•si,vert(U ×∆0) = C∞(U) is entirely in degree
0 and CE(g) is in degree 0 the ground field R.

To see that exp(g) has all horn-fillers over each U ∈ CartSp observe that the standard continuous horn
retracts f : ∆k → Λki are smooth away from the preimages of the (r < k)-faces of Λ[k]i.

For ω ∈ Ω•si,vert(U × Λ[k]i) a differential form with sitting instants on ε-neighbourhoods, let therefore

K ⊂ ∂∆k be the set of points of distance ≤ ε from any subface. Then we have a smooth function

f : ∆k \K → Λki \K .

The pullback f∗ω ∈ Ω•(∆k \K) may be extended constantly back to a form with sitting instants on all of
∆k. The resulting assignment

(CE(g)
A→ Ω•si,vert(U × Λki )) 7→ (CE(g)

A→ Ω•si,vert(U × Λki )
f∗→ Ω•si,vert(U ×∆n))

provides fillers for all horns over all U ∈ CartSp. �

Definition 4.4.46. We say that the loop space object Ω exp(g) is the smooth ∞-group exponentiating g.

Proposition 4.4.47. The objects exp(g) ∈ Smooth∞Grpd are geometrically contractible:

Π exp(g) ' ∗ .

Proof. Observe that every simplicial presheaf X is the homotopy colimit over its component presheaves
Xn ∈ [CartSpop

smooth,Set] ↪→ [CartSpop
smooth, sSet]

X ' Llim
→ n

Xn .
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(Use for instance the injective model structure for which X• is cofibrant in the Reedy model structure
[∆op, [CartSpop

smooth, sSet]inj,loc]Reedy ). Therefore it is sufficient to show that in each degree n the 0-truncated
object exp(g)n is geometrically contractible.

To exhibit a geometric contraction, def. 3.5.4, choose for each n ∈ N, a smooth retraction

ηn : ∆n × [0, 1]→ ∆n

of the n-simplex: a smooth map such that ηn(−, 1) = Id and ηn(−, 0) factors through the point. We claim
that this induces a diagram of presheaves

exp(g)n

(id,1)

��

id

''
exp(g)n × [0, 1]

η∗n // exp(g)n

exp(g)n //

(id,0)

OO

∗

OO

,

where over U ∈ CartSp the middle morphism is given by

η∗n : (α, f) 7→ (f, ηn)∗α ,

where

• α : CE(g)→ Ω•si,vert(U ×∆n) is an element of the set exp(g)n(U),

• f is an element of [0, 1](U);

• (f, ηn) is the composite morphism

U ×∆n (id,f)×id→ U × [0, 1]×∆n (id,ηn)→ U ×∆n

• (f, η)∗α is the postcomposition of α with the image of (f, ηn) under Ω•vert(−).

Here the last item is well defined given the coequalizer definition of Ω•vert because (f, ηn) is a morphism of
bundles over U

U ×∆n
(id,f)×id//

��

U × [0, 1]×∆n id×ηn //

��

U ×∆n

��
U

id // U
id // U

.

Similarly, for h : K → U any morphism in CartSpsmooth the naturality condition for a morphism of presheaves
follows from the fact that the composites of bundle morphisms

K ×∆n h×id //

��

U ×∆n
(id,f)×id//

��

U × [0, 1]×∆n
(id,ηn)//

��

U ×∆n

��
K

h // U
id // U

id // U

and

K ×∆n
((id,f◦h)×id//

��

K × [0, 1]×∆nid×ηn //

��

K ×∆n h×id //

��

U ×∆n

��
K

id // K
id // K

h // U
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coincide.
Moreover, notice that the lower morphism in our diagram of presheaves indeed factors through the point

as indicated, because for an L∞-algebra g we have that the Chevalley-Eilenberg algebra CE(g) is in degree
0 the ground field algebra algebra R, so that there is a unique morphism CE(g)→ Ω•vert(U ×∆0) ' C∞(U)
in dgAlg.

Finally, since [0, 1] is a contractible paracompact manifold, we have that Π([0, 1]) ' ∗ by prop. 4.3.31.
Therefore the above diagram of presheaves presents a geometric homotopy in Smooth∞Grpd from the
identity map to a map that factors through the point. It follows by prop 3.5.5 that Π(exp(g)n) ' ∗ for all
n ∈ N. And since Π preserves the homotopy colimit exp(g) ' Llim

−→n
exp(g)n we have that Π(exp(g)) ' ∗,

too. �
We may think of exp(g) as the smooth geometrically ∞-simply connected Lie integration of g. Notice
however that exp(g) ∈ Smooth∞Grpd in general has nontrivial and interesting homotopy sheaves. The
above statement says that its geometric homotopy groups vanish .

4.4.11.1 Examples Let g ∈ L∞ be an ordinary (finite dimensional) Lie algebra. Standard Lie theory
provides a simply connected Lie group G integrating g. Write BG ∈ Smooth∞Grpd for its delooping.
According to prop. 4.4.19 this is presented by the simplicial presheaf BGch ∈ [CartSpop

smooth, sSet].

Proposition 4.4.48. The operation of parallel transport P exp(
∫
−) : Ω1([0, 1], g)→ G yields a weak equiv-

alence (in [CartSpop
smooth, sSet]proj)

P exp(

∫
−) : cosk3 exp(g) ' cosk2 exp(g) ' BGch .

Proof. Notice that a flat smooth g-valued 1-form on a contractible space X is after a choice of basepoint
canonically identified with a smooth function X → G. The claim then follows from the observation that by
the fact that G is simply connected any two paths with coinciding endpoints have a continuous homotopy
between them, and that for smooth paths this may be chose to be smooth, by the Steenrod approximation
theorem [Wock09]. �
Let now n ∈ N, n ≥ 1.

Definition 4.4.49. Write
bn−1R ∈ L∞

for the L∞-algebra whose Chevalley-Eilenberg algebra is given by a single generator in degree n and vanishing
differential. We call this the line Lie n-algebra.

Observation 4.4.50. The discrete ∞-groupoid underlying exp(bn−1R) is given by the Kan complex that
in degree k has the set of closed differential n-forms with sitting instants on the k-simplex

Γ(exp(bn−1R)) : [k] 7→ Ωnsi,cl(∆
k)

Definition 4.4.51. We write equivalently

BnRsmp := exp(bn−1R) ∈ [CartSpop
smooth, sSet] .

Proposition 4.4.52. We have that BnRsmp is indeed a presentation of the smooth line n-group BnR, from
4.4.21.

Concretely, with BnRchn ∈ [CartSpop
smooth, sSet] the standard presentation given under the Dold-Kan

correspondence by the chain complex of sheaves concentrated in degree n on C∞(−,R) the equivalence is
induced by the fiber integration of differential n-forms over the n-simplex:∫

∆•
: BnRsmp

'→ BnRsmp .
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Proof. First we observe that the map∫
∆•

: (ω ∈ Ωnsi,vert,cl(U ×∆k)) 7→
∫

∆k

ω ∈ C∞(U,R)

is indeed a morphism of simplicial presheaves exp(bn−1R)→ BnRchn on. Since it goes between presheaves of
abelian simplicial groups, by the Dold-Kan correspondence it is sufficient to check that we have a morphism
of chain complexes of presheaves on the corresponding normalized chain complexes.

The only nontrivial degree to check is degree n. Let λ ∈ Ωnsi,vert,cl(∆
n+1). The differential of the

normalized chains complex sends this to the signed sum of its restrictions to the n-faces of the (n + 1)-
simplex. Followed by the integral over ∆n this is the piecewise integral of λ over the boundary of the
n-simplex. Since λ has sitting instants, there is 0 < ε ∈ R such that there are no contributions to this
integral in an ε-neighbourhood of the (n − 1)-faces. Accordingly the integral is equivalently that over the
smooth surface inscribed into the (n + 1)-simplex. Since λ is a closed form on the n-simplex, this surface
integral vanishes, by the Stokes theorem. Hence

∫
∆•

is indeed a chain map.
It remains to show that

∫
∆•

: coskn+1 exp(bn−1R)→ BnRchn is an isomorphism on simplicial homotopy
groups over each U ∈ CartSp. This amounts to the statement that

• a smooth family of closed n < k-forms with sitting instants on the boundary of ∆k+1 may be extended
to a smooth family of closed forms with sitting instants on ∆k+1

• a smooth family of closed n-forms with sitting instants on the boundary of ∆n+1 may be extended
to a smooth family of closed forms with sitting instants on ∆n+1 precisely if their smooth family of
integrals over ∂Deltan+1 vanishes.

To demonstrate this, we want to work with forms on the (k + 1)-ball instead of the (k + 1)-simplex. To
achieve this, choose again 0 < ε ∈ R and construct the diffeomorphic image of Sk × [1 − ε, 1] inside the
(k+ 1)-simplex as indicated by the above construction: outside an ε-neighbourhood of the corners the image
is a rectangular ε-thickening of the faces of the simplex. Inside the ε-neighbourhoods of the corners it bends
smoothly. By the Steenrod-approximation theorem [Wock09] the diffeomorphism from this ε-thickening of
the smoothed boundary of the simplex to Sk × [0, 1] extends to a smooth function from the (k + 1)-simplex
to the (k + 1)-ball. By choosing ε smaller than each of the sitting instants of the given n-form on ∂∆k, we
have that this n-form vanishes on the ε-neighbourhoods of the corners and is hence entirely determined by
its restriction to the smoothed simplex, identified with the (k + 1)-ball.

It is now sufficient to show: a smooth family of smooth n-forms ω ∈ Ωnvert,cl(U ×Sk) extends to a smooth

family of closed n-forms ω̂ ∈ Ωnvert,cl(U×Bn+1) that is radially constant in a neighbourhood of the boundary

for all n < k and for n = k precisely if its smooth family of integrals
∫
Sn
ω = 0 ∈ C∞(U,R) vanishes.

Notice that over the point this is a direct consequence of the de Rham theorem: all k < n forms are
exact on Sk and n-forms are exact precisely if their integral vanishes. In that case there is an (n− 1)-form
A with ω = dA. Choosing any smoothing function f : [0, 1]→ [0, 1] (smooth, surjective non,decreasing and
constant in a neighbourhood of the boundary) we obtain a n-form f ∧ A on (0, 1]× Sn, vertically constant
in a neighbourhood of the ends of the interval, equal to A at the top and vanishing at the bottom. Pushed
forward along the canonical (0, 1] × Sn → Dn+1 this defines a form on the (n + 1)-ball, that we denote by
the same symbol f ∧A. Then the form ω̂ := d(f ∧A) solves the problem.

To complete the proof we have to show that this argument does extend to smooth families of forms in
that we can find suitable smooth families of the form A in the above discussion. This may be accomplished
for instance by invoking Hodge theory: If we equip Sk with a Riemannian metric then the refined form of
the Hodge theorem says that we have an equality

id− πH = [d, d∗G] ,

of operators on differential forms, where πH is the orthogonal projection on harmonic forms and G is the
Green operator of the Hodge-Laplace operator. For ω an exact form its harmonic projection vanishes so that
this gives a homotopy

ω = d(d∗Gω) .
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This operation ω 7→ d∗Gω depends smoothly on ω. �

4.4.11.2 flat coefficients. We consider now the flat coefficient object, 3.5.5, [ exp(g) of exponentiated
L∞ algebras exp(g), 4.4.11.

Definition 4.4.53. Write [ exp(g)smp or equivalentl exp(g)flat for the simplicial presheaf given by

[ exp(g)smp : (U, [n]) 7→ HomdgAlg(CE(g),Ω•si(U ×∆n)) .

Proposition 4.4.54. The canonical morphism [BnR→ BnR in Smooth∞Grpd is presented in [CartSpop
smooth, sSet]

by the composite

const Γ exp(bn−1R)
' // [ exp(bn−1R)smp

// // exp(bn−1R) ,

where the first morphism is a weak equivalence and the second a fibration in [CartSpop
smooth, sSet]proj.

We discuss the two morphisms in the composite separately in two lemmas.

Lemma 4.4.55. The canonical inclusion

constΓ(exp(g))→ [ exp(g)smp

is a weak equivalence in [CartSpop, sSet]proj.

Proof. The morphism in question is on each object U ∈ CartSp the morphism of simplicial sets

HomdgAlg(CE(g),Ω•si(∆
k))→ HomdgAlg(CE(g),Ω•si(U ×∆k)) ,

which is given by pullback of differential forms along the projection U ×∆k → ∆k.
To show that for fixed U this is a weak equivalence in the standard model structure on simplicial sets we

produce objectwise a left inverse

FU : HomdgAlg(CE(g),Ω•si(U ×∆•))→ HomdgAlg(CE(g),Ω•si(∆
•))

and show that this is an acyclic fibration of simplicial sets. The statement then follows by the 2-out-of-3-
property of weak equivalences.

We take FU to be given by evaluation at 0 : ∗ → U , i.e. by postcomposition with the morphisms

Ω•(U ×∆k)
Id×0∗→ Ω•(∗ ×∆k) = Ω•(∆k) .

(This is, of course, not natural in U and hence does not extend to a morphism of simplicial presheaves. But
for our argument here it need not.) The morphism FU is an acyclic Kan fibration precisely if all diagrams
of the form

∂∆[n] //

��

Hom(CE(g),Ω•si(U ×∆•))

FU

��
∆[n] // Hom(CE(g),Ω•si(∆

•))

have a lift. Using the Yoneda lemma over the simplex category and since the differential forms on the
simplices have sitting instants, we may, as above, equivalently reformulate this in terms of spheres as follows:
for every morphism CE(g)→ Ω•si(D

n) and morphism CE(g)→ Ω•si(U × Sn−1) such that the diagram

CE(g) //

��

Ω•(U × Sn−1)

��
Ω•si(D

n) // Ω•(Sn−1)
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commutes, this may be factored as

CE(g)

&&
Ω•si(U ×Dn) //

��

Ω•(U × Sn−1)

��
Ω•(Dn) // Ω•(Sn−1)

.

(Here the subscript “si” denotes differential forms on the disk that are radially constant in a neighbourhood
of the boundary.)

This factorization we now construct. Let first f : [0, 1]→ [0, 1] be any smoothing function, i.e. a smooth
function which is surjective, non-decreasing, and constant in a neighbourhood of the boundary. Define a
smooth map U × [0, 1] → U by (u, σ) 7→ u · f(1 − σ), where we use the multiplicative structure on the
Cartesian space U . This function is the identity at σ = 0 and is the constant map to the origin at σ = 1. It
exhibits a smooth contraction of U .

Pullback of differential forms along this map produces a morphism

Ω•(U × Sn−1)→ Ω•(U × Sn−1 × [0, 1])

which is such that a form ω is sent to a form which in a neighbourhood (1 − ε, 1] of 1 ∈ [0, 1] is constant
along (1− ε, 1]× U on the value (0, IdSn−1)∗ω.

Let now 0 < ε ∈ R some value such that the given forms CE(g) → Ω•si(D
k) are constant a distance

d ≤ ε from the boundary of the disk. Let q : [0, ε/2] → [0, 1] be given by multiplication by 1/(ε/2) and
h : Dk

1−ε/2 → Dn
1 the injection of the n-disk of radius 1− ε/2 into the unit n-disk.

We can then glue to the morphism

CE(g)→ Ω•(U × Sn−1)→ Ω•(U × [0, 1]× Sn−1)
id×q∗×id→' Ω•(U × [0, ε/2]× Sn−1)

to the morphism

CE(g)→ Ω•(Dn)→ Ω•(U × {1} ×Dn)
h∗→' Ω•(U × {1} ×Dn

1−ε/2)

by smoothly identifying the union [0, ε/2]× Sn−1
∐
Sn−1 Dn

1−ε/2 with Dn (we glue a disk into an annulus to

obtain a new disk) to obtain in total a morphism

CE(g)→ Ω•(U ×Dn)

with the desired properties: at u = 0 the homotopy that we constructed is constant and the above con-
struction hence restricts the forms to radius ≤ 1− ε/2 and then extends back to radius ≤ 1 by the constant
value that they had before. Away from 0 the homotopy in the rmaining ε/2 bit smoothly interpolates to the
boundary value. �

Lemma 4.4.56. The canonical morphism

[ exp(g)smp → exp(g)

is a fibration in [CartSpop
smooth, sSet]proj.

Proof. Over each U ∈ CartSp the morphism is induced from the morphism of dg-algebras

Ω•(U)→ C∞(U)
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that discards all differential forms of non-vanishing degree.
It is sufficient to show that for

CE(g)→ Ω•si,vert(U × (Dn × [0, 1]))

a morphism and
CE(g)→ Ω•si(U ×Dn)

a lift of its restriction to σ = 0 ∈ [0, 1] we have an extension to a lift

CE(g)→ Ω•si,vert(U × (Dn × [0, 1])) .

From these lifts all the required lifts are obtained by precomposition with some evident smooth retractions.
The lifts in question are obtained from solving differential equations with boundary conditions, and exist

due to the existence of solutions of first order systems of partial differential equations and the identity
d2

dR = 0. �
We have discussed now two different presentations for the flat coefficient object [BnR:

1. [BnRchn – prop. 4.4.38;

2. [BnRsmp – prop. 4.4.54;

There is an evident degreewise map

(−1)•+1

∫
∆•

: [BnRsimp → [BnRchn

that sends a closed n-form ω ∈ Ωncl(U ×∆k) to (−1)k+1 times its fiber integration
∫

∆k ω.

Proposition 4.4.57. This map yields a morphism of simplicial presheaves∫
: [BnRsmp → [BnRchn

which is a weak equivalence in [CartSpop, sSet]proj.

Proof. First we check that we have a morphism of simplicial sets over each U ∈ CartSp. Since both
objects are abelian simplicial groups we may, by the Dold-Kan correspondence, check the statement for
sheaves of normalized chain complexes.

Notice that the chain complex differential on the forms ω ∈ Ωncl(U ×∆k) on simplices sends a form to the
alternating sum of its restriction to the faces of the simplex. Postcomposed with the integration map this is
the operation ω 7→

∫
∂∆k ω of integration over the boundary.

Conversely, first integrating over the simplex and then applying the de Rham differential on U yields

ω 7→ (−1)k+1dU

∫
∆k

ω = −
∫

∆k

dUω

=

∫
∆k

d∆kω

=

∫
∂∆k

ω

,

where we first used that ω is closed, so that ddRω = (dU + d∆k)ω = 0, and then used Stokes’ theorem.
Therefore we have indeed objectwise a chain map.

By the discussion of the two objects we already know that both present the homotopy type of [BnR.
Therefore it suffices to show that the integration map is over each U ∈ CartSp an isomorphism on the
simplicial homotopy group in degree n.

311



Clearly the morphism ∫
∆n

: Ω•si,cl(U ×∆n)→ C∞(U,R)

is surjective on degree n homotopy groups: for f : U → ∗ → R constant, a preimage is f · vol∆n , the nor-
malized volume form of the n-simplex times f . Moreover, these preimages clearly span the whole homotopy
group πn([BnR) ' Rdisc (they are in fact the images of the weak equivalence constΓ exp(bn−1R)→ [BnRsmp

) and the integration map is injective on them. Therefore it is an isomorphism on the homotopy groups in
degree n. �

4.4.11.3 de Rham coefficients We now consider the de Rham coefficient object [dR exp(g), 3.6.1, of
exponentiated L∞ algebras exp(g), def 4.4.44.

Proposition 4.4.58. For g ∈ L∞ a representive in [CartSpop, sSet]proj of the de Rham coefficient object
[dR exp(g) is given by the presheaf

[dRBnRsmp : (U, [n]) 7→ HomdgAlg(CE(g),Ω•≥1,•
si (U ×∆n)) ,

where the notation on the right denotes the dg-algebra of differential forms on U×∆n that (apart from having
sitting instants on the faces of ∆n) are along U of non-vanishing degree.

Proof. By the prop. 4.4.54 we may present the defining ∞-pullback [dRBnR := ∗ ×BnR [B
nR in

Smooth∞Grpd by the ordinary pullback

[dRBnRsmp
//

��

[BnRsmp

��
∗ // BnR

in [CartSpop
smooth, sSet]. �

We have discussed now two different presentations for the de Rham coefficient object [BnR:

1. [dRBnRchn – prop. 4.4.40;

2. [dRBnRsmp – prop 4.4.58;

There is an evident degreewise map

(−1)•+1

∫
∆•

: [dRBnRsmp → [dRBnRchn

that sends a closed n-form ω ∈ Ωncl(U ×∆k) to (−1)k+1 times its fiber integration
∫

∆k ω.

Proposition 4.4.59. This map yields a morphism of simplicial presheaves∫
: [dRBnRsmp → [dRBnRchn

which is a weak equivalence in [CartSpop, sSet]proj.

Proof. This morphism is the morphism on pullbacks induced from the weak equivalence of diagrams

∗ //

=

��

exp(bn−1R) oo

∫
'
��

[BnRsmp∫
'
��

∗ // BnRchn
oo [BnRchn

.

Since both of these pullbacks are homotopy pullbacks by the above discussion, the induced morphism be-
tween the pullbacks is also a weak equivalence. �
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4.4.12 Maurer-Cartan forms and curvature characteristic forms

We discuss the universal curvature forms, 3.6.3, in Smooth∞Grpd.
Specifically, we discuss the canonical Maurer-Cartan form on the following special cases of (presentations

of) smooth ∞-groups.

• 4.4.12.1 – ordinary Lie groups:

• 4.4.12.2 – circle n-groups Bn−1U(1);

• 4.4.12.3 – simplicial Lie groups.

Notice that, by the discussion in 2.2.4, the case of simplicial Lie groups also subsumes the case of crossed
modules of Lie groups, def. 1.3.6, and generally of crossed complexes of Lie groups, def. 1.3.21.

4.4.12.1 Canonical form on an ordinary Lie group

Proposition 4.4.60. Let G be a Lie group with Lie algebra g.
Under the identification

Smooth∞Grpd(X, [dRBG) ' Ω1
flat(X, g)

from prop. 4.4.39, for X ∈ SmoothMfd, we have that the canonical morphism

θ : G→ [dRBG

in Smooth∞Grpd corresponds to the ordinary Maurer-Cartan form on G.

Proof. We compute the defining double ∞-pullback

G //

θ
��

∗

��
[dRBG //

��

[BG

��
∗ // BG

in Smooth∞Grpd as a homotopy pullback in [CartSpop
smooth, sSet]proj. In prop. 4.4.39 we already modeled

the lower ∞-pullback square by the ordinary pullback

[dRBGch
//

��

[BGch

��
∗ // BGch

.

A standard fibration replacement of the point inclusion ∗ → [BG is given by replacing the point by the
presheaf that assigns groupoids of the form

Q : U 7→


A0 = 0

g1

{{

g2

##
A1

h // A2

 ,

where on the right the commuting triangle is in ([dRBGch)(U) and here regarded as a morphism from (g1, A1)
to (g2, A2). And the fibration Q→ [BGch is given by projecting out the base of these triangles.
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The pullback of this along [dRBGch → [BGch is over each U the restriction of the groupoid Q(U) to its
set of objects, hence is the sheaf

U 7→


A0 = 0

g

��
g∗θ

 ' C
∞(U,G) = G(U) ,

equipped with the projection
tU : G→ [dRBGch

given by
tU : (g : U → G) 7→ g∗θ .

Under the Yoneda lemma (over SmoothMfd) this identifies the morphism t with the Maurer-Cartan form
θ ∈ Ω1

flat(G, g). �

4.4.12.2 Canonical form on the circle n-group We consider now the canonical differential form on
the circle Lie (n+ 1)-group, def. 4.4.21. Below in 4.4.13 this serves as the universal curvature class on the
universal circle n-bundle.

Definition 4.4.61. For n ∈ N define the simplicial presheaf

BnU(1)diff,chn := Ξ

(
C∞(−,U(1))
⊕Ω1(−)

ddR∓Id// Ω1(−)
⊕Ω2(−)

· · ·ddR±Id //ddR−Id // Ωn−1(−)
⊕Ωn(−)

ddR+Id // Ωn(−)

)
,

where the de Rham differential acts on both summands, and in degree k the term (−1)k+1IdΩn−k+1 is added.

Proposition 4.4.62. The evident projection

BnU(1)diff,chn → BnU(1)chn

is a weak equivalence in [CartSpop, sSet]proj. Moreover, the universal curvature characteristic, def. 3.6.16,

curv : BnU(1)→ [dRBn+1U(1)

in Smooth∞Grpd is presented in [CartSpop, sSet]proj,loc by a span

BnU(1)diff,chn
curvchn //

'
��

[dRBn+1U(1)chn

BnU(1)

,

where the horizontal morphism is the image under the Dold-Kan homomorphism Ξ, prop. 2.2.31, of the
chain map

C∞(−,U(1))
⊕Ω1(−)

ddR−Id //

p2

��

Ω1(−)
⊕Ω2(−)

ddR+Id //

p2

��

· · · ddR∓Id// Ωn−1

⊕Ωn(−)

ddR±Id //

p2

��

Ωn(−)

ddR

��
Ω1(−)

ddR // Ω2(−)
ddR // · · · ddR // Ωn(−)

ddR // Ωn+1(−)

.
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Proof. By prop. 2.3.12 we may present the defining ∞-pullback

BnU(1) //

curv

��

∗

��
[dRBn+1U(1)

��

// [Bn+1U(1)

��
∗ // Bn+1U(1)

by a homotopy pullback in [CartSpop, sSet]proj. We claim that there is a commuting diagram

[0→ C∞(−,U(1))
⊕Ω1(−)

ddR−Id→ Ω1(−)
⊕Ω2(−)

ddR+Id→ · · · ddR+Id→ Ωn(−)] //

(p2,p2,··· ,ddR)

��

[C∞(−, U(1))
ddR+Id→ C∞(−,U(1))

⊕Ω1(−)

ddR−Id→ · · · Ωn−1(−)
⊕Ωn(−)

ddR+Id→ Ωn(−)]

(Id,p2,p2,··· ,p2,ddR)

��

[0→ Ω1(−)
ddR→ Ω2(−)

ddR→ · · · ddR→ Ωn+1
cl (−)] //

��

[C∞(−, U(1))
ddR→ Ω1(−)

ddR→ Ω2(−)
ddR→ · · · ddR→ Ωn+1

cl (−)]

��
[0→ 0→ 0→ · · · → 0] // [C∞(−, U(1))→ 0→ 0→ · · · → 0]

in [CartSpop,Ch+]proj, where

• the objects are fibrant models for the corresponding objects in the above ∞-pullback diagram;

• the two right vertical morphisms are fibrations;

• the two squares are pullback squares.

This implies that under the right adjoint Ξ we have a homotopy pullback as claimed.
For the lower square this is prop. 4.4.40. For the upper square the same type of reasoning applies. The

main point is to find the chain complex in the top right such that it is a resolution of the point and maps by
a fibration onto our model for [BnU(1). This is the mapping cone of the identity on the Deligne complex, as
indicated. The vertical morphism out of it is manifestly surjective (by the Poincaré lemma applied to each
object U ∈ CartSp) hence this is a fibration. �

In prop. 4.4.58 we had discussed an equivalent presentation of de Rham coefficient objects above. We
now formulate the curvature characteristic in this alternative form.

Observation 4.4.63. We may write the simplicial presheaf [dRBn+1Rsmp from prop.4.4.58 equivalently as
follows

[dRBn+1Rsmp : (U, [k]) 7→


Ω•si,vert(U ×∆k) 0oo

Ω•si(U ×∆k)

OO

CE(bnR)oo

OO


,

where on the right we have the set of commuting diagrams in dgAlg of the given form, with the vertical
morphisms being the canonical projections.

Definition 4.4.64. Write W(bn−1R) ∈ dgAlg for the Weil algebra of the line Lie n-algebra, defined to be
free commutative dg-algebra on a single generator in degree n, hence the graded commutative algebra on a
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generator in degree n and a generator in degree (n+ 1) equipped with the differential that takes the former
to the latter.

We write also inn(bn−1) for the L∞-algebra corresponding to the Weil algebra

CE(inn(bn−1)) := W(bn−1R)

Observation 4.4.65. We have the following properties of W(bn−1R)

1. There is a canonical natural isomorphism

HomdgAlg(W(bn−1R),Ω•(U)) ' Ωn(U)

between dg-algebra homomorphisms A : W(bn−1R) → Ω•(X) from the Weil algebra of bn−1R to the
de Rham complex and degree-n differential forms, not necessarily closed.

2. There is a canonical dg-algebra homomorphism W(bn−1R) → CE(bn−1R) and the differential n-form
corresponding to A factors through this morphism preciselly if the curvature ddRA of A vanishes.

3. The image under exp(−)
exp(inn(bn−1)R)→ exp(bnR)

of the canonical morphism W(bn−1R)← CE(bnR) is a fibration in [CartSpop
smooth, sSet]proj that presents

the point inclusion ∗ → Bn+1R in Smooth∞Grpd.

Definition 4.4.66. Let BnRdiff,smp ∈ [CartSpop
smooth, sSet] be the simplicial presheaf defined by

BnRdiff,smp : (U, [k]) 7→


Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo

Ω•si(U ×∆k)

OO

W(bn−1R)
Aoo

OO


,

where on the right we have the set of commuting diagrams in dgAlg as indicated.

This means that an element of BnRdiff,smp(U)[k] is a smooth n-form A (with sitting instants) on U ×∆k

such that its curvature (n+ 1)-form dA vanishes when restricted in all arguments to vector fields tangent to

∆k. We may write this condition as ddRA ∈ Ω•≥1,•
si (U ×∆k).

Observation 4.4.67. There are canonical morphisms

BnRdiff,smp

curvsmp//

'
��

[dRBnRsmp

BnRsmp

in [CartSpop
smooth, sSet], where the vertical map is given by remembering only the top horizontal morphism

in the above square diagram, and the horizontal morphism is given by forming the pasting composite

curvsmp :


Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo

Ω•si(U ×∆k)

OO

W(bn−1R)
Aoo

OO



7→


Ω•si,vert(U ×∆k) CE(bn−1R)

Avertoo 0oo

Ω•si(U ×∆k)

OO

W(bn−1R)
Aoo

OO

CE(bnR)oo

OO



.
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Proposition 4.4.68. This span is a presentation in [CartSpop
smooth, sSet] of the universal curvature charac-

teristics curv : BnR→ [dRBn+1R, def. 3.6.16, in Smooth∞Grpd.

Proof. We need to produce a fibration resolution of the point inclusion ∗ → [Bn+1Rsmp in [CartSpop
smooth, sSet]proj

and then show that the above is the ordinary pullback of this along [dRBn+1Rsmp → [Bn+1Rsmp.
We claim that this is achieved by the morphism

(U, [k]) : {Ω•si(U ×∆k)←W(bn−1R)} 7→ {Ω•si(U ×∆k)←W(bn−1R)← CE(bnR)} .

Here the simplicial presheaf on the left is that which assigns the set of arbitrary n-forms (with sitting instants
but not necessarily closed) on U × ∆k and the map is simply given by sending such an n-form A to the
(n+ 1)-form ddRA.

It is evident that the simplicial presheaf on the left resolves the point: since there is no condition on
the forms every form on U ×∆k is in the image of the map of the normalized chain complex of a form on
U ×∆k+1: such is given by any form that is, up to a sign, equal to the given form on one n-face and 0 on
all the other faces. Clearly such forms exist.

Moreover, this morphism is a fibration in [CartSpop
smooth, sSet]proj, for instanxce because its image under

the normalized chains complex functor is a degreewise surjection, by the Poincar’e lemma.
Now we observe that we have over each (U, [k]) a double pullback diagram in Set

Ω•si,vert(U ×∆k) CE(bn−1R)
Avertoo

Ω•si(U ×∆k)

OO

W (bn−1R)
Aoo

OO


→


Ω•si,vert(U ×∆k) W(bn−1R)oo

Ω•si(U ×∆k)

OO

W(bn−1R)oo

id

OO


↓ ↓

Ω•si,vert(U ×∆k) 0oo

Ω•si(U ×∆k)

OO

CE(bnR)oo

OO


→


Ω•si,vert(U ×∆k) CE(bnR)oo

Ω•si(U ×∆k)

OO

CE(bnR)oo

id

OO


↓ ↓

Ω•si,vert(U ×∆k) oo 0

Ω•si(U ×∆k)

OO

oo 0

OO


→


Ω•si,vert(U ×∆k) CE(bnR)oo

Ω•si(U ×∆k)

OO

0oo

OO



,

hence a corresponding pullback diagram of simplicial presheaves, that we claim is a presentation for the
defining double ∞-pullback for curv.

The bottom square is the one we already discussed for the de Rham coefficients. Since the top right
vertical morphism is a fibration, also the top square is a homotopy pullback and hence exhibits the defining
∞-pullback for curv. �

Corollary 4.4.69. The degreewise map

(−1)•+1

∫
∆•

: BnRdiff,smp → BnRdiff,chn
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that sends an n-form A ∈ Ωn(U×∆k) and its curvature dA to (−1)k+1 times its fiber integration (
∫

∆k A,
∫

∆k dA)
is a weak equivalence in [CartSpop

smooth, sSet]proj.

Proof. Since under homotopy pullbacks a weak equivalence of diagrams is sent to a weak equivalence.
See the analagous argument in the proof of prop. 4.4.59. �

4.4.12.3 Canonical form on a simplicial Lie group Above we discussed the canonical differential
form on smooth∞-groups G for the special cases where G is a Lie group and where G is a circle Lie n-group.
These are both in turn special cases of the situation where G is a simplicial Lie group. This we discuss now.

Proposition 4.4.70. For G a simplicial Lie group the flat de Rham coefficient object [dRBG is presented
by the simplicial presheaf which in degree k is given by Ω1

flat(−, gk), where gk = Lie(Gk) is the Lie algebra of
Gk.

Proof. Let
Ω1

flat(−, g•)//G• =
(

Ω1
flat(−, g•)× C∞(−, G•)

→→ Ω1
flat(−, g•)

)
be the presheaf of simplicial groupoids which in degree k is the groupoid of Lie-algebra valued forms with
values in Gk from theorem. 1.3.36. As in the proof of prop. 4.4.39 we have that under the degreewise nerve
this is a degreewise fibrant resolution of presheaves of bisimplicial sets

N
(
Ω1

flat(−, g•)//G•
)
→ N ∗ //G• = NB(Gdisc)•

of the standard presentation of the delooping of the discrete group underlying G. By basic properties of
bisimplicial sets [GoJa99] we know that under taking the diagonal

diag : sSet∆ → sSet

the object on the right is a presentation for [dRBG, because (see the discussion of simplicial groups around
prop. 3.3.67 )

diagNB(Gdisc)•
'→ W̄ (Gdisc) ' [BG .

Now observe that the morphism

diag(NΩ1
flat(−, g•)//G•)→ diagN ∗ //Gdisc

is a fibration in the global model structure. This is in fact true for every morphism of the form

diagN(S•//G•)→ diag ∗ //G•

for S•//G• → ∗//G• a simlicial action groupoid projection with G a simplicial group acting on a Kan complex
S: we have that

(diagN(S//G))k = Sk × (Gk)×k .

On the second factor the horn filling condition is simply that of the identity map diagNBG → diagNBG
which is evidently solvable, whereas on the first factor it amounts to S → ∗ being a Kan fibration, hence to
S being Kan fibrant.

But the simplicial presheaf Ω1
flat(−, g•) is indeed Kan fibrant: for a given U ∈ CartSp we may use parallel

transport to (non-canonically) identify

Ω1
flat(U, gk) ' SmoothMfd∗(U,Gk) ,

where on the right we have smooth functions that send the origin of U to the neutral element. But since G•
is Kan fibrant and has smooth global fillers also SmoothMfd∗(U,G•) is Kan fibrant.
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In summary this means that the defining homotopy pullback

[dRBG := [BG×BG ∗

is presented by the ordinary pullback of simplicial presheaves

diagNΩ1
flat(−, g•)× diagNBG•∗ = Ω1(−, g•) .

�

Proposition 4.4.71. For G a simplicial Lie group the canonical differential form, def. 3.6.15,

θ : G→ [dRBG

is presented in terms of the above presentation for [dRBG by the morphism of simplicial presheaves

θ• : G• → Ω1
flat(−, g•)

which is in degree k the presheaf-incarnation of the Maurer-Cartan form of the ordinary Lie group Gk as in
prop. 4.4.60.

Proof. Continuing with the strategy of the previous proof we find a fibration resolution of the point
inclusion ∗ → [BG by applying the construction of the proof of prop. 4.4.60 degreewise and then applying
diag ◦N .

The defining homotopy pullback
G //

��

∗

��
[dR

// [BG

for θ is this way presented by the ordinary pullback

G• //

��

diagN(Ω1
flat(−, g•))triv//G•)

��
Ω1

flat(−, g•) // diagN(Ω1
flat(−, g•)//G•)

of simplicial presheaves, where Ω1
flat(−, gk) is the set of flat g-valued forms A equipped with a gauge trans-

formation 0
g→ A. As in the above proof one finds that the right vertical morphism is a fibration, hence

indeed a resolution of the point inclusion. The pullback is degreewise that from the case of ordinary Lie
groups and thus the result follows. �

We can now give a simplicial description of the canonical curvature form θ : BnU(1) → [dRBn+1U(1)
that above in prop. 4.4.62 we obtained by a chain complex model:

Example 4.4.72. The canonical form on the circle Lie n-group

θ : Bn−1U(1)→ [dRBnU(1)

is presented by the simplicial map

Ξ(U(1)[n− 1])→ Ξ(Ω1
cl(−)[n− 1])

which is simply the Maurer-Cartan form on U(1) in degree n.
The equivalence to the model we obtained before is given by noticing the equivalence in hypercohomology

of chain complexes of abelian sheaves

Ω1
cl(−)[n] ' (Ω1(−)

ddR→ · · · ddR→ Ωncl(−))

on CartSp.
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4.4.13 Differential cohomology

We discuss the intrinsic differential cohomology, defined in 3.6.4 for any cohesive ∞-topos, realized in the
context Smooth∞Grpd, with coefficients in the circle Lie (n+ 1)-group BnU(1), def. 4.4.21.

We show that here the general concept reproduces the Deligne-Beilinson complex, 1.3.60, and generalizes
it to a complex for equivariant differential cohomology for ordinary and twisted notions of equivariance.

• 4.4.13.1 – Circle n-bundles with connection;

• 4.4.13.2 – Equivariant circle n-bundles with connection;

4.4.13.1 Circle n-bundles with connection First we observe that intrinsic differential cohomology
in Smooth∞Grpd has the abstract properties of traditional ordinary differential cohomology, [HoSi05], then
we establish that both notions indeed coincide in cohomology. The intrinsic definition refines this ordinary
differential cohomology to moduli ∞-stacks.

By def. 3.6.17 we are to consider the ∞-pullback

Hdiff(X,BnU(1)) //

��

HdR(X,Bn+1U(1))

��
H(X,BnU(1))

curv // HdR(X,Bn+1U(1))

,

where the right vertical morphism picks one point in each connected component. Moreover, using prop.
4.4.40 in def. 3.6.24, we are entitled to the following bigger object.

Definition 4.4.73. For n ∈ N write BnU(1)conn for the ∞-pullback

BnU(1)conn
//

��

Ωn+1
cl (−)

��
BnU(1)

curv // [dRBn+1U(1)

in Smooth∞Grpd. The cocycle ∞-groupoid over some X ∈ Smooth∞Grpd with coefficients in BnU(1)conn

is the ∞-pullback

H(X,BnU(1)conn) ' H′diff(X,BnU(1))
F //

c

��

Ωn+1
cl (X)

��
H(X,BnU(1))

curv // HdR(X,Bn+1U(1))

.

We call Hdiff(X,BnU(1)) and its primed version the cocycle∞-groupoid for ordinary smooth differential
cohomology in degree n .

Proposition 4.4.74. For n ≥ 1 and X ∈ SmoothMfd, the abelian group H ′
n
diff(X) sits in the following

short exact sequences of abelian groups

• the curvature exact sequence

0→ Hn(X,U(1)disc)→ H ′
n
diff(X,U(1))

F→ Ωn+1
cl,int(X)→ 0
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• the characteristic class exact sequence

0→ Ωncl/Ω
n
cl,int(X)→ H ′

n
diff(X,U(1))

c→ Hn+1(X,Z)→ 0 .

Here Ωncl,int denotes closed forms with integral periods.

Proof. For the curvature exact sequence we invoke prop. 3.6.20, which yields (for Hdiff as for H ′diff)

0→ Hn
flat(X,U(1))→ H ′

n
diff(X,U(1))

F→ Ωn+1
cl,int(X)→ 0 .

The claim then follows by using prop. 4.4.36 to get Hn
flat(X,U(1)) ' Hn(X,U(1)disc).

For the characteristic class exact sequence, we have with 3.6.21 for the smaller group Hn
diff (the fiber over

the vanishing curvature (n+ 1)-form F = 0) the sequence

0→ Hn
dR(X)/Ωncl,int(X)→ H ′

n
diff(X,U(1))

c→ Hn+1(X,Z)→ 0

where we used prop. 4.4.41 to identify the de Rham cohomology on the left, and the fact that X is
paracompact to identify the integral cohomology on the right. Since Ωncl,int(X) contains the exact forms
(with all periods being 0 ∈ Z), the leftmost term is equivalently Ωncl(X)//Ωncl,int(X). As we pass from Hdiff

to the bigger H ′diff , we get a copy of a torsor over this group, for each closed form F , trivial in de Rham
cohomology, to a total of ∐

F∈Ωn+1
cl (X)

{ω|dω = F}/Ωncl,int ' Ωn(X)/Ωncl,int(X) .

This yields the curvature exact sequence as claimed. �
If we invoke standard facts about Deligne cohomology, then prop. 4.4.74 is also implied by the follow-
ing proposition, which asserts that in Smooth∞Grpd the groups H ′

•
diff not only share the above abstract

properties of ordinary differential cohomology, but indeed coincide with it.

Theorem 4.4.75. For X ∈ SmoothMfd ↪→ Smooth∞Grpd a paracompact smooth manifold we have that
the connected components of the object Hdiff(X,BnU(1)) are given by

Hn
diff(X,U(1)) ' ( H(X,Z(n+ 1)∞D ) )×Ωn+1

cl (X) H
n+1
dR,int(X) .

Here on the right we have the subset of Deligne cocycles that picks for each integral de Rham cohomology
class of X only one curvature form representative.

For the connected components of H′diff(X,BnU(1)) we get the complete ordinary Deligne cohomology of
X in degree n+ 1:

H ′
n
diff(X,U(1)) ' H(X,Z(n+ 1)∞D )

Proof. Choose a differentiably good open cover, def. 4.4.2, {Ui → X} and let C({Ui}) → X in
[CartSpop, sSet]proj be the corresponding Čech nerve projection, a cofibrant resolution of X.

Since the presentation of prop. 4.4.62 for the universal curvature class curvchn : BnU(1)diff,chn →
[dRBn+1U(1)chn is a global fibration and C({Ui}) is cofibrant, also

[Cartpop, sSet](C({Ui}),Bn
diffU(1))→ [Cartpop, sSet](C({Ui}), [dRBnU(1))

is a Kan fibration by the fact that [CartSpop, sSet]proj is an sSetQuillen-enriched model category. Therefore
the homotopy pullback in question is computed as the ordinary pullback of this morphism.

By prop. 4.4.40 we can assume that the morphism Hn+1
dR (X) → [CartSpop, sSet](C({Ui}), [dRBn+1)

picks only cocycles represented by globally defined closed differential forms F ∈ Ωn+1
cl (X). We see that the

elements in the fiber over such a globally defined (n+ 1)-form F are precisely the cocycles with values only
in the upper row complex of BnU(1)diff,chn

C∞(−, U(1))
ddR→ Ω1(−)

ddR→ · · · ddR→ Ωn(−) ,
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such that F is the de Rham differential of the last term. This is the Deligne-Beilinson complex, def. 1.3.60,
for Deligne cohomology in degree (n+ 1). �
In terms of def. 3.6.24 we have the object BnU(1)conn – the moduli n-stack of circle n-bundles with connection
– which presents H′diff(−,BnU(1))

H′diff(−,BnU(1)) ' H(−,BnU(1)conn) .

The above proof of theorem 4.4.75 makes a statement not only about cohomology classes, but about the full
moduli n-stacks:

Proposition 4.4.76. The object BnU(1)conn ∈ H from def. 4.4.73 is presented by the simplicial presheaf
which is the image under the Dold-Kan map Ξ, def. 2.2.31, of the Deligne complex in the corresponding
degree.

The canonical morphism BnU(1)conn → BnU(1) is similarly presented via Dold-Kan of the evident
morphism of chain complexes of sheaves

C∞(−, U(1))
ddRlog //

id

��

Ω1(−)
ddR //

��

· · · ddR // Ωn(−)

��
C∞(−, U(1)) // 0 // · · · // 0

.

Observation 4.4.77. The moduli stack BU(1)conn of circle bundles (i.e. circle 1-bundles) with connection
is 1-concrete, def. 3.4.6.

Proof. Observing that the presentation by the Deligne complex under the Dold-Kan map is fibrant in
[CartSpop, sSet]proj,loc and is the concrete sheaf presented by U(1) in degree 1, this follows with prop. 3.4.12.
�

4.4.13.2 Equivariant circle n-bundles with connection We highlight some aspects of the equivariant
version, def. 3.3.164, of smooth differential cohomology.

Observation 4.4.78. Let G be a Lie group acting on a smooth manifold X. Then the Deligne complex,
def. 1.3.60, computes the correct G-equivariant differential cohomology on X if and only if the G-equivariant
de Rham cohomology of X, prop. 4.4.42, coincides with the G-invariant Rham cohomology of X.

Proof. By prop. 4.4.42 we have that the G-equivariant de Rham cohomology of X is given for n ≥ 1 by

Hn+1
dR,G(X) ' π0H(X//G, [dRBn+1R) .

Observe that π0H(X//G,Ωncl(−)) is set of G-invariant closed differential n-forms on X (which are in particu-
lar equivariant, but in general do not exhaust the equivariant cocycles). By prop. 4.4.75 the Deligne complex
presents the homotopy pullback of Ωn+1

cl (−) → [dRBn+1R along the universal curvature map on BnU(1).
If therefore the inclusion π0H(X//G,Ωn+1

cl (−)) → π0H(X//G, [dRBn+1R) of invariant into equivariant de
Rham cocycles is not surjective, then there are differential cocycles on X//G not presented by the Deligne
complex. �
In other words, if the G-invariant de Rham cocycles do not exhaust the equivariant cocycles, then X//G is
not de Rham-projective, def. 3.6.22, and hence the representable variant, def. 3.6.24, of differential coho-
mology does not apply. The correct definition of differential cohomology in this case is the more general one
from def. 3.6.17, which allows the curvature forms themselves to be in equivariant cohomology.
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4.4.14 ∞-Chern-Weil homomorphism

We discuss the general abstract notion of Chern-Weil homomorphism, 3.6.5, realized in Smooth∞Grpd.
Recall that for A ∈ Smooth∞Grpd a smooth∞-groupoid regarded as a coefficient object for cohomology,

for instance the delooping A = BG of an ∞-group G we have general abstractly that

• a characteristic class on A with coefficients in the circle Lie n-group, 4.4.21, is represented by a
morphism

c : A→ BnU(1) ;

• the (unrefined) Chern-Weil homomorphism induced from this is the differential characteristic class
given by the composite

cdR : A
c→ BnU(1)

curv→ [dRBn+1R

with the universal curvature characteristic, 3.6.3, on BnU(1), or rather: is the morphism on cohomology

H1
Smooth(X,G) := π0Smooth∞Grpd(X,BG)

π0((cdR)∗)→ π0Smooth∞Grpd(X, [dRBn+1R) ' Hn+1
dR (X)

induced by this.

By prop. 4.4.67 we have a presentation of the universal curvature class BnR→ [dRBn+1R by a span

BnRdiff,smp

curvsmp//

'
��

[dRBn+1Rsmp

BnRsmp

in the model structure on simplicial presheaves [CartSpop
smooth, sSet]proj, given by maps of smooth families

of differential forms. We now insert this in the above general abstract definition of the ∞-Chern-Weil
homomorphism to deduce a presentation of that in terms of smooth families L∞-algebra valued differential
forms.

The main step is the construction of a well-suited composite of two spans of morphisms of simplicial
presheaves (of two ∞-anafunctors): we consider presentations of characteristic classes c : BG → BnU(1)
in the image of the exp(−) map, def. 4.4.44, and presented by trunactions and quotients of morphisms of
simplicial presheaves of the form

exp(g)
exp(µ)→ exp(bn−1R) .

Then, using the above, the composite differential characteristic class cdR is presented by the zig-zag

BnRdiff,smp

curvsmp//

'
��

[dRBn+1Rsmp

exp(g)
exp(µ) // BnRsmp

of simplicial presheaves. In order to efficiently compute which morphism in Smooth∞Grpd this presents we
need to construct, preferably naturally in the L∞-algebra g, a simplicial presheaf exp(g)diff that fills this
diagram as follows:

exp(g)diff

exp(µ,cs)//

'
��

BnRdiff,smp

curvsmp//

'
��

[dRBn+1Rsmp

exp(g)
exp(µ) // BnRsmp

.
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Given this, exp(g)diff,smp serves as a new resolution of exp(g) for which the composite differential character-
istic class is presented by the ordinary composite of morphisms of simplicial presheaves curvsmp ◦ exp(µ, cs).

This object exp(g)diff we shall see may be interpreted as the coefficient for pseudo-∞-connections with
values in g.

There is however still room to adjust this presentation such as to yield in each cohomology class special
nice cocycle representatives. This we will achieve by finding naturally a subobject exp(g)conn ↪→ exp(g)diff

whose inclusion is an isomorphism on connected components and restricted to which the morphism curvsmp ◦
exp(µ, cs) yields nice representatives in the de Rham hypercohomology encoded by [dRBn+1Rsmp, namely
globally defined differential forms. On this object the differential characteristic classes we will show factors
naturally through the refinements to differential cohomology, and hence exp(g)conn is finally identified as a
presentation for the the coefficient object for ∞-connections with values in g.

Let g ∈ L∞
CE
↪→ dgAlgop be an L∞-algebra, def. 1.3.72.

Definition 4.4.79. A L∞-algebra cocycle on g in degree n is a morphism

µ : g→ bn−1R

to the line Lie n-algebra.

Observation 4.4.80. Dually this is equivalently a morphism of dg-algebras

CE(g)← CE(bn−1R) : µ ,

which we denote by the same letter, by slight abuse of notation. Such a morphism is naturally identified
with its image of the single generator of CE(bn−1R), which is a closed element

µ ∈ CE(g)

in degree n, that we also denote by the same letter. Therefore L∞-algebra cocycles are precisely the ordinary
cocycles of the corresponding Chevalley-Eilenberg algebras.

Remark 4.4.81. After the injection of smooth ∞-groupoids into synthetic differential ∞-groupoids, dis-
cussed below in 4.5, there is an intrinsic abstract notion of cohomology of∞-Lie algebras. Proposition 4.5.33
below asserts that the above definition is indeed a presentation of that abstract cohomological notion.

Definition 4.4.82. For µ : g→ bn−1R an L∞-algebra cocycle with n ≥ 2, write gµ for the L∞-algebra whose
Chevalley-Eilenberg algebra is generated from the generators of CE(g) and one single further generator b in
degree (n− 1), with differential defined by

dCE(gµ)|g∗ = dCE(g) ,

and
dCE(gµ) : b 7→ µ ,

where on the right we regard µ as an element of CE(g), hence of CE(gµ), by observation 4.4.80.

Remark 4.4.83. Below in prop. 4.5.35 we show that, in the context of synthetic differential cohesion 4.5,
gµ is indeed the extension of g classified by µ in the general sense of 3.3.10.

Definition 4.4.84. For g ∈ L∞Alg an L∞-algebra, its Weil algebra W(g) ∈ dgAlg is the unique represen-
tative of the free dg-algebra on the dual cochain complex underlying g such that the canonical projection
g∗•[1]⊕ g∗•[2]→ g∗•[1] extends to a dg-algebra homomorphism

CE(g)←W(g) .
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Since W(g) is itself in L∞Algop ↪→ dgAlg we can idenntify it with the Chevalley-Eilenberg algebra of an
L∞-algebra. That we write inn(g) or eg:

W(g) :=: CE(eg) .

In terms of this the above canonical morphism reads

g→ eg .

Remark 4.4.85. This notation reflects the fact that eg may be regarded as the infinitesimal groupal model
of the universal g-principal ∞-bundle.

Proposition 4.4.86. For n ∈ N, n ≥ 2 we have a pullback in L∞Alg

bn−1R //

��

ebn−1R

��
∗ // bbn−1R

.

Proof. Dually this is the pushout diagram of dg-algebras that is free on the short exact sequence of
cochain complexes concentrated in degrees n and n+ 1 as follows:

0n+1

〈c〉n

dCE(bn−1R)

OO

←


〈d〉n+1

〈c〉n

dCE(ebn−1R) '

OO

←


〈d〉n+1

0n

dCE(bbn−1R)

OO

 .

�

Proposition 4.4.87. The L∞-algebra gµ from def. 4.4.82 fits into a pullback diagram in L∞Alg

gµ //

��

ebn−2R

��
g

µ // bbn−2R

.

Proposition 4.4.88. Let µ : g→ bnR be a degree-n cocycle on an L∞-algebra and gµ the L∞-algebra from
def. 4.4.82.

We have that exp(gµ) → exp(g) presents the homotopy fiber of exp(µ) : exp(g) → exp(bn−1R) in
[CartSpop, sSet]proj,loc.

Since exp(bn−1R) ' BnR by prop. 4.4.52, this means that exp(gµ) is the Bn−1R-principal ∞-bundle
classified by exp(µ) in that we have an ∞-pullback

exp(gµ) //

��

∗

��
exp(g)

exp(µ) // BnR

in Smooth∞Grpd.
Proof. Since exp : L∞Alg → [CartSpop, sSet] preserves pullbacks (being given componentwise by a hom-
functor) it follows from 4.4.87 that we have a pullback diagram

exp(gµ) //

��

exp(ebn−1R)

��
exp(g)

exp(µ)// exp(bn−1R)

.
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The right vertical morphism is a fibration resolution of the point inclusion ∗ → exp(bn−1R). Hence this is a
homotopy pullback in [CartSpop, sSet]proj and the claim follows with prop. 2.3.12. �
We now come to the definition of differential refinements of exponentiated L∞-algebras.

Definition 4.4.89. For g ∈ L∞ define the simplicial presheaf exp(g)diff ∈ [CartSpop
smooth, sSet] by

exp(g)diff : (U, [k]) 7→


Ω•si,vert(U ×∆k) CE(g)oo

Ω•(U ×∆k)

OO

W(g)oo

OO

 ,

where on the left we have the set of commuting diagrams in dgAlg as indicated, with the vertical morphisms
being the canonical projections.

Proposition 4.4.90. The canonical projection

exp(g)diff → exp(g)

is a weak equivalence in [CartSpop
smooth, sSet]proj.

Moreover, for every L∞-algebra cocycle it fits into a commuting diagram

exp(g)diff

exp(µ)diff//

'
��

exp(bn−1R)diff

'
��

BnRdiff,smp

'
��

exp(g)
exp(µ) // exp(bn−1R) BnRsmp

for some morphism exp(µ)diff .

Proof. Use the contractibility of the Weil algebra. �

Definition 4.4.91. Let G ∈ Smooth∞Grpd be a smooth n-group given by Lie integration, 4.4.11, of an
L∞ algebra g, in that the delooping object BG is presented by the (n + 1)-coskeleton simplicial presheaf
coskn+1 exp(g), def. 3.3.7.

Then for X ∈ [CartSpsmooth, sSet]proj any object and X̂ a cofibrant resolution, we say that

[CartSpop
smooth, sSet](X̂, coskn+1 exp(g)diff)

is the Kan complex of pseudo-n-connections on G-principal n-bundles.

We discuss now subobjects that pick out genuine ∞-connections.

Definition 4.4.92. An invariant polynomial on an L∞-algebra g is an element 〈−〉 ∈ W(g) in the Weil
algebra, such that

1. dW(g)〈−,−〉 = 0;

2. 〈−〉 ∈ ∧•g∗[1] ↪→W (g);

hence such that it is a closed element built only from shifted generators of W(g).

Proposition 4.4.93. For g an ordinary Lie algebra, this definition of invariant polynomial is equivalent to
the traditional one (for instance [AzIz95]).
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Proof. Let {ta} be a basis of g∗ and {ra} the corresponding basis of g∗[1]. Write {Cabc} for the structure
constants of the Lie bracket in this basis.

Then for P = P(a1,··· ,ak)r
a1 ∧ · · · ∧ rak ∈ ∧rg∗[1] an element in the shifted generators, the condition that

its image under dW(g) is in the shifted copy is equivalent to

Cbc(a1
Pb,··· ,ak)t

c ∧ ra1 ∧ · · · ∧ rak = 0 ,

where the parentheses around indices denotes symmetrization, so that this is equivalent to∑
i

Cbc(aiPa1···ai−1bai+1··· ,ak) = 0

for all choice of indices. This is the component-version of the defining invariance statement∑
i

P (t1, · · · , ti−1, [tc, ti], ti+1, · · · , tk) = 0

for all t• ∈ g. �

Observation 4.4.94. For the line Lie n-algeba we have

inv(bn−1R) ' CE(bnR) .

This allows us to identify an invariant polynomial 〈−〉 of degree n+ 1 with a morphism

inv(g)
〈−〉← inv(bn−1R)

in dgAlg.

Remark 4.4.95. Write ι : g → Der•(W(g)) for the identification of elements of g with inner graded
derivations of the Weil-algebra, induced by contraction. For v ∈ g write

Lx := [dW(g), ιv] ∈ der•(W(g))

for the induced Lie derivative. Then the fist condition on an invariant polynomial 〈−〉 in def. 4.4.92 is
equivalent to

ιv〈−〉 = 0 ∀v ∈ g

and the second condition implies that
Lv〈−〉 = 0 ∀v ∈ g .

In Cartan calculus [Cart50a][Cart50b] elements satisfying these two conditions are called basic elements
or basic forms. By prop. 4.4.93 on an ordinary Lie algebra the basic forms are precisely the invariant
polynomials. But on a general L∞-algebra there can be non-closed basic forms. Our definition of invariant
polynomials hence picks the closed basic forms on an L∞-algebra.

Definition 4.4.96. We say that an invariant polynomial 〈−〉 on g is in transgression with an L∞-algebra
cocycle µ : g → bn−1R if there is a morphism cs : W(bn−1R) → W(g) such that we have a commuting
diagram

CE(g) oo
µ

CE(bn−1R)

W(g) oo
cs

OO

W(bn−1R)

OO

inv(g) oo
〈−〉

OO

inv(bn−1R)

OO

CE(bnR)

hence such that
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1. dW(g)cs = 〈−〉;

2. cs|CE(g) = µ.

We say that cs is a Chern-Simons element exhibiting the transgression between µ and 〈−〉.
We say that an L∞-algebra cocycle is transgressive if it is in transgression with some invariant polynomial.

Observation 4.4.97. We have

1. There is a transgressive cocycle for every invariant polynomial.

2. Any two L∞-algebra cocycles in transgression with the same invariant polynomial are cohomologous.

3. Every decomposable invariant polynomial (the wedge product of two non-vanishing invariant polyno-
mials) transgresses to a cocycle cohomologous to 0.

Proof.

1. By the fact that the Weil algebra is free, its cochain cohomology vanishes and hence the definition
property dW(g)〈−〉 = 0 implies that there is some element cs ∈ W (g) such that dW(g)cs = 〈−〉. Then
the image of cs along the canonical dg-algebra homomorphism W(g) → CE(g) is dCE(g)-closed hence
is a cocycle on g. This is by construction in transgression with 〈−〉.

2. Let cs1 and cs2 be Chern-Simons elements for the to given L∞-algebra cocycles. Then by assumption
d(g)(cs1 − cs2) = 0. By the acyclicity of W(g) there is then λ ∈ W(g) such that cs1 = cs2 + dW(g)λ.
Since W(g)→ CE(g) is a dg-algebra homomorphism this implies that also µ1 = µ2 + dCE(g)λ|CE(g).

3. Given two nontrivial invariant polynomials 〈−〉1 and 〈−〉2 let cs1 ∈ W(g) be any element such that
dW(g)cs1 = 〈−〉1. Then cs1,2 := cs1 ∧ 〈−〉2 satisfies dW(g)cs1,2 = 〈−〉1 ∧ 〈−〉2. By the first observation
the restriction of cs1,2 to CE(g) is therefore a cocycle in transgression with 〈−〉1 ∧ 〈−〉2. But by the
definition of invariant polynomials the restriction of 〈−〉2 vanishes, and hence so does that of cs1,2.
The claim the follows with the second point above.

�
The following notion captures the equivalence relation induced by lifts of cocycles to Chern-Simons elements
on invariant polynomials.

Definition 4.4.98. We say two invariant polynomials 〈−〉1, 〈−〉2 ∈W(g) are horizontally equivalent if there
exists ω ∈ ker(W(g)→ CE(g)) such that

〈−〉1 = 〈−〉2 + dW(g)ω .

Observation 4.4.99. Every decomposable invariant polynomial is horizontally equivalent to 0.

Proof. By the argument of prop. 4.4.97, item iii): for 〈−〉 = 〈−〉1 ∧ 〈−〉2 let cs1 be a Chern-Simons
element for 〈−〉1. Then cs1 ∧ 〈−〉2 exhibits a horizontal equivalence 〈−〉 ∼ 0. �

Proposition 4.4.100. For g an L∞-algebra, µ : g → bnR a cocycle in transgression to an invariant
polynomial 〈〉 on g and gµ the corresponding shifted central extension, 4.4.82, we have that

1. 〈−〉 defines an invariant polynomial also on gµ, by the defining identification of generators;

2. but on gµ the invariant polynomial 〈−〉 is horizontally trivial.

Proof. �
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Definition 4.4.101. For g an L∞-algebra we write inv(g) for the free graded algebra on horizontal equiv-
alence classes of invariant polynomials. We regard this as a dg-algebra with trivial differential This comes
with an inclusion of dg-algebras

inv(g)→W (g)

given by a choice of representative for each class.

Observation 4.4.102. The algebra inv(g) is generated from indecomposable invariant polynomials.

Proof. By observation 4.4.99. �

Definition 4.4.103. Define the simplicial presheaf exp(g)ChW ∈ [CartSpop
smooth, sSet] by the assignment

exp(g)ChW : (U, [k]) 7→



Ω•si,vert(U ×∆k) oo
Avert

CE(g)

Ω•si(U ×∆k) oo
A

OO

W(g)

OO

Ω•(U)

OO

oo 〈FA〉
inv(g)

OO


,

where on the right we have the set of horizontal morphisms in dgAlg making commuting diagrams with the
canonical vertical morphisms as indicated.

We call 〈FA〉 the curvature characteristic forms of A.

Let

exp(g)diff

(exp(µi,csi))i //

'
��

∏
i exp(bni−1R)diff

((curvi)smp) // ∏
i [dRBni

smp

exp(g)

be the presentation, as above, of the product of all differental refinements of characteristic classes on exp(g)
induced from Lie integration of transgressive L∞-algebra cocycles.

Proposition 4.4.104. We have that exp(g)ChW is the pullback in [CartSpop
smooth, sSet] of the globally defined

closed forms along the curvature characteristics induced by all transgressive L∞-algebra cocycles:

exp(g)ChW

exp(µ,cs)//

��

∏
ni

Ωni+1
cl (−)

��
exp(g)diff,smp

(curvi)i//

'
��

∏
i [dRBni+1Rsmp

exp(g)

.

Proof. By prop. 4.4.68 we have that the bottom horizontal morphims sends over each (U, [k]) and for
each i an element

Ω•si,vert(U ×∆k) oo
Avert

CE(g)

Ω•si(U ×∆k)

OO

oo A W(g)

OO
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of exp(g)(U)k to the composite(
Ω•si(U ×∆k)

A←W(g)
csi←W(bni−1R)← inv(bniR) = CE(bniR))

)
=

(
Ω•si(U ×∆k)

〈FA〉i← CE(bniR)

)
regarded as an element in [dRBni+1

smp (U)k. The right vertical morphism Ωni+1(U)→ [dRBni+1Rsmp(U) from
the constant simplicial set of closed (ni + 1)-forms on U picks precisely those of these elements for which
〈FA〉 is a basic form on the U ×∆k-bundle in that it is in the image of the pullback Ω•(U)→ Ω•si(U ×∆k).
�

This way the abstract differential refinement recovers the notion of ∞-connections from Lie integration
discussed before in 1.3.5.6.

4.4.15 Higher holonomy

We discuss the intrinsic notion of higher holonomy, 3.6.7, realized in Smooth∞Grpd.

Theorem 4.4.105. If Σ ↪→ SmoothMfd ↪→ Smooth∞Grpd is a closed manifold of dimension dimΣ ≤ n
then the intrinsic integration by truncation, def. 3.6.37, takes values in

τ≤n−dimΣH(Σ,BnU(1)conn) ' Bn−dimΣU(1) ' K(U(1), n− dim(Σ)) ∈ ∞Grpd .

Moreover, in the case dimΣ = n, then the morphism

exp(iSc(−)) : H(Σ, Aconn)→ U(1)

is obtaind from the Lagrangian exp(iLc(−)) by forming the volume holonomy of circle n-bundles with con-
nection (fiber integration in Deligne cohomology)

Sc(−) =

∫
Σ

Lc(−) .

This is due to [FRS11b].
Proof. Since dimΣ ≤ n we have by prop. 4.4.41 that H(Σ, [dRBn+1R) ' Hn+1

dR (Σ) ' ∗. It then follows by
prop. 3.6.19 that we have an equivalence

Hdiff(Σ,BnU(1)) ' Hflat(Σ,B
nU(1)) =: H(Π(Σ),BnU(1))

with the flat differential cohomology on Σ, and by the (Π a Disc a Γ)-adjunction it follows that this is
equivalently

· · · ' ∞Grpd(Π(Σ),ΓBnU(1))

' ∞Grpd(Π(Σ), BnU(1)disc)
,

where BnU(1)disc is an Eilenberg-MacLane space · · · ' K(U(1), n). By prop. 4.4.23 we have under | − | :
∞Grpd ' Top a weak homotopy equivalence |Π(Σ)| ' Σ. Therefore the cocycle ∞-groupoid is that of
ordinary cohomology

· · · ' Cn(Σ, U(1)) .

By general abstract reasoning it follows that we have for the homotopy groups an isomorphism

πiHdiff(Σ,BnU(1))
'→ Hn−i(Σ, U(1)) .
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Now we invoke the universal coefficient theorem. This asserts that the morphism∫
(−)

(−) : Hn−i(Σ, U(1))→ HomAb(Hn−i(Σ,Z), U(1))

which sends a cocycle ω in singular cohomology with coefficients in U(1) to the pairing map

[c] 7→
∫

[c]

ω

sits inside an exact sequence

0→ Ext1(Hn−i−1(Σ,Z), U(1))→ Hn−i(Σ, U(1))→ HomAb(Hn−i(Σ,Z), U(1))→ 0 ,

But since U(1) is an injective Z-module we have

Ext1(−, U(1)) = 0 .

This means that the integration/pairing map
∫

(−)
(−) is an isomorphism∫

(−)

(−) : Hn−i(Σ, U(1)) ' HomAb(Hn−i(Σ,Z), U(1)) .

For i < (n− dimΣ), the right hand is zero, so that

πiHdiff(Σ,BnU(1)) = 0 for i < (n− dimΣ) .

For i = (n− dimΣ), instead, Hn−i(Σ,Z) ' Z, since Σ is a closed dimΣ-manifold and so

π(n−dimΣ)Hdiff(Σ,BnU(1)) ' U(1) .

�

More generally, using fiber integration in Deligne hypercohomology as in [GoTe00], we get for compact
oriented closed smooth manifolds Σ of dimension k a natural morphism

exp(2πi

∫
σ

(−)) : [Σ,BnU(1)conn]→ Bn−kU(1)conn .

4.4.16 Chern-Simons functionals

We discuss the realization of the intrinsic notion of Chern-Simons functionals, 3.6.9, in Smooth∞Grpd.

The proof of theorem 4.4.105 shows that for dimΣ = n and exp(iL) : Aconn → BnU(1)conn an (Chern-
Simons) Lagrangian, we may think of the composite

exp(iS) : H(Σ, Aconn)
exp(iL)→ H(Σ,BnU(1)conn)

∫
[Σ]

(−)
→ U(1)

as being indeed given by integrating the Lagrangian over Σ in order to obtain the action

S(−) =

∫
Σ

L(−) .

We consider precise versions of this statement in 5.6.
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4.4.17 Geometric prequantization

We discuss the notion of cohesive prequantization, 3.6.11, realized in the model of smooth cohesion.

What is traditionally called (geometric) prequantization is the refinement of symplectic 2-forms to cur-
vature 2-forms on line bundles with connection. Formally: for

H2
diff(X)

curv // Ω2
int(X) �

� // Ω2
cl(X)

the morphism that sends a class in degree-2 differential cohomology over a smooth manifold X to its curvature
2-form, geometric prequantization of some ω ∈ Ω2

cl(X) is a choice of lift ω̂ ∈ H2
diff(X) through this morphism.

One says that ω̂ is (the class of) a prequantum line bundle or quantization line bundle with connection for
ω. See for instance [WeXu91].

By the curvature exact sequence for differential cohomology, prop. 4.4.74, a lift ω̂ exists precisely if ω
is an integral differential 2-form. This is called the quantization condition on ω. If it is fulfilled, the group
of possible choices of lifts is the topological (for instance singular) cohomology group H1(X,U(1)). Notice
that the extra non-degeneracy condition that makes a closed 2-form a symplectic form does not appear in
prequantization.

The concept of geometric prequantization has an evident generalization to closed forms of degree n+1 for
any n ∈ N. For ω ∈ Ωn+1

cl (X) a closed differential (n+1)-form on a manifold X, a geometric prequantization
is a lift of ω through the canonical morphism

Hn+1
diff (X)

curv // Ωn+1
int (X)

� � // Ωn+1
cl (X) .

Since the elements of the higher differential cohomology group Hn+1
diff (X) are classes of circle n-bundles with

connection (equivalently circle bundle (n − 1)-gerbes with connection) on X, we may speak of such a lift
as a prequantum circle n-bundle. Again, the lift exists precisely if ω is integral and the group of possible
choices is Hn(X,U(1)). Higher geometric prequantization for n = 2 has been considered in [Rog11]. By the
discussion in 4.4.13 we may consider circle n-bundles with connection not just over smooth manifolds, but
over any smooth ∞-groupoid (smooth ∞-stack) and hence consider, generally, geometric prequantization of
higher forms on higher smooth stacks.

• 4.4.17.1 – Ordinary symplectic geometry and its prequantization;

• 4.4.17.2 – 2-Plectic geometry and its prequantization.

This section draws from joint work with Chris Rogers.

4.4.17.1 Ordinary symplectic geometry and its prequantization We discuss how the general
notion of higher geometric prequantization reduces to the traditional notion.

The traditional definition of Hamiltonian vector fields is the following.

Definition 4.4.106. Let (X,ω) be a smooth symplectic manifold. A Hamiltonian vector field on X is a
vector field v ∈ Γ(TX) whose contraction with the symplectic form ω yields an exact form, hence precisely
if

∃h ∈ C∞(X) : ιvω = ddRh .

Here a choice of function h is called a Hamiltonian for v.

Proposition 4.4.107. Let X be a smooth manifold which is simply connected, and let ω ∈ Ω2(X)int be an
integral symplectic form on X. Then regarding (X,ω) as a symplectic 0-groupoid in Smooth∞Grpd, the
general definition 3.6.49 reproduces the standard notion of Hamiltonian vector fields, def. 4.4.106 on the
symplectic manifold (X,ω).
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Proof. A Hamiltonian symplectomorphism is an equivalence φ : X → X that fits into a diagram

X
φ //

ω̂ $$

X

ω̂zz
BU(1)conn

αnv

in Smooth∞Grpd. To compute the Lie algebra of the group of these diffeomorphisms, we need to consider
smooth 1-parameter families of such and differentiate them.

Assume first that the connection 1-form in ω̂ is globally defined A ∈ Ω1(X) with dA = ω. Then the
existence of the above diagram is equivalent to the condition

(φ(t)∗A−A) = dα(t) ,

where α(t) ∈ C∞(X). Differentiating this at 0 yields the Lie derivative

LvA = dα′ ,

where v is the vector field of which t 7→ φ(t) is the flow and where α′ := d
dtα. By Cartan calculus this is

equivalently
ddRιvA+ ιvddRA = dα′

and using that A is the connection on a prequantum circle bundle for ω

ιvω = d(α′ − ιvA) .

This says that for v to be Hamiltonian, its contraction with ω must be exact. This is precisely the definition
of Hamiltonian vector fields. The corresponding Hamiltonian function h here is α′ − ιvA.

We now discuss the general case, where the prequantum bundle is not necessarily trivial. After a choice
of cover that is compatible with the flows of vector fields, the argument proceeds by slight generalization of
the previous argument.

We may assume without restriction of generality that X is connected. Choose then any base point x0 ∈ X
and let

P∗X := [I,X]×X {x0}

be the based smooth path space of X, regarded as a diffeological space, def. 4.4.14, where I ⊂ R is the
standard closed interval. This comes equipped with the smooth endpoint evaluation map

p : P∗X → X .

Pulled back along this map, every circle bundle has a trivialization, since P∗X is topologically contractible.
The corresponding Čech nerve C(P∗X → X) is the simplicial presheaf that starts out as

· · · ////// P∗X ×X P∗X
p1 //
p2

// P∗X ,

where in first degree we have a certain smooth version of the based loop space of X. Any diffeomorphism
φ = exp(v) : X → X lifts to an automorphism of the Čech nerve by letting

P∗φ : P∗X → P∗X

be given by
P∗φ(γ) : (t ∈ [0, 1]) 7→ exp(tv)(γ(t))

and similarly for P∗φ : P∗X ×X P∗X → P∗X ×X P∗X. If φ = exp(tv) for v a vector field on X, we will write
v also for the vector fields induced this way on the components of the Čech nerve.
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With these preparation, every elements of the group in question is presented by a diagram of simplicial
presheaves of the form

C(P∗X → X)
P∗φ //

ω̂ ''

C(P∗X → X)

ω̂ww
BU(1)conn

αnv

.

Here the vertical (diagonal) morphisms now exhibit Čech-Deligne cocycles with transition function

g ∈ C∞(P∗X ×X P∗X)

and connection 1-form
A ∈ Ω1(P∗X) ,

satisfiying
p∗2A− p∗1A = ddRlogg .

For φ(t) = exp(tv) a 1-parameter family of diffeomorphisms, the homotopy in this diagram is a gauge
transformation given by a function α(t) ∈ C∞(P∗X,U(1)) such that

p∗2α(t) · g · p∗1α(t)−1 = exp(tv)∗g

and
exp(tv)∗A−A = ddRlogα(t) .

Differentiating this at t = 0 and writing α′ := α′(0) as before, this yields

p∗2α
′ − p∗1α′ = Lvlogg

and
LvA = ddRα

′ .

The latter formula says that on P∗X ιvω is exact

ιvp
∗ω = ddR(α′ − ιvA) .

But in fact the function on the right descends down to X, because by the formulas above we have

p∗2(α′ − ιvA)− p∗1(α′ − ιvA) = Lvlogg − ιv(p∗2A− p∗1A)

= 0 .
.

Write therefore h ∈ C∞(X) for the unique function such that p∗h = α′ − ιvA, then this satisfies

ιvω = dh

on X. �
The traditional definition of the Poisson Lie algebra associated with a symplectic manifold (X,ω) is the
following.

Definition 4.4.108. Let (X,ω) be a smooth symplectic manifold. Then its Poisson Lie algebra is the Lie
algebra whose underlying vector space is C∞(X), the space of smooth function on X, and whose Lie bracket
is given by

[h1, h2] := ιv2
ιv1
ω

for all h1, h2 ∈ C∞(X) and for v1, v2 the corresponding Hamiltonian vector fields, def. 4.4.106.
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Proposition 4.4.109. The general definition of Poisson∞-Lie algebra, def. 3.6.49, applied to the symplectic
manifold (X,ω) regarded as a symplectic smooth 0-groupoid, reproduces the traditional definition of the Lie
algebra underlying the Poisson algebra of (X,ω).

Proof. The smooth group AutH/BU(1)conn
(ω̂) is manifestly a subgroup of the semidirect product group

Diff(X) n C∞(X), where the group structure on the second factor is given by addition, and the action of
the first factor on the second is the canonical one by pullback. Accordingly, its Lie algebra may be identified
with that of pairs (v, α) in Γ(TX) × C∞(X) such that, with the notation as in the proof of prop. 4.4.107,
α− ιvA is a Hamiltonian for v; and the Lie bracket is given by

[ (v1, α1) , (v2, α2) ] = ([v1, v2] , Lv2
α1 − Lv1

α2) .

Notice that these pairs are redundant in that v is entirely determined by α, we just use them to make explicit
the embedding into the semidirect product.

It remains to check that with this bracket the map

φ : α 7→ α− ιvA

is a Lie algebra isomorphism to the Poisson Lie algebra, def. 4.4.108. For this first notice the equation

2ιv2
ιv1
ω = ιv2

ddRh1 − ιv1
ddRh2

= Lv2
(α1 − ιv1

A)− Lv1
(α2 − ιv2

A)

= Lv2
α1 − Lv1

α2 + ιv2
ιv1
ddRA− ι[v1,v2]A ,

where in the last step we used the identity

ιv2ιv1ddRA = Lv1ιv2A− Lv2ιv1A− ι[v1,v2]A .

Subtracting ιv2
ιv1
ω = ιv2

ιv1
ddRA on both sides yields

[h1, h2] = Lv2α1 − Lv1α2 − ι[v1,v2]A .

This is equivalently the equation

[φ(α1), φ(α2)] = Lv2α1 − Lv1α2 − ι[v1,v2]A

= φ([α1, α2])
,

which exhibits φ as a Lie algebra homomorphism. �
We recover the following traditional facts from the general notions of 3.6.11.

Observation 4.4.110. The Poisson group of the symplectic manifold (X, ω̂) according to def. 3.6.49 is, by
prop. 3.6.51, a central extension by U(1) of the group of hamiltonian symplectomorphisms: we have a short
exact sequence of smooth groups

U(1)→ Poisson(X, ω̂)→ HamSympl(X, ω̂) .

On Lie algebras this exhibits the Poisson Lie algebra as a central extension of the Lie algebra of Hamiltonian
vector fields.

R→ poisson(X, ω̂)→ Xham(X, ω̂) .

If (X,ω) is a symplectic vector space in that X is a vector space and the symplectic differential form ω is
constant with respect to (left or right) translation along X, then the Heisenberg Lie algebra is the sub Lie
algebra

heis(X, ω̂) ↪→ poisson(X, ω̂)

on the constant and the linear functions, see remark 3.6.50.
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Traditional literature knows different conventions on which Lie group to pick by default as the one
integrating a Heisenberg Lie algebra (the unique simply-connected one or one of its discrete quotients). Here
by definition in remark 3.6.50 the inclusion

Heis(X, ω̂) ↪→ Poisson(X, ω̂)

by the above picks that one where the central part is integrated to the circle group:

Heis(X, ω̂) ' X × U(1) .

If in this decomposition we write the canonical generator in

heis(X, ω̂) ' X ⊕ u(1)

of the summand u(1) = Lie(U(1)) as “i” then the Lie bracket on heis(X, ω̂) is given on any two f, g ∈ X by

[f, g] = iω(f, g) .

Specifically for the special case X = R2 with canonical basis vectors denoted q̂ and p̂, and with ω the
canonical symplectic form, the only nontrivial bracket in heis(X, ω̂) among these generators is

[q̂, p̂]heis = i .

The image of this equation under the map heis(X, ω̂)→ XHam(X, ω̂) is

[q, p]X = 0 ,

where now q, p denote the Hamiltonian vector fields associated with q̂ and p̂, respectively. The lift from the
latter to the former equation is, historically, the archetypical hallmark of quantization.

Proposition 4.4.111. For (X,ω) an ordinary prequantizable symplectic manifold and ∇ : X → B1U(1)
any choice of prequantum bundle, def. 3.6.54, let V := C and let ρ be the canonical representation of U(1).

Then def. 3.6.54 reduces to the traditional definition to prequantum operators in geometric quantization.

Proof. According to the discussion in 5.4.2 the space of sections ΓX(E) is that of the ordinary sections
of the ordinary associated line bundle.

Notice that part of the statement there is that the standard presentation of ρ : V//U(1) → BU(1) by a
morphism of simplicial presheaves V//U(1)ch → BU(1)ch is a fibration. In particular this means, as used
there, that the∞-groupoid of sections up to homotopy is presented already by the Kan complex (which here
is just a set) of strict sections σ

V//U(1)ch

ρ

��
C({Ui})

c //

σ

88

'
��

BGch

X

and it is these that directly identify with the ordinary sections of the line bundle E → X.
Now, a Hamiltonian diffeomorphism in the general sense of def. 3.6.54 takes such a section σ to the

pasting composite

V//U(1)conn

ρconn

��

X

∇
%%

σ
99

X
∇

//

φ

??

BU(1)conn

α

��

.
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By the above, to identify this with a section of the line bundle in the ordinary sense, we need to find an
equivalent homotopy-section whose homotopy is, however, trivial, hence a strict section which is equivalent
to this as a homotopy section.

Inspection shows that there is a unique such equivalence whose underlying natural transformations has
components induced by the inverse of α. Then for h : X → C a given function and t 7→ (φ(t), α(t)) the
family of Hamiltonian diffeomorphism associated to it by prop. 4.4.107, the proof of that proposition shows
that the infinitesimal difference between the original section σ and this new section is

i∇vhσ + h · σ ,

where vh is the ordinary Hamiltonian vector field induced by h. This is the traditional formula for the action
of the prequantum operator ĥ on prequantum states. �

4.4.17.2 2-Plectic geometry and its prequantization We consider now the general notion of higher
geometric prequantization, 3.6.11, specialized to the case of closed 3-forms on smooth manifolds, canonically
regarded in Smooth∞Grpd. We show that this reproduces the 2-plectic geometry and its prequantization
studied in [Rog11].

Definition 4.4.112. A 2-plectic structure on a smooth manifold X is a smooth closed differential 3-form
ω ∈ Ω3

cl(X), which is non-degenerate in that the induced morphism

ι(−)ω : Γ(TX)→ Ω2(X)

has trivial kernel.

Definition 4.4.113. Let (X,ω) be a 2-plectic manifold. Then a 1-form h ∈ Ω1(X) is called Hamiltonian if
there exists a vector field v ∈ Γ(TX) such that

ddRh = ιvω .

If this vector field exists, then it is unique and is called the Hamiltonian vector field corresponding to α. We
write vh to indicate this. We write

Ω1(X)Ham ↪→ Ω1(X)

for the vector space of Hamiltonian 1-forms on (X,ω).
The Lie 2-algebra of Hamiltonian vector fields L∞(X,ω) is the (infinite-dimensional) L∞-algebra, def.

1.3.72, whose underlying chain complex is

· · · // 0 // C∞(X)
ddR // Ω1

Ham(X) ,

whose non-trivial binary bracket is
[−,−] : (h1, h2) 7→ ιvh2

ιvh1
ω

and whose non-trivial trinary bracket is

[−,−,−] : (h1, h2, h3) 7→ ιvh1
ιvh2

ιvh3
ω .

See [Rog11], def. 3.1, prop. 3.15.

Proposition 4.4.114. Let (X,ω) be a 2-plectic smooth manifold, canonically regarded in Smooth∞Grpd.
Then for ω̂ : X → B2U(1)conn any prequantum circle 2-bundle with connection (see 4.4.13) for ω, its Poisson
Lie 2-algebra, def. 3.6.49, is equivalent to the Lie 2-algebra L∞(X,ω) from def. 4.4.113:

poisson(X, ω̂) ' L∞(X,ω) .
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Proof. As in the proof of prop. 4.4.107, we first consider the case that ω is exact, so that there exists a
globally defined 2-form A ∈ Ω2(X) with ddRA = ω. The general case follows from this by working on the
path fibration surjective submersion, in straightforward generalization of the strategy in the proof of prop.
4.4.107.

By def. 3.6.49, an object of the smooth 2-group Poisson(X, ω̂) is a diagram of smooth 2-groupoids

X
φ //

A %%

X

Ayy
B2U(1)conn

αnv
,

such that map φ is a diffeomorphism. Given φ, such diagrams correspond to α ∈ Ω1(X) such that

(φ∗A−A) = ddRα . (4.1)

Morphisms in the 2-group may go between two such objects (f) : (φ, α1)→ (φ, α2) with the same φ and are
given by f ∈ C∞(X,U(1)) such that

α2 = α1 + ddRlogf .

Under the 2-group product the objects (φ, α) form a genuine group with multiplication given by

(φ1, α1) · (φ2, α2) = (φ2 ◦ φ1, α1 + φ∗1α2) .

Similarly the group product on two morphisms (f1), (f2) : (φ, α1)→ (φ, α2) is given by

(f1) · (f2) = f1 · φ∗f2 .

Therefore this is a strict 2-group, def. 1.3.6, given by the subobject of the crossed module

C∞(X,U(1))
(0,ddRlog) // Diff(X) n Ω1(X)

on those pairs of vector fields and 1-forms that satisfy (4.1). Here Diff(X)nΩ1(X) is the semidirect product
group induced by the pullback action on the additive group of 1-forms, and its action on C∞(X,U(1)) is
again by the pullback action of the Diff(X)-factor.

Therefore the L∞-algebra poisson(X, ω̂) may be identified with the subobject of the corresponding strict
Lie 2-algebra given by the differential crossed module, def. 1.3.7,

C∞(X)
ddR // Γ(TX)⊕ Ω1(X)

on those pairs (v, α) ∈ Γ(TX)× Ω1(X) for which

LvA = ddRα ,

hence, by Cartan’s formula, for which
h := α− ιvA

is a Hamiltonian 1-form for v, def. 4.4.113. Here Γ(TX)⊕Ω1(X) is the semidirect product Lie algebra with
bracket

[(v1, α1), (v2, α2)] = ([v1, v2],Lv2
α1 − Lv1

α2)

and its action on f ∈ C∞(X) is by Lie derivatives of the Γ(TX)-summand:

[(v, α), f ] = −Lvf .
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For emphasis, we write Ω1
Ham,p ⊂ Γ(TX)⊕Ω1(X) for the vector space of pairs (v, α) with α−ιvA Hamiltonian.

The map φ : (α, v) 7→ α− ιvA consistutes a vector space isomorphism

φ : Ω1
Ham,p

'→ Ω1
Ham

and for the moment it is useful to keep this around explicitly. So poisson(X, ω̂) is given by the differential
crossed module on the top of the diagram

C∞(X)
ddR //

=

��

Ω1
Ham,p(X)
� _

��
C∞(X)

ddR // Γ(TX)⊕ Ω1(X)

,

with brackets induced by this inclusion into the crossed module on the bottom.
We need to check that with these brackets the chain map

C∞(X)
id //

ddR

��

C∞(X)

ddR

��
Ω1(X)Ham,p

φ // Ω1(X)Ham

[−,−] ([−,−]′, J)

is a Lie 2-algebra equivalence from the strict brackets [−,−] to the brackets ([−,−]′, [−,−,−]′) of def. 4.4.113.
To that end, first notice the equation

2ιv2
ιv1
ω = ιv2

ddRh1 − ιv1
ddRh2

= Lv2
(α1 − ιv1

A)− Lv1
(α2 − ιv2

A) + ddR(ιv1
h2 − ιv2

h1)

= Lv2
α1 − Lv1

α2 + ιv2
ιv1
ddRA− ι[v1,v2]A+ ddR(ιv1

h2 − ιv2
h1 − ιv2

ιv1
A) ,

where in the last step we used the identity

ιv2
ιv1
ddRA = Lv1

ιv2
A− Lv2

ιv1
A− ι[v1,v2]A+ ddRιv2

ιv1
A .

Subtracting ιv2
ιv1
ω = ιv2

ιv1
ddRA on both sides yields

ιv2
ιv1
ω = Lv2

α1 − Lv1
α2 − ι[v1,v2]A+ ddR(ιv1

h2 − ιv2
h1 − ιv2

ιv1
A) ,

Here on the left we have the bracket of h1 with h2 in def. 4.4.113, which we will write [h1, h2]′ :=
[φ(v1, α1), φ(v2, α2)]′, whereas the first three terms on the right are the image under φ of the bracket from
above, to be written φ[(v1, α1), (v2, α2)]. Therefore this equation says that

[φ(v1, α1), φ(v2, α2)]′ = φ([(v1, α1), (v2, α2)]) + ddR(ιv1φ(v2, α2)− ιv2φ(v1, α1)− ιv2ιv1A) . (4.2)

In view of the exact term on the far right, this implies that the map

Φ : Ω1(X)Ham, ⊗ Ω1(X)Ham,p → C∞(X)

given by
Φ : (h1 = α1 − ιv1

A, h2 = α2 − ιv2
A) 7→ ιv1

h2 − ιv2
h1 − ιv2

ιv1
A
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should be a chain homotopy between the binary brackets

(Ω1(X)Ham,p ⊗ C∞(X))⊕ (C∞(X)⊗ Ω1(X)Ham,p)
[−,−]′−[−,−] //

(id⊗ddR)⊕(ddR⊗id)

��

C∞(X)

ddR

��
Ω1(X)Ham,p ⊗ Ω1(X)Ham,p

[φ(−),φ(−)]′−φ([−,−])

//

Φ

22

Ω1
Ham(X)

.

Indeed, the bottom right triangle commutes manifestly, by equation (4.2). For the top left triangle notice
that [−,−]′ vanishes here, by definition, and [−,−] is given by

[(v, α), f ] = −Lvf .

On the other hand, since the Hamiltonian vector field of ddRf vanishes, we also have

Φ((v, α), (0, ddRf)) = ιvddRf

= Lvf
.

It remains to check that Φ respects the Jacobiator, sending the trivial one on Ω1(X)Ham,p to the nontrivial

one of def. 4.4.113. From now on we leave the isomorphism φ : Ω1(X)Ham,p
'→ Ω1(X)Ham implicit, regarding

[−,−]′ and [−,−] as two different brackets on the same vector space.
Observe that generally, with a chain homotopy of binary brackets Φ given as above, setting

J(h1, h2, h3) := Φ(h1, [h2, h3]) + cyc

for all h1, h2, h3 makes the collection of brackets ([−,−]′, J) (extended by 0 to C∞(X)) a Lie 2-algebra struc-
ture on C∞(X)→ Ω1(X)Ham such that (φ,Φ) a Lie 2-algebra equivalence. Notice that we may equivalently
write

J(h1, h2, h3) = −Φ(D(h1 ∨ h2 ∨ h3)) ,

where (∨•Ω1(X)Ham, D) is the differential coalgebra incarnation of the Lie algebra [−,−].
Indeed, J vanishes on the image of ddR, because

Φ(ddRf, [h2, h3]) + Φ(h2, [h3, ddRf ]) + Φ(h3, [ddRf, h2]) = −ddR ([f, [h2, h3]] + [h2, [h3, f ]] + [h3, [f, h2]])

= 0
,

where we used the chain homotopy property of φ and the identities of the differential crossed module [−,−].
Using this, the coherence law of the Jacobiator, which a priori involves [−,−]′, is equivalently formulated

in terms of [−,−] (because the two differ by something in the image of ddR), where it then reads

J(D(h1 ∨ h2 ∨ h3 ∨ h4)) = 0 ,

with (∨•Ω1(X)Ham, D) as before. This equation follows now due to D2 = 0.
Finally, to see that J as above indeed is a Jacobiator for [−,−]′ we compute

[h1, [h2, h3]′]′ + cyc = [h1, [h2, h3]] + ddRΦ(h2, h3)]′ + cyc

= [h1, [h2, h3]] + [h1, ddRΦ(h2, h3)] + ddRΦ(h1, [h2, h3] + ddRΦ(h2, h3)) + cyc

= ddRΦ(h1, [h2, h3]) + cyc

,

where in the last step the first summand disappears due to the Jacobi identity satisfied by [−,−], and where
we used the chain homotopy propoerty of Φ to cancel two terms.

This way we have produced an equivalence of Lie 2-algebras

(φ,Φ) : poisson(X, ω̂)→ ((C∞(X)→ Ω1(X)Ham), [−,−]′, J) ,

where on the right the binary bracket is that of def. 4.4.113. The last thing to check is that the Jacobiator
J is indeed that of def. 4.4.113. But since the differential in the Lie 2-algebra is ddR, any two Jacobiators
for the same binary bracket must differ by a constant function on X. Since at the same time the Jacobiators
are linear, that constant must be 0, and hence the two Jacobiators must coincide. �
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4.5 Synthetic differential ∞-groupoids

We discuss∞-groupoids equipped with synthetic differential cohesion, a version of smooth cohesion in which
an explicit notion of smooth infinitesimal spaces exists.

Notice that the category CartSpsmooth, def. 4.4.4, is (the syntactic category of) a finitary algebraic
theory: a Lawvere theory (see chapter 3, volume 2 of [Borc94]).

Definition 4.5.1. Write
SmoothAlg := Alg(CartSpsmooth)

for the category of algebras over the algebraic theory CartSpsmooth: the category of product-preserving
functors CartSpsmooth → Set.

These algebras are traditionally known as C∞-rings or C∞-algebras [KaKrMi87].

Proposition 4.5.2. The map that sends a smooth manifold X to the product-preserving functor

C∞(X) : Rk 7→ SmoothMfd(X,Rk)

extends to a full and faithful embedding

SmoothMfd ↪→ SmoothAlgop .

Proposition 4.5.3. Let A be an ordinary (associative) R-algebra that as an R-vector space splits as R⊕ V
with V finite dimensional as an R-vector space and nilpotent with respect to the algebra structure: (v ∈ V ↪→
A)⇒ (v2 = 0).

There is a unique lift of A through the forgetful functor SmoothAlg→ AlgR.

Proof. Use Hadamard’s lemma. �

Definition 4.5.4. Write
InfSmoothLoc ↪→ SmoothAlgop

for the full subcategory of the opposite of smooth algebras on those of the form of prop. 4.5.3. We call this
the category of infinitesimal smooth loci.

Write
CartSpsynthdiff := CartSpsmooth n InfSmoothLoc ↪→ SmoothAlgop

for the full subcategory of the opposite of smooth algebras on those that are products

X ' U ×D

in SmoothAlgop of an object U in the image of CartSpsmooth ↪→ SmoothMfd ↪→ SmoothAlgop and an object
D in the image of InfSmoothLoc ↪→ SmoothAlgop.

Define a coverage on CartSpsmooth whose covering families are precisely those of the form {Ui ×D
(fi,id)→

U ×D} for {Ui
fi→ U} a covering family in CartSpsmooth.

This definition appears in [Kock86], following [Dub79b]. The sheaf topos Sh(CartSpsynthdiff) over this site
is equivalent to the Cahiers topos [Dub79b] which is a model of some set of axioms of synthetic differential
geometry (see [Lawv97] for the abstract idea, where also the relation to the axiomatics of cohesion is vaguely
indicated). Therefore the following definition may be thought of as describing the∞-Cahiers topos providing
a higher geometry version of this model of synthetic differential smooth geometry.

Definition 4.5.5. The ∞-topos of synthetic differential smooth ∞-groupoids is

SynthDiff∞Grpd := Sh(∞,1)(CartSpsynthdiff) .
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Proposition 4.5.6. SynthDiff∞Grpd is a cohesive ∞-topos.

Proof. Using that the covering families of CartSpsynthdiff do by definition not depend on the infinitesimal
smooth loci D and that these each have a single point, one finds that CartSpsynthdiff is an ∞-cohesive site,
def. 3.1.18, by reducing to the argument as for CartSptop, prop. 4.3.2. The claim then follows with prop.
3.1.19. �

Definition 4.5.7. Write FSmoothMfd for the category of formal smooth manifolds – manifolds modeled on
CartSpsynthdiff , equipped with the induced site structure.

Proposition 4.5.8. We have an equivalence of ∞-categoris

SynthDiff∞Grpd ' Ŝh(∞,1)(FSmoothMfd)

with the hypercomplete ∞-topos over formal smooth manifolds.

Proof. By definition CartSpsynthdiff is a dense sub-site of FSmoothMfd. The statement then follows as
in prop. 4.3.7. �
Write i : CartSpsmooth ↪→ CartSpsynthdiff for the canonical embedding.

Proposition 4.5.9. The functor i∗ given by restriction along i exhibits SynthDiff∞Grpd as an infinitesimal
cohesive neighbourhood, def. 3.2.1, of Smooth∞Grpd, in that we have a quadruple of adjoint ∞-functors

(i! a i∗ a i∗ a i!) : Smooth∞Grpd→ SynthDiff∞Grpd ,

such that i! is full and faithful and preserves the terminal object.

Proof. We observe that CartSpsmooth ↪→ CartSpsynthdiff is an infinitesimal neighbourhood of sites, ac-
cording to def. 3.2.4. The claim then follows with prop. 3.2.5. �
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We now discuss the general abstract structures in cohesive∞-toposes, 3.6 and 3.2, realized in SynthDiff∞Grpd

• 4.5.1 – ∞-Lie algebroids;

• 4.5.5 – Formally smooth/étale/unramified morphisms;

• 4.5.6 – Formally étale groupoids;

• 4.5.2 – Cohomology;

• 4.5.4 – Paths and geometric Postnikov towers;

• 4.5.7 – Chern-Weil theory.

4.5.1 ∞-Lie algebroids

We discuss explicit presentations for first order formal cohsive∞-groupoids, 3.7.6, realized in SynthDiff∞Grpd.
We call these L∞-algebroids, subsuming the traditional notion of L∞-algebras [LaMa95].

In the standard presentation of SynthDiff∞Grpd by simplicial presheaves over formalal smooth manifolds
these L∞-algebroids are presheaves in the image of the monoidal Dold-Kan correspondence [CaCo04] of
semi-free differential graded algebras. This construction amounts to identifying the traditional description
of Lie algebras, Lie algebroids and L∞-algebras by their Chevalley-Eilenberg algebras, def. 1.3.72, as a
convenient characterization of the corresponding cosimplicial algebras whose formal dual simplicial presheaves
are manifest presentations of infinitesimal smooth ∞-groupoids.

• 4.5.1.1 – L∞-Algebroids and smooth commutative dg-algebras;

• 4.5.1.2 – Infinitesimal smooth ∞-groupoids;

• 4.5.1.3 – Lie 1-algebroids as infinitesimal simplicial presheaves

4.5.1.1 L∞-Algebroids and smooth commutative dg-algebras Recall the characterization of L∞-
algebra structures in terms of dg-algebras from prop. 1.3.74.

Definition 4.5.10. Let
CE : L∞Algd ↪→ cdgAlgop

R

be the full subcategory on the opposite category of cochain dg-algebras over R on those dg-algebras that are

• graded-commutative;

• concentrated in non-negative degree (the differential being of degree +1 );

• in degree 0 of the form C∞(X) for X ∈ SmoothMfd ;

• semifree: their underlying graded algebra is isomorphic to an exterior algebra on an N-graded locally
free projective C∞(X)-module;

• of finite type;

We call this the category of L∞-algebroids over smooth manifolds.

More in detail, an object a ∈ L∞Algd may be identified (non-canonically) with a pair (CE(a), X), where

• X ∈ SmoothMfd is a smooth manifold – called the base space of the L∞-algebroid ;

• a is the module of smooth sections of an N-graded vector bundle of degreewise finite rank;
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• CE(a) = (∧•C∞(X)a
∗, da) is a semifree dg-algebra on a∗ – a Chevalley-Eilenberg algebra – where

∧•C∞(X)a
∗ = C∞(X) ⊕ a∗0 ⊕ (a∗0 ∧C∞(X) a

∗
0 ⊕ a∗1) ⊕ · · ·

with the kth summand on the right being in degree k.

Definition 4.5.11. An L∞-algebroid with base space X = ∗ the point is an L∞-algebra g, def. 1.3.72, or
rather is the delooping of an L∞-algebra. We write bg for L∞-algebroids over the point. They form the full
subcategory

L∞Alg ↪→ L∞Algd .

We now construct an embedding of L∞Algd into SynthDiff∞Grpd. The functor

Ξ : Ch•+(R)→ Vect∆
R

of the Dold-Kan correspondence, prop. 2.2.31, from non-negatively graded cochain complexes of vector
spaces to cosimplicial vector spaces is a lax monoidal functor and hence induces a functor (which we will
denote by the same symbol)

Ξ : dgAlg+
R → Alg∆

R

from non-negatively graded commutative cochain dg-algebras to cosimplicial commutative algebras (over R).

Definition 4.5.12. Write
ΞCE : L∞Algd→ (CAlg∆

R )op

for the restriction of the above Ξ along the defining inclusion CE : L∞Algd ↪→ dgAlgop
R .

There are several different ways to present ΞCE explicitly in components. Below we make use of the
following one, pointed out [CaCo04] (see the discussion around equations (26) and (49) there).

Proposition 4.5.13. The functor ΞCE from def. 4.5.12 is given as follows.
For a ∈ L∞Algd, the underlying cosimplicial vector space of ΞCE(a) is

ΞCE(a) : [n] 7→
n⊕
i=0

CE(a)i ⊗ ∧iRn .

The product of the R-algebra structure on this space in degree n is given on homogeneous elements (ω, x), (λ, y) ∈
CE(a)i ⊗ ∧iRn in the tensor product by

(ω, x) · (λ, y) = (ω ∧ λ, x ∧ y) .

(Notice that Ξa is indeed a commutative cosimplicial algebra, since ω and x in (ω, x) are by definition in
the same degree.)

To define the cosimplicial structure, let {vj}nj=1 be the canonical basis of Rn and consider and set v0 := 0
to obtain a set of vectors {vj}nj=0. Then for α : [k]→ [l] a morphism in the simplex category, set

α : vj 7→ vα(j) − vα(0)

and extend this skew-multilinearly to a map α : ∧•Rk → ∧•Rl. In terms of all this the action of α on
homogeneous elements (ω, x) in the cosimplicial algebra is defined by

α : (ω, x) 7→ (ω, αx) + (daω, vα(0) ∧ α(x))

We now refine the image of Ξ to cosimplicial smooth algebras, def. 4.5.1. Notice that there is a canonical
forgetful functor

U : SmoothAlg→ CAlgR

from the category of smooth algebras to the category of commutative associative algebras over the real
numbers.
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Proposition 4.5.14. There is a unique factorization of the functor ΞCE : L∞Algd→ (CAlg∆
R )op from def.

4.5.12 through the forgetful functor (SmoothAlg∆
R )op → (CAlg∆

R )op such that for any a over base space X
the degree-0 algebra of smooth functions C∞(X) lifts to its canonical structure as a smooth algebra

(SmoothAlg∆)op

U
��

L∞Algd

ΞCE

77

// (CAlg∆
R )op

.

Proof. Observe that for each n the algebra (ΞCE(a))n is a finite nilpotent extension of C∞(X). The
claim then follows with the fact that C∞ : SmoothMfd → CAlgop

R is faithful and using Hadamard’s lemma
for the nilpotent part. �

Proposition 4.5.15. The functor ΞCE preserves limits of L∞-algebras. It preserves pullbacks of L∞-
algebroids if the two morphisms in degree 0 are transveral maps of smooth manifolds.

Proof. The functor Ξ : cdgAlg+
R → CAlg∆

R evidently preserves colimits. This gives the first statement.
The second follows by observing that the functor from smooth manifolds to the opposite of smooth algebras
preserves transversal pullbacks. �

4.5.1.2 Infinitesimal smooth groupoids We discuss how the L∞-algebroids from def. 4.5.10 serve to
present genuine infinitesimal smooth ∞-groupoids, as in 3.7.6.

Definition 4.5.16. Write i : L∞Algd→ SynthDiff∞Grpd for the composite ∞-functor

L∞Algd
ΞCE // (SmoothAlg∆)op j // [CartSpop

synthdiff , sSet]
PQ // ([CartSpop

synthdiff , sSet]loc)◦
' // SynthDiff∞Grpd ,

where the first morphism is the monoidal Dold-Kan correspondence as in prop. 4.5.14, the second is the
degreewise the extenral Yoneda embedding

SmoothAlgop → [CartSpsynthdiff ,Set] ,

and PQ is any fibrant-cofibrant resolution functor in the local model structure on simplicial presheaves.

Proposition 4.5.17. The full subcategory L∞Alg ↪→ L∞Algd from def. 4.5.10 is equivalent to the tradi-
tional definition of the category of L∞-algebras and “weak morphisms” / “sh-maps” between them.

The full subcategory LieAlgd ↪→ L∞Algd on the 1-truncated objects is equivalent to the traditional category
of Lie algebroids (over smooth manifolds).

In particular the joint intersection LieAlg ↪→ L∞Alg on the 1-truncated L∞-algebras is equivalent to the
category of ordinary Lie algebras.

We discuss now that L∞Algd is indeed a presentation for objects in SynthDiff∞Grpd satisfying the
abstract axioms from 3.7.6.

Lemma 4.5.18. For a ∈ L∞Algd and i(a) ∈ [FSmoothMfdop, sSet]proj,loc its image in the presentation for
SynthDiff∞Grpd, we have that (∫ [k]∈∆

∆[k] · i(a)k

)
'→ i(a)

is a cofibrant resolution, where ∆ : ∆→ sSet is the fat simplex.
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Proof. The coend over the tensoring∫ [k]∈∆

(−) · (−) : [∆, sSetQuillen]proj × [∆op, [FSmoothMfdop, sSet]proj,loc]inj → [FSmoothMfdop, sSet]proj,loc

for the projective and injective global model structure on functors on the simplex category and its opposite
is a left Quillen bifunctor, prop. 2.3.16. We have moreover

1. The fat simplex is cofibrant in [∆, sSetQuillen]proj, prop. 2.3.18.

2. The object i(a)• ∈ [∆op, [FSmoothMfdop, sSet]proj,loc]inj is cofibrant, because every representable FSmoothMfd ↪→
[FSmoothMfdop, sSet]proj,loc is cofibrant.

�

Proposition 4.5.19. Let g be an L∞-algebra, regarded as an L∞-algebroid bg ∈ L∞Algd over the point by
the embedding of def. 4.5.10. Then i(bg) ∈ SynthDiff∞Grpd is an infinitesimal object, def. 3.7.24, in that
it is geometrically contractible

Πbg ' ∗

and has as underlying discrete ∞-groupoid the point

Γbg ' ∗ .

Proof. We present now SynthDiff∞Grpd by [CartSpop
synthdiff , sSet]proj,loc. Since CartSpsynthdiff is an ∞-

cohesive site by prop. 4.5.6, we have by the proof of prop. 3.1.19 that Π is presented by the left derived
functor L lim→ of the degreewise colimit and Γ is presented by the left derived functor of evaluation on the
point.

With lemma 4.5.18 we can evaluate

(L lim
→

)i(bg) ' lim
→

∫ [k]∈∆

∆[k] · (bg)k

'
∫ [k]∈∆

∆[k] · lim
→

(bg)k

=

∫ [k]∈∆

∆[k] · ∗

,

because each (bg)n ∈ InfPoint ↪→ CartSpsmooth is an infinitesimally thickened point, hence representable and
hence sent to the point by the colimit functor.

That this is equivalent to the point follows from the fact that ∅ → ∆ is an acylic cofibration in
[∆, sSetQuillen]proj, and that∫ [k]∈∆

(−)× (−) : [∆, sSetQuillen]proj × [∆op, sSetQillen]inj → sSetQuillen

is a Quillen bifunctor, using that ∗ ∈ [∆op, sSetQuillen]inj is cofibrant.
Similarly, we have degreewise that

Hom(∗, (bg)n) = ∗

by the fact that an infinitesimally thickened point has a single global point. Therefore the claim for Γ follows
analogously. �
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Proposition 4.5.20. Let a ∈ L∞Algd ↪→ [CartSpsynthdiff , sSet] be an L∞-algebroid, def. 4.5.10, over
a smooth manifold X, regarded as a simplicial presheaf and hence as a presentation for an object in
SynthDiff∞Grpd according to def. 4.5.16.

We have an equivalence
Πinf(a) ' Πinf(X) .

Proof. Let first X = U ∈ CartSpsynthdiff be a representable. Then according to prop. 4.5.18 we have
that

â :=

(∫ k∈∆

∆[k] · ak

)
' a

is cofibrant in [CartSpopsynthdiff , sSet]proj. Therefore, by prop. 3.2.5, we compute the derived functor

Πinf(a) ' i∗i∗a
' L((−) ◦ p)L((−) ◦ i)a
' ((−) ◦ ip)â

with the notation as used there. In view of def. 4.5.12 we have for all k ∈ N that ak = X ×D where D is an
infinitesimally thickened point. Therefore ((−)◦ip)ak = ((−)◦ip)X for all k and hence ((−)◦ip)â ' Πinf(X).

For general X choose first a cofibrant resolution by a split hypercover that is degreewise a coproduct of
representables (which always exists, by the cofibrant replacement theorem of [Dugg01]), then pull back the
above discussion to these covers. �

Corollary 4.5.21. Every L∞-algebroid in the sense of def. 4.5.10 under the embedding of def. 4.5.16 is
indeed a formal cohesive ∞-groupoid in the sense of def. 3.7.24.

4.5.1.3 Lie 1-algebroids as infinitesimal simplicial presheaves We characterize ordinary Lie 1-
algebroids as precisely those synthetic differential ∞-groupoids that under the presentation of def. 4.5.16
are locally, on any chart U → X of their base space, given by simplicial smooth loci of the form

· · · U × D̃(rankE, 2) //
//
//
U × D̃(rankE, 1) //

//
U

where D̃(k, n) is the smooth locus of infinitesimal k-simplices based at the origin in Rn (section 1.2 of
[Kock10]).

The following definition may be either taken as an informal but instructive definition – in which case the
next definition 4.5.23 is to be taken as the precise one – or in fact it may be already itself be taken as the
fully formal and precise definition if one reads it in the internal logic of any smooth topos with line object
R – which for the present purpose is the Cahiers topos [Dub79b] with line object R.

Definition 4.5.22. For k, n ∈ N, an infinitesimal k-simplex in Rn based at the origin is a collection
(~εa ∈ Rn)ka=1 of points in Rn, such that each is an infinitesimal neighbour of the origin

∀a : ~εa ∼ 0

and such that all are infinitesimal neighbours of each other

∀a, a′ : (~εa − ~εa′) ∼ 0 .

Write D̃(k, n) ⊂ Rk·n for the space of all such infinitesimal k-simplices in Rn.

Equivalently:
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Definition 4.5.23. For k, n ∈ N, the smooth algebra

C∞(D̃(k, n)) ∈ SmoothAlg

is the unique lift through the forgetful functor U : SmoothAlg → CAlgR of the commutative R-algebra
generated from k × n many generators

(εja)1≤j≤n,1≤a≤k

subject to the relations
∀a, j, j′ : εjaε

j′

a = 0

and
∀a, a′, j, j′ : (εja − ε

j
a′)(ε

j′

a − ε
j′

a′) = 0 .

In the above form these relations are the manifest analogs of the conditions ~εa ∼ 0 and (~εa−~εa′) ∼ 0. But
by multiplying out the latter set of relations and using the former, we find that jointly they are equivalent
to the single set of relations

∀a, a′, j, j′ : εjaε
j′

a′ + εja′ε
j′

a = 0 .

In this expression the roles of the two sets of indices is manifestly symmetric. Hence another equivalent way
to state the relations is to say

∀a, a′, j : εjaε
j
a′ = 0

and
∀a, a′, j, j : (εja − εj

′

a )(εja′ − ε
j′

a′) = 0

This appears arorund (1.2.1) in [Kock10].

Proposition 4.5.24. For all k, n ∈ N we have a natural isomorphism of real commutative and hence of
smooth algebras

φ : C∞(D̃(k, n))
'→ ⊕ni=0(∧iRk)⊗ (∧iRn) ,

where on the right we have the algebras that appear degreewise in def. 4.5.12, where the product is given on
homogeneous elements by

(ω, x) · (λ, y) = (ω ∧ λ, x ∧ y) .

Proof. Let {ta} be the canonical basis for Rk and {ei} the canonical basis for Rn. We claim that an
isomorphism is given by the assignment

φ : εia 7→ (ta, e
i) .

To see that this defines indeed an algebra homomorphism we need to check that it respects the relations on
the generators. For this compute:

φ(εiaε
i′

a′) = (ta ∧ ta′ , ei ∧ ei
′
)

= −(ta′ ∧ ta, ei ∧ ei
′
)

= −φ(εia′ε
i′

a )

.

�

Proposition 4.5.25. For a ∈ L∞Alg a 1-truncated object, hence an ordinary Lie algebroid of rank k over
a base manifold X, its image under the map i : L∞Alg → (SmoothAlg∆)op, def. 4.5.16, is such that its
restriction to any chart U → X is, up to isomorphism, of the form

i(a)|U : [n] 7→ U × D̃(k, n) .
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Proof. Apply prop. 4.5.24 in def. 4.5.12, using that by definition CE(a) is given by the exterior algebra
on locally free C∞(X) modules, so that

CE(a|U ) ' (∧•C∞(U)Γ(U × Rk)∗, da|U )

' (C∞(U)⊗ ∧•Rk, da|U )
.

�

Remark 4.5.26. In particular this recovers the presentation of the tangent Lie algebroid TX by the sim-
plicial complex of infinitesimal simplices {(x0, · · · , xn) ∈ Xn|∀i, j : xi ∼ xj} in X, whose normalized cosim-
plicial function algebra is called the algebra of combinatorial differential forms in [Kock10]. More details on
this are in [Stel10].

Notice that accordingly for g any L∞-algebra, flat g-valued differential forms are equivalently morphisms
of dg-algebras

Ω•(X)← CE(g) : A

as well as (“synthetically”) morphisms
TX → g

of simplicial objects in the Cahiers topos Sh(CartSpsynthdiff).

4.5.2 Cohomology

We discuss aspects of the intrinsic cohomology, 3.3.7, in SynthDiff∞Grpd.

• 4.5.2.1 – Cohomology localization;

• 4.5.2.2 – Lie group cohomology

• 4.5.2.3 – ∞-Lie algebroid cohomology

• 4.5.2.2 – Lie group cohomology;

• 4.5.2.3 – L∞-algebroid cohomology;

• 4.5.3 – Infinitesimal principal ∞-bundles / extensions of L∞-algebroids

4.5.2.1 Cohomology localization

Observation 4.5.27. The canonical line object of the Lawvere theory CartSpsmooth (the free algebra on
the singleton) is the real line

A1
CartSpsmooth

= R .

We shall write R also for the underlying additive group

Ga = R

regarded canonically as an abelian∞-group object in SynthDiff∞Grpd. For n ∈ N write BnR ∈ SynthDiff∞Grpd
for its n-fold delooping. For n ∈ N and X ∈ SynthDiff∞Grpd write

Hn
shdiff(X,R) := π0SynthDiff∞Grpd(X,BnR)

for the cohomology group of X with coefficients in the canonical line object in degree n.
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Definition 4.5.28. Write
Lsdiff ↪→ SynthDiff∞Grpd

for the cohomology localization of SynthDiff∞Grpd at R-cohomology: the full sub-∞-category on the W -
local objects with respect to the class W of morphisms that induce isomorphisms in all R-cohomology
groups.

Proposition 4.5.29. Let Ab∆
proj be the model structure on cosimplicial abelian groups, whose fibrations are

the degreewise surjections and whose weak equivalences the quasi-isomorphisms under the normalized cochain
functor.

The transferred model structure along the forgetful functor

U : SmothAlg∆ → Ab∆

exists and yields a cofibrantly generated simplicial model category structure on cosimplicial smooth algebras
(cosimplicial C∞-rings).

See [Stel10] for an account.

Proposition 4.5.30. Let j : (SmoothAlg∆)op → [CartSpsynthdiff , sSet] be the prolonged external Yoneda
embedding.

1. This constitutes the right adjoint of a simplicial Quillen adjunction

(O a j) : (SmoothAlg∆)op oo O

j
// [CartSpsynthdiff , sSet]proj,loc ,

where the left adjoint O(−) = C∞(−,R) degreewise forms the algebra of functions obtained by homming
presheaves into the line object R.

2. Restricted to simplicial formal smooth manifolds of finite truncation along

FSmoothMfd∆op

fintr ↪→ (SmoothAlg∆)op

the right derived functor of j is a full and faithful ∞-functor that factors through the cohomology
localization and thus identifies a full reflective sub-∞-category

(FSmoothMfd∆op

)◦fintr ↪→ Lsdiff ↪→ SynthDiff∞Grpd .

3. The intrinsic R-cohomology of any object X ∈ SynthDiff∞Grpd is computed by the ordinary cochain
cohomology of the Moore cochain complex underlying the cosimplicial abelian group of the image of the
left derived functor (LO)(X) under the Dold-Kan correspondence:

Hn
SynthDiff(X,R) ' Hn

cochain(N•(LO)(X)) .

Proof. By prop. 4.5.8 we may equivalently work over the site FSmoothMfd. The proof there is given in
[Stel10], following [Toën06]. �

4.5.2.2 Lie group cohomology

Proposition 4.5.31. Let G ∈ SmoothMfd ↪→ Smooth∞Grpd ↪→ SynthDiff∞Grpd be a Lie group.
Then the intrinsic group cohomology in Smooth∞Grpd and in SynthDiff∞Grpd of G with coefficients

in
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1. discrete abelian groups A;

2. the additive Lie group A = R

coincides with Segal’s refined Lie group cohomology [Sega70], [Bryl00].

Hn
Smooth(BG,A) ' Hn

SynthDiff(BG,A) ' Hn
Segal(G,A) .

Proof. For discrete coefficients this is shown in theorem 4.4.29 for HSmooth, which by the full and faithful
embedding then also holds in SynthDiff∞Grpd.

Here we demonstrate the equivalence for A = R by obtaining a presentation for Hn
SynthDiff(BG,R) that

coincides explicitly with a formula for Segal’s cohomology observed in [Bryl00].
Let therefore BGch ∈ [∆op, [CartSpop

synthdiff ,Set]] be the standard presentation of BG ∈ SynthDiff∞Grpd

by the nerve of the Lie groupoid (G
→→ ∗) as discussed in 4.4.2. We may write this as

BGch =

∫ [k]∈∆

∆[k] ·G×k .

By prop. 4.5.30 the intrinsic R-cohomology of BG is computed by the cochain cohomology of the cochain
complex of the underlying simplicial abelian group of the value (LO)BGch of the left derived functor of O.

In order to compute this we shall build and compare various resolutions, as in prop. 4.3.16, moving back
and forth through the Quillen equivalences

[∆op, D]inj
oo id

id
// [∆op, D]Reedy

oo id

id
// [∆op, D]proj

between injective, projective and Reedy model structures on functors with values in a combinatorial model
category D, with D either sSetQuillen or with D itself the injective or projective model structure on simplicial
presheaves over CartSpsynthdiff .

To begin with, let ( QBGch)•
' // (G×• ) ∈ [∆op, [CartSpop, sSet]proj]Reedy be a Reedy-cofibrant reso-

lution of the simplicial presheaf BGch with respect to the projective model structure. This is in particular
degreewise a weak equivalence of simplicial presheaves, hence∫ [k]∈∆

∆[k] · (QBGch)k
'→
∫ [k]∈∆

∆[k] ·G×k = BGc

exists and is a weak equivalence in [CartSpop
synthdiff , sSet]inj, hence in [CartSpop

synthdiff , sSet]proj, hence in

[CartSpop
synthdiff , sSet]proj,loc, because

1. ∆ ∈ [∆, sSetQuillen]Reedy is cofibrant in the Reedy model structure;

2. every simplicial presheafX is Reedy cofibrant when regarded as an objectX• ∈ [∆op, [CartSpop, sSet]inj]Reedy;

3. the coend over the tensoring∫ ∆

: [∆, sSetQuillen]Reedy × [∆op, [CartSpop
synthdiff , sSet]inj]Reedy → [CartSpop

synthdiff , sSet]inj

is a left Quillen bifunctor ([LuHTT], prop. A.2.9.26 ), hence in particular a left Quillen functor in one
argument when the other argument is fixed on a cofibrant object, hence preserves weak equivalences
between cofibrant objects in that case.

To make this a projective cofibrant resolution we further pull back along the Bousfield-Kan fat simplex
projection ∆→ ∆ with ∆ := N(∆/(−)) to obtain∫ [k]∈∆

∆[k] · (QBGch)k
'→
∫ [k]∈∆

∆[k] · (QBGch)k
'→ BGch ,
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which is a weak equivalence again due to the left Quillen bifunctor property of
∫∆

(−) · (−), now applied
with the second argument fixed, and the fact that ∆→ ∆ is a weak equivalence between cofibrant objects in
[∆, sSet]Reedy. (This is the Bousfield-Kan map). Finally, that this is indeed cofibrant in [CartSpop, sSet]proj

follows from

1. the fact that the Reedy cofibrant (QBGch)• is also cofibrant in [∆op, [CartSpop, sSet]proj]inj;

2. the left Quillen bifunctor property of∫ ∆

: [∆, sSetQuillen]proj × [∆op, [CartSpop
synthdiff , sSet]proj]inj → [CartSpop

synthdiff , sSet]proj ;

3. the fact that the fat simplex is cofibrant in [∆, sSet]proj.

The central point so far is that in order to obtain a projective cofibrant resolution of BGch we may form
a compatible degreewise projective cofibrant resolution but then need to form not just the naive diagonal∫∆

∆[−] · (−) but the fattened diagonal
∫∆

∆[−] · (−). In the remainder of the proof we observe that for
computing the left derived functor of O, the fattened diagonal is not necessary after all.

For that observe that the functor

[∆op,O] : [∆op, [CartSpop
synthdiff , sSet]proj,loc]→ [∆op, (SmoothAlg∆)op]

preserves Reedy cofibrant objects, because the left Quillen functor O preserves colimits and cofibrations
and hence the property that the morphisms LkX → Xk out of latching objects lim

−→s+→k
Xs are cofibrations.

Therefore we may again apply the Bousfield-Kan map after application of O to find that there is a weak
equivalence

(LO)(BGch) '
∫ [k]∈∆

∆[k] · O((QBGch)k) '
∫ [k]∈∆

∆[k] · O((QBGch)k)

in (SmoothAlg∆)op to the object where the fat simplex is replaced back with the ordinary simplex. Therefore
by prop. 4.5.30 the R-cohomology that we are after is equivalently computed as the cochain cohomology of
the image under the left adjoint

(N•)opUop : (SmoothAlg∆)op → (Ch•)op

(where U : SmoothAlg∆ → Ab∆ is the forgetful functor) of∫ [k]∈∆

∆[k] · O(QBGch)k ∈ (SmoothAlg∆)op ,

which is

(N•)op

∫ [k]∈∆

∆[k] · UopO((QBGch)k) ∈ (Ch•)op ,

Notice that

1. for S•,• a bisimplicial abelian group we have that the coend
∫ [k]∈∆

∆[k] ·S•,k ∈ (Ab∆)op is isomorphic
to the diagonal simplicial abelian group and that forming diagonals of bisimplicial abelian groups sends
degreewise weak equivalences to weak equivalences;

2. the Eilenberg-Zilber theorem asserts that the cochain complex of the diagonal is the total complex of
the cochain bicomplex: N•diagS•,• ' totC•(S•,•);

3. the complex N•O(QBGch)k) – being the correct derived hom-space between G×k and R – is related
by a zig-zag of weak equivalences to Γ(G×k , I(k)), where I(k) is an injective resolution of the sheaf of
abelian groups R
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Therefore finally we have
Hn

SynthDiff(G,R) ' Hn
cochainTotΓ(G×• , I•• ) .

On the right this is manifestly Hn
Segal(G,R), as observed in [Bryl00]. �

Corollary 4.5.32. For G a compact Lie group we have for n ≥ 1 that

Hn
SynthDiff∞Grpd(G,U(1)) ' Hn

Smooth∞Grpd(G,U(1)) ' Hn+1
Top (BG,Z) .

Proof. For G compact we have, by [Blan85], that Hn
Segal(G,R) ' 0. The claim then follows with prop.

4.5.31 and theorem 4.4.29 applied to the long exact sequence in cohomology induced by the short exact
sequence Z→ R→ R/Z = U(1). �

4.5.2.3 ∞-Lie algebroid cohomology We discuss the intrinsic cohomology, 3.3.7, of∞-Lie algebroids,
4.5.1, in SynthDiff∞Grpd.

Proposition 4.5.33. Let a ∈ L∞Algd be an L∞-algebroid. Then its intrinsic real cohomoloogy in SynthDiff∞Grpd

Hn(a,R) := π0SynthDiff∞Grpd(a,BnR)

coincides with its ordinary L∞-algebroid cohomology: the cochain cohomology of its Chevalley-Eilenberg
algebra

Hn(a,R) ' Hn(CE(a)) .

Proof. By prop. 4.5.30 we have that

Hn(a,R) ' HnN•(LO)(i(a)) .

By lemma 4.5.18 this is

· · · ' HnN•

(∫ [k]∈∆

∆[k] · O(i(a)k)

)
.

Observe that O(a)• is cofibrant in the Reedy model structure [∆op, (SmoothAlg∆
proj)

op]Reedy relative to the
opposite of the projective model structure on cosimplicial algebras: the map from the latching object in
degree n in SmoothAlg∆)op is dually in SmoothAlg ↪→ SmoothAlg∆ the projection

⊕ni=0CE(a)i ⊗ ∧iRn → ⊕n−1
i=0 CE(a)i ⊗ ∧iRn

hence is a surjection, hence a fibration in SmoothAlg∆
proj and therefore indeed a cofibration in (SmoothAlg∆

proj)
op.

Therefore using the Quillen bifunctor property of the coend over the tensoring in reverse to lemma 4.5.18
the above is equivalent to

· · · ' HnN•

(∫ [k]∈∆

∆[k] · O(i(a)k)

)
with the fat simplex replaced again by the ordinary simplex. But in brackets this is now by definition the
image under the monoidal Dold-Kan correspondence of the Chevalley-Eilenberg algebra

· · · ' Hn(N•ΞCE(a)) .

By the Dold-Kan correspondence we have hence

· · · ' Hn(CE(a)) .

�
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Remark 4.5.34. It follows that an intrinsically defined degree-n R-cocycle on a is indeed presented by a
morphism in L∞Algd

µ : a→ bnR ,
as in def. 4.4.79. Notice that if a = bg is the delooping of an L∞- algebra g this is equivalently a morphism
of L∞-algebras

µ : g→ bn−1R .

4.5.3 Extensions of L∞-algebroids

We discuss the general notion of extensions of cohesive∞-groups, 3.3.10, for infinitesimal objects in SynthDiff∞Grpd:
extensions of L∞-algebras, def. 4.5.10.

Proposition 4.5.35. Let µ : bg → bn+1R be an (n + 1)-cocycle on an L∞-algebra g. Then under the
embedding of def. 4.5.16 the L∞-algebra gµ of def. 4.4.82 is the extension classified by µ, according to the
general definition 3.3.141.

Proof. We need to show that
bgµ → g

µ→ bn+1R
is a fiber sequence in SynthDiff∞Grpd. By prop. 4.4.87 this sits in a pullback diagram of L∞-algebras
(connected L∞-algebroids)

bgµ //

��

ebnR

��
bg

µ // bn+1R

.

By prop. 4.5.15 this pullback is preserved by the embedding into [CartSpop
synthdiff , sSet]proj. Here the right

vertical morphism is found to be a fibration replacement of the point inclusion ∗ → bn+1R. By the discussion
in 2.3.2.1 this identifies bgµ as the homotopy fiber of µ. �

4.5.4 Infinitesimal path groupoid and de Rham spaces

We discuss the intrinsic notion of infinitesimal geometric paths in objects in a ∞-topos of infinitesimal
cohesion, 3.7.1, realized in SynthDiff∞Grpd.

Observation 4.5.36. For U ×D ∈ CartSpsmooth n InfinSmoothLoc = CartSpsynthdiff ↪→ SynthDiff∞Grpd
we have that

Red(U ×D) ' U
is the reduced smooth locus: the formal dual of the smooth algebra obtained by quotienting out all nilpotent
elements in the smooth algebra C∞(K ×D) ' C∞(K)⊗ C∞(D).

Proof. By the model category presentation of Red = LLani ◦ Ri∗ of the proof of prop. 4.5.9 and
using that every representable is cofibrant and fibrant in the local projective model structure on simplicial
presheaves we have

Red(U ×D) ' (LLani)(Ri∗)(U ×D)

' (LLani)i
∗(U ×D)

' (LLani)U

' LaniU

' U

,

where we are using again that i is a full and faithful functor. �
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Corollary 4.5.37. For X ∈ SmoothAlgop → SynthDiff∞Grpd a smooth locus, we have that Πinf(X) is the
corresponding de Rham space, the object characterized by

SynthDiff∞Grpd(U ×D,Πinf (X)) ' SmoothAlgop(U,X) .

Proof. By the (Red a Πinf)-adjunction relation we have

SynthDiff∞Grpd(U ×D,Πinf(X)) ' SynthDiff∞Grpd(Red(U ×D), X)

' SynthDiff∞Grpd(U,X)
.

�

4.5.5 Formally smooth/étale/unramified morphisms

We discuss the general notion of formally smooth/étale/unramified morphisms, 3.7.3, realized in the differ-
ential ∞-topos i : Smooth∞Grpd ↪→ SynthDiff∞Grpd. given by prop. 4.5.9.

Lemma 4.5.38. Let X ∈ Smooth∞Grpd be presented by a simplicial smooth manifold under the canonical
inclusion X• ∈ SmthMfd∆op

↪→ [CartSpop
smooth, sSet]. Then i!X is presented by the same simplicial smooth

manifold, under the canonical inclusion

X• ∈ SmthMfd∆op

↪→ [CartSpop
synthdiff , sSet] .

Proposition 4.5.39. Let f : X → Y be a morphism in SmthMfd, a smooth function between finite dimen-
sional paracompact smooth manifolds, regarded, by cor. 4.4.10, as a morphism in Smooth∞Grpd.

Then

• f is a submersion ⇔ f is formally i-smooth;

• f is a local diffeomorphism ⇔ f is formally i-étale;

• f is an immersion ⇔ f is formally i-unramified;

where on the left we have the traditional notions, and on the right those of def. 3.7.7.

Proof. By lemma 4.5.38 the canonical diagram

i!X
i!f //

��

i!Y

��
i∗X

i∗f // i∗Y

in SynthDiff∞Grpd is presented in [CartSpop
synthdiff , sSet]proj,loc by the diagram of presheaves

U ×D 7→

FSmthMfd(U ×D,X)
FSmthMfd(U×D,f) //

��

FSmthMfd(U ×D,Y )

��
FSmthMfd(U,X)

Hom(U,f) // FSmthMfd(U, Y )

,

where FSmthMfd is the category of formal smooth manifolds from def. 4.5.7, U is an ordinary smooth
manifold and D an infinitesimal smooth loci, def. 4.5.4.
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Consider this first for the case that D := D ↪→ R is the first order infinitesimal neighbourhood of the
origin in the real line. Restricted to this case the above diagram of presheaves is that represented on SmthMfd
by the diagram of smooth manifolds

TX
df //

��

TY

��
X

f // Y

,

where on the top we have the tangent bundles of X and Y and the differential of f mapping between them.
Since pullbacks of presheaves are computed objectwise, f being formally smooth/étale/unramified implies

that the canonical morphism
TX → X ×Y TY = f∗TY

is an epi-/iso-mono-morphism, respectively. This by definition means that f is a submersion/local diffeo-
morphism/immersion, respectively.

Conversely, by standard facts of differential geometry, f being a submersion means that it is locally a
projection, f being a local isomorphism means that it is in particular étale, and f being an immersion means
that it is locally an embedding. This implies that also for D any other infinitesimal smooth locus, so that
XD, Y D are bundles of possibly higher order formal curves, the morphism

XD → X ×Y Y D

is an epi-/iso-/mono-morphism, respectively. �

4.5.6 Formally étale groupoids

We discuss the general notion of formally étale groupoids in a differential ∞-topos, 3.7.4, realized in

Smooth∞Grpd
i
↪→ SynthDiff∞Grpd.

Definition 4.5.40. Call a simplicial smooth manifold X ∈ SmoothMfd∆op

an étale simplicial smooth man-
ifold if it is fibrant as an object of [CartSpop, sSet]proj and if moreover all face and degeneracy morphisms
are étale morphisms.

Example 4.5.41. The nerve of an étale Lie groupoid in the traditional sense is an étale simplicial smooth
manifold.

Proposition 4.5.42. Let X ∈ SmthMfd∆op

be an étale simplicial manifold, def. 4.5.40. Then equipped

with its canonical atlas, observation 2.3.28, it presents a formally étale groupoid object in Smooth∞Grpd
i
↪→

SynthDiff∞Grpd, according to def. 3.7.17.

Proof. We need to check that i!X0 is the ∞-pullback i∗X0×i∗X i!X. By prop. 2.3.12, lemma 4.5.38 and
prop. 2.3.32 it is sufficient to show for the décalage replacement Dec0X → X of the atlas, that i!Dec0X is
the ordinary pullback of simplicial presheaves (i∗Dec0X)×i∗X i!X. Since pullbacks of simplicial presheaves
are computed degreewise, this is the case by prop. 4.5.39 if for all n ∈ N the morphism (Dec0X)n → Xn is
an étale morphism of smooth manifolds, in the traditional sense. By prop. 2.3.31 this morphism is the face
map dn+1 of X. This is indeed étale by the very assumption that X is an étale simplicial smooth manifold. �

4.5.7 Chern-Weil theory

We discuss the notion of ∞-connections, 4.4.14, in the context SynthDiff∞Grpd.
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4.5.7.1 ∞-Cartan connections A Cartan connection on a smooth manifold is a principal connection
subject to an extra constraint that identifies a component of the connection at each point with the tangent
space of the base manifold at that point. The archetypical application of this notion is to the formulation of
the field theory of gravity, 5.3.1.

We indicate a notion of Cartan ∞-connections.

The following notion is classical, see for instance section 5.1 of [Sha97].

Definition 4.5.43. Let (H ↪→ G) be an inclusion of Lie groups with Lie algebras (h ↪→ g). A (H → G)-
Cartan connection on a smooth manifold X is

1. a G-principal bundle P → X equipped with a connection ∇;

2. such that

(a) the structure group of P reduces to H, hence the classifying morphism factors as X → BH → BG;

(b) for each point x ∈ X and any local trivialization of (P,∇) in some neighbourhood of X, the
canonical linear map

TxX
∇ // g // g/h

is an isomorphism,

Here (h→ g) are the Lie algebras of the given Lie groups and g/h is the quotient of the underlying vector
spaces.
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4.6 Super ∞-groupoids

We discuss ∞-groupoids equipped with super cohesion and with smooth super cohesion (where super is in
the sense of superalgebra and supergeometry).

Definition 4.6.1. Let GrAlgR be the category whose objects are finite dimensional free Z2-graded commu-
tative R-algebras (Grassmann algebras). Write

SuperPoint := GrAlgop
R

for its opposite category. For q ∈ N we write R0|q ∈ SuperPoint for the object corresponding to the free
Z2-graded commutative algebra on q generators and speak of the superpoint of order q.

We think of SuperPoint as a site by equipping it with the trivial coverage.

Definition 4.6.2. Write

SuperSet := Sh(SuperPoint) ' PSh(SuperPoint)

for the topos of presheaves over SuperPoint.

Definition 4.6.3. Write

Super∞Grpd := Sh∞(SuperPoint) ' PSh∞(SuperPoint)

for the ∞-topos of ∞-sheaves over SuperPoint. We say an object X ∈ Super∞Grpd is a super ∞-groupoid.

We shall conceive of higher superalgebra and higher supergeometry as being the higher algebra and
geometry over the base ∞-topos ([John03], chapter B3) Super∞Grpd instead of over the canonical base
∞-topos ∞Grpd. Except for the topos-theoretic rephrasing, this perspective has originally been suggested
in [Schw84] and [Molo84].

Proposition 4.6.4. The ∞-topos Super∞Grpd is cohesive, def. 3.1.7.

Super∞Grpd

Π //
oo Disc

Γ //
oo
coDisc

∞Grpd .

Proof. The site SuperPoint is ∞-cohesive, according to def. 3.1.18. Hence the claim follows by prop.
3.1.19. �

Proposition 4.6.5. The inclusion Disc : ∞Grpd ↪→ Super∞Grpd exhibits the collection of super ∞-
groupoids as forming an infinitesimal cohesive neighbourhood, def. 3.2.1, of the discrete ∞-groupoids, 4.1.

Proof. Observe that the point inclusion i : Point := ∗ ↪→ SuperPoint is both left and right adjoint to the
unique projection p : SuperPoint→ Point. Therefore we have even a periodic sequence of adjunctions

(· · · a i∗ a p∗ a i∗ a p∗ a · · · ) : Super∞Grpd→∞Grpd ,

and p∗ ' Disc ' coDisc is full and faithful. �

Definition 4.6.6. Write R ∈ Super∞Grpd for the presheaf SuperPointop → Set ↪→∞Grpd given by

R : R0|q 7→ C∞(R0|q) := Λq ,

which sends the order-q superpoint to the underlying set of the Grassmann algebra on q generators.
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Observation 4.6.7. The object R ∈ Super∞Grpd is canonically equipped with the structure of an internal
ring object. Morever, under both Π and Γ it maps to the ordinary real line R ∈ Set ↪→ ∞Grpd while
respecting the ring structures on both sides.

When regarding Smooth∞Grpd as equipped with infinitsimal cohesion by prop. 4.6.5 we have that this
is a non-reduced (def. 3.7.1) super-cohesive structure on R:

RedSuper(R ∈ Super∞Grpd) ' DiscSuperR 6= (R ∈ Super∞Grpd) .

Proposition 4.6.8. The theory of ordinary (linear) R-algebra internal to the 1-topos SuperSet = Super0Grpd ↪→
Super∞Grpd is equivalent to the theory of R-superalgebra in Set.

This is due to [Molo84].
In view prop. 4.6.8 we may define smooth super ∞-groupoids exactly as we defined ordinary smooth

∞-groupoids in 4.4, but working over the base ∞-topos Super∞Grpd instead of over the canonical base
∞-topos ∞Grpd.

Definition 4.6.9. Write CartSpsuper for the internal site ([John03], section C2.4) in SuperSet ↪→ Super∞Grpd,

whose objects are the natural numbers, whose morphisms are smooth morphisms Rk → Rl in SuperSet, and
whose covers ar given by differentiably good open covers.

According to prop. C2.5.4 of [John03] for every internal site there i an external site such that the internal
sheaves on the former are equivalen to the external sheavs on the latter.

Proposition 4.6.10. The external site corresponding to def. 4.6.9 is the cartesian product site CartSpsmooth×
SuperPoint (the first factor from def. 4.4.4, the second from def. 4.6.1).

Definition 4.6.11. Write

SmoothSuper∞Grpd := Sh∞(CartSpsmooth × SuperPoint) .

An object in this ∞-topos we call a smooth super ∞-groupoid.

Proposition 4.6.12. We have a commuting diagram of cohesive ∞-toposes

SmoothSuper∞Grpd

Πsuper //
oo Discsuper

Γsuper //
oo
coDiscsuper

��

OO Super∞Grpd

��

OO

Smooth∞Grpd

Π //
oo Disc

Γ //
oo

coDisc

∞Grpd

.

For emphasis we shall refer to the objects of Super∞Grp as discrete super ∞-groupoids: these refine dis-
crete∞-groupoids, 4.1 with super-cohesion and are themselves further refined by smooth super∞-groupoids
with smooth cohesion.
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We now discuss the various general abstract structures in a cohesive∞-topos, 3.6, realized in Super∞Grpd
and SmoothSuper∞Grpd.

• 4.6.1 – Exponentiated ∞-Lie algebras

4.6.1 Exponentiated ∞-Lie algebras

According to prop. 4.6.8 the following definition is justified.

Definition 4.6.13. A super L∞-algebra is an L∞-algebra, def. 1.3.72, internal to the topos SuperSet, def.
4.6.2, over the ring object R from def. 4.6.6.

Observation 4.6.14. The Chevalley-Eilenberg algebra CE(g), def. 1.3.75, of a super L∞-algebra g is
externally

• a graded-commutative algebra over R on generators of bigree in (N+,Z2) – the homotopical degree degh
and the super degree degs;

• such that for any two generators a, b the product satisfies

ab = (−1)defh(a)degh(b)+defs(a)degs(b) ba ;

• and equipped with a differential dCE of bidegree (1, even) such that d2
CE = 0.

Examples 4.6.15. • Every ordinary L∞-algebra is canonically a super L∞-algebra where all element
are of even superdegree.

• Ordinary super Lie algebras are canonically identified with precisely the super Lie 1-algebras.

• For every n ∈ N there is the super line super Lie (n+ 1)-algebra bnR0|1 characterized by the fact that
its Chevalley-Eilenberg algebra has trivial differential and a single generator in bidegree (n, odd).

• For g any super L∞-algebra and µ : g → bnR a cocycle, its homotopy fiber is the super L∞-algebra
extension of g, as in def. 4.4.82.

Below in 5.3.2 we discuss in detail a class of super L∞-algebras that arise by higher extensions from a
super Poincaré Lie algebra.

Observation 4.6.16. The Lie integration

exp(g) ∈ [CartSpsmooth × SuperPoint, sSet] = [SuperPoint, [CartSpsmooth, sSet

of a super L∞-algebra g according to 4.4.11 is a system of Lie integrated ordinary L∞-algebras

exp(g) : R0|q 7→ exp((g⊗R Λq)even) ,

where Λq = C∞(R0|q) is the Grassmann algebra on q generators.
Over each U ∈ CartSp this is the discrete super ∞-groupoid given by

exp(g)U : R0|q 7→ HomdgsAlg(CE(g⊗ Λq)even,Ω
•
vert(U × R0|q ×∆•)) ,

where on the right we have super differential forms vertical with respect to the projection U ×R0|q ×∆n →
U × R0|q of supermanifolds.
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Proof. The first statement holds by the proof of prop. 4.6.8. The second statement is an example of a
stadard mechanism in superalgebra: Using that the category sVect of finite-dimensional super vector space
is a compact closed category, we compute

HomdgsAlg(CE(g),Ω•vert(U × R0|q ×∆n)) ' HomdgsAlg(CE(g), C∞(R0|q)⊗ Ω•vert(U ×∆n))

' HomdgsAlg(CE(g),Λq ⊗ Ω•vert(U ×∆n))

⊂ HomCh•(sVect)(g
∗[1],Λq ⊗ Ω•vert(U ×∆n))

' HomCh•(sVect)(g
∗[1]⊗ (Λq)∗,Ω•vert(U ×∆n))

' HomCh•(sVect)((g⊗ Λq)
∗[1],Ω•vert(∆

n))

' HomCh•(sVect)((g⊗ Λq)
∗[1]even,Ω

•
vert(U ×∆n))

⊃ HomdgsAlg(CE((g⊗k Λq)even),Ω•vert(U ×∆n))

.

Here in the third step we used that the underlying dg-super-algebra of CE(g) is free to find the space of
morphisms of dg-algebras inside that of super-vector spaces (of generators) as indicated. Since the differen-
tial on both sides is Λq-linear, the claim follows. �
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5 Applications

We study aspects of the realization of the general abstract Chern-Weil theory in a cohesive ∞-topos, 3.6.5,
in the model Smooth∞Grpd, 4.4. The generalization of ordinary Chern-Weil theory in ordinary differential
geometry obtained this way comes from two directions:

1. The ∞-Chern-Weil homomorphism applies to G-principal ∞-bundles for G more general than a Lie
group.

• In the simplest case G may be a higher connected cover of a Lie group, realized as a smooth
n-group for some n > 1. Applied to these, the ∞-Chern-Weil homomorphism sees fractional
refinements of the ordinary differential characteristic classes as seen by the ordinary Chern-Weil
homomorphism. This we discuss in 5.1.

• More generally, G may be any mooth ∞-groupoid, for instance obtained from a general ∞-Lie
algebra or ∞-Lie algebroid by Lie integration. In 5.5 we observe that symplectic forms in higher
symplectic geometry may be understood as examples of ∞-Chern-Weil homomorphisms. In 5.6
we discuss a list of examples for which the higher parallel transport of the circle n-bundles with
connection in the image of the ∞-Chern-Weil homomorphism reproduces action functionals of
various σ-model/Chern-Simons-like field theories.

2. The ∞-Chern-Weil homomorphism is not just a function on cohomology sets, but an ∞-functor on
the full cocycle ∞-groupoids. This allows to access the homotopy fibers of this ∞-functor. Over
the trivial cocycle these encode the differential refinement of the obstruction theory associated to the
underlying bare cocycle. Over nontrivial cocycles they encode the corresponding twisted cohomology.
We formalize this in terms of twisted differential c-structures in 3.6.6. A central class of examples are
higher differential Spin structures, 5.4.7.3, induced from the Whitehead tower of the orthogonal group.
These appear in various guises in string background gauge fields. But also differential T-duality pairs
are an example, as we discuss in 5.4.9.

Finally, we observe that the ∞-Chern-Weil homomorphism may be understood as providing the Lagrangian
of higher analogs of Chern-Simons theory, in that its intrinsic integration, 3.6.9, yields a functional on the
∞-groupoid of ∞-connections that generalizes the action functional of Chern-Simons theory from ordinary
semisimple Lie algebras and their Killing form to arbitrary ∞-Lie algebroids and arbitrary invariant poly-
nomials on them. We conclude in 5.6 by a discussion of a list of field theories obtained this way.
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5.1 Higher Spin-structures

For any n ∈ N, the Lie group Spin(n) is the universal simply connected cover of the special orthogonal group
SO(n). Since π1SO(n) ' Z2, it is an extension of Lie groups of the form

Z2 → Spin(n)→ SO(n) .

The lift of an SO(n)-principal bundle through this extension to a Spin(n)-principal bundle is a called a choice
of spin structure. A classical textbook on the geometry of spin structures is [LaMi89].

We discuss how this construction is only one step in a whole tower of analogous constructions involving
smooth n-groups for various n. These are higher smooth analogs of the Spin-group and define higher analogs
of smooth spin structures.

The Spin-group carries its name due to the central role that it plays in the description of the physics of
quantum spinning particles. In 1.1.4 we indicated how the higher spin structures to be discussed here are
similarly related to spinning quantum strings and 5-branes. More in detail, this requires twisted higher spin
structures, which we turn to below in 3.6.6.

5.1.1 Overview: the smooth and differential Whitehead tower of BO

We survey the constructions and results about the smooth and differential refinement of the Whitehead
tower of BO, to be discussed in the following.

By definition 3.5.13 applied in ∞Grpd ' Top, the first stages of the Whitehead tower of the classifying
space BO of the orthogonal group, together with the corresponding obstruction classes is constructed by
iterated pasting of homotopy pullbacks as in the following diagram:

...

BFivebrane

��

// · · · // ∗

��
BString

��

· · ·
1
6p2

// B8Z //// ∗

��
BSpin

��

· · ·
1
2p1

// B4Z // ∗

��
BSO

��

· · · w2 //

�� ��

B2Z2
//

��

∗

��
BO //

��

w1

11· · · // τ≤8BO // τ≤4BO // τ≤2BO // τ≤1BO ' BZ2

BGL

.

Here the bottom horizontal tower is the Postnikov tower, def. 3.3.6, of BO and all rectangles are homotopy
pullbacks.

For X a smooth manifold, there is a canonically given map X → BGL, which classifies the tangent
bundle TX. The lifts of this classifying map through the above Whitehead tower correspond to structures
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on X as indicated in the following diagram:

BFivebrane

��
BString

��

1
6p2

// B7U(1) ' K(Z, 8) second fractional Pontryagin class

BSpin

��

1
2p1

// B3U(1) ' K(Z, 4) first fractional Pontryagin class

BSO

��

w2 // B2Z2 ' K(Z2, 2) second Stiefel-Whitney class

BO

��

w1 //

'
��

BZ2 ' K(Z2, 1) first Stiefel-Whitney class

X TX //

44orientation structure

99
spin structure

<<

string structure

;;

fivebrane structure

88

BGL

.

Here the horizontal morphisms denote representatives of universal characteristic classes, such that each
sub-diagram of the shape

BĜ

��
BG

c // BnK

is a fiber sequence, def. 3.3.72.
The lifting problem presented by each of these steps is exemplified in terms of a smooth manifold X,

which comes with a canonical map X → BGL that classifies the tangent bundle TX of X.
In the first step, since the BO → BGL is a weak equivalence in Top ' ∞Grpd, we may always factor

X → BGL, up to homotopy, through BO. The homotopy class of the resulting composite X → BO
w1→ BZ2

is the first Stiefel-Whitney class of the manifold. The fact that BSO is the homotopy fiber of w1 means, by
the universal property of the homotopy pullback, that the further lift to a map X → BSO exists precisely
if the first Stiefel-Whitney class vanishes. While this is a classical fact, it is useful to make its relation to
homotopy pullbacks explicit here, since this illuminates the following steps in this tower as well as all the
steps in the smooth and differential refinements to follow.

Next, if the first Stiefel-Whitney class of X vanishes, then any choice of orientation, hence any choice
of lift X → BSO induces the composite map X → BSO

w2→ B2Z2, whose homotopy class is the second
Stiefel-Whitney class of X equipped with that orientation. If that class vanishes, there exists a choice of lift

X → BSpin, which is a choice of spin structure on X. The resulting composite X → BSpin
1
2p1

→ B3U(1)
is a representative of the first fractional Pontryagin class. If this vanishes, there exists a choice of lift

X → BString, which equips X with a string structure. The induced composite X → BString
1
6p2

→ B7U(1) is
a representative of the second fractional Pontryagin class of X. If that vanishes, there exists a choice of lift
X → BFivebrane, which is a choice of fivebrane srructure on X.

In this or slightly different terminology, this is a classical construction in homotopy theory. We show
in the following that this tower has a smooth lift from topological spaces through the geometric realization
functor, 4.4.3,

Smooth∞Grpd
Π // ∞Grpd

|−|
'
// Top
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to smooth ∞-groupoids, of the form

BFivebrane

��
BString

��

1
6p2

// B7U(1)

BSpin

��

1
2p1

// B3U(1)

BSO

��

w2 // B2Z2

BO

��

w1 //

��

BZ2

X TX //

metric structure

44orientation structure

99
spin structure

<<

string structure

;;

fivebrane structure

88

BGL

Here BnU(1) is the smooth circle (n+ 1)-group, def. 4.4.21, the smooth classifying n-stack of smooth circle
n-bundles. This is such that still all diagrams of the form

BĜ

��
BG

c // BnK

are fiber sequences, now in the cohesive ∞-topos Smooth∞Grpd, exhibiting the smooth moduli ∞-stack
BĜ as the homotopy fiber of the smooth universal characteristic map c which is a smooth refinement of the
corresponding ordinary characteristic map c.

The corresponding choices of lifts now are more refined than before, as they correspond to smooth
structures. In the first step, the choice of lift from a morphism X → BGL to a morphism X → BSO encodes
now genuine information, namely a choice of Riemannian metric on X. This is discussed in 5.4.4.1 below.

Further up, a choice of lift X → BSpin is a choice of smooth Spin-principal bundle on X. Next, the
object denoted String is a smooth 2-group, and a lift X → BString is a choice of smooth String-principal
2-bundle on X. The object denoted Fivebrane is a smooth 6-group and a choice of lift X → BFivebrane is
a choice of smooth Fivebrane-principal 6-bundle.

One consequence of the smooth refinement, which is important for the twisted such structures discussed
below in 3.6.6, is that the spaces of choices of lifts are much more refined than those of the ordinary non-
smooth case. Another consequence is that it allows to proceed and next consider a differential refinement,
def. 3.6.31:

we show that the above smooth Whitehead tower further lifts to a differential Whitehead tower of the
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form
BFivebraneconn

��
BStringconn

��

1
6 p̂2

// B7U(1)conn

BSpinconn

��

1
2 p̂1

// B3U(1)conn

BSOconn

��

w2 // B2Z2

BOconn

��

w1 //

��

BZ2

X TX //

metric and affine connection

44

99
spin connection

;;

string 2−connection

::

fivebrane 6−connection

77

BGLconn

,

where BnU(1)conn is the moduli n-stack of circle n-bundles with connection, according to 4.4.13. Still, all
diagrams of the form

BĜconn

��
BGconn

ĉ // BnKconn

are fiber sequences in Smooth∞Grpd, exhibiting the smooth moduli ∞-stack BĜconn, def. 3.6.31, of higher
Ĝ-connections as the homotopy fiber of the differential refinement ĉ of the given characteristic map c. Choices
of lifts through this tower correspond to choices of smooth higher connections on smooth higher bundles.

5.1.2 Orienation structure

Before going to higher degree beyond the Spin-group, it is instructive to first consider a lower degree. The
special orthogonal Lie group itself is a kind of extension of the orthogonal Lie group. To see this clearly,
consider the smooth delooping BSO(n) ∈ Smooth∞Grpd according to 4.4.2.

Proposition 5.1.1. The canonical morphism SO(n) ↪→ O(n) induces a long fiber sequence in Smooth∞Grpd
of the form

Z2 → BSO(n)→ BO(n)
w1→ BZ2 ,

where w1 is the universal smooth first Stiefel-Whitney class from example 1.3.67.

Proof. It is sufficient to show that the homotopy fiber of w1 is BSO(n). This implies the rest of the
statement by prop. 3.3.73.

To see this, notice that by the discussion in 3.3.7 we are to compute the Z2-principal bundle over the Lie
groupoid BSO(n) that is classified by the above injection. By observation 3.3.109 this is accomplished by
forming a 1-categorical pullback of Lie groupoids

Z2//O(n)

��

// Z2//Z2

��
∗//O(n) // ∗//Z2

.
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One sees that the canonical projection

Z2//O(n)
'→ ∗//SO(n)

is a weak equivalence (it is an essentially surjective and full and faithful functor of groupoids). �

Definition 5.1.2. For X ∈ Smooth∞Grpd any object equipped with a morphism rX : X → BO(n), we say
a lift oX of r through the above extension

BSO(n)

��
X

r //

oX

;;

BO(n)

is an orientation structure on (X, rX).

5.1.3 Spin structure

Proposition 5.1.3. The classical sequence of Lie groups Z2 → Spin→ SO induces a long fiber sequence in
Smooth∞Grpd of the form

Z2 → Spin→ SO→ BZ2 → BSpin→ BSO
w2→ B2Z2 ,

where w2 is the universal smooth second Stiefel-Whitney class from example 1.3.68.

Proof. It is sufficient to show that the homotopy fiber of w2 is BSpin(n). This implies the rest of the
statement by prop. 3.3.73.

To see this notice that the top morphism in the stanard anafunctor that presents w2

B(Z2 → O(n))ch
//

'
��

B(Z2 → 1)ch B2Z2

BSO(n)

is a fibration in [CartSpop, sSet]proj. By proposition 2.3.12 this means that the homotopy fiber is given by
the 1-categorical pullback of simplicial presheaves

B(Z2 → O(n))ch
//

��

∗

��
B(Z2 → O(n))ch

w2 // B(Z2 → 1)ch

.

The canonical projection

B(Z2 → O(n))ch
'→ BSO(n)ch

is seen to be a weak equivalence. �

Definition 5.1.4. For X ∈ Smooth∞Grpd an object equipped with orientation structure oX : X →
BSO(n), def. 5.1.2, we say a choice of lift ôX in

BSpin

��
X

oX //

ôX

;;

BSO(n)

equips (X, oX) with spin structure.
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5.1.4 Smooth string structure and the String-2-group

The sequence of Lie groupoids

· · · → BSpin(n)→ BSO(n)→ BO(n)

discussed in 5.1.2 and 5.1.3 is a smooth refinement of the first two steps of the Whitehead tower of BO(n).
We discuss now the next step. This is no longer presented by Lie groupoids, but by smooth 2-groupoids.

Write so(n) for the special orthogonal Lie algebra in dimension n. We shall in the following notationally
suppress the dimension and just write so. The simply connected Lie group integrating so is the Spin-group .

Proposition 5.1.5. Pulled back to BSpin the universal first Pontryagin class p1 : BO → B4Z is 2 times a
generator 1

2p1 of H4(BSpin,Z)

BSpin
1
2p1 //

��

B4Z

·2
��

BO
p1 // B4Z

.

We call 1
2p1 the first fractional Pontryagin class .

This is due to [Bott58]. See [SSS09b] for a review.

Definition 5.1.6. Write BString for the homotopy fiber in Top ' ∞Grpd of the first fractional Pontryagin
class

BString //

��

∗

��
BSpin

1
2p1 // B4Z

.

Its loop space is the string group
String := O〈7〉 := ΩBString .

This is defined up to equivalence as an ∞-group object, but standard methods give a presentation by a
genuine topological group and often the term string group is implicitly reserved for such a topological group
model. See also the review in [Scho10].

We now discuss smooth refinements of 1
2p1 and of String as lifts through the intrinsic geometric realization,

def. 3.5.2, Π : Smooth∞Grpd→∞Grpd in Smooth∞Grpd, 4.4.

Proposition 5.1.7. We have a weak equivalence

cosk3(exp(so))
'→ BSpinc

in [CartSpop
smooth, sSet]proj, between the Lie integration, 4.4.11, of so and the standard presentation, 4.4.2, of

BSpin.

Proof. By prop. 4.4.48. �

Corollary 5.1.8. The image of BSpin ∈ Smooth∞Grpd under the fundamental ∞-groupoid/geometric
realization functor Π, 4.3.4, is the classifying space BSpin of the topological Spin-group

|ΠBSpin| ' BSpin .

Proof. By prop. 4.3.32 applied to prop. 4.4.19. �
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Theorem 5.1.9. The image under Lie integration, 4.4.11, of the canonical Lie algebra 3-cocycle

µ = 〈−, [−,−]〉 : so→ b2R

on the semisimple Lie algebra so of the Spin group is a morphism in Smooth∞Grpd of the form

1

2
p1 := exp(µ) : BSpin→ B3U(1)

whose image under the the fundamental∞-groupoid∞-functor/ geometric realization, 4.3.4, Π : Smooth∞Grpd→
∞Grpd is the ordinary fractional Pontryagin class 1

2p1 : BSpin→ B4Z in Top, and up to equivalence exp(µ)
is the unique lift of 1

2p1 from Top to Smooth∞Grpd with codomain B3U(1). We write 1
2p1 := exp(µ) and

call it the smooth first fractional Pontryagin class.
Moreover, the corresponding refined differential characteristic class, 4.4.14,

1

2
p̂1 : Hconn(−,BSpin)→ Hdiff(−,B3U(1)) ,

wich we call the fractional Pontryagin class, is in cohomology the corresponding ordinary refined Chern-Weil
homomorphism [HoSi05]

[
1

2
p̂1] : H1

Smooth(X,Spin)→ H4
diff(X)

with values in ordinary differential cohomology that corresponds to the Killing form invariant polynomial
〈−,−〉 on so.

Proof. This is shown in [FSS10].
Using corollary. 5.1.7 and unwinding all the definitions and using the characterization of smooth de

Rham coefficient objects, 4.4.10, and smooth differential coefficient objects, 4.4.13, one finds that the post-
composition with exp(µ, cs)diff induces on Čech cocycles precisely the operation considered in [BrMc96b],
and hence the conclusion follows essentially as by the reasoning there: one reads off the 4-curvature of the
circle 3-bundle assigned to a Spin bundle with connection ∇ to be ∝ 〈F∇∧F∇〉, with the normalization such
that this is the image in de Rham cohomology of the generator of H4(BSpin) ' Z ' 〈 12p1〉.

Finally that 1
2p1 is the unique smooth lift of 1

2p1 follows from theorem 4.4.29. �
By the unique smooth refinement of the first fractional Pontryagin class, 5.1.9, we obtain a smooth refinement
of the String-group, def. 5.1.6.

Definition 5.1.10. Write BString for the homotopy fiber in Smooth∞Grpd of the smooth refinement of
the first fractional Pontryagin class from prop. 5.1.9:

BString //

��

∗

��
BSpin

1
2 p1 // B3U(1)

.

We say its loop space object is the smooth string 2-group

Stringsmooth := ΩBString .

We speak of a smooth 2-group because Stringsmooth is a categorical homotopy 1-type in Smooth∞Grpd,
being an extension

BU(1)→ Stringsmooth → Spin

of the categorical 0-type Spin by the categorical 1-type BU(1) in Smooth∞Grp.
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Proposition 5.1.11. The categorical homotopy groups of the smooth String 2-group, πn(BString) ∈ Sh(CartSp),
are

π1(BString) ' Spin

and
π2(BString) ' U(1) .

All other categorical homotopy groups are trivial.

Proof. Notice that by construction the non-trivial categorical homotopy groups of BSpin and B3U(1)
are π1BSpin = Spin and π3B

3U(1) = U(1), respectively. Using the long exact sequence of homotopy sheaves
(use [LuHTT] remark 6.5.1.5,with X = ∗ the base point) applied to def. 5.1.10, we obtain the long exact
sequence of pointed objects in Sh(CartSp)

· · · → πn+1(B3U(1))→ πn(BString)→ πn(BSpin)→ πn(B3U(1))→ πn−1(BString)→ · · ·

this yields for n = 0
0→ π1(BString)→ Spin→ 0

and for n = 2
0→ U(1)→ π2(BString)→ 0

and for n ≥ 3
0→ πn(BString)→ 0 .

�
However the geometric homotopy type, 3.5.1, of BString is not bounded, in fact it coincides with that of the
topological string group:

Proposition 5.1.12. Under intrinsic geometric realization, 4.4.3, | − | : Smooth∞Grpd
Π→ ∞Grp

|−|→ Top
the smooth string 2-group maps to the topological string group

|Stringsmooth| ' String .

Proof. Since B3U(1) has a presentation by a simplicial object in SmoothMfd, prop. 4.4.25 asserts that

|Stringsmooth| ' hofib|1
2
p1| .

The claim then follows with prop. 5.1.9

· · · ' hofib
1

2
p1

and def. 5.1.6
· · · ' String .

�
Notice the following important subtlety:

Proposition 5.1.13. There exists an infinite-dimensional Lie group String1smooth whose underlying topo-
logical group is a model for the String group in Top, def. 5.1.6.

This is due to [NSW11], by a refinement of a construction in [Stol96].

Remark 5.1.14. However, BString1smooth itself is not a model for def. 5.1.10, because it is an internal
1-type in Smooth∞Grpd, hence because π2BStringsmooth = 0. In [NSW11] a smooth 2-group with the
correct internal homotopy groups based on String1smooth is given, but it is not clear yet whether or not this
is a model for def. 5.1.10.
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We proceed by discussing concrete presentations of the smooth string 2-group.

Definition 5.1.15. Write
string := soµ

for the L∞-algebra extension of so induced by µ according to def 4.4.82.
We call this the string Lie 2-algebra

Observation 5.1.16. The indecomposable invariant polynomials on string are those of so except for the
Killing form:

inv(string) = inv(so)/(〈−,−〉) .

Proof. As a special case of prop. 4.4.100. �

Proposition 5.1.17. The smooth ∞-groupoid that is the Lie integration of soµ is a model for the smooth
string 2-group

BString ' cosk3 exp(soµ) .

Notice that this statement is similar to, but different from, the statement about the untruncated expo-
nentiated L∞-algebras in prop. 4.4.88.
Proof. By prop. 5.1.9 an explicit presentation for BString is given by the pullback

BStringc //

��

EB2U(1)c

��
cosk3 exp(so)

∫
∆• exp(µ)

// B3U(1)c

in [CartSpop, sSet], where B3U(1)c is the simplicial presheaf whose 3-cells form the space U(1), and where
EB2U(1) is the simplicial presheaf whose 2-cells form U(1) and whose 3-cells form the space of arbitrary
quadruples of elements in U(1). The right vertical morphism forms the oriented sum of these quadruples.

Since all objects are 3-truncated, it is sufficient to consider the pullback of the simplices in degrees 0 to
3. In degrees 0 to 1 the morphism EB2U(1) → B3U(1)c is the identity, hence in these degrees BStringc
coincides with cosk3 exp(so). In degree 2 the pullback is the product of cosk3(so)2 with U(1), hence the
2-cells of BStringc are pairs (f, c) consisting of a smooth map f : ∆2 → Spin (with sitting instants) and an
elemement c ∈ U(1). Finally a 3-cell in BStringc is a pair (σ, {ci}) of a smooth map σ : ∆3 → Spin and four
labels ci ∈ U(1), subject to the condition that the sum of the labels is the integral of the cocycle µ over σ:

c4c2c
−1
1 c−1

3 =

∫
∆3

σ∗µ(θ) modZ ,

(with θ the Maurer-Cartan form on Spin).
The description of the cells in cosk3 exp(gµ) is similar: a 2-cells is a pair (f,B) consisting of a smooth

function f : ∆2 → Spin and a smooth 2-form B ∈ Ω2(∆2) (both with sitting instants), and a 3-cell is a pair
consisting of a smooth function σ : ∆3 → Spin and a 2-form B̂ ∈ Ω2(∆3) such that dB̂ = σ∗µ(θ).

There is an evident morphism

p :

∫
∆•

: cosk3(soµ)→ BStringc

that is the identity on the smooth maps from simplices into the Spin-group and which sends the 2-form
labels to their integral over the 2-faces

p2 : (f,B) 7→ (f, (

∫
∆2

B)modZ) .
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We claim that this is a weak equivalence. The first simplicial homotopy group on both sides is Spin itself
(meaning: the presheaf on CartSp represented by Spin). The nontrivial simplicial homotopy group to check
is the second. Since π2(Spin) = 0 every pair (f,B) on ∂∆3 is homotopic to one where f is constant. It fol-
lows from prop. 4.4.52 that the homotopy classes of such pairs where also the homotopy involves a constant
map ∂∆3 ×∆1 → Spin are given by R, being the integral of the 2-forms. But then moreover there are the
non-constant homotopies in Spin from the constant 2-sphere to itself. Since π3(Spin) = Z and µ(θ) is an
integral form, this reduces the homotopy classes to U(1) = R/Z. This are the same as in BStringc and the
integration map that sends the 2-forms to elements in U(1) is an isomorphism on these homotopy classes. �

Remark 5.1.18. Propositions 5.1.17 and 5.1.12 together imply that the geometric realization |cosk3 exp(soµ)|
is a model for BString in Top

| exp(soµ)| ' BString.

With slight differences in the technical realization of exp(gmu) this was originally shown in [Henr08], theorem
8.4. For the following discussion however the above perspective, realizing cosk3 exp(soµ) as a presentation
of the homotopy fiber of the smooth first fractional Pontryagin class, def 5.1.10, is crucial.

We now discuss three equivalent but different models of the smooth String 2-group by diffeological strict
2-groups, hence by crossed modules of diffeological groups. See [BCSS07] for the general notion of strict
Fréchet-Lie 2-groups and for discussion of one of the following models.

Definition 5.1.19. For (G1 → G0) a crossed module of diffeological groups (groups of concrete sheaves on
CartSp) write

Ξ(G1 → G0) ∈ [CartSpop, sSet]

for the corresponding presheaf of simplicial groups.

There is an evident strictification of BStringc from the proof of prop 5.1.17 given by the following
definition. For the notion of thin homotopy classes of paths and disks see [ScWaII].

Definition 5.1.20. Write
Ω̂thSpin→ PthSpin ,

for the crossed module where

• PthSpin is the group whose elements are thin-homotopy classes of based smooth paths in G and whose
product is obtained by rigidly translating one path so that its basepoint matches the other path’s
endpoint and then concatenating;

• Ω̂thSpin is the group whose elements are equivalence classes of pairs (d, x) consisting of thin homotopy
classes of disks d : D2 → G in G with sitting instant at a chosen point on the boundary, together with
an element x ∈ R/Z. Two such pairs are taken to be equivalent if the boundary of the disks has the
same thin homotopy classes and if the labels x and x′ differ, in R/Z, by the integral

∫
D3 f

∗µ(θ) over
any 3-ball f : D3 → G cobounding the two disks. The product is given by translating and then gluing
of disks at their basepoint (so that their boundary paths are being concatenated, hence multiplied in
PthSpin) and adding the labels in R/Z.

The map from Ω̂thSpin to PthSpin is given by sending a disk to its boundary path.

The action of PthSpin on ΩthSpin is given by whiskering a disk by a path and its reverse path.

Proposition 5.1.21. Let
BStringc → BΞ(Ω̂thSpin→ PthSpin)

be the morphism that sends maps to Spin to their thin-homotopy class. This is a weak equivalence in
[CartSpop, sSet]proj.
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We produce now two equivalent crossed modules that are both obtained as central extensions of path
groups. This is joint with Danny Stevenson, based on results in [MuSt03].

The following proposition is standard.

Proposition 5.1.22. Let H ⊂ G be a normal subgroup of some group G and lat Ĥ → H be a central
extension of groups such that the conjugation action of G on H lifts to an automorphism action α : G →
Aut(Ĥ) on the central extension. Then (Ĥ → G) with this α is a crossed module.

We construct classes of examples of this type from central extensions of path groups.

Proposition 5.1.23. Let G ⊂ Γ be a simply connected normal Lie subgroup of a Lie group Γ. Write PG
for the based path group of G whose elements are smooth maps [0, 1] → G starting at the neutral element
and whose product is given by the pointwise product in G. Consider the complex with differential d ± δ of
simplicial forms on BGch. Let (F, a, β) be a triple where
i. a ∈ Ω1(G×G) such that δa = 0;
ii. F is a closed integral 2-form on G such that δF = da;
iii. β : Γ→ Ω1(G) such that, for all γ, γ1, γ2 ∈ Γ,

• γ∗F = F + dβγ ;

• (γ1)∗βγ2 − βγ1γ2 + βγ1 = 0;

• a = γ∗a+ δ(βγ);

• for all based paths f : [0, 1]→ G, f∗βγ = (f, γ−1)∗a+ (γ, fγ−1)∗a.

1. Then the map c : PG×PG→ U(1) given by c : (f, g) 7→ cf,g := exp

(
2πi

∫
0,1

(f, g)∗a

)
is a group 2-cocycle

leading to a central extension P̂G = PGn U(1) with product (γ1, x1) · (γ2, x2) = (γ1 · γ2, x1x2cγ1,γ2
).

2. Since G is simply connected every loop in G bounds a disk D. There is a normal subgroup N ⊂ P̂G
consisting of pairs (γ, x) with γ(1) = e and x = exp(2πi

∫
D
F ) for any disk D in G such that ∂D = γ.

3. Finally, G̃ := P̂G/N is a central extension of G by U(1) and the conjugation action of Γ on G lifts to
G̃ by setting α(γ)(f, x) := (α(γ)(f), x exp(∈f βγ)) such that Cent(G,Γ, F, a, β) := (G̃→ Γ) is a Lie crossed
module and hence a strict Lie 2-group of the type in prop. 5.1.22.

Proof. All statements about the central extension Ĝ can be found in [MuSt03]. It remains to check that
the action α : Γ → Aut(G̃) satisfies the required axioms of a crossed module, in particular the condition
α(t(h))(h′) = hh′h−1. For this we have to show that

α(h(1))([f, z]) = [h, 1][f, z]

[
h−1, exp(−

∫
(h,h−1)

a)

]
,

where h denotes a based path in PG, so that [h, 1] represents an element of G̃. By definition of the product
in G̃, the right hand side is equal to[

hfh−1, z exp

(∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a

)]
.

This is not exactly in the form we want, since the left hand side is equal to
[
h(1)fh(1)−1, z exp(

∫
f
βh)
]
.

Therefore, we want to replace hfh−1 with the homotopic path h(1)fh(1)−1. An explicit homotopy between
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these two paths is given by H(s, t) = h((1− s)t+ s)f(t)h((1− s)t+ s)−1. Therefore, we have the equality[
hfh−1, z exp

(∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a

)]

=

[
h(1)fh(1)−1, z exp

(∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a+

∫
H∗F

)]
.

Using the relation δ(F ) = da and the fact that the pullback of F along the maps [0, 1] × [0, 1] → G,
(s, t) 7→ h((1− s)t+ s) vanish, we see that∫

H∗F =

∫
(f,h(1)−1)

a−
∫

(f,h−1)

a+

∫
(h,h−1)

a+

∫
(h(1),fh(1)−1)

a−
∫

(h,fh−1)

a .

Therefore the sum of integrals ∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a+

∫
H∗F

can be written as∫
(h,f)

a+

∫
(hf,h−1)

a−
∫

(h,h−1)

a+

∫
(f,h(1)−1)

a−
∫

(f,h−1)

a+

∫
(h,h−1)

a+

∫
(h(1),fh(1)−1)

a−
∫

(h,fh−1)

a .

Using the condition δ(a) = 0, we see that this simplifies down to
∫

(f,h(1)−1)
a+

∫
(h(1),fh(1)−1)

a. Therefore, a

sufficient condition to have a crossed module is the equation f∗βh = (f, h(1))∗a+ (h(1), fh(1)−1)∗a . �

Proposition 5.1.24. Given triples (F, a, β) and (F ′, a′, β′) as above and given b ∈ Ω1(G) such that

F ′ = F + db , (5.1)

a′ = a+ δ(b) (5.2)

and for all γ ∈ Γ
βγ + γ∗b = b+ β′γ , (5.3)

then there is an isomorphism Cent(G,Γ, F, a, β) ' Cent(G,Γ, F ′, a′, β′) .

In [BCSS07] the following special case of this general construction was considered.

Definition 5.1.25. Let G be a compact, simple and simply-connected Lie group with Lie algebra g. Let 〈·, ·〉
be the Killing form invariant polynomial on g, normalized such that the Lie algebra 3-cocycle µ := 〈·, [·, ·]〉
extends left invariantly to a 3-form on G which is the image in deRham cohomology of one of the two
generators of H3(G,Z) = Z. Let ΩG be the based loop group of G whose elements are smooth maps
γ : [0, 1] → G with γ(0) = γ(1) = e and whose product is by pointwise multiplication of such maps. Define
F ∈ Ω2(ΩG), a ∈ Ω1(ΩG× ΩG) and β : Γ→ Ω1(ΩG)

F (γ,X, Y ) :=

∫ 2π

0

〈X,Y ′〉dt

a(γ1, γ2, X1, X2) :=

∫ 2π

0

〈X1, γ̇2γ
−1
2 〉dt

β(p)(γ,X) :=

∫ 2π

0

〈p−1ṗ, X〉dt

This satisfies the axioms of prop. 5.1.23 and we write

StringBCSS(G) := ΞCent(ΩG,PG,F, α, β)

for the corresponding diffeological strict 2-group. If G = Spin we write just StringBCS for this.
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There is a variant of this example, using another cocycle on loop groups that was given in [Mick87].

Definition 5.1.26. With all assumptions as in definition 5.1.25 define now

F (γ,X, Y ) :=
1

2

∫ 2π

0

〈γ−1γ̇, [X,Y ]〉dt

a(γ1, γ2, X1, X2) :=
1

2

∫ 2π

0

(
〈X1, γ̇2γ

−1
2 〉 − 〈γ

−1
1 γ̇1, γ2X2γ

−1
2 〉
)
dt

β(p)(γ,X) :=
1

2

∫ 2π

0

〈γ−1p−1ṗγ + p−1ṗ, X〉dt

This satisfies the axioms of proposition 5.1.23 and we write

StringMick(G) := ΞCent(ΩG,PG,F, α, β)

for the corresponding 2-group. If G = Spin we write just StringMick for this.

Proposition 5.1.27. There is an isomorphism of 2-groups StringBCSS(G)
' // StringMick(G) .

Proof. We show that b ∈ Ω1(ΩG) defined by b(γ,X) := 1
4π

∫ 2π

0
〈γ−1γ̇, X〉dt satisfies the conditions of

prop. 5.1.24 and hence defines the desired isomorphism.

• Proof of equation 5.1: We calculate the exterior derivative db. To do this we first calculate the deriva-

tive Xb(y): if γt = γetX then to first order in t, γ−1
t γ̇t is equal to γ−1γ̇ + t[γ−1γ̇, X] + tX ′. Therefore

Xb(Y ) =
1

2

∫ 2π

0

(
〈γ−1γ̇, [X,Y ]〉+ 〈X ′, Y 〉

)
dt .

Hence db is equal to

1

2

∫ 2π

0

(
〈γ−1γ̇, [X,Y ]〉+ 〈X ′, Y 〉+ 〈γ−1ċ, [X,Y ]〉 − 〈Y ′, X〉 − 〈γ−1γ̇, [X,Y ]〉

)
,

which is easily seen to simplify down to

−
∫ 2π

0

〈X,Y 〉dt+
1

2

∫ 2π

0

〈γ−1γ̇, [X,Y ]〉dt .

• Proof of equation 5.2: We get

1

2

∫ 2π

0

{
〈γ2γ̇

−1
2 , X2〉 − 〈γ−1

2 γ−1
1 γ̇1γ2, γ

−1
2 X1γ2〉 − 〈γ−1

2 γ−1
1 γ̇1γ2, X2〉

−〈γ−1
2 γ̇2, γ

−1
2 X1γ2〉 − 〈γ−1

2 γ̇2, X2〉+ 〈γ−1
1 γ̇1, X1〉

}
dt ,

which is equal to
1

2

∫ 2π

0

{
−〈γ−1

1 γ̇1, γ2X2γ
−1
2 〉 − 〈γ̇2γ

−1
2 , X1〉

}
dt ,

which in turn equals

1

2

∫ 2π

0

{
〈X1, γ̇2γ

−1
2 〉 − 〈γ

−1
1 γ̇1, γ2X2γ

−1
2 〉
}
dt− 1

2π

∫ 2π

0

〈X1, γ̇2γ
−1
2 〉dt .
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• Proof of equation 5.3: we get

p∗b(γ; γX) = b(pγp−1; pγp−1(pXp−1))

=
1

2

∫ 2π

0

〈pγp−1(ṗγp−1 + pγ̇p−1 − pγp−1ṗp−1, pXp−1〉dt

=
1

2

∫ 2π

0

〈pγ−1p−1ṗγp−1 + pγ−1γ̇p−1 − ṗp−1, pXp−1〉dt

=
1

2

∫ 2π

0

〈γ−1p−1ṗγ + γ−1γ̇ − p−1ṗ, X〉dt

= b(γ, γX) +
1

2

∫ 2π

0

〈γ−1p−1ṗγ − p−1ṗ, X〉dt

= b(γ, γX) +
1

2

∫ 2π

0

〈γ−1p−1ṗγ + p−1ṗ, X〉dt− 1

2π

∫ 2π

0

〈p−1ṗ, X〉dt

The three conditions in proposition 5.1.24 are satisfied and, therefore, the desired isomorphism is established.
�

Proposition 5.1.28. The strict 2-group StringMick from definition 5.1.26 is equivalent to the model Ξ(Ω̂thSpin→
Pth)Spin from def. 5.1.20.

Proof. We define a morphism F : BStringMick → BΞ(Ω̂thSpin → Pth)Spin. Its action on 1- and
2-morphisms is obvious: it sends parameterized paths γ : [0, 1] → G = Spin. to their thin-homotopy
equivalence class

F : γ 7→ [γ]

and similarly for parameterized disks. On the R/Z-labels of these disks it acts as the identity.
The subtle part is the compositor measuring the coherent failure of this assignment to respect composition:

Define the components of this compositor for any two parameterized based paths γ1, γ2 : [0, 1] → G with
pointwise product (γ1 ·γ2) : [0, 1]→ G and images [γ1], [γ2], [γ1 ·γ2] in thin homotopy classes to be represented
by a parameterized disk in G

γ2

��

γ1

??

γ1·γ2

//
dγ1,γ2��

equipped with a label xγ1,γ2
∈ R/Z to be determined. Notice that this triangle is a diagram in Ξ(Ω̂thSpin→

Pth)Spin, so that composition of 1-morphisms is concatenation γ1 ◦ γ2 of paths. A suitable disk in G is
obtained via the map

D2 a // [0, 1]2
(s1,s2)7→γ1(s1)·γ2(s2) // G ,

where a is a smooth surjection onto the triangle {(s1, s2)|s2 ≤ s1} ⊂ [0, 1]2 such that the lower semi-circle
of ∂D2 = S1 maps to the hypotenuse of this triangle. The coherence law for this compositor for all triples
of parameterized paths γ1, γ2, γ3 : [0, 1]→ G amounts to the following: consider the map

D3 a // [0, 1]3
(s1,s2,s3) 7→γ1(s1)·γ2(s2)·γ3(s3) // G ,

where the map a is a smooth surjection onto the tetrahedron {(s3 ≤ s2 ≤ s1)} ⊂ [0, 1]3 . Then the coherence
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condition

•
γ2 // •

γ3

��
•

γ1

OO

γ1·γ2

??

γ1·γ2·γ3

// •

{
s3=0
s2≤s1

}
�!

{
s1=s2
s3≤s1

}
	�

=

•
γ2 //

γ2·γ3

��

•

γ3

��
•

γ1

OO

γ1·γ2·γ3

// •

{
s1=1
s3≤s2

}
}�

{
s2=s3
s2≤s1

}
�

requires that the integral of the canonical 3-form on G pulled back to the 3-ball along these maps accounts
for the difference in the chosen labels of the disks involved:∫

D3

(b ◦ a)∗µ =

∫
s3≤s2≤s1

(γ1 · γ2 · γ3)∗µ = xγ1,γ2
+ xγ1·γ2,γ3

− xγ1,γ2·γ3
− xγ2,γ3

∈ R/Z .

(Notice that there is no further twist on the right hand side because whiskering in BΞ(Ω̂thG→ PthG) does
not affect the labels of the disks.) To solve this condition, we need a 2-form to integrate over the triangles.
This is provided by the degree 2 component of the simplicial realization (µ, ν) ∈ Ω3(G)× Ω2(G×G) of the
first Pontryagin form as a simplicial form on BGch:

for g a semisimple Lie algebra, the image of the normalized invariant bilinear polynomial 〈·, ·〉 under the
Chern-Weil map is (µ, ν) ∈ Ω3(G)× Ω2(G×G) with

µ := 〈θ ∧ [θ ∧ θ]〉

and
ν := 〈θ1 ∧ θ̄2〉 ,

where θ is the left-invariant canonical g-valued 1-form on G and θ̄ the right-invariant one.
So, define the label assigned by our compositor to the disks considered above by

xγ1,γ2 :=

∫
s2≤s1

(γ1, γ2)∗ν .

To show that this assignment satisfies the above condition, use the closedness of (µ, ν) in the complex of
simplicial forms on BGch: δµ = dν and δν = 0. From this one obtains

(γ1 · γ2 · γ3)∗µ = −d(γ1 · γ2, γ3)∗ν = −d(γ1, γ2 · γ3)∗ν

and
(γ1, γ2 · γ3)∗ν = (γ1 · γ2, γ3)∗ν + (γ1, γ2)∗ν − (γ2, γ3)∗ν .

Now we compute as follows: Stokes’ theorem gives

∫
s3≤s2≤s1

(γ1 · γ2 · γ3)∗µ =

 ∫
s3=0,s2≤s1

+

∫
s1=s2,s3≤s1

−
∫

s1=1,s3≤s2

−
∫

s2=s3,s2≤s1

 (γ1, γ2 · γ3)∗ν .

The first integral is manifestly equal to xγ1,γ2 . The last integral is manifestly equal to −xγ1,γ2·γ3 . For the
remaining two integrals we rewrite

· · · = xγ1,γ2
− xγ1,γ2·γ3

+

 ∫
s1=s2,s3≤s1

−
∫

s1=1,s3≤s2

 ((γ1 · γ2, γ3)∗ν + (γ1, γ2)∗ν − (γ2, γ3)∗ν) .
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The first term in the integrand now manifestly yields xγ1·γ2,γ3 − xγ2,γ3 . The second integrand vanishes on
the integration domain. The third integrand, finally, gives the same contribution under both integrals and
thus drops out due to the relative sign. So in total what remains is indeed

· · · = xγ1,γ2
− xγ1,γ2·γ3

+ xγ1·γ2,γ3
− xγ2,γ3

.

This establishes the coherence condition for the compositor.

Finally we need to show that the compositor is compatible with the horizontal composition of 2-
morphisms. We consider this in two steps, first for the horizontal composition of two 2-morphisms both
starting at the identity 1-morphism in BStringMick(G) – this is the product in the loop group Ω̂G centrally
extended using Mickelsson’s cocycle – then for the horizontal composition of an identity 2-morphism in
BStringMick(G) with a 2-morphism starting at the identity 1-morphisms – this is the action of PG on Ω̂G.
These two cases then imply the general case.

• Let (d1, x1) and (d2, x2) represent two 2-morphisms in BStringMick starting at the identity 1-morphisms.
So

di : [0, 1]→ ΩG

is a based path in loops in G and xi ∈ U(1). We need to show that

•

Id

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•(d1,x1)

��
(d2,x2)

��

(dγ1,γ2 ,xγ1,γ2 )
��

= •

Id

%%

γ1·γ2

CC•

Id

%% •

(d1·d2,x1+x2+ρ(d1,d2))

��

as a pasting diagram equation in BΞ(Ω̂thG → PthG). Here on the left we have gluing of disks in G
along their boundaries and addition of their labels, while on the right we have the pointwise product
from definition 5.1.26 of labeled disks as representing the product of elements Ω̂G.

There is an obvious 3-ball interpolating between the disk on the left and on the right of the above
equation:

({s2 ≤ s1} ⊂ [0, 1]3)→ G

(s1, s2, t) 7→ (d1(t, s1) · d2(t, s2))

•

Id

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•{s2=0}
��

{s1=0}
��

{t=1}
��

, •

Id

%%

γ1·γ2

CC•

Id

%% •

{s1=s2}

��

.

The compositor property demands that the integral of the canonical 3-form over this ball accounts for
the difference between xγ1,γ2

and ρ(γ1, γ2)

ρ(d1, d2) =

∫
s2≤s1
0≤t≤1

(d1 · d2)∗µ+

∫
s2≤s1

(γ1, γ2)∗ν .

Now use again the relation between µ and dν to rewrite this as

· · · =
∫

s2≤s1
0≤t≤1

((d1)∗µ+ (d2)∗µ− d(d1, d2)∗ν) +

∫
s2≤s1

(γ1, γ2)∗ν .
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The first two integrands vanish. The third one leads to boundary integrals

· · · = −

 ∫
s2=0

+

∫
s1=0

 (d1, d2)∗ν −
∫
t=1
s2≤s1

(d1, d2)∗ν +

∫
s2≤s1

(γ1, γ2)∗ν +

∫
0≤t≤1
s1=s2

(d1, d2)∗ν .

The first two integrands vanish on their integration domain. The third integral cancels with the fourth
one. The remaining fifth one is indeed the 2-cocycle on PΩG from definition 5.1.26.

• The second case is entirely analogous: for γ1 a path and (d2, x2) a centrally extended loop we need to
show that

•

γ1

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•Id

��
(d2,x2)

��

(dγ1,γ2
,xγ1,γ2

)
��

= •

γ1

%%

γ1·γ2

CC•

Id

%% •

(γ1·d2,x1+x2+λ(γ1,d2))

��

.

There is an obvious 3-ball interpolating between the disk on the left and on the right of the above
equation:

({s2 ≤ s1} ⊂ [0, 1]3)→ G

(s1, s2, t) 7→ (γ1(s1) · d2(t, s2))

•

γ1

%%

γ1

CC

γ1·γ2

CC•

Id

%%

γ2

CC•{s2=0}
��

{s1=0}
��

{t=1}
��

, •

γ1

%%

γ1·γ2

CC•

Id

%% •

{s1=s2}

��

.

The compositor property demands that the integral of the canonical 3-form over this ball accounts for
the difference between xγ1,γ2

and λ(γ1, γ2)

λ(γ1, d2) =

∫
s2≤s1
0≤t≤1

(d1 · d2)∗µ+

∫
s2≤s1

(γ1, γ2)∗ν .

This is essentially the same computation as before, so that the result is

· · · =
∫

0≤t≤1
s1=s2

(γ1, d2)∗ν .

This is indeed the quantity from definition 5.1.26.

�
Applied to the case G = Spin in summary this shows that all these strict smooth 2-groups are indeed
presentations of the abstractly defined smooth String 2-group from def. 5.1.10.

Theorem 5.1.29. We have equivalences of smooth 2-groups

String ' Ωcosk3 exp(soµ) ' StringBCSS ' StringMick .
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Notice that all the models on the right are degreewise diffeological and in fact Fréchet, but not degreewise
finite dimensional. This means that neither of these models is a differentiable stack or Lie groupoid in the
traditional sense, even though they are perfectly good models for objects in Smooth∞Grpd. Some authors
found this to be a deficiency. Motivated by this it has been shown in [Scho10] that there exist finite
dimensional models of the smooth String-group. Observe however the following:

1. If one allows arbitrary disjoint unions of finite dimensional manifolds, then by prop. 2.2.18 every
object in Smooth∞Grpd has a presentation by a simplicial object that is degreewise of this form, even
a presentation which is degreewise a union of just Cartesian spaces.

2. Contrary to what one might expect, it is not the degreewise finite dimensional models that seem to
lend themselves most directly to differential refinements and differential geometric computations with
objects in Smooth∞Grpd, but the models of the form coskn exp(g). See also the discussion in 5.4.7.3
below.

5.1.5 Smooth fivebrane structure and the Fivebrane-6-group

We now climb up one more step in the smooth Whitehead tower of the orthogonal group, to find a smooth
and differential refinement of the Fivebrane group.

Proposition 5.1.30. Pulled back along BString→ BO the second Pontryagin class is 6 times a generator
1
6p2 of H8(BString,Z) ' Z:

BString
1
6p2 //

��

B8Z

·6
��

BSpin
p2 // B8Z

.

This is due to [Bott58]. We call 1
6p2 the second fractional Pontryagin class .

Definition 5.1.31. Write BFivebrane for the homotopy fiber of the second fractional Pontryagin class in
Top ' ∞Grpd

BFivebrane //

��

∗

��
BString

1
6p2 // B8Z

.

Write
Fivebrane := ΩBFivebrane

for its loop space, the topological fivebrane ∞-group.

This is the next step in the topological Whitehead tower of O after String, often denoted O〈7〉. For a
discussion of its role in the physics of super-Fivebranes that gives it its name here in analogy to String = O〈3〉
see [SSS09b]. See also [DoHeHi10], around remark 2.8. We now construct smooth and then differential
refinements of this object.

Theorem 5.1.32. The image under Lie integration, 4.4.11, of the canonical Lie algebra 7-cocycle

µ7 = 〈−, [−,−], [−,−], [−,−]〉 : soµ3
→ b6R

on the string Lie 2-algebra soµ3
, def. 5.1.15, is a morphism in Smooth∞Grpd of the form

1

6
p2 : BString→ B7U(1)
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whose image under the the fundamental∞-groupoid∞-functor/ geometric realization, 4.3.4, Π : Smooth∞Grpd→
∞Grpd is the ordinary second fractional Pontryagin class 1

6p2 : BString → B8Z in Top. We call 1
6 p̂2 :=

exp(µ7) the second smooth fractional Pontryagin class
Moreover, the corresponding refined differential characteristic cocycle, 4.4.14,

1

6
p̂2 : Hconn(−,BSpin)→ Hdiff(−,B7U(1)) ,

induces in cohomology the ordinary refined Chern-Weil homomorphism [HoSi05]

[
1

6
p̂2] : H1

Smooth(X,String)→ H4
diff(X)

of 〈−,−,−,−〉 restricted to those Spin-principal bundles P that have String-lifts

[P ] ∈ H1
smooth(X,String) ↪→ H1

smooth(X,Spin) .

Proof. This is shown in [FSS10]. The proof is analogous to that of prop. 5.1.9. �

Definition 5.1.33. Write BFivebrane for the homotopy fiber in Smooth∞Grpd of the smooth refinement
of the second fractional Pontryagin class, prop. 5.1.32:

BFivebrane //

��

∗

��
BString

1
6 p2 // B7U(1)

.

We say its loop space object is the smooth fivebrane 6-group

Fivebranesmooth := ΩBFivebrane .

This has been considered in [SSS09c]. Similar discussion as for the smooth String 2-group applies.
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5.2 Higher Spinc-structures

In 5.1 we saw that the classical extension

Z2 → Spin(n)→ SO(n)

is only the first step in a tower of smooth higher spin groups.
There is another classical extension of SO(n), not by Z2 but by the circle group [LaMi89]:

U(1)→ Spinc(n)→ SO(n) .

Here we discuss higher smooth analogs of this construction.
This section draws form [FiSaScIII].

We find below that Spinc is a special case of the following simple general notion, that turns out to be
useful to identify and equip with a name.

Definition 5.2.1. Let H be an ∞-topos, G ∈ ∞Grp(H) an ∞-group object, let A be an abelian group
object and let

p : BG→ Bn+1A

be a characteristic map. Write Ĝ→ G for the extension classified by p, exhibited by a fiber sequence

BnA→ Ĝ→ G

in H. Then for H ∈ ∞Grp(H), any other ∞-group with characteristic map of the same form

c : BH → Bn+1A

we write
Ĝc := Ω (BGp ×c BH) ∈ ∞Grp(H)

for the loop space object of the ∞-pullback

BĜc //

��

BH

c

��
BG

p // Bn+1A

.

Remark 5.2.2. Since the Eilenberg-MacLane object Bn+1A is tself an ∞-group object, by the Mayer-
Vietoris fiber sequence in H, prop. 3.3.76, the object BĜc is equivalently the homotopy fiber of the difference
(p− c) of the two characteristic maps

BĜc //

��

∗

��
BG×BH

p−c // BnA

.

5.2.1 Spinc as a homotopy fiber product in Smooth∞Grpd

A classical definition of Spinc is the following (for instance [LaMi89]).

Definition 5.2.3. For each n ∈ N the Lie group Spinc(n) is the fiber product of Lie groups

Spinc(n) := Spin(n)×Z2
U(1)

= (Spin(n)× U(1))/Z2 ,

where the quotient is by the canonical subgroup embeddings.
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We observe now that in the context of Smooth∞Grpd this Lie group has the following intrinsic charac-
terization.

Proposition 5.2.4. In Smooth∞Grpd we have an ∞-pullback diagram of the form

BSpinc //

��

BU(1)

c1mod2

��
BSO

w2 // B2Z2

,

where the right morphism is the smooth universal first Chern class, example 1.3.64, composed with the mod-2
reduction BZ→ BZ2, and where w2 is the smooth universal second Stiefel-Whiteney class, example 1.3.68.

Proof. By the discussion at these examples, these universal smooth classes are represented by spans of
simplicial presheaves

B(Z→ R)ch
c1 //

'
��

B(Z→ 1)ch B2Z

BU(1)ch

and
B(Z2 → Spin)ch

//

'
��

B(Z2 → 1)ch B2(Z2)ch

BSOch

.

Here both horizontal morphism are fibrations in [CartSpop
smooth, sSet]proj. Therefore by prop. 2.3.12 the

∞-pullback in question is given by the ordinary fiber product of these two morphisms. This is

B(Z→ Spin× R)ch
//

��

B(Z→ R)ch

��
B(Z mod2→ Spin)ch

��

// B(Z→ 1)ch

��
B(Z2 → Spin)ch

// B(Z2 → 1)ch

,

where the crossed module (Z ∂→ Spin× R) is given by

∂ : n 7→ (n mod 2, n) .

Since this is a monomorphism, including (over the neutral element) the fiber of a locally trivial bundle we
have an equivalence

B(Z→ Spin× R)
'→ B(Z2 → Spin× U(1))

'→ B(Spin×Z2
U(1))

in [CartSpop, sSet]proj. On the right is, by def. 5.2.3, the delooping of Spinc. �

Remark 5.2.5. Therefore by def. 5.2.1 we have

Spinc ' Spinc1mod2 ,

which is the very motivation for the notation in that definition.
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Remark 5.2.6. From prop. 5.2.4 we obtain the following characterization of Spinc-structures in H =
Smoth∞Grpd over a smooth manifold expressed in terms of traditional Čech cohomology, 4.3.6.1.

For X ∈ SmthMfd, the fact that H(X,−) preserves ∞-limits implies from prop. 5.2.4 that we have an
∞-pullback of cocycle ∞-groupoids

H(X,BSpinc) //

��

H(X,BU(1))

c1mod2

��
H(X,BSO)

w2 // H(X,B2Z2)

.

Picking any choice of differentially good open cover {Ui → X} of X and using the standard presentation of
the coeffcient moduli stacks appearing here by sheaves of groupoids as discussed in 4.4.2, each of the four
∞-groupoids appearing here is canonically identified with the groupoid (or 2-groupoid in the bottom right)
of Čech cocycles and Čech coboundaries with respect to the given cover and with coefficients in the given
group. Moreover, in this presentation the right vertical morphism of the above diagram is clearly a fibration,
and so by prop. 2.3.7 the ordinary pullback of these groupoids is already the correct∞-pullback, hence is the
groupoid H(X,BSpinc) of Spinc-structure on X. So we read off from the diagram and the construction in
the above proof: given a Čech 1-cocycle for an SO-structure on X the corresponding Spinc-structure is a lift
to a (Z→ R)-valued Čech cocycle of the Z2-valued Čech 2-cocycle that represents the second Stiefel-Whitney
class, as described in 1.3.68, through the evident projetion (Z → R) → (Z2 → ∗) that by example. 1.3.64
presents the universal first Chern class.

5.2.2 Smooth Stringc2

We consider smooth 2-groups of the form Stringc, according to def. 5.2.1, where BU(1)→ String→ Spin in
Smooth∞Grpd is the smooth String-2-group extension of the Spin-group from def. 5.1.10.

In [Sa10b] the following notion is introduced.

Definition 5.2.7. Let

pc1 : BSpinc → BSpin
1
2p1→ K(Z, 4)

in Top ' ∞Grpd, where the first map is induced on classifying spaces by the defining projection, def. 5.2.3,
and where the second represents the fractional first Pontryagin class from prop. 5.1.5.

Then write Stringc for the topological group, well defined up to weak homotopy equivalence, that models
the loop space of the homotopy pullback

BStringc //

��

(BU(1))× (BU(1))

c1∪c1
��

BSpinc
pc1 // K(Z, 4)

in Top.

This construction, and the role it plays in [Sa10b], is evidently an example of general structure of def.
5.2.1, the notation of which is motivated from this example. We consider now smooth and differential
refinements of such objects.

To that end, recall from theorem. 5.1.9 the smooth refinement of the first fractional Pontryagin class

1

2
p1 : BSpin→ B3U(1)

and from def. 5.1.10 the defining fiber sequence

BString // BSpin
1
2 p1 // B3U(1) .
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The proof of theorem 5.1.9 rests only on the fact that Spin is a compact and simply connected simple Lie
group. The same is true for the special unitary group SU and the exceptional Lie group E8.

Proposition 5.2.8. The first two non-vanishing homotopy groups of E8 are

π3(E8) ' Z

and
π15(E8) ' Z .

This is a classical fact[BoSa58]. It follows with the Hurewicz theorem that

H4(BE8,Z) ' Z .

Therefore the generator of this group is, up to sign, a canonical characteristic class, which we write

[a] ∈ H4(BE8,Z)

corresponding to a characeristic map a : BE8 → K(Z, 4). Hence we obtain analogously the following
statements.

Corollary 5.2.9. The second Chern-class

c2 : BSU→ K(Z, 4)

has an essentially unique lift through Π : Smooth∞Grpd→∞Grpd ' Top to a morphism of the form

c2 : BSU→ B3U(1)

and a representative is provided by the Lie integration exp(µsu
3 ) of the canonical Lie algebra 3-cocycle µsu

3 :
su→ b2R

c2 ' exp(µsu
3 ) .

Similarly the characteristic map
a : BE8 → K(Z, 4)

has an essentially unique lift through Π : Smooth∞Grpd→∞Grpd ' Top to a morphism of the form

a : BE8 → B3U(1)

and a representative is provided by the Lie integration exp(µe8
3 ) of the canonical Lie algebra 3-cocycle µe8

3 :
e8 → b2R

a ' exp(µe8
3 ) .

Therefore we are entitled to the following special case of def. 5.2.1.

Definition 5.2.10. The smooth 2-group

Stringc2 ∈ ∞Grp(Smooth∞Grpd)

is the loop space object of the ∞-pullback

BStringc2 //

��

BSU

c2

��
BSpin

1
2 p1 // B3U(1)

.

385



Analogously, the smooth 2-group

Stringa ∈ ∞Grp(Smooth∞Grpd)

is the loop space object of the ∞-pullback

BStringa //

��

BE8

a

��
BSpin

1
2 p1 // B3U(1)

.

Remark 5.2.11. By prop. 3.3.76, Stringa is equivalently is the homotopy fiber of the difference 1
2p1 − a

BStringa //

��

∗

��
B(Spin× E8)

1
2 p1−a // B3U(1)

.

We consider now a presentation of Stringa by Lie integration, as in 4.4.11.

Definition 5.2.12. Let
(so⊗ e8)µso

3 −µ
e8
3
∈ L∞Alg

be the L∞-algebra extension, according to def. 4.4.82, of the tensorproduct Lie algebra so ⊗ e8 by the
difference of the canonical 3-cocycles on the two factors.

Proposition 5.2.13. The Lie integration, def. 4.4.44, of the Lie 2-algebra (so⊗e8)µso
3 −µ

e8
3

is a presentation

of Stringa:

Stringa ' τ2 exp
(
so⊗ e8)µso

3 −µ
e8
3

)
Proof. With remark 5.2.11 this is directly analogous to prop. 5.1.17. �

Remark 5.2.14. Therefore a 2-connection on a Stringa-principal 2-bundle is locally given by

• an so-valued 1-form ω;

• an e8-valued 1-form A;

• a 2-form B;

such that the 3-form curvature of B is, locally, the sum of the de Rham differential of B with the difference
of the Chern-Simons forms of ω and A, respectively:

H3 = dB + cs(ω)− cs(A) .

We discuss the role of such 2-connections in string theory below in 5.4.7.3.2 and 5.6.7.3.
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5.3 Classical supergravity

Action functionals of supergravity are extensions to super-geometry, 4.6, of the Einstein-Hilbert action func-
tional that models the physics of gravity. While these action functionals are not themselves, generally, of
higher Chern-Simons type, 3.6.9, or of higher Wess-Zumino-Witten type, 3.6.10, some of them are low-energy
effective actions of super string field theory action functionals, that are of this type, as we discuss below in
5.6.8. Accordingly, supergravity action functionals typically exhibit rich Chern-Simons-like substructures.

A traditional introduction to the general topic can be found in [DM99]. A textbook that aims for a more
systematic formalization is [CaDAFr91]. Below in 5.3.3 we observe that the discussion of supergravity there
is secretly in terms of ∞-connections, 1.3.5.6, with values in super L∞-algebras, 4.6.1.

• 5.3.1 – First-order/gauge theory formulation of gravity

• 5.3.2 – Higher extensions of the super Poincaré Lie algebra;

• 5.3.3 – Supergravity fields are super L∞-connections

5.3.1 First-order/gauge theory formulation of gravity

The field theory of gravity (“general relativity”) has a natural first order formulation where a field config-
uration over a given (d + 1)-dimensional manifold X is given by a iso(d, 1)-valued Cartan connection, def.
4.5.43. The following statements briefly review this and related facts (see for instance also the review in the
introduction of [Zane05]).

Definition 5.3.1. For d ∈ N, the Poincaré group ISO(d, 1) is the group of auto-isometries of the Minkowski
space Rd,1 equipped with its canonical pseudo-Riemannian metric η.

This is naturally a Lie group. Its Lie algebra is the Poincaré Lie algebra iso(d, 1).

We recall some standard facts about the Poincaré group.

Observation 5.3.2. The Poncaré group is the semidirect product

ISO(d, 1) ' O(d, 1) nRd+1

of the Lorentz group O(d, 1) of linear auto-isometries of Rd,1, and the abelian translation group in (d + 1)
dimensions, with respect to the defining action of O(d, 1) on Rd,1. Accordingly there is a canonical embedding
of Lie groups

O(d, 1) ↪→ ISO(d, 1)

and the corresponding coset space is Minkowski space

ISO(d, 1)/O(d, 1) ' Rd,1 .,

Analogously the Poincaré Lie algebra is the semidirect product

iso(d, 1) ' so(d, 1) nRd,1 ,

Accordingly there is a canonical embedding of Lie algebras

so(d, 1) ↪→ iso(d, 1)

and the corresponding quotient of vector spaces is Minkowski space

iso(d, 1)/so(d, 1) ' Rd,1 .

Minkowski space Rd,1 is the local model for Lorentzian manifolds.
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Definition 5.3.3. A Lorentzian manifold is a pseudo-Riemannian manifold (X, g) such that each tangent
space (TxX, gx) for any x ∈ X is isometric to a Minkowski space (Rd,1, η).

Proposition 5.3.4. Equivalence classes of (O(d, 1) ↪→ ISO(d, 1))-valued Cartan connections, def. 4.5.43,
on a smooth manifold X are in canonical bijection with Lorentzian manifold structures on X.

This follows from the following observations.

Observation 5.3.5. Locally over a patch U → X a iso(d, 1) connection is given by a 1-form

A = (E,Ω) ∈ Ω1(U, iso(d, 1))

with a component
E ∈ Ω1(U,Rd+1)

and a component
Ω ∈ Ω1(U, so(d, 1)) .

If this comes from a (O(d, 1)→ ISO(d, 1))-Cartan connection then E is non-degenerate in that for all x ∈ X
the induced linear map

E : TxX → Rd+1

is a linear isomorphism. In this case X is equipped with the Lorentzian metric

g := E∗η

and Ω is naturally identified with a compatible metric connection on TX. Then curvature 2-form of the
connection

FA = (FΩ, FE) ∈ Ω2(U, iso(d, 1))

has as components the Riemann curvature

FΩ = dΩ +
1

2
[Ω ∧ Ω] ∈ Ω2(U, so(d, 1))

of the metric connection, as well as the torsion

FE = dE + [Ω ∧ E] ∈ Ω2(U,Rd,1) .

Therefore precisely if in addition the torsion vanishes is Ω uniquely fixed to be the Levi-Civita connection
on (X, g).

Therefore the configuration space of gravity on a smooth manifold X may be identified with the moduli
space of iso(d, 1)-valued Cartan connections on X. The field content of supergravity is obtained from this
by passing from the to Poincaré Lie algebra to one of its super Lie algeba extensions, a super Poincaré Lie
algebra.

There are different such extensions. All involve some spinor representation of the Lorentz Lie algebra
so(d, 1) as odd-degree elements in the super Lie algebra The choice of number N of irreps in this represen-
tation. But there are in general more choices, given by certain exceptional polyvector extensions of such
super-Poincaré-Lie algebras which contain also new even-graded elements.

Below we show that these Lie superalgebra polyvector extensions , in turn, are induced from canonical
super L∞-algebra extensions given by exceptional super Lie algebra cocycles, and that the configuration
spaces of higher dimensional supergravity may be identified with moduli spaces of ∞-connections, 1.3.5,
withvalues in a super L∞-algebra, def. 4.6.13. that arise as higher central extensions, def. 4.4.82, of a super
Poincaré Lie algebra.
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5.3.2 L∞-extensions of the super Poincaré Lie algebra

The super-Poincaré Lie algebra is the local gauge algebra of supergravity. It inherits the cohomology of the
special orthogonal or Lorentz Lie algebra so(d, 1), but crucially it exhibits a finite number of exceptional
so(d, 1)-invariant cocycles on its super-translation algebra. The super L∞-algebra extensions induced by
these cocycles control the structure of higher dimensional supergravity fields as well as of super-p-brane
σ-models that propagate in a supergravity background.

• 5.3.2.1 – The super Poincaré Lie algebra;

• 5.3.2.2 – M2-brane Lie 3-algebra and the M-theory Lie algebra;

• 5.3.2.3 – Exceptional cocycles and the brane scan.

5.3.2.1 The super Poincaré Lie algebra

Definition 5.3.6. For n ∈ N and S a spinor representation of so(n, 1), the corresponding super Poincar’e
Lie algebra sIso(n, 1) is the super Lie algebra whose Chevalley-Eilenberg algebra CE(sIso(10, 1) is generated
from

1. generators {ωab} in degree (1, even) dual to the standard basis of so(n, 1),

2. generators {ea} in degree (1, even)

3. and generators {ψα} in degree (1, odd), dual to the spinor representation S

with differential defined by
dCEω

a
b = ωac ∧ ωcd

dCEe
a = ωab ∧ eb +

i

2
ψ̄ ∧ Γaψ

dCEψ =
1

4
ωabΓabψ ,

where {Γa} is the corresponding representation of the Clifford algebra Cln,1 on S, and here and in the
following Γa1···ak is shorthand for the skew-symmetrization of the matrix product Γa1 · · · · · Γak in the k
indices.

5.3.2.2 M2-brane Lie 3-algebra and the M-theory Lie algebra We discuss an exceptional extension
of the super Poincaré Lie algebra in 11-dimensions by a super Lie 3-algebra and further by super Lie 6-algebra.
We show that the corresponding automorphism L∞-algebra contains the polyvector extension called the M-
theory super Lie algebra.

Proposition 5.3.7. For (n, 1) = (10, 1) and S the canonical spinor representation, we have an exceptional
super Lie algebra cohomology class in degree 4

[µ4] ∈ H2,2(sIso(10, 1))

with a representative given by

µ4 :=
1

2
ψ̄ ∧ Γabψ ∧ ea ∧ eb .

This is due to [DAFr82].

Definition 5.3.8. The M2-brane super Lie 3-algebra m2branegs is the bR-extension of sIso(10, 1) classified
by µ4, according to prop. 4.4.87

b2R→ m2branegs → siso(10, 1) .

389



In terms of its Chevalley-Eilenberg algebra this extension was first considered in [DAFr82].

Definition 5.3.9. The polyvector extension [ACDP03] of sIso(10, 1) – called the M-theory Lie algebra – is
the super Lie algebra obtained by adjoining to sIso(10, 1) generators {Qα, Zab} that transform as spinors
with respect to the existing generators, and whose non-vanishing brackets among themselves are

[Qα, Qβ ] = i(CΓa)αβPa + (CΓab)Z
ab

[Qα, Z
ab] = 2i(CΓ[a)αβQ

b]β .

Proposition 5.3.10. The automorphism super L∞-algebra der(m2branegs), def. 1.3.78, contains the polyvec-
tor extension of the 11d-super Poinceré algebra, def. 5.3.9 precisely as its graded Lie algebra of exact ele-
ments.

Proof. One can see that this is secretly what [Ca95] shows. �

Proposition 5.3.11. There is a nontrivial degree-7 class [µ7] ∈ H5,2(m2branegs) in the super-L∞-algebra
cohomology of the M2-brane Lie 3-algebra, a cocycle representative of which is

µ7 := −1

2
ψ̄ ∧ Γa1···a5ψ ∧ ea1

∧ · · · ∧ ea5
− 13

2
ψ̄ ∧ Γa1a2ψ ∧ ea1

∧ es2 ∧ c3 ,

where c3 is the extra generator of degree 3 in CE(m2branegs).

This is due to [DAFr82].

Definition 5.3.12. The M5-brane Lie 6-algebra m5branegs is the b5R-extension of m2branegs classified by
µ7, according to prop. 4.4.87

b5R→ m5branegs → m2branegs .

5.3.2.3 Exceptional cocycles and the brane scan The exceptional cocycles discussed above are part
of a pattern which traditionally goes by the name brane scan [Duff87].

Proposition 5.3.13. For d, p ∈ N, let sIso(d, 1) be the super Poincaré Lie algebra, def. 5.3.6, and consider
the element

ψ̄Γa0,··· ,ap+1
∧ ψ ∧ ea0 ∧ · · · ∧ eap+1 ∈ CE(sIso(d, 1))

in degree p + 2 of the Chevalley-Eilenberg algebra. This is closed, hence is a cocycle, for the combinations
of D := d+1 and p ≥ 1 precisely where there are non-empty and non-parenthesis entries in the following table.

p = 1 2 3 4 5
D = 11 m2branegs (m5branegs)

10 stringgs ns5branegs

9 ∗
8 ∗
7 ∗
6 ∗ ∗
5 ∗
4 ∗ ∗
3 ∗

The entries in the top two rows are labeled by the name of the extension of sIso(d, 1) that the corre-
sponding cocycle classifies. By prop. 5.3.8 the 7-cocycle that defines m5branegs does not live on the Lie
algebra sIso(10, 1), but only on its Lie 3-algebra extension m2branegs. This is why in the context of the
brane scan it does not appear in the classical literature, which does not know about higher Lie algebras.

An explicitly Lie-theoretic discussion of these cocycles is in chapter 8 of [AzIz95]. The extension

bR→ stringgs → sIso(9, 1)

and its Lie integration has been considered in [Huer11].
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5.3.3 Supergravity fields are super L∞-connections

Among the varied literature in theoretical physics on the topic of supergravity the book [CaDAFr91] and
the research program that it summarizes, starting with [DAFr82], stands out as an attempt to identify and
make use of a systematic mathematical structure controlling the general theory. By careful comparison one
can see that the notions considered in that book may be translated into notions considered here under the
following dictionary

• “FDA”: the Chevalley-Eilenberg algebra CE(g) of a super L∞-algebra g (def. 4.6.13), def. 4.5.10;

• “soft group manifold”: the Weil algebra W(g) of g, def. 4.4.84

• “field configuration”: g-valued ∞-connection, def. 1.3.5.6

• “field strength”: curvature of g-valued ∞-connection, def. 1.3.98

• “horizontality condition”: second ∞-Ehresmann condition, remark 1.3.107

• “cosmo-cocycle condition”: characterization of g-Chern-Simons elements, def. 4.4.96, to first order in
the curvatures;

All the super L∞-algebras g appearing in [CaDAFr91] are higher shifted central extensions, in the sense of
prop. 4.4.87, of the super-Poincaré Lie algebra.

5.3.3.1 The graviton and the gravitino

Example 5.3.14. For X a supermanifold and g = sIso(n, 1) the super Poincaré Lie algebra from def. 5.3.6,
g-valued differential form data

A : TX → siso(n, 1)

consists of

1. an Rn+1-valued even 1-form E ∈ Ω1(X,Rn+1) – the vielbein, identified as the propagating part of the
graviton field;

2. an so(n, 1)-valued even 1-form Ω ∈ Ω1(X, so(n, 1)) – the spin connection, identified as the non-
propagating auxiliary part of the graviton field;

3. a spin-representaton -valued odd 1-form Ψ ∈ Ω1(X,S) – identified as the gravitino field.

5.3.3.2 The 11d supergravity C3-field

Example 5.3.15. For g = m2branegs the Lie 3-algebra from def. 5.3.8, a g-valued form

A : TX → sugra3(10, 1)

consists in addition to the field content of a siso(10, 1)-connection from example 5.3.14 of

• a 3-form C3 ∈ Ω3(X).

This 3-form field is the local incarnation of what is called the supergravity C3-field. The global nature of
this field is discussed in 5.4.8.

5.3.3.3 The magnetic dual 11d supergravity C6-field

Example 5.3.16. For g = m5branegs the 11d-supergravity Lie 6-algebra, def. 5.3.12, a g-valued form

A : TX → sugra6(10, 1)

consists in addition to the field content of a sugra3(10, 1)-connection given in remark 5.3.15 of

• a 6-form C6 ∈ Ω3(X) – the dual supergravity C-field.

The identification of this field content is also due to the analysis of [DAFr82].
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5.4 Twisted ∞-bundles / twisted differential structures

We discuss various examples of twisted ∞-bundles, 3.3.10, and the corresponding twisted differential struc-
tures, 3.6.6.

Most of these appear in various guises in string theory, which we survey in

• 5.4.6 – Twisted topological c-structures in String theory.

Below we discuss the following differential refinements and applications.

• 5.4.1 – Definition and overview

• 5.4.4 – Reduction of structure groups

– 5.4.4.1 – Orthogonal/Riemannian structure

– 5.4.4.2 – Type II generalized geometry

– 5.4.4.3 – U-duality geometry / exceptional generalized geometry

• 5.4.5 –Orientifolds and higher orientifolds

• 5.4.6 – Twisted topological structures in quantum anomaly cancellation

• 5.4.7 – Tisted differential structures in quantum anomaly cancellation

– 5.4.7.1 – Twisted differential c1-structures

– 5.4.7.2 – Twisted differential spinc-structures

– 5.4.7.3 – Higher differential spin structures: string and fivebrane structures

• 5.4.8 – The supergravity C-field

• 5.4.9 – Differential T-duality

The discussion in this section draws from [FiSaScI], which in turn draws from the examples discussed in
[SSS09c], [FiSaScIII].

5.4.1 Overview

The following table lists some of main (classes of) examples. The left column displays a given extension of
smooth ∞-groups, to be regarded as a bundle of coefficients with typical ∞-fiber shown on the far left. The
middle column names the principal ∞-bundles, or equivalently the nonabelian cohomology classes, that are
classified by the base of these extensions. These are to be thought of as twisting cocycles. The right column
names the corresponding twisted ∞-bundles, or eqivalently the corresponding twisted cohomology classes.
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extension /
∞-bundle of coefficients

twisting ∞-bundle /
twisting cohomology

twisted ∞-bundle /
twisted cohomology

V // V//G

ρ

��
BG

ρ-associated
V -∞-bundle

section

GL(d)/O(d) // BO(d)

��
BGL(d)

tangent bundle
orthogonal structure /
Riemannian geometry

O(d)\O(d, d)/O(d) // B(O(d)×O(d))

��
BO(d, d)

generalized
tangent bundle

generalized (type II)
Riemannian geometry

BU(n) // BPU(n)

dd

��
B2U(1)

circle 2-bundle /
bundle gerbe

twisted vector bundle /
bundle gerbe module

B2U(1) // BAut(BU(1))

��
BZ2

double cover
orientifold structure /

Jandl bundle gerbe

B2ker(G) // BAut(BG)

��
BOut(G)

band (lien)
nonabelian (Giraud-Breen)

G-∞-gerbe

BString // BSpin

1
2p1

��
B3U(1)

circle 3-bundle /
bundle 2-gerbe

twisted
String 2-bundle

Q // B(T× T∗)

〈c1∪c1〉
��

B3U(1)

circle 3-bundle /
bundle 2-gerbe

twisted
T-duality structure

BFivebrane // BString

1
6p2

��
B7U(1)

circle 7-bundle
twisted

Fivebrane 6-bundle

[BnU(1) // BnU(1)

curv

��
[dRBn+1U(1)

curvature
(n+ 1)-form

circle n-bundle
with connection
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The following table lists smooth twisting ∞-bundles c that become identities under geometric realization,
def. 4.3.26, (the last one on 15-coskeleta). This means that the twists are purely geometric, the underlying
topological structure being untwisted.

universal twisting ∞-bundle twisted cohomology relative twisted cohomology

BO(d)

��
BGL(d)

Riemannian geometry,
orthogonal structure

BO(d)×O(d)

��
BO(d, d)

type II NS-NS generalized geometry

BHn

��
BEn(n)

U-duality geometry,
exceptional generalized geometry

BPU(H)

dd��
B2U(1)

twisted U(n)-principal bundles

Freed-Witten anomaly cancellation
on Spinc-branes:
B-field
with twisted gauge bundles on D-branes

BE8

2a��
B3U(1)

twisted String(E8)-principal 2-bundles
M5-brane anomaly cancellation:
C-field
with twisted gauge 2-bundles on M5-branes

The following table lists smooth twisted ∞-bundles that control various quantum anomaly cancellations in
string theory.

universal twisting ∞-bundle twisted cohomology relative twisted cohomology

BSO
W3��

B2U(1)

twisted Spinc-structure

BPU(H)× SO

dd−W3��
B2U(1)

general Freed-Witten anomaly cancellation:
B-field
with twisted gauge bundles on D-branes

BSpin
1
2p1��

B3U(1)

twisted String-2-bundles;
heterotic Green-Schwarz
anomaly cancellation

BString
1
6p2��

B7U(1)

twisted Fivebrane-7-bundles;
dual heterotic Green-Schwarz
anomaly cancellation
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The following table lists twisting ∞-bundles that encode geometric structure preserving higher supersym-
metry.
universal twisting ∞-bundle twisted cohomology relative twisted cohomology

BU(d, d)

��
BO(2d, 2d)

generalized complex geometry

BSU(3)× SU(3)

��
BO(6, 6)

d = 6, N = 2 type II compactification

BSU(7)

��
BE7(7)

d = 7, N = 1 11d sugra compactification
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5.4.2 Sections of vector bundles – twisted 0-bundles

We discuss here for illustration purposes twisted ∞-bundles in lower degree than traditionally considered,
namely twisted 0-bundles. This degenerate case is in itself simple, but all the more does it serve to illustrate
by familiar example the general notions of twisted ∞-bundles.

So we consider coefficient ∞-bundles such as

C // C//U(1)

��
BU(1)

,

where

• BU(1) is the smooth moduli stack of smooth circle bundles;

• C is the complex plane, regarded as a smooth manifold.

By 3.3.12 this corresponds equivalently to a representation of the Lie group U(1) on C, and this we take
to be the canonical such representation. Accordingly, the above bundle is indeed the universal complex line
bundle over the base space of the universal U(1)-principal bundle.

It will be meaningful and useful to think of C itself as a moduli ∞-stack: it is the smooth moduli 0-stack
of complex 0-vector bundles, where, therefore, a complex 0-vector bundle on a smooth space X is simply a
smooth function ∈ C∞(X,C). Accordingly, we should find that such 0-vector bundles can be twisted by
a principal U(1)-bundle and indeed, by feeding the above coefficient ∞-bundle through the definition of
twisted ∞-bundles in 3.3.10, one finds, as we discuss below, that a twisted 0-bundle is a smooth section of
the associated line bundle, hence, by local triviality of the line bundle, locally a complex-valued function,
but globally twisted by the twisting circle bundle.

Let G be a Lie group, V a vector space and ρ : V × G → V a smooth representation of G on V in the
traditional sense. We discuss how this is an ∞-group representation in the sense of def. 3.3.155.

Definition 5.4.1. Write

V//G := V ×G
p1 //
ρ
// V

for the action groupoid of ρ, the weak quotient of V by G, regarded as a smooth ∞-groupoid V//G ∈
Smooth∞Grpd.

Notice that this is equipped with a canonical morphism V//G→ BG and a canonical inclusion V → V//G.

Proposition 5.4.2. We have a fiber sequence

V → V//G→ BG

in Smooth∞Grpd.

Proof. One finds that in the canonical presentation by simplicial presheaves as in 4.4.2, the morphism
V//Gch → BGch is a fibration in [CartSpop, sSet]proj. Therefore by prop. 2.3.12 the homotopy fiber is given
by the ordinary fiber of this presentation. This ordinary fibe is V . �

Remark 5.4.3. By remark 3.3.135 we may think of the fiber sequence

V //

��

V//G

��
∗ // BG

as the vector bundle over the classifying stack BG which is ρ-associated to the universal G-principal bundle.
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More formally, the next proposition shows that the ρ-associated bundles according to def. 3.3.166 are
the ordinary associated vector bundles.

Proposition 5.4.4. Let X be a smooth manifold and P → X be a smooth G-principal bundle. If g : X → BG
is a cocycle for P as in 4.4.6, then the ρ-associated vector bundle P ×GV → X is equivalent to the homotopy
pullback of V//G→ BG along G:

P ×G V //

��

V//G

��
X

g // BG

.

Proof. By the discussion in 4.4.6 we may present g by a morphism in [CartSpop, sSet]proj,loc of the form

C({Ui})
g //

'
��

BGch

X

,

where C({Ui}) is the Čech nerve of a good open cover of X. Since V//Gch → BGch is a fibration in
[CartSpop, sSet]proj, by prop. 2.3.12 its ordinary pullback of simplicial presheaves along g presents the
homotopy pullback in question. By inspection one finds that this is the Lie groupoid whose space of objects
is
∐
i Ui × V and which has a unique morphism from (x ∈ Ui, σi(x) ∈ V ) to (x ∈ Uj , σj(x)) if σj(x) =

ρ(gij(x))(σi(x)).
Due to the uniqueness of morphisms, the evident projection from this Lie groupoid to the smooth manifold

P×GV which is the total space of the V -bundle ρ-accociated to P is a weak equivalence in [CartSpop, sSet]proj,
hence in [CartSpop, sSet]proj,loc. So P ×G V is indeed (one representative of) the homotopy pullback in
question. �
Since therefore all the information about ρ is encoded in the bundle V ↪→ V//G → BG, we may identify
that bundle with the action. Accordingly we write

ρ : V//G→ BG .

Regarding ρ then as a universal local coefficient bundle, we obtain the corresponding twisted cohomology,
3.3.9, and twisted ∞-bundles, 3.3.10. We show now that the general statement of prop. 3.3.136 on twisted
cohomology in terms of sections of associated ∞-bundles reduces for twists relative to ρ to the standard
notion of spaces of sections.

Proposition 5.4.5. Let P → X be a G-principal bundle over a smooth manifold X. Then the ∞-groupoid
of P -twisted cocycles relative to ρ, equivalently the ∞-groupoid of P -twisted V -0-bundles is equivalent to the
ordinary set of sections of the vector bundle E → X which is ρ-associated to P :

ΓX(E) ' H/BG(g, ρ) .

Here g : X → BG is the morphism classifying P .

Proof. The hom ∞-groupoid of the slice ∞-topos over BG is the ∞-pullback

H/BG(g, ρ) //

��

H(X,V//G)

��
∗

[g] // H(X,BG)

.

Since the Čech nerve C({Ui}) of the good cover {Ui → X} is a cofibrant representative ofX in [CartSpop, sSet]proj,loc,
and since BGch and V//Gch from above are fibrant representatives of BG and V//G, respectively, by the
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properties of simplicial model categories the right vertical morphism here is presented by the morphism of
Kan complexes.

[CartSpop, sSet](C({Ui}), V//Gch)→ [CartSpop, sSet](C({Ui}),BGch) .

Moreover, since this is the simplicial hom out of a cofibrant object into a fibration, the properties of simplicial
model categories imply that this morphism is indeed a Kan fibration. It follows with prop. 2.3.7 that the
ordinary fiber of this morphism over [g] is a Kan complex that presents the twisted cocycle ∞-groupoid in
question.

Since V//Gch → BGch is a faithful functor of groupoids, this fiber is a set, meaning a constant simplicial
set. A V//Gch-valued cocycle is a collection of smooth functions {σi : Ui → V }i and smooth functions
{gij : Ui,j → G}i,j , satisfying the condition that on all Uij we have σj = ρ(gij)(σi). This is a vertex in the
fiber precisely if the second set of functions is that given by the cocycle g which classifies P . In this case this
condition is precisely that which identifies the {σi}i as a section of the associated vector bundle, expressed
in terms of the local trivialization that corresponds to g.

In conclusion, this shows that H/BG(g, ρ) is an ∞-groupoid equivalent to set of sections of the vector
bundle ρ-associated to P . �

5.4.3 Sections of 2-bundles – twisted vector bundles and twisted K-classes

We construct now a coefficient ∞-bundle of the form

BU // (BU)//BU(1)

dd

��
B2U(1)

,

where

• B2U(1) is the smooth moduli 2-stack for smooth circle 2-bundles / bundle gerbes;

• BU = lim
−→n

BU(n) is the inductive ∞-limit over the smooth moduli stacks of smooth unitary rank-n

vector bundles (equivalently: U(n)-principal bundles).

Equivalently, this is a smooth ∞-action of the smooth circle 2-group BU(1) on the smooth ∞-stack BU .
This may be thought of as the canonical 2-representation of the circle 2-group BU(1), def. 4.3.48, being

the higher analogue to the canonical representation of the circle group U(1) on the complex plane C, discussed
above in 5.4.2.

We show that the notion of twisted cohomology induced by this local coefficient bundle according to 3.3.9
is reduced twisted K-theory and that the notion of twisted ∞-bundles induced by it according to 3.3.10 are
ordinary twisted vector bundles also known as bundle gerbe modules. (See for instance chapter 24 of [May] for
basics of K-theory that we need here, and see for instance [CBMMS02] for a discussion of twisted K-theory
in terms of twisted bundles.)

This not only shows how the traditional notion of twisted K-theory is reproduced from the perspective of
cohomology in an ∞-topos. It also refines the traditional constructions to the smooth context. Notice that
there is a slight clash of terminology, as traditionally the term smooth K-theory is often used synonymously
with differential K-theory. However, there is a geometric refinement in between bare (twisted) K-classes
and differential (twisted) K-classes, namely smooth cocycle spaces of smooth (twisted) vector bundles and
smooth gauge transformations between them. This is the smooth refinement of the situation that we find
here, by regarding (twisted) K-theory as (twisted) cohomology internal to the ∞-topos Smooth∞Grpd.

The construction of the traditional topological classifying space for reduced K0 proceeds as follows. For
n ∈ N, let BU(n) be the classifying space of the unitary group in complex dimension n. The inclusion of
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groups U(n)→ U(n+ 1) induced by the inclusion Cn → Cn+1 by extension by 0 in the, say, last coordinate
gives an inductive system of topological spaces

∗ // · · ·BU(n) //// BU(n+ 1) // · · · .

Definition 5.4.6. Write
BU := lim

−→n

BU(n)

for the homotopy colimit in TopQuillen.

Notice that by prop. 4.4.19 and prop. 4.3.32 we have, for each n ∈ N, a smooth refinement of BU(n) ∈
Top ' ∞Grpd to a smooth moduli stack BU(n) ∈ Smooth∞Grpd. This refines the set [X,BU(n)] of
equivalences classes of rank-n unitary vector bundles to the groupoid H(X,BU(n)) of unitary bundles and
smooth gauge transformations between them.

We therefore consider now similarly a smooth refinement to moduli ∞-stacks of the inductive limit BU .

Definition 5.4.7. Write
BU := lim

−→n

BU(n)

for the ∞-colimit in Smooth∞Grpd over the smooth moduli stacks of smooth U(n)-principal bundles.

Proposition 5.4.8. The canonical morphism

lim
−→n

BU(n)→ B lim
−→n

U(n)

is an equivalence in Smooth∞Grpd.

Proof. Write BU(n)ch := N( U(n) //// ∗ ) ∈ [CartSpop, sSet] for the standard presentation of the

delooping, prop. 4.4.19. Observe then that the diagram n 7→ BU(n)ch is cofibrant when regarded as an
object of [(N,≤), [CartSpop, sSet]inj,loc]proj, because, by example 2.3.15, a cotower is projectively cofibrant
if it consists of monomorphisms and if the first object, and hence all objects, are cofibrant. Therefore the
∞-colimit is presented by the ordinary colimit over this diagram. Since this is a filtered colimit, it commutes
with finite limits of simplicial presheaves:

lim
−→n

BU(n)ch = lim
−→n

N( U(n) // // ∗ )

= N( lim
−→n

U(n) //// ∗ )

= (B lim
−→n

U(n))ch .

�

Proposition 5.4.9. The smooth object BU is a smooth refinement of the topological space BU in that it
reproduces the latter under geometric realization, 4.3.4.2:

|BU | ' BU .

Proof. By prop. 4.3.31 for every n ∈ N we have

|BU(n)| ' BU(n) .

Moreover, by the discussion at 4.3.4.2, up to the equivalence Top ' ∞Grpd the geometric realization is
given by applying the functor Π : Smooth∞Grpd → ∞Grpd. That is a left ∞-adjoint and hence preserves
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∞-colimits:
|BU | ' | lim

−→n

BU(n)|

' lim
−→n

|BU(n)|

' lim
−→n

BU(n)

' BU .

�

Corollary 5.4.10. For X ∈ SmthMfd ↪→ Smooth∞Grpd, the intrinsic cohomology of X with coefficients
in the smooth stack BU is the reduced K-theory K̃(X):

H1
smooth(X,U) := π0H(X,BU) ' K̃(X) .

Proof. By prop. 4.3.39 the set π0H(X,BU) is the Čech cohomology of X with coefficients in the stable
unitary group U . By classification theory (as discussed in [RoSt12]) this is isomorphic to the set of homotopy
classes of maps π0Top(X,BU) into the classifying space BU for reduced K-theory. �

Proposition 5.4.11. Let X be a compact smooth manifold. Then

H(X,BU) ' lim
−→n

H(X,BU(n))

and
H(X,BPU) ' lim

−→n

H(X,BPU(n)) .

Proof. That X is a compact manifold means by def. 3.3.12 that it is a representably compact object in
the site SmthMfd. Since X is in particular paracompact, prop. 3.3.18 says that it is also a representably
paracompact object in the site, def. 3.3.17. With this the statement is given by prop. 3.3.19. �

We now discuss twisted bundles induced by the local coefficient bundles ddn : BPU(n) → B2U(1) for
every n ∈ N. This is immediately generalized to general central extensions.

So let U(1) → Ĝ → G be any U(1)-central extension of a Lie group G and let c : BG → B2U(1) the
classifying morphism of moduli 2-stacks, according to prop. 3.3.82, sitting in the fiber sequence

BĜ // BG

c

��
B2U(1)

.

Proposition 5.4.12. Let U(1) → Ĝ → G be a group extension of Lie groups. Let X ∈ SmoothMfd ↪→
Smooth∞Grpd be a smooth manifold with differentiably good open cover {Ui → X}.

1. Relative to this data every twisting cocycle [α] ∈ H2
Smooth(X,U(1)) is a Čech-cohomology representative

given by a collection of functions

{αijk : Ui ∩ Uj ∩ Uk → U(1)}

satisfying on every quadruple intersection the equation

αijkαikl = αjklαijl .

400



2. In terms of this cocycle data, the twisted cohomology H1
[α](X, Ĝ) is given by equivalence classes of

cocycles consisting of

(a) collections of functions
{gij : Ui ∩ Uj → Ĝ}

subject to the condition that on each triple overlap the equation

gij ġjk = gik · αijk

holds, where on the right we are injecting αijk via U(1) → Ĝ into Ĝ and then form the product
there;

(b) subject to the equivalence relation that identifies two such collections of cocycle data {gij} and
{g′ij} if there exists functions

{hi : Ui → Ĝ}
and

{βij : Ui ∩ Uj → Û(1)}
such that

βijβjk = βik

and
g′ij = h−1

i · gij · hj · βij .

Proof. We pass to the standard presentation of Smooth∞Grpd by the projective local model structure on
simplicial presheaves over the site CartSpsmooth. There we compute the defining ∞-pullback by a homotopy
pullback, according to remark 2.3.13.

Write BĜch,B
2U(1)ch ∈ [CartSpop, sSet] etc. for the standard models of the abstract objects of these

names by simplicial presheaves, as discussed in 4.4.2. Write accordingly B(U(1) → Ĝ)ch for the delooping
of the crossed module 2-group associated to the central extension Ĝ→ G.

By prop. 3.3.82, in terms of this the characteristic class c is represented by the ∞-anafunctor

B(U(1)→ Ĝ)ch
c //

'
��

B(U(1)→ 1)ch = B2U(1)ch

BGch

,

where the top horizontal morphism is the evident projection onto the U(1)-labels. Moreover, the Čech nerve
of the good open cover {Ui → X} forms a cofibrant resolution

∅ ↪→ C({Ui})
'→ X

and so α is presented by an ∞-anafunctor

C({Ui})
α //

'
��

B2U(1)c

X

.

Using that [CartSpop, sSet]proj is a simplicial model category this means in conclusion that the homotopy
pullback in question is given by the ordinary pullback of simplicial sets

H1
[α](X, Ĝ) //

��

∗

α

��
[CartSpop, sSet](C({Ui}),B(U(1)→ Ĝ)c)

c∗ // [CartSpop, sSet](C({Ui}),B2U(1)c)

.
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An object of the resulting simplicial set is then seen to be a simplicial map g : C({Ui}) → B(U(1) → Ĝ)c
that assigns

g :

(x, j)

##
(x, i) //

;;

(x, k)

7→

∗
gjk(x)

��
∗

gik(x)
//

gij(x)
??

∗
αijk(x)��

such that projection out along B(U(1)→ Ĝ)c → B(U(1)→ 1)c = B2U(1)c produces α.
Similarily for the morphisms. Writing out what these diagrams in B(U(1)→ Ĝ)c mean in equations, one

finds the formulas claimed above. �

5.4.4 Reduction of structure groups

We discuss the traditional notion of reduction of a structure group in terms of twisted differential nonabelian
cohomology. This perspective turns out to embed this standard notion seamlessly into more general notion
of twisted differential structures, def. 3.6.33. Conversely, this prespective shows that the general notion of
twisted differential structures may be thought of as a generalization of the classical notion of reduction of
structure groups from principal bundles to principal ∞-bundles.

Let G be a Lie group and let K ↪→ G be a Lie subgroup. Write

c : BK → BG

for the induced morphism of smooth moduli stacks of smooth principal bundles, according to prop. 4.4.19.

Observation 5.4.13. The action groupoid G//K, def. 1.3.2, is 0-truncated, hence the canonical morphism
to the smooth manifold quotient

G//K
'→ G/K

is an equivalence in Smooth∞Grpd.
We have a fiber sequence of smooth stacks

G/K → BK → BG .

This is presented by the evident sequence of simplicial presheaves

G//K → ∗//K → ∗//G .

Proof. The equivalence follows because the action of a subgroup is free. The fiber sequence may be
computed for instance with the factorization lemma, prop. 2.3.8. �
In applications, an important class of examples is the following.

Observation 5.4.14. For G a conneced Lie group, let K ↪→ G be the inclusion of its maximal compact
subgroup. Then c : BK → BG is a Π-equivalence, def. 3.5.25 (hence becomes an equivalence under
geometric realization, def. 3.5.2). Therefore, while the groupoids of K,G-principal bundles are different and

H(X,BK)→ H(X,BG)

is not an equivalence, unless G is itself already compact, it does induce an isomorphism on connected
components (nonabelian cohomology sets)

H1(X,K)
'→ H1(X,G) .

In the following discussion this difference between the classifying spaces BG ' Π(BG) ' Π(BK) ' BK and
their smooth refinements is crucial.

Theorem 4.3.47 in the present case says that Π(G/K) ' ∗ contractible. This recovers the classical
statement that, as a topological space, G is a product of its maximal compact subgroup with a contractible
space.
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Proof. It is a classical fact that the maximal compact subgroup inclusion K ↪→ G is a homotopy equiv-
alence on the underlying topological spaces. The statement then follows by prop. 4.3.33. �

Given a subgroup inclusion K ↪→ G and a G-principal bundle P , a standard question is whether the
structure group of P may be reduced to K.

Definition 5.4.15. Let K ↪→ G be an inclusion of Lie groups and let X ∈ Smooth∞Grpd be any object
(for instance a smoot manifold). Let g : X → BG be a smooth classifying morphism for a G-principal bundle
P → X.

A choice of reduction of the structure group of G along K ↪→ G (or K-reduction for short) is a choice of
lift gred and a choice of homotopy (gauge transformation) η of smooth stacks in the diagram

BK

c

��
X

g
//

gred

==

BG
η'��

.

For (gred, η) and (g′red, η
′) two K-reductions of P , an isomorphism of K-reductions from the first to the

second is a natural transformation of morphisms of smooth stacks

X

gred

((

g′red

77BKρ�� ,

hence a choice of gauge transformation between the corresponding K-principal bundles, such that

BK

c

��
X

g
//

g′red

==
gred ,,

BG
η′
'
��

ρ'��
=

BK

c

��
X

g
//

gred

==

BG
η'��

.

With the obvious notion of composition of such isomorphisms, this defines a groupoid of K-reductions of P .

Remark 5.4.16. The crucial information is in the choice of the smooth transformation η. Notably in the
case that K ↪→ G is the inclusion of a maximal compact subgroup as in observation 5.4.14 the underlying
reduction problem after geometric realization in the homotopy theory of topological spaces is trivial: all
bundles involved in the above are equivalent. The important information in η is about how they are chosen
to be equivalent, and smoothly so.

Below in 5.4.4.1 we see that in the case that P = TX is the tangent bundle of a manifold, η is identified
with a choice of vielbein or soldering form.

Comparison with the discussion in 3.3.9 reveals that therefore structure group reduction is a topic in
twisted nonabelian cohomology. In particular, we may apply def. 3.6.33 to form the groupoid of all choices
of reductions.

Proposition 5.4.17. For g : X → BG (the cocycle for) a G-principal bundle P → X, the groupoid of
K-reductions of P according to def. 5.4.15 is the groupoid of [g]-twisted c-structures, def. 3.6.33, hence the
homotopy pullback cStruc[g](X) in

cStruc[g](X)

��

// ∗

g

��
H(X,BK)

H(X,c) // H(X,BG)

,
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where
c : BK → BG

is the induced morphism of smooth moduli stacks.

Proof. Using that BK and BG are 1-truncated objects in H := Smooth∞Grpd, by construction, one
sees that the groupoid defined in def. 5.4.15 is equivalently the hom-groupoid H/BG(g, c) in the slice ∞-
topos H/BG. Using this, the statement is a special case of prop. 3.3.133. �

Remark 5.4.18. By observation 5.4.13 we may equivalently speak of cStrucg(X) as the groupoid of twisted
G//K-structures on X (where the latter is given by a corresponding groupoid-principal bundle).

If we think, according to remark 5.4.16, of a choice of K-reduction as a choice of vielbein or soldering
form, then this says that locally their moduli space is the cose G/K (while globally there may be a twist).

The morphism c as above always has a canonical differential refinement

ĉ : BKconn → BGconn

given by prop. 1.3.36. Accordingly, we may also apply def. 3.6.34 to the case of structure group reduction.

Definition 5.4.19. For K → G a Lie subgroup inclusion, and for ∇ : X → BGconn (a cocycle for )
a G-principal bundle with conneciton on X, we say the groupoid of K-reductions of ∇ is the groupoid
ĉStruc[∇](X) of twisted differential ĉ-structures, given as the homotopy pullback

ĉStruc[∇](X)

��

// ∗

∇
��

H(X,BKconn)
H(X,ĉ) // H(X,BGconn)

.

However, here the differential refinement does not change the homotopy type of the twisted cohomology

Proposition 5.4.20. For P a G-principal bundle with connection ∇ the groupoid of K-reductions of ∇ is
equivalent to the groupoid of K-reductions of just P

ĉStruc[∇](X) ' cStruc[P ](X) .

Remark 5.4.21. This degeneracy of notions does not hold for twisted structures controled by higher groups.
That it holds in the special case of ordinary K-reductions is an incarnation of a classical fact in differential
geometry: as we will see in 5.4.4.1 below, for reductions of tangent bundle structure it comes down to the
fact that for every choice of Riemannian metric and torsion there is a unique metric-compatible connection
with that torsion. Prop. 5.4.20 may be understood as stating this in the fullest generality of G-principal
bundles for G a Lie group.

5.4.4.1 Orthogonal/Riemannian structure For X a smooth manifold, we discuss the traditional
notion of Riemannian structure or equivalently of orthogonal structure on X as a special case of c-twisted
cohomology for suitable c. This perspective on ordinary Riemannian geometry proves to be a useful starting
point for generalizations.

Let X be a smooth manifold of dimension d. Its tangent bundle TX is associated to an essentially
canonical GL(d)-principal bundle. We write

TX : X → BGL(d)

for the corresponding classifying morphism, where BGL(d) is the smooth moduli stack of smooth GL(d)-
principal bundles.
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Consider the defining inclusion of Lie groups

O(d) ↪→ GL(d)

and the induced morphism of the corresponding moduli stacks

orth : BO(d)→ BGL(d) .

The general observation 5.4.13 here reads

Observation 5.4.22. The homotopy fiber of orth is the quotient manifold GL(d)/O(d). We have a fiber
sequence of smooth stacks

GL(d)/O(d) // BO(d)
orth // BGL(d) .

Notice that O(d) ↪→ GL(d) is a maximal compact subgroup inclusion, so that observation 5.4.14 applies.
Definition 5.4.17 now becomes

Definition 5.4.23. Write orthStrucTX for the groupoid of TX-twisted orth-structures on X, hence the
homotopy pullback in

orthStruc(X) //

��

∗

TX

��
H(X,BO(d))

H(X,orth)
// H(X,BGL(d))

'

ow
.

Proposition 5.4.24. The groupoid orthStrucTX(X) is naturally identified with the groupoid of choices of
vielbein fields (soldering forms) on TX.

Proof. Let {Ui → X} be any good open cover of X by coordinate patches Rd ' Ui. Let C({Ui}) be the
corresponding Čech groupoid. There is then a canonical span of simplicial presheaves

C({Ui})
TXch //

'
��

BGL(d)ch

X

.

presenting TX. Moreover, every morphism g : X → BO(d) has a presentation by a similar span gch with
values in BO(d).

An object in orthStrucTX(X) is

1. a cocycle gch for an O(d)-principal bundle as above;

2. over each Ui an element e|Ui ∈ C∞(Ui,GL(d))

such that e is compatible, on double overlaps, with the left O(d)-action by the transition functions gch and
the right GL(d)-action by the transitiuon functions TXch.

A morphism e → e′ in orthStrucTX(X) is a gauge transformation gch → g′ch of O(d)-principal bundles
whose left action takes e to e′.

From this it is clear that
e = {eaµ}a,µ∈{1,··· ,d}

is a choice of vielbein. �
There is an evident differential refinement of orth

ˆorth : BO(d)conn → BGL(d)conn .
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Definition 5.4.25. Let ConnTX → H(X,BGL(d)conn) be the left vertical morphism in the homotopy
pullback

ConnTX //

��

∗

TX

��
H(X,BGL(d)conn) // H(X,BGL(d))

,

where the bottom map is the morphism that forgets the connection.

This morphism may be thought of as the inclusion of connections on the tangent bundle into the groupoid
of all GL(d)-principal connections.

Proposition 5.4.26. The homotopy pullback in

ˆorthStrucTX,conn(X)

��

// ConnTX

��
H(X,BO(d)conn)

H(X, ˆorth) // H(X,BGL(d)conn)

or equivalently that in

ˆorthStrucTX,conn(X)

��

// ∗

TX

��
H(X,BO(d)conn) // H(X,BGL(d))

is equivalent to the set of pairs of Riemannian metrics on X and correspondingly metric-compatible connec-
tions on TX.

Proof. The two pullbacks are equivalent by def. 5.4.25 and the pasting law, prop. 2.3.1.
Consider the first version. As in the proof of prop. 5.4.24 an object in the groupoid has an underlying

choice of vielbein e. This now being a morphism of bundles with connection, it related, locally on each Ui,
the goven connection form Γ on TX with a connection form ω on the O(d)-principal bundle, via

ωab = eaαΓαβ(e−1)bβ + eaαddR(e−1)bβ .

But since ω is by definition an orthogonal connection, by this isomorphism Γ is a metric-compatible connec-
tion. �

5.4.4.2 Type II NS-NS generalized geometry The target space geometry for type II superstrings in
the NS-NS sector is naturally encoded by a variant of “generalized complex geometry” with metric structure,
discussed for instance in [GMPW08]. We discuss here how this type II NS-NS generalized geometry is a special
case of twisted c-structures as in 5.4.4.

Definition 5.4.27. Consider the Lie group inclusion

O(d)×O(d)→ O(d, d)

of those orthogonal transformations, that preserve the positive definite part or the negative definite part of
the bilinear form of signature (d, d), respectively.

If O(d, d) is presented as the group of 2d × 2d-matrices that preserve the bilinear form given by the
2d× 2d-matrix

η :=

(
0 idd

idd 0

)
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then this inclusion sends a pair (A+, A−) of orthogonal n× n-matrices to the matrix

(A+, A−) 7→ 1√
2

(
A+ +A− A+ −A−
A+ −A− A+ +A−

)
.

The inclusion of Lie groups induces the corresponding morphism of smooth moduli stacks of principal
bundles

TypeII : B(O(d)×O(d))→ BO(d, d) .

Observation 5.4.13 here becomes

Observation 5.4.28. There is a fiber sequence of smooth stacks

O(d, d)/(O(d)×O(d)) // B(O(d)×O(d))
TypeII // BO(d, d) .

Definition 5.4.29. There is a canonical embedding

GL(d) ↪→ O(d, d) .

In the above matrix presentation this is given by sending

a 7→
(
a 0
0 a−T

)
,

where in the bottom right corner we have the transpose of the inverse matrix of the invertble matrix a.

Observation 5.4.30. We have a homotopy pullback of smooth stacks

GL(d)\\O(d, d)//(O(d)×O(d)) //

��

BGL(d)

��
B(O(d)×O(d)) // BO(d, d)

.

Definition 5.4.31. Under inclusion def. 5.4.27 the tangent bundle of a d-dimensional manifold X defines
an O(d, d)-cocycle

TX ⊗ T ∗X : X
TX // BGL(d) // BO(d, d) .

The vector bundle canonically associated to this composite cocycles may canonically be identified with
the tensor product vector bundle TX ⊗ T ∗X, and so we will refer to this cocycle by these symbols, as
indicated.

Therefore we may canonically consider the groupoid of TX⊗T ∗X-twisted TypeII-structures, according
to def. 5.4.17:

Definition 5.4.32. Write TypeIIStrucTX⊗T∗X(X) for the homotopy pullback

TypeIIStrucTX⊗T∗X(X) //

��

∗

TX⊗T∗X
��

H(X,B(O(d)×O(d)))
H(X,TypeII) // H(X,BO(d, d))

.

Proposition 5.4.33. The groupoid TypeIIStrucTX⊗T∗X(X) is that of “generalized vielbein fields” on X,
as considered for instance around equation (2.24) of [GMPW08] (there only locally, but the globalization is
evident).

In particular, its set of equivalence classes is the set of type-II generalized geometry structures on X.
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Proof. This is directly analogous to the proof of prop. 5.4.24. �
Over a local patch Rd ' Ui ↪→ X, the most general such generalized vielbein (hence the most general
O(d, d)-valued function) may be parameterized as

E =
1

2

(
(e+ + e−) + (e−T+ − e−T− )B (e−T+ − e−T− )

(e+ − e−)− (e−T+ + e−T− )B (e−T+ + e−T− )

)
,

where e+, e− ∈ C∞(Ui,O(d)) are thought of as two ordinary vielbein fields, and where B is any smooth
skew-symmetric n× n-matrix valued function on Rd ' Ui.

By an O(d) × O(d)-transformation this can always be brought into a form where e+ = e− =: 1
2e such

that

E =

(
e 0

−e−TB e−T

)
.

The corresponding “generalized metric” over Ui is

ETE =

(
eT Be−1

0 e−1

)(
e 0

−e−TB e−T

)
=

(
g −Bg−1B Bg−1

−g−1B g−1

)
,

where
g := eT e

is the metric (over Rq ' Ui a smooth function with values in symmetric n×n-matrices) given by the ordinary
vielbein e.

5.4.4.3 U-duality geometry / exceptional generalized geometry The scalar and bosonic fields of
11-dimensional supergravity compactified on tori to dimension d locally have moduli spaces identified with
the quotients En(n)/Hn of the split real form En(n) in the E-series of exceptional Lie groups by their maximal
compact subgroups Hn, where n = 11−d. The canonical action of En(n) on this coset space – or of a certain
discrete subgroup En(n)(Z) ↪→ En(n) – is called the U-duality global symmetry of the supergravity, or of its
string UV-completion, respectively [HT94].

In [Hull07] it was pointed out that therefore the geometry of the field content of compactfied supergravity
should be encoded by a exceptional generalized geometry which in direct analogy to the variant of generalized
complex geometry that controls the NS-NS sector of type II strings, as discussed above in 5.4.4.2, is encoded
by vielbein fields that exhibit reduction of a structure group along the inclusion Hn ↪→ En(n).

By the general discussion in 5.4.4, we have that all these geometries are encoded by twisted differential
c-structures, where

c : BHn → BEn(n)

is the induced morphism of smooth moduli stacks.

5.4.5 Orientifolds and higher orientifolds

We discuss the notion of circle n-bundles with connection over double covering spaces with orientifold
structure (see [SSW05] and [DiFrMo11] for the notion of orientifolds for 2-bundles).

Proposition 5.4.34. The smooth automorphism 2-group of the circle group U(1) is that corresponding to
the smooth crossed module (as discussed in 2.2.4)

AUT(U(1)) ' [U(1)→ Z2] ,

where the differential U(1)→ Z2 is trivial and where the action of Z2 on U(1) is given under the identification
of U(1) with the unit circle in the plane by reversal of the sign of the angle.

This is an extension of smooth ∞-groups, def. 3.3.141, of Z2 by the circle 2-group BU(1):

BU(1)→ AUT(U(1))→ Z2 .
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Proof. The nature of AUT(U(1)) is clear by definition. Let BU(1) → AUT(U(1)) be the evident
inclusion. We have to show that its delooping is the homotopy fiber of BAUT(U(1))→ BZ2.

Passing to the presentation of Smooth∞Grpd by the model structure on simplicial presheaves [CartSpop
smooth, sSet]proj,loc

and using prop. 2.3.12, it is sufficient to show that the simplicial presheaf B2U(1)c from 4.4.2 is equivalent to
the ordinary pullback of simplicial presheaves BAUT(U(1))c×BZ2

EZ2 of the Z2-universal principal bundle,
as discussed in 1.3.1.

This pullback is the 2-groupoid whose

• objects are elements of Z2;

• morphisms σ1 → σ2 are labeled by σ ∈ Z2 such that σ2 = σσ1;

• all 2-morphisms are endomorphisms, labeled by c ∈ U(1);

• vertical composition of 2-morphisms is given by the group operation in U(1),

• horizontal composition of 1-morphisms with 1-morphisms is given by the group operation in Z2

• horizontal composition of 1-morphisms with 2-morphisms (whiskering) is given by the action of Z2 on
U(1).

Over each U ∈ CartSp this 2-groupoid has vanishing π1, and π2 = U(1). The inclusion of B2U(1) into this
pullback is given by the evident inclusion of elements in U(1) as endomorphisms of the neutral element in
Z2. This is manifestly an isomorphism on π2 and trivially an isomorphism on all other homotopy groups.
Therefore it is a weak equivalenc. �

Observation 5.4.35. A U(1)-gerbe in the full sense Giraud (see [LuHTT], section 7.2.2) as opposed to a
U(1)-bundle gerbe / circle 2-bundle is equivalent to an AUT(U(1))-principal 2-bundle, not in general to a
circle 2-bundle, which is only a special case.

More generally we have:

Proposition 5.4.36. For every n ∈ N the automorphism (n + 1)-group of BnU(1) is given by the crossed
complex (as discussed in 2.2.4)

AUT(BnU(1)) ' [U(1)→ 0→ · · · → 0→ Z2]

with U(1) in degree n+ 1 and Z2 acting by automorphisms. This is an extension of smooth ∞-groups

Bn+1U(1) // AUT(BnU(1)) // Z2 .

With slight abuse of notation we also write

BnU(1)//Z2 := BAUT(Bn−1U(1)) .

Definition 5.4.37. Write
Jn : Bn+1U(1)//Z2 → BZ2

for the corresponding universal characteristic map.

Definition 5.4.38. For X ∈ Smooth∞Grpd, a double cover X̂ → X is a Z2-principal bundle.
For n ∈ N, n ≥ 1, an orientifold circle n-bundle (with connection) is an AUT(Bn−1U(1))-principal ∞-

bundle (with ∞-connection) on X that extends X̂ → X (by def. 3.3.141) with respect to the extension of
Z2 by AUT(BnU(1)), prop. 5.4.36.
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This means that relative to a cocycle g : X → BZ2 for a double cover X̂, the structure of an orientifold
circle n-bundle is a factorization of this cocycle as

g : X
ĝ→ BAUT(Bn−1U(1))→ BZ2

where ĝ is the cocycle for the corresponding AUT(BnU(1))-principal ∞-bundle.

Proposition 5.4.39. Every orientifold circle n-bundle (with connection) on X induces an ordinary circle
n-bundle (with connection) P̂ → X̂ on the given double cover X̂ such that restricted to any fiber of X̂ this
is equivalent to AUT(Bn−1U(1))→ Z2.

Proof. By prop. 3.3.148: there is a pasting diagram of ∞-pullbacks of the form

(U(1)→ · · · → Z2)ρ //

��

P //

��

∗

��
Z2

//

��

X̂ //

��

BnU(1) //

��

∗

��
∗ x // X

g // BnU(1)//Z2

Jn−1 // BZ2

�

Proposition 5.4.40. Orientifold circle 2-bundles over a smooth manifold are equivalent to the Jandl gerbes
introduced in [SSW05].

Proof. By prop. 4.3.39 we have that [U(1)→ Z2]-principal ∞-bundles on X are given by Čech cocycles
relative to any good open cover of X with coefficients in the sheaf of 2-groupoids B[U(1) → Z2]. Writing
this out in components it is straightforward to check that this coincides with the data of a Jandl gerbe (with
connection) over this cover. �

Remark 5.4.41. Orientifold circle n-bundles are not Z2-equivariant circle n-bundles: in the latter case
the orientation reversal acts by an equivalence between the bundle and its pullback along the orientation
reversal, whereas for an orientifold circle n-bundle the orientation reversal acts by an equivalence to the dual
of the pulled-back bundle.

Proposition 5.4.42. The geometric realization, def. 3.5.2,

R̃ := |B[U(1)→ Z2]|

of B[U(1)→ Z] is the homotopy 3-type with homotopy groups

π0(R̃) = 0 ;

π1(R̃) = Z2 ;

π2(R̃) = 0 ;

π3(R′) = Z

and nontrivial action of π1 on π3.

Proof. By prop. 4.4.23 and the results of 4.3.6 we have

1. specifically
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(a) |BZ2| ' BZ2;

(b) |B2U(1)| ' B2U(1) ' K(Z; 3);

where on the right we have the ordinary classifying spaces going by these names;

2. generally geometric realization preserves fiber sequences of nice enough objects, such as those under
consideration, so that we have a fiber sequence

K(Z, 3)→ R̃→ BZ2

in Top.

Since π3(K(Z), 3) ' Z and π1(BZ2) ' Z2 and all other homotopy groups of these two spaces are trivial,
the homotopy groups of R̃ follow by the long exact sequence of homotopy groups associated to our fiber
sequence.

Finally, since the action of Z2 in the crossed module is nontrivial, π1(R̃) must act notriviall on π3(Z). It
can only act nontrivial in a single way, up to homotopy. �
The space

R := Z2 × R̃
is taken to be the coefficient object for orientifold (differential) cohomology as appearing in string theory in
[DiFrMo11].

The following definition gives the differential refinement of BAUT(Bn−1U(1)). With slight abuse of
notation we will also write

BnU(1)//Z2 := BAUT(Bn−1U(1)) .

Definition 5.4.43. For n ≥ 2 write BnU(1)conn//Z2 for the smooth n-stack presented by the presheaf of
n-groupoids which is given by the presheaf of crossed complexes of groupoids

Ωn(−)× C∞(−, U(1))
(id,ddRlog) // Ωn(−)× Ω1(−)

(id,ddR) // · · ·
(id,ddR) // Ωn(−)× Ωn−2(−)

(id,ddR) //

(id,ddR) // Ωn(−)× Ωn−1(−)× Z2 //
//
Ωn(−) ,

where

1. the groupoid on the right has as morphisms (A, σ) : B → B′ between two n-forms B,B′ pairs consisting
of an (n− 1)-form A and an element σ ∈ Z2, such that (−1)σB′ = B + dA;

2. the bundles of groups on the left are all trivial as bundles;

3. the Ω1(−) × Z2-action is by the Z2-factor only and on forms given by multiplication by ±1 and on
U(1)-valued functions by complex conjugation (regarding U(1) as the unit circle in the complex plane).

Remark 5.4.44. A detailed discussion of B2U(1)conn//Z2 is in [ScWaII] and [ScWaIII].

We now discuss differential cocycles with coefficients in BnU(1)conn//Z2 over Z2-quotient stacks / orb-
ifolds. Let Y be a smooth manifold equipped with a smoth Z2-action ρ. Write Y//Z2 for the corresponding
global orbifold and ρ : Y//Z2 → BZ2 for its classifying morphism, hence for the morphism that fits into a
fiber sequence of smooth stacks

Y // Y//Z2
// BZ2 .

Definition 5.4.45. An n-orientifold structure Ĝρ on (Y, ρ) is a ρ-twisted Ĵn-structure on Y//Z2, def. 3.6.33,
hence a dashed morphism in the diagram

Bn+1U(1)conn//Z2

Ĵn

��
Y//Z2

Ĝρ
77

ρ // BZ2

.

411



Observation 5.4.46. By corollary 5.4.39, an n-orientifold structure decomposes into an ordinary (n + 1)-
form connection Ĝ on a circle (n+ 1)-bundle over Y , subject to a Z2-twisted Z2-equivariance condition

Y
Ĝ //

��

Bn+1U(1)conn
//

��

∗

��
Y//Z2

Ĝρ //

ρ

33Bn+1U(1)conn//Z2
Ĵ // BZ2 .

For n = 1 this reproduces, via observation 5.4.40, the Jandl gerbes with connection from [SSW05], hence
ordinary string orientifold backgrounds, as discussed there. For n = 2 this reproduces background structures
for membranes as discussed below in 5.4.8.7.

5.4.6 Twisted topological structures in quantum anomaly cancellation

We discuss here cohomological conditions arising from anomaly cancellation in string theory, for various
σ-models. In each case we introduce a corresponding notion of topological twisted structures and interpret
the anomaly cancellation condition in terms of these. This prepares the ground for the material in the fol-
lowing sections, where the differential refinement of these twisted structures is considered and the differential
anomaly-free field configurations are derived from these.

• 5.4.6.1 – The type II superstring and twisted Spinc-structures;

• 5.4.6.2 – The heterotic/type I superstring and twisted String-structures;

• 5.4.6.3 – The M2-brane and twisted String2a-structures;

• 5.4.6.4 – The NS-5-brane and twisted Fivebrane-structures;

• 5.4.6.5 – The M5-brane and twisted Fivebrane2a∪2a-structures

The content of this section is taken from [SSS09c].

The physics of all the cases we consider involves a manifold X – the target space – or a submanifold
Q ↪→ X thereof– a D-brane –, equipped with

• two principal bundles with their canonically associated vector bundles:

– a Spin-principal bundle underlying the tangent bundle TX (and we will write TX also to denote
that Spin-principal bundle),

– and a complex vector bundle E → X – the “gauge bundle” – associated to a SU(n)-principal
bundle or to an E8-principal bundle with respect to a unitary representation of E8;

• and an n-gerbe / circle (n + 1)-bundle with class Hn+2(X,Z) – the higher background gauge field –
denoted [H3] or [G4] or similar in the following.

All these structures are equipped with a suitable notion of connetions, locally given by some differential-form
data. The connection on the Spin-bundle encodes the field of gravity, that on the gauge bundle a Yang-Mills
field and that on the n-gerbe a higher analog of the electromagnetic field.

The σ-model quantum field theory of a super-brane propagating in such a background (for instance the
superstring, or the super 5-brane) has an effective action functional on its bosonic worldvolume fields that
takes values, in general, in the fibers of the Pfaffian line bundle of a worldvolume Dirac operator, tensored
with a line bundle that remembers the electric and magnetic charges of the higher gauge field. Only if this
tensor product anomaly line bundle is trivializable is the effective bosonic action a well-defined starting point
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for quantization of the σ-model. Therefore the Chern-class of this line bundle over the bosonic configuration
space is called the global anomaly of the system. Conditions on the background gauge fields that ensure
that this class vanishes are called global anomaly cancellation conditions. These turn out to be conditions
on cohomology classes that are characteristic of the above background fields. This is what we discuss now.

But moreover, the anomaly line bundle is canonicaly equipped with a connection, induced from the
connections of the background gauge fields, hence induced from their differential cohomology data. The
curvature 2-form of this connection over the bosonic configuration space is called the local anomaly of
the σ-model. Conditions on the differential data of the background gauge field that canonically induce a
trivialization of this 2-fom are called local anomaly cancellation conditions. These we consider below in
section 5.4.7.3.

The phenomenon of anomaly line bundles of σ-models induced from background field differential coho-
mology is classical in the physics literature, if only in broad terms. A clear exposition is in [Free00]. Only
recently the special case of the heterotic string σ-model for trivial background gauge bundle has been made
fully precise in [Bunk09], using a certain model [Wal09] for the differential string structures that we discuss
in section 5.4.7.3.

5.4.6.1 The type II superstring and twisted Spinc-structures The open type II string propagating
on a Spin-manifold X in the presence of a background B-field with class [H3] ∈ H3(X,Z) and with endpoints
fixed on a D-brane given by an oriented submanifold Q ↪→ X, has a global worldsheet anomaly that vanishes
if [FrWi] and only if [EvSa06] the condition

[W3(Q)] + [H3]|Q = 0 ∈ H3(Q;Z) , (5.4)

holds. Here [W3(Q)] is the third integral Stiefel-Whitney class of the tangent bundle TQ of the brane and
[H3]Q denotes the restriction of [H3] to Q.

Notice that [W3(Q)] is the obstruction to lifting the orientation structure on Q to a Spinc-structure. More
precisely, in terms of homotopy theory this is formulated as follows, 5.2.1. There is a homotopy pullback
diagram

BSpinc //

��

∗

��
BSO

W3 // B2U(1)

(5.5)

of topological spaces, where BSO is the classifying space of the special orthogonal group, where B2U(1) '
K(Z, 3) is homotopy equivalent to the Eilenberg-MacLane space that classifies degree-3 integral cohomology,
and where the continuous map denoted W3 is a representative of the universal class [W3] under this classifica-
tion. This homotopy pullback exhibits the classifying space of the group Spinc as the homotopy fiber of W3.
The universal property of the homotopy pullback says that the space of continuous maps Q→ BSpinc is the
same (is homotopy equivalent to) the space of maps oQ : Q→ BSO that are equipped with a homotopy from

the composite Q
oQ // BSOW3

// B3U(1) to the trivial cocycle Q→ ∗ → B3U(1). In other words, for

every choice of homotopy filling the outer diagram of

Q

"" ""

oQ

##

BSpinc //

��

∗

��
BSO

W3 // B2U(1)

there is a contractible space of choices for the dashed arrow such that everything commutes up to homotopy.
Since a choice of map oQ : Q → BSO is an orienation structure on Q, and a choice of map Q → BSpinc
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is a Spinc-structure, this implies that [W3(oQ)] is the obstruction to the existence of a Spincstructure on Q
(equipped with oQ.

Moreover, since Q is a manifold, the functor Maps(Q,−) that forms mapping spaces out of Q preserves
homotopy pullbacks. Since Maps(Q,BSO) is the space of orientation structures, we can refine the discussion
so far by noticing that the space of Spinc-structures on Q, Maps(Q,BSpinc), is itself the homotopy pullback
in the diagram

Maps(Q,BSpinc) //

��

∗

��
Maps(Q,BSO)

Maps(Q,W3) // Maps(Q,B2U(1))

. (5.6)

A variant of this characterization will be crucial for the definition of (spaces of) twisted such structures
below.

These kinds of arguments, even though elementary in homotopy theory, are of importance for the inter-
pretation of anomaly cancellation conditions that we consider here. Variants of these arguments (first for
other topological structures, then with twists, then refined to smooth and differential structures) will appear
over and over again in our discussion

So in the case that the class of the B-field vanishes on the D-brane, [H3]|Q = 0, hence that its represen-
tative H3 : Q→ K(Z, 3) factors through the point, up to homotopy, condition (5.4) states that the oriented
D-brane Q must admit a Spinc-structure, namely a choice of null-homotopy η in

Q
oQ //

H3|Q'∗ ''

BSO

W3

��
K(Z, 3)

ηw� . (5.7)

(Beware that there are such homotopies filling all our diagrams, but only in some cases, such as here, do we
want to make them explicit and given them a name.) If, generally, [H3]Q does not necessarily vanish, then
condition (5.4) still is equivalent to the existence of a homotopy η in a diagram of the above form:

Q
oQ //

H3|Q ''

BSO

W3

��
K(Z, 3)

ηw� . (5.8)

We may think of this as saying that η still “trivializes” W3(oQ), but not with respect to the canonical
trivial cocycle, but with respect to the given reference background cocycle H3|Q of the B-field. Accordingly,
following [Wa08], we may say that such an η exhibits not a Spinc-structure on Q, but an [H3]Q-twisted
Spinc-structure.

For this notion to be useful, we need to say what an equivalence or homotopy between two twisted
Spinc-structures is, what a homotopy between such homotopies is, etc., hence what the space of twisted
Spinc-structures is. But by generalization of (5.6) we naturally have such a space.

Definition 5.4.47. For X a manifold and [c] ∈ H3(X,Z) a degree-3 cohomology class, we say that the
space W3Struc(Q)[c] defined as the homotopy pullback

W3Struc(Q)[H3]|Q cc
//

��

∗

c

��
Maps(Q,BSO)

Maps(Q,W3) // Maps(Q,B2U(1))

, (5.9)

is the space of [c]-twisted Spinc-structures on X, where the right vertical morphism picks any representative
c : X → B2U(1) ' K(Z, 3) of [c].
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In terms of this notion, the anomaly cancellation condition (5.4) is now read as encoding existence of
structure:

Observation 5.4.48. On an oriented manifold Q, condition (5.4) precisely guarantees the existence of
[H3]|Q-twisted W3-structure, provided by a lift of the orientation structure oQ on TQ through the left
vertical morphism in def. 5.9.

This makes good sense, because that extra structure is the extra structure of the background field of the
σ-model background, subjected to the condition of anomaly freedom. This we will see in more detail in the
following examples, and then in section 5.4.7.3.

5.4.6.2 The heterotic/type I superstring and twisted String-structures The heterotic/type I
string, propagating on a Spin-manifold X and coupled to a gauge field given by a Hermitean complex vector
bundle E → X, has a global anomaly that vanishes if the Green-Schwarz anomaly cancellation condition
[GrSc]

1

2
p1(TX)− ch2(E) = 0 ∈ H4(X;Z) . (5.10)

holds. Here 1
2p1(TX) is the first fractional Pontryagin class of the Spin-bundle, and ch2(E) is the second

Chern-class of E.
As before, this means that at the level of cocycles a certain homotopy exists. Here it is this homotopy

which is the representative of the B-field that the string couples to.
In detail, write 1

2p1 : BSpin → B3U(1) for a representative of the universal first fractional Pontryagin
class, prop. 5.1.5, and similarly ch2 : BSU → B3U(1) for a representative of the universal second Chern
class, where now B3U(1) ' K(Z, 4) is equivalent to the Eilenberg-MacLane space that classifies degree-4
integral cohomology. Then if TX : X → BSpin is a classifying map of the Spin-bundle and E : X → BSU
one of the gauge bundle, the anomaly cancellation condition above says that there is a homotopy, denoted
H3, in the diagram

X
E //

TX

��

BSU

ch2

��
BSpin

1
2p1

// B3U(1)

H3|�
. (5.11)

Notice that if both 1
2p1(TX) as well as ch2(E) happen to be trivial, such a homotopy is equivalently a map

H3 : X → ΩB3U(1) ' B2U(1). So in this special case the B-field in the background of the heterotic string
is a U(1)-gerbe, a circle 2-bundle, as in the previous case of the type II string in section 5.4.6.1. Generally,
the homotopy H3 in the above diagram exhibits the B-field as a twisted gerbe, whose twist is the difference
class [ 1

2p1(TX)]− [ch2(E)]. This is essentially the perspective adopted in [Free00].
For the general discussion of interest here it is useful to slightly shift the perspective on the twist. Recall

that a String structure, 5.1.4, on the Spin bundle TX : X → BSpin is a homotopy filling the outer square of

X

## ##

TX

$$

BString //

��

∗

��
BSpin

1
2p1 // B3U(1)

,

or, which is equivalent by the universal property of homotopy pullbacks, a choice of dashed morphism filling
the interior of this square, as indicated.
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Therefore, now by analogy with (5.8), we say that a [ch2(E)]-twisted string structure is a choice of
homotopy H3 filling the diagram (5.11).

This notion of twisted string structures was originally suggested in [Wa08]. For it to be useful, we need
to say what homotopies of twisted String-structures are, homotopies between these, etc. Hence we need to
say what the space of twisted String-structures is. This is what the following definition provides, analogous
to 5.9.

Definition 5.4.49. For X a manifold, and for [c] ∈ H4(X,Z) a degree-4 cohomology class, we say that the
space of c-twisted String-structures on X is the homotopy pullback 1

2p1Struc[c](X) in

1
2p1Struc[c](X) //

��

∗

c

��
Maps(X,BSpin)

Maps(X, 12p1) // Maps(X,B3U(1))

,

where the right vertical morphism picks a representative c of [c].

In terms of this then, we find

Observation 5.4.50. The anomaly cancellation condition (5.10) is, for a fixed gauge bundle E, precisely
the condition that ensures a lift of the given Spin-structure to a [ch2(E)]-twisted String-structure on X,
through the left vertical morphism of def. 5.4.49.

Of course the full background field content involves more than just this topological data, it also consists
of local differential form data, such as a 1-form connection on the bundles E and on TX and a connection
2-form on the 2-bundle H3. Below in section 5.4.7.3 we identify this differential anomaly-free field content
with a differential twisted String-structure.

5.4.6.3 The M2-brane and twisted String2a-structures The string theory backgrounds discussed
above have lifts to 11-dimensional supergravity/M-theory, where the bosonic background field content con-
sists of just the Spin-bundle TX as well as the C-field, which has underlying it a 2-gerbe – or circle 3-bundle
– with class [G4] ∈ H4(X,Z). The M2-brane that couples to these background fields has an anomaly that
vanishes [Wi97a] if

2[G4] = [
1

2
p1(TX)]− 2[a(E)] ∈ H4(X,Z) , (5.12)

where E → X is an auxiliary E8-principal bundle, whose class is defined by this condition.
Since E8 is 15-coskeletal, this condition is equivalent to demanding that [ 1

2p1(TX)] ∈ H4(X,Z) is further
divisible by 2. In the absence of smooth or differential structure, one could therefore replace the E8-bundle
here by a circle 2-gerbe, hence by a B2U(1)-principal bundle, and replace condition (5.12) by

2[G4] = [
1

2
p1(TX)]− 2[DD2] ,

where [DD2] is the canonical 4-class of this 2-gerbe (the “second Dixmier-Douady class”). While topologically
this condition is equivalent, over an 11-dimensional X, to (5.12), the spaces of solutions of smooth refinements
of these two conditions will differ, because the space of smooth gauge transformations between E8 bundles
is quite different from that of smooth gauge transformations between circle 2-bundles. In the Hořava-
Witten reduction [HoWi96] of the 11-dimensional theory down to the heterotic string in 10 dimensions, this
difference is supposed to be relevant, since the heterotic string in 10 dimensions sees the smooth E3-bundle
with connection.

In either case, we can understand the situation as a refinement of that described by (twisted) String-
structures via a higher analogue of the passage from Spin-structures to Spinc-structures. To that end recall
prop. 5.2.4, which provides an alternative perspective on (5.5).
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Due to the universal property of the homotopy pullback, this says, in particular, that a lift from an
orientation structure to a Spinc-structure is a cancelling by a Chern-class of the class obstructing a Spin-
structure. In this way lifts from orientation structures to Spinc-structures are analogous to the divisibility
condition (5.12), since in both cases the obstruction to a further lift through the Whitehead tower of the
orthogonal group is absorbed by a universal “unitary” class.

In order to formalize this we make the following definition.

Definition 5.4.51. For G some topological group, and c : BG → K(Z, 4) a universal 4-class, we say that
Stringc is the loop group of the homotopy pullback

BStringc //

��

BG

c

��
BSpin

1
2p1 // B3U(1)

of c along the first fractional Pontryagin class.

For instance for c = DD2 we have that a Spin-structure lifts to a String2DD2-structure precisely if 1
2p1

is further divisible by 2. Similarly, with a : BE8 → B3U(1) the canonical universal 4-class on E8-bundles
and X a manifold of dimension dimX ≤ 14 we have that a Spin-structure on X lifts to a String2a-structure
precisely if 1

2p1 is further divisible by 2.

BString2a

��

1
4p1

%%

// BE8

2a

��
X //

;;

BSpin
1
2p1 // B3U(1)

. (5.13)

Using this we can now reformulate the anomaly cancellation condition (5.12) as follows.

Definition 5.4.52. For X a manifold and for [c] ∈ H4(X,Z) a cohomology class, the space ( 1
2p1 −

2a)Struc[c](X) of [c]-twisted String2a-structures on X is the homotopy pullback

( 1
2p1 − 2a)Struc[c](X) //

��

∗

c

��
Maps(X,BSpin× E8)

1
2p1−2a // Maps(X,B3U(1))

,

where the right vertical map picks a cocycle c representing the class [c].

In terms of this definition, we have

Observation 5.4.53. Condition (5.12) is precisely the condition guaranteeing a lift of the given Spin- and
the given E8-principal bundle to a [G4]-twisted String2a-structure along the left vertical map from def. 5.4.52.

There is a further variation of this situation, that is of interest. In the Hořava-Witten reduction of this
situation in 11 dimensions down to the sitation of the heterotic string in 10 dimensions, X has a boundary,
Q := ∂X ↪→ X, and there is a boundary condition on the C-field, saying that the restriction of its 4-class to
the boundary has to vanish,

[G4]|Q = 0 .

This implies that over Q the anomaly-cancellation conditon (5.12) becomes

[
1

2
p1(TX)]|Q = 2[a(E)]|Q ∈ H4(Q,Z) .
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Notice that this is the Green-Schwarz anomaly cancellation condition (5.10) of the heterotic string, but refined
by a further cohomological divisibility condition. The following statement says that this may equivalently
be reformulated in terms of String2a structures.

Proposition 5.4.54. For E → X a fixed E8-bundle, we have an equivalence

Maps(X,BString2a)|E ' (
1

2
p1)Struc(X)[2a(E)]

between, on the right, the space of [2a(E)]-twisted String-structures from def. 5.4.49, and, on the left, the
space of String2a-structures with fixed class 2a, hence the homotopy pullback Maps(X,BString2a)×Maps(X,BE8)

{E}.

Proof. Consider the diagram

Maps(X,String2a)|E //

��

∗

E

��
Maps(X,String2a) //

��

Maps(X,BE8)

Maps(X,2a)

��
Maps(X,BSpin)

Maps(X, 12p1) // Maps(X,B3U(1))

The top square is a homotopy pullback by definition. Since Maps(X,−) preserves homotopy pullbacks (for
X a manifold, hence a CW-complex), the bottom square is a homotopy pullback by definition 5.4.51. There-
fore, by the pasting law, also the total rectangle is a homotopy pullback. With def. 5.4.49 this implies the
claim. �
Therefore the boundary anomaly cancellation condition for the M2-brane has the following equivalent for-
mulation.

Observation 5.4.55. For X a Spin-manifold equipped with a complex vector bundle E → X, condition
(5.4.6.3) precisely guarantees the existence of a lift to a String2a-structure through the left vertical map in
the proof of prop. 5.4.54.

5.4.6.4 The NS-5-brane and twisted Fivebrane-structures The magnetic dual of the (heterotic)
string is the NS-5-brane. Where the string is electrically charged under the B2-field with class [H3] ∈
H3(X,Z), the NS-5-brane is electrically charged under the B6-field with class [H7] ∈ H7(X,Z) [1]. In the
presence of a String-structure, hence when [1

2p1(TX)] = 0, the anomaly of the 5-brane σ-model vanishes
[SaSe85] [GaNi85] if the background fields satisfy

[
1

6
p2(TX)] = 8[ch4(E)] ∈ H8(X,Z) , (5.14)

where 1
6p2(TX) is the second fractional Pontryagin class of the String-bundle TX.

It is clear now that a discussion entirely analogous to that of section 5.4.6.2 applies. For the untwisted
case the following terminology was introduced in [SSS09b].

Definition 5.4.56. Write Fivebrane for the loop group of the homotopy fiber BFivebrane of a representative
1
6p2 of the universal second fractional Pontryagin class

BFivebrane //

��

∗

��
BString

1
6p2 // B7U(1)

.
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In direct analogy with def. 5.4.49 we therefore have the following notion.

Definition 5.4.57. For X a manifold and [c] ∈ H8(X,Z) a class, we say that the space of [c]-twisted
Fivebrane-structures on X, denoted ( 1

6p2)Struc[c](X), is the homotopy pullback

( 1
6p2)Struc[c](X) //

��

∗

c

��
Maps(X,BString)

Maps(X, 16p2) // Maps(X,B7U(1))

,

In terms of this we have

Observation 5.4.58. For X a manifold with String-structure and with a background gauge bundle E → X
fixed, condition (5.14) is precisely the condition for the existence of [8 ch(E)]-twisted Fivebrane-structure on
X.

5.4.6.5 The M5-brane and twisted Fivebrane2a∪2a-structures The magnetic dual of the M2-brane
is the M5-brane. Where the M2-brane is electrically charged under the C3-field with class [G4] ∈ H4(X,Z),
the M5-brane is electrically charged under the dual C6-field with class [G8] ∈ H8(X,Z).

If X admits a String-structure, then one finds a relation for the background fields analogous to (5.12)
which reads

8[G8] = 4[a(E)] ∪ [a(E)]− [
1

6
p2(TX)] . (5.15)

The Fivebrane-analog of Spinc is then the following.

Definition 5.4.59. For G a topological group and [c] ∈ H8(BG,Z) a universal 8-class, we say that
Fivebranec is the loop group of the homotopy pullback

BFivebranec //

��

BG

c

��
BString

1
6p2 // B3U(1)

.

In analogy with def. 5.4.52 we have a notion of twisted Fivebranec-structures.

Definition 5.4.60. For X a manifold and for [c] ∈ H8(X,Z) a cohomology class, the space (1
6p2 − 2a ∪

2a)Struc[c](X) of [c]-twisted Fivebrane2a∪2a-structures on X is the homotopy pullback

( 1
6p2 − 2a ∪ 2a)Struc[c](X) //

��

∗

c

��
Maps(X,BString × E8)

1
6p2−2a∪2a // Maps(X,B7U(1))

,

where the right vertical map picks a cocycle c representing the class [c].

In terms of these notions we thus see that

Observation 5.4.61. Over a manifold X with String-structure and with a fixed gauge bundle E, condition
(5.15) is precisely the condition that guarantees existence of a lift to [8G8]-twisted Fivebrane2a∪2a-structure
through the left vertical morphism in def. 5.4.60.

5.4.7 Twisted differential structures in quantum anomaly cancellation

We discuss now the differential refinements of the twisted topological structures from 5.4.6.
This section draws from [SSS09c].
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5.4.7.1 Twisted differential c1-structures We discuss the differential refinement ĉ1 of the universal
first Chern class, indicated before in 1.3.6.1. The corresponding ĉ1-structures are simply SU(n)-principal
connections, but the derivation of this fact may be an instructive warmup for the examples to follow.

For any n ∈ N, let c1 : BU(n) → BU(1) in H = Smooth∞Grpd be the canonical representative
of the universal smooth first Chern class, described in 1.3.64. In terms of the standard presentations
BU(n)ch, BU(1)ch ∈ [CartSpop, sSet] of its domain and codomain from prop. 4.4.19 this is given by the
determinant function, which over any U ∈ CartSp sends

det : C∞(U,U(n))→ C∞(U,U(1)) .

Write BU(n)conn for the differential refinement from prop. 1.3.36. Over a test space U ∈ CartSp the set of
objects is the set of u(n)-valued differential forms

BU(n)conn(U)0 = Ω1(U, u(n))

and the set of morphisms is that of smooth U(n)-valued differential forms, acting by gauge transformations
on the u(n)-valued 1-forms

BU(n)conn(U)1 = Ω1(U, u(n))× C∞(U,U(n)) .

Proposition 5.4.62. The smooth universal first Chern class has a differential refinement

ĉ1 : BU(n)conn → BU(1)conn

given on u(n)-valued 1-forms by taking the trace

tr : u(n)→ u(1) .

The existence of this refinement allows us to consider differential and twisted differential ĉ1-structures.

Lemma 5.4.63. There is an ∞-pullback diagram

BSU(n)conn

��

// ∗

��
BU(n)conn

// BU(1)conn

in Smooth∞Grpd.

Proof. We use the factorization lemma, 2.3.8, to resolve the right vertical morphism by a fibration

EU(1)conn → BU(1)conn

in [CartSpop, sSet]proj. This gives that an object in EU(1)conn over some test space U is a morphism of the

form 0
g // g−1dUg for g ∈ C∞(U,U(1)), and a morphism in EU(1)conn is given by a commuting diagram

EU(1)conn =


0

g1

{{

g2

##
g−1

1 dUg1
h // g−1

2 dUg2

 ,

where on the right we have h ∈ C∞(U,U(1)) such that hg1 = g2. The morphism to BU(1)conn is given by
the evident projection onto the lower horizontal part of these triangles.

Then the ordinary 1-categorical pullback of EU(1)conn along ĉ1 yields the smooth groupoid ĉ1
∗EU(1)conn

given over any test space U as follows.
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• objects are pairs consisting of a u(n)-valued 1-form A ∈ Ω1(U, u(n)) and a smooth function ρ ∈
C∞(U,U(1)) such that

trA = ρ−1dρ ;

• morphisms g : (A1, ρ1) → (A2, ρ2) are labeled by a smooth function g ∈ C∞(U,U(n)) such that
A2 = g−1(A1 + dU )g.

Therefore there is a canonical functor

BSU(n)conn → ĉ1
∗EU(1)conn

induced from the defining inclusion SU(n) → U(n), which hits precisely the objects for which ρ is the con-
stant function on 1 ∈ U(1) and which is a bijection to the morphisms between these objects, hence is full and
faithful. The functor is also essentially surjective, since every 1-form of the form h−1dh is gauge equivalent to
the identically vanishing 1-form. Therefore it is a weak equivalence in [CartSpop, sSet]proj. By prop. 2.3.12
this proves the claim. �

Proposition 5.4.64. For X a smooth manifold, we have an ∞-pullback of smooth groupoids

SU(n)Bund∇(X) //

��

∗

��
U(n)Bund∇(X)

ĉ1 // U(1)Bund∇(X)

.

Proof. This follows from lemma 5.4.63 and the facts that for a Lie group G we have H(X,BGconn) '
GBund∇(X) and that the hom-functor H(X,−) preserves ∞-pullbacks. �

5.4.7.2 Twisted differential spinc-structures As opposed to the Spin-group, which is a Z2-extension
of the special orthogonal group, the Spinc-group, def. 5.2.3, is a U(1)-extension of SO. This means that
twisted Spinc-structures have interesting smooth refinements. These we discuss here.

Two standard properties of Spinc are the following (see [LaMi89]).

Observation 5.4.65. There is a short exact sequence

U(1)→ Spinc → SO

of Lie groups, where the first morphism is the canonical inclusion.

Proposition 5.4.66. There is a fiber sequence

BSpinc(n)→ BSO(n)
W3→ K(Z, 3)

of classifying spaces in Top, where W3 is a representative of the universal third integral Stiefel-Whitney class.

Here W3 is a classical definition, but, as we will show below, the reader can think of it as being defined
as the geometric realization of the smooth characteristic class W3 from example 1.3.70. Before turning to
that, we record the notion of twisted structure induced by this fact:

Definition 5.4.67. For X an oriented manifold of dimension n, a Spinc-structure on X is a trivialization

η : ∗ '→W3(oX) ,

where oX : X → BSO is the given orientation structure.
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Observation 5.4.68. This is equivalently a lift ôX of oX :

BSpinc

��
X

oX
//

ôX
;;

BSO

.

Proof. By prop. 5.4.66 and the univsersal property of the homotopy pullback:

X

""

oX

##

ôX

##
BSpinc

��

// ∗

��
BSO

W3 // K(Z, 3)

.

�
From the general reasoning of twisted cohomology, def. 3.3.131, in the language of twisted c-structures, def.
3.6.33, we are therefore led to consider the following.

Definition 5.4.69. The ∞-groupoid of twisted spinc-structures on X is W3Structw(X).

Remark 5.4.70. It follows from the definition that twisted spinc-structures over an orientation structure
oX , def. 5.1.2, are naturally identified with equivalences (homotopies)

η : c
'→W3(oX) ,

where c ∈ ∞Grpd(X,B2U(1)) is a given twisting cocycle.

In this form twisted spinc-structures have been considered in [Do06] and in [Wa08]. We now establish a
smooth refinement of this situation.

Observation 5.4.71. There is an essentially unique lift in Smooth∞Grpd of W3 through the geometric
realization

| − | : Smooth∞Grpd
Π→∞Grpd

'→ Top

(discussed in 4.4.3) of the form
W3 : BSO→ B2U(1) ,

where BSO is the delooping of the Lie group SO in Smooth∞Grpd and B2U(1) that of the smooth circle
2-group, as in 4.4.2.

Proof. This is a special case of theorem 4.4.29. �

Theorem 5.4.72. In Smooth∞Grpd we have a fiber sequence of the form

BSpinc → BSO
W3→ B2U(1) ,

which refines the sequence of prop. 5.4.66.

We consider first a lemma.
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Lemma 5.4.73. A presentation of the essentially unique smooth lift of W3 from observation 5.4.71, is given
by the morphism of simplicial presheaves

W3 : BSOch
w2→ B2Z2

β2→ B2U(1)ch ,

where the first morphism is that of example 1.3.68 and where the second morphism is the one induced from
the canonical subgroup embedding.

Proof. The bare Bockstein homomorphism is presented, by example 1.3.69, by the ∞-anafunctor

B2(Z ·2→ Z)

'
��

// B2(Z→ 1) B3Z

B2Z2

.

Accordingly we need to consider the lift of the the morphism

β2 : B2Z2 → B2U(1)

induced form subgroup inclusion to to a comparable ∞-anafunctor. This is accomplished by

B2(Z ·2→ Z)
β̂2 //

'
��

B2(Z ·2→ R)

'
��

B2Z2
β2 // B2U(1)

.

Since R is contractible, we have indeed under geometric realization, 4.3.4, an equivalence

|B2(Z ·2→ Z)|
|β̂2| //

'
��

|B2(Z ·2→ R)|

'
��

|B2(Z ·2→ Z)| //

'
��

|B2(Z→ 1)|

'
��

|B2Z2|
|β2| // |B3Z|

,

where |β2| is the geometric realization of β2, according to definition 4.3.26.
�

Proof of theorem 5.4.72. Consider the pasting diagram in Smooth∞Grpd

BSpinc //

��

BU(1) //

c1 mod 2

��

∗

��
BSpin

w2 // B2Z2

β2 // B2U(1)

.

The square on the right is an ∞-pullback by prop. 4.4.34. The square on the left is an ∞-pullback by
proposition 5.2.4. Therefore by the pasting law 2.3.1 the total outer rectanle is an ∞-pullback. By lemma
5.4.73 the composite bottom morphism is indeed the smooth lift W3 from observation 5.4.71. �
Therefore we are entitled to the following smooth refinement of def. 5.4.69.
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Remark 5.4.74. BSpinc is the moduli stack of Spinc-structures, or, equivalently Spinc-principal bundles.

Definition 5.4.75. For anyX ∈ Smooth∞Grpd, the 1-groupoid of smooth twisted spinc-structures W3Structw(X)
is the homotopy pullback

W3Structw(X)

��

// H3(X,Z)

��
Smooth∞Grpd(X,BSO)

W3 // Smooth∞Grpd(X,B2U(1))

.

We briefly discuss an application of smooth twisted spinc-structures in physics.

Remark 5.4.76. The action functional of the σ-model of the open type II superstring on a 10-dimensional
target X has in general an anomaly, in that it is not a function, but just a section of a possibly non-trivial
line bundle over the bosonic configuration space. In [FrWi] it was shown that in the case that the D-branes
Q ↪→ X that the open string ends on carry a rank-1 Chan-Paton bundle, this anomaly vanishes precisely
if this Chan-Paton bundle is a twisted line bundle exhibiting an equivalence W3(oQ) ' H|Q between the
lifting gerbe of the spinc-structure and the restriction of the background Kalb-Ramond 2-bundle to Q. By the
above discussion we see that this is precisely the datum of a smooth twisted spinc-structure on Q, where the
Kalb-Ramond field serves as the twist. Below in 5.4.7.3.2 we shall see that the quantum anomaly cancellation
for the closed heterotic superstring is analogously given by twisted string-structures, which follow the same
general pattern of twisted c-structures, but in one degree higher.

But in general this quantum anomaly cancellation involves twists mediated by a higher rank twisted
bundle. This situation we turn to now.

Definition 5.4.77. For X equipped with orientation structure oX , def. 5.1.2, and c ∈ H(X,B2U(1)) a
twisting circle 2-bundle, we say that the 2-groupoid of weakly c-twisted spinc-structures on X is (W3(oX)−c)-
twisted cohomology with respect to the morphism c : BPU → B2U(1) discussed in 4.4.7.

Remark 5.4.78. By the discussion in 4.4.7 in weakly twisted spinc-structure the two cocycles W3(oX) and
c are not equivalent, but their difference is an n-torsion class (for some n) in H3(X,Z) which twists a unitary
rank-n vector bundle on X

Remark 5.4.79. By a refinement of the discussion of [FrWi] in [Ka99] this structure is precisely what
removes the quantum anomaly from the action functional of the type II superstring on oriented D-branes
that carry a rank n Chan-Paton bundle. A review is in [La09].

Notice that for i : Q → X a Spinc-D-brane inclusion into spacetimes X, the 2-groupoid of B-field and
brane gauge field bundles is the relative (BPU→ B2U(1))-cohomology on i, according to def. 3.3.150.

5.4.7.3 Twisted differential string structures We consider now the obstruction theory for lifts
through the smooth and differential refinement, from 5.1, of the Whitehead tower of O.

Definition 5.4.80. For X a Riemannian manifold, equipping it with

1. orientation

2. topological spin structure

3. topological string structure

4. topological fivebrane structure
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means equipping it with choices of (homotopy classes of) lifts of the classifying map TX : X → BO of its
tangent bundle through the respective steps of the Whitehead tower of BO

BFivebrane

��

fivebrane structure

BString

��

string structure

BSpin

��

spin structure

BSO

��

orientation

X
TX //

99

BB

GGGG

GG

BO Riemannian structure

.

More in detail:

1. The set (homotopy 0-type) of orientations of a Riemannian manifold is the homotopy fiber of the first
Stiefel-Whitney class

(w1)∗ : Top(X,BO)→ Top(X,BZ2) .

2. The groupoid (homotopy 1-type) of topological spin structures of an oriented manifold is the homotopy
fiber of the second Stiefel-Whitney class

(w2)∗ : Top(X,BSO)→ Top(X,B2Z2) .

3. The 3-groupoid (homotopy 3-type) of topological string structures of a spin manifold is the homotopy
fiber of the first fractional Pontryagin class

(
1

2
p1)∗ : Top(X,BSpin)→ Top(X,B4Z) ,

4. The 7-groupoid (homotopy 7-type) of topological fivebrane structures of a string manifold is the ho-
motopy fiber of the second fractional Pontryagin class

(
1

6
p2)∗ : Top(X,BString)→ Top(X,B8Z) ,

See [SSS09b] for background and the notion of fivebrane structure. Using the results of 5.1 we may lift
this setup from discrete ∞-groupoids to smooth ∞-groupoids and discuss the twisted cohomology, 3.3.9,
relative to the smooth fractional Pontryagin classes 1

2p1 and 1
6p2 and their differential refinements 1

2 p̂1 and
1
6 p̂2

Definition 5.4.81. Let X ∈ Smooth∞Grpd be any object.

1. The 2-groupoid of smooth string structures on X is the homotopy fiber of the lift of the first fractional
Pontryagin class 1

2p1 to Smooth∞Grpd, prop. 5.1.9:

String(X)→ Smooth∞Grpd(X,BSpin)
( 1

2 p1)
→ Smooth∞Grpd(X,B3U(1)) .

2. The 6-groupoid of smooth fivebrane stuctures on X is the homotopy fiber of the lift of the second
fractional Pontryagin class 1

6p2 to Smooth∞Grpd, prop. 5.1.32:

Fivebrane(X)→ Smooth∞Grpd(X,BString)
( 1

6 p2)
→ Smooth∞Grpd(X,B7U(1)) .
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More generally,

1. The 2-groupoid of smooth twisted string sructures on X is the ∞-pullback

Stringtw(X)
tw //

��

H3
smooth(X,U(1))

��
Smooth∞Grpd(X,BSpin)[r]

( 1
2 p1) // Smooth∞Grpd(X,B3U(1))

in ∞Grpd.

2. The 6-groupoid of smooth twisted fivebrane stuctures on X is the ∞-pullback

Fivebranetw(X)
tw //

��

H7
smooth(X,U(1))

��
Smooth∞Grpd(X,BString)[r]

( 1
6 p̂2) // Smooth∞Grpd(X,B7U(1))

in ∞Grpd.

Finally, with 1
2 p̂1 and 1

4 p̂2 the differential characteristic classes, 3.6.5, we set

1. The 2-groupoid of smooth twisted differential string sructures on X is the ∞-pullback

Stringtw,diff(X)
tw //

��

H4
diff(X)

��
Smooth∞Grpd(X,BSpinconn)[r]

( 1
2 p̂1) // Smooth∞Grpd(X,B3U(1)conn)

in ∞Grpd.

2. The 6-groupoid of smooth twisted differential fivebrane stuctures on X is the ∞-pullback

Fivebranetw,diff(X)
tw //

��

H8
diff(X)

��
Smooth∞Grpd(X,BStringconn)

( 1
6 p̂2) // Smooth∞Grpd(X,B7U(1)conn)

in ∞Grpd.

The image of a twisted (differential) String/Fivebrane structure under tw is its twist. The restriction to twists
whose underlying class vanishes we also call geometric string structures and geometric fivebrane structures.

Observation 5.4.82. 1. These∞-pullbacks are, up to equivalence, independent of the choise of the right
vertical morphism, as long as this hits precisely one cocycle in each cohomology class.

2. The restriction of the n-groupoids of twisted structures to vanishing twist reproduces the untwisted
structures.

The local L∞-algebra valued form data of differential twisted string- and fivebrane structures has been
considered in [SSS09c], as we explain in 5.4.7.3.1. Differential string structures for twists with underlying
trivial class (geometric string structures) have been considered in [Wal09] modeled on bundle 2-gerbes.

We have the following immediate consequences of the definition:
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Observation 5.4.83. The spaces of choices of string structures extending a given spin structure S are as
follows

• if [ 1
2p1(S)] 6= 0 it is empty: StringS(X) ' ∅;

• if [ 1
2p1(S)] = 0 it is StringS(X) ' H(X,B2U(1)).

In particular the set of equivalence classes of string structures lifting S is the cohomology set

π0StringS(X) ' H2
Smooth(X,B2U(1)) .

If X is a smooth manifold, then this is ' H3(X,Z).

Proof. Apply the pasting law for ∞-pullbacks, prop. 2.3.1 on the diagram

StringS(X) //

��

String(X) //

��

∗

��
∗ S // H(X,BSpin(n))

1
2 p1 // H(X,B3U(1))

.

The outer diagram defines the loop space object of H(X,B3U(1)). Since H(X,−) commutes with forming
loop space objects we have

StringS(X) ' ΩH(X,B3U(1)) ' H(X,B2U(1)) .

�
Sometimes it is useful to express string structures on X in terms of circle 2-bundles/bundle gerbes on the
total space of the given spin bundle P → X [Redd06]:

Proposition 5.4.84. A smooth string structure on X over a smooth Spin-principal bundle P → X induces
a circle 2-bundle P̂ on P which restricted to any fiber Px ' Spin is equivalent to the String 2-group extensin
String→ Spin.

Proof. By prop. 3.3.148. �

5.4.7.3.1 L∞-Čech cocycles for differential string structures We use the presentation of the
∞-topos Smooth∞Grpd by the local model structure on simplicial presheaves [CartSpop

smooth, sSet]proj,loc to
give an explicit construction of twisted differential string structures in terms of Čech-cocycles with coefficients
in L∞-algebra valued differential forms. We will find a twisted version of the string-2-connections discussed
above in 1.3.5.7.2.

We need the following fact from [FSS10].

Proposition 5.4.85. The differential fractional Pontryagin class 1
2 p̂1 is presented in [CartSpop

smooth, sSet]proj

by the top morphism of simplicial presheaves in

cosk3 exp(so)ChW,smp
exp(µ,cs) //

��

B3R/ZChW,smp

��
cosk3 exp(so)diff,smp

exp(µ,cs) //

'
��

B3R/Zsmp

BSpinc

.
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Here the middle morphism is the direct Lie integration of the L∞-algebra cocycle, 4.4.11, while the top
morphisms is its restriction to coefficients for ∞-connections, 4.4.14.

In order to compute the homotopy fibers of 1
2 p̂1 we now find a resolution of this morphism exp(µ, cs) by

a fibration in [CartSpop
smooth, sSet]proj. By the fact that this is a simplicial model category then also the hom

of any cofibrant object into this morphism, computing the cocycle∞-groupoids, is a fibration, and therefore,
by the general natur of homotopy pullbacks, we obtain the homotopy fibers as the ordinary fibers of this
fibration.

We start by considering such a factorization before differential refinement, on the underlying characteristic
class exp(µ). To that end, we replace the Lie algebra g = so by an equivalent but bigger Lie 3-algebra
(following [SSS09c]). We need the following notation:

• g = so, the special orthogonal Lie algebra (the Lie algebra of the spin group);

• b2R, the line Lie 3-algebra, def. 4.4.49, the single generator in degee 3 of its Chevalley-Eilenberg algebra
we denote c ∈ CE(b2R), dc = 0.

• 〈−,−〉 ∈W(g) is the Killing form invariant polynomial, regarded as an element of the Weil algebra of
so;

• µ := 〈−, [−,−]〉 ∈ CE(g), the degree 3 Lie algebra cocycle, identified with a morphism

CE(g)← CE(b2R) : µ

of Chevalley-Eilenberg algebras; and normalized such that its continuation to a 3-form on Spin is the
image in de Rham cohomology of Spin of a generator of H3(Spin,Z) ' Z;

• cs ∈W(g) is a Chern-Simons element, def. 4.4.96, interpolating between the two;

• gµ, the string Lie 2-algebra, def. 5.1.15.

Definition 5.4.86. Let (bR→ gµ) denote the L∞-algebra whose Chevalley-Eilenberg algebra is

CE(bR→ gµ) = (∧•(g∗ ⊕ 〈b〉 ⊕ 〈c〉), d) ,

with b a generator in degree 2, and c a generator in degree 3, and with differential defined on generators by

d|g∗ = [−,−]∗

db = −µ+ c

dc = 0

.

Observation 5.4.87. The 3-cocycle CE(g)
µ← CE(b2R) factors as

CE(g) oo
(c7→µ,b7→0)

CE(bR→ g)← oo
(c 7→c)

CE(CE(b2R) : µ ,

where the morphism on the left (which is the identity when restricted to g∗ and acts on the new generators
as indicated) is a quasi-isomorphism.

Proof. To see that we have a quasi-isomorphism, notice that the dg-algebra is somorphic to the one with
generators {ta, b, c′} and differentials

d|g∗ = [−,−]∗

db = c′

dc′ = 0

,

where the isomorphism is given by the identity on the tas and on b and by

c 7→ c′ + µ .
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The primed dg-algebra is the tensor product CE(g) ⊗ CE(inn(bR)), where the second factor is manifestly
cohomologically trivial. �
The point of introducing the resolution (bR → gµ) in the above way is that it naturally supports the
obstruction theory of lifts from g-connections to string Lie 2-algebra 2-connections

Observation 5.4.88. The defining projection gµ → g factors through the above quasi-isomorphism (bR→
gµ)→ g by the canonical inclusion

gµ → (bR→ gµ) ,

which dually on CE-algebras is given by
ta 7→ ta

b 7→ −b

c 7→ 0 .

In total we are looking at a convenient presentation of the long fiber sequence of the string Lie 2-algebra
extension:

(bR→ gµ) //

'

��

b2R

bR // gµ

::

// g

.

(The signs appearing here are just unimportant convention made in order for some of the formulas below to
come out nice.)

Proposition 5.4.89. The image under Lie integration of the above factorization is

exp(µ) : cosk3 exp(g)→ cosk3 exp(bR→ gµ)→ B3R/Zc

where the first morphism is a weak equivalence followed by a fibration in the model structure on simplicial
presheaves [CartSpop

smooth, sSet]proj.

Proof. To see that the left morphism is objectwise a weak homotopy equivalence, notice that a [k]-cell
of exp(bR→ gµ) is identified with a pair consisting of a based smooth function f : ∆k → Spin and a vertical
2-form B ∈ Ω2

si,vert(U × ∆k), (both suitably with sitting instants perpendicular to the boundary of the
simplex). Since there is no further condition on the 2-form, it can always be extended from the boundary
of the k-simplex to the interior (for instance simply by radially rescaling it smoothly to 0). Accordingly the
simplicial homotopy groups of exp(bR→ gµ)(U) are the same as those of exp(g)(U). The morphism between
them is the identity in f and picks B = 0 and is hence clearly an isomorphism on homotopy groups.

We turn now to discussing that the second morphism is a fibration. The nontrivial degrees of the lifting
problem

Λ[k]i //

��

exp(bR→ gµ)(U)

��
∆[k] // B3R/Zc(U)

are k = 3 and k = 4.
Notice that a 3-cell of B3R/Zc(U) is a smooth function c : U → R/Z and that the morphism exp(bR→

gµ)→ B3R/Zc sends the pair (f,B) to the fiber integration
∫

∆3(f∗〈θ ∧ [θ ∧ θ]〉+ dB).
Given our lifting problem in degree 3, we have given a function c : U → R/Z and a smooth function

(with sitting instants at the subfaces) U × Λ3
i → Spin together with a 2-form B on the horn U × Λ3

i .
By pullback along the standard continuous retract ∆3 → Λ3

i which is non-smooth only where f has
sitting instants, we can always extend f to a smooth function f ′ : U ×∆3 → Spin with the property that∫

∆3(f ′)∗〈θ ∧ [θ ∧ θ]〉 = 0. (Following the general discussion at Lie integration.)
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In order to find a horn filler for the 2-form component, consider any smooth 2-form with sitting instants
and non-vanishing integeral on ∆2, regarded as the missing face of the horn. By multiplying it with a suitable
smooth function on U we can obtain an extension B̃ ∈ Ω3

si,vert(U × ∂∆3) of B to all of U × ∂∆3 with the

property that its integral over ∂∆3 is the given c. By Stokes’ theorem it remains to extend B̃ to the interior
of ∆3 in any way, as long as it is smooth and has sitting instants.

To that end, we can find in a similar fashion a smooth U -parameterized family of closed 3-forms C with
sitting instants on ∆3, whose integral over ∆3 equals c. Since by sitting instants this 3-form vanishes in
a neighbourhood of the boundary, the standard formula for the Poincare lemma applied to it produces a
2-form B′ ∈ Ω2

si,vert(U ×∆3) with dB′ = C that itself is radially constant at the boundary. By construction

the difference B̃ − B′|∂∆3 has vanishing surface integral. By the argument in the proof of prop. 4.4.52 it
follows that the difference extends smoothly and with sitting instants to a closed 2-form B̂ ∈ Ω2

si,vert(U×∆3).

Therefore the sum B′ + B̂ ∈ Ω2
si,vert(U × ∆3) equals B when restricted to Λki and has the property that

its integral over ∆3 equals c. Together with our extension f ′, this constitutes a pair that solves the lifting
problem.

The extension problem in degree 4 amounts to a similar construction: by coskeletalness the condition is
that for a given c : U → R/Z and a given vertical 2-form on U × ∂∆3 such that its integral equals c, as well
as a function f : U × ∂∆3 → Spin, we can extend the 2-form and the functionalong U × ∂∆3 → U ×∆3.
The latter follows from the fact that π2Spin = 0 which guarantees a continuous filler (with sitting instants),
and using the Steenrod-Wockel approximation theorem [Wock09] to make this smooth. We are left with the
problem of extending the 2-form, which is the same problem we discussed above after the choice of B̃. �
We now proceed to extend this factorization to the exponentiated differential coefficients, 4.4.14. The direct
idea would be to use the evident factorization of differential L∞-cocycles of the form

CE(so) oo CE(bR→ string) oo CE(b2R)

W(so) oo

OO

W(bR→ string) oo

OO

W(b2R)

OO

inv(so) oo

OO

inv(bR→ string) oo

OO

inv(b2R)

OO

.

For computations we shall find it convenient to consider this after a change of basis.

Observation 5.4.90. The Weil algebra W(bR→ gµ) of (b2R→ g) is given on the extra shifted generators
{ra = σta, h = σb, g = σc} by

dta = Cabct
b ∧ tc + ra

dra = −Cabctb ∧ ra

db = −µ+ c+ h

dh = σµ− g
dc = g

(where σ is the shift operator extended as a graded derivation).

Definition 5.4.91. Define W̃(bR → gµ) to be the dg-algebra with the same underlying graded algebra as
W(bR→ gµ) but with the differential modified as follows

dta = Cabct
b ∧ tc + ra

dra = −Cabctb ∧ ra

db = −cs + c+ h

dh = 〈−,−〉 − g
dc = g

.

430



Moreover, define ˜inv(bR→ string) to be the dg-algebra

˜inv(bR→ string) := (inv(so)⊗ 〈g, h〉)/(dh = 〈−,−〉 − g) .

Observation 5.4.92. We have a commutative diagram of dg-algebras

CE(so) oo ' CE(bR→ string) oo CE(b2R)

W(so) oo '

OO

W̃(bR→ string) oo

OO

W(b2R)

OO

inv(so) oo '

OO

˜inv(bR→ string) oo

OO

inv(b2R)

OO

where W̃ (bR→ string)→W (so) acts as
ta 7→ ta

ra 7→ ra

b 7→ 0
c 7→ cs
h 7→ 0
g 7→ 〈−,−〉

and we identify W (b2R) = (∧•〈c, g〉, dc = g). The left horizontal morphisms are quasi-isomorphisms, as
indicated.

Definition 5.4.93. We write exp(bR → string) ˜ChW for the simplicial presheaf defined as exp(bR →
string)ChW, but using CE(bR → string) ← W̃(bR → string) ← ˜inv(bR → string) instead of the untwid-
dled version of these algebras.

Proposition 5.4.94. Under differential Lie integration the above factorization, observation 5.4.92, maps to
a factorization

exp(µ, cs) : cosk3 exp(g)ChW
'→ cosk3 exp((bR→ gµ)) ˜ChW → B3U(1)ChW,ch

of exp(µ, cs) in [CartSpop, sSet]proj, where the first morphism is a weak equivalence and the second a fibration.

Proof. We discuss that the first morphism is an equivalence. Clearly it is injective on homotopy groups:
if a sphere of A-data cannot be filled, then also adding the (B,C)-data does not yield a filler. So we need
to check that it is also surjective on homotopy groups: any two choices of (B,C)-data on a sphere are
homotopic: we may interpolate B in any smooth way and then solve the equation dB = −cs(A) + C + H
for the interpolation of C.

We now check that the second morphism is a fibration. It is itself the composite

cosk3 exp(bR→ gµ)ChW → exp(b2R)ChW/Z
∫
∆•→ B3R/ZChW,ch .

Here the second morphism is a degreewise surjection of simplicial abelian groups, hence a degreewise surjec-
tion under the normalized chain complex functor, hence is itself already a projective fibration. Therefore it
is sufficient to show that the first morphism here is a fibration.

In degree k = 0 to k = 3 the lifting problems

Λ[k]i //

��

exp(bR→ gµ) ˜ChW(U)

��
∆[k] // exp(b2R)ChW/Z(U)

431



may all be equivalently reformulated as lifting against a cylinder Dk ↪→ Dk × [0, 1] by using the sitting
instants of all forms.

We have then a 3-form H ∈ Ω3
si(U × Dk−1 × [0, 1]) and differential form data (A,B,C) on U × Dk−1

given. We may always extend A along the cylinder direction [0, 1] (its vertical part is equivalently a based
smooth function to Spin which we may extend constantly). H has to be horizontal so is already constantly
extended along the cylinder.

We can then use the kind of formula that proves the Poincaré lemma to extend B. Let Ψ : (Dk× [0, 1])×
[0, 1] → (Dk × [0, 1]) be a smooth contraction. Then while d(H − CS(A) − C) may be non-vanishing, by
horizonatlity of their curvature characteristic forms we still have that ι∂tΨ

∗
t d(H−CS(A)−C) vanishes (since

the contraction vanishes).
Therefore the 2-form

B̃ :=

∫
[0,1]

ι∂tΨ
∗
t (H − CS(A)− C)

satisfies dB̃ = (H −CS(A)−C). It may however not coincide with our given B at t = 0. But the difference
B − B̃t=0 is a closed form on the left boundary of the cylinder. We may find some closed 2-form on the
other boundary such that the integral around the boundary vanishes. Then the argument from the proof
of the Lie integration of the line Lie n-algebra applies and we find an extension λ to a closed 2-form on the
interior. The sum

B̂ := B̃ + λ

then still satisfies dB̂ = H − CS(A)− C and it coincides with B on the left boundary.
Notice that here B̃ indeed has sitting instants: since H, CS(A) and C have sitting instants they are

constant on their value at the boundary in a neighbourhood perpendicular to the boundary, which means
for these 3-forms in the degrees ≤ 3 that they vanish in a neighbourhood of the boundary, hence that the
above integral is towards the boundary over a vanishing integrand.

In degree 4 the nature of the lifting problem

Λ[4]i //

��

cosk3 exp(bR→ gµ)(U)

��
∆[4] // B3R/ZChW,ch

starts out differently, due to the presence of cosk3, but it then ends up amounting to the same kind of
argument:

We have four functions U → R/Z which we may realize as the fiber integration of a 3-form H on
U × (∂∆[4] \ δi∆[3]), and we have a lift to (A,B,C,H)-data on U × (∂∆[4] \ δi(∆[3])) (the boundary of the
4-simplex minus one of its 3-simplex faces).

We observe that we can

• always extend C smoothly to the remaining 3-face such that its fiber integration there reproduces
the signed difference of the four given functions corresponding to the other faces (choose any smooth
3-form with sitting instants and with non-vanishing integral and rescale smoothly);

• fill the A-data horizonatlly due to the fact that π2(Spin) = 0.

• the C-form is already horizontal, hence already filled.

Moreover, by the fact that the 2-form B already is defined on all of ∂∆[4] \ δi(∆[3]) its fiber integral over
the boundary ∂∆[3] coincides with the fiber integral of H − cs(A) − C over ∂∆[4] \ δi(∆[3])). But by the
fact that we have lifted C and the fact that µ(Avert) = cs(A)|∆3 is an integral cocycle, it follows that this
equals the fiber integral of C − cs(A) over the remaining face.
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Use then as above the vertical Poincaré lemma-formula to find B̃ on U ×∆3 with sitting instants that
satisfies the equation dB = H − cs(A) − C there. Then extend the closed difference B − B̃|0 to a closed
smooth 2-form on ∆3. As before, the difference

B̂ := B̃ + λ

is an extension of B that constitutes a lift. �

Corollary 5.4.95. For any X ∈ SmoothMfd ↪→ Smooth∞Grpd, for any choice of differentiaby good open
cover with corresponding cofibrant presentation X̂ = C({Ci}) ∈ [CartSpop

smooth, sSet]proj we have that the
2-groupoids of twisted differential string structures are presented by the ordinary fibers of the morphism of
Kan complexes

[CartSpop, sSet](X̂, exp(µ, cs))

[CartSpop, sSet](X̂, cosk3 exp(bR→ gµ)ChW)→ [CartSpop, sSet](X̂,B3U(1)ChW) .

over any basepoints in the connected components of the Kan complex on the right, which correspond to the
elements [Ĉ3] ∈ H4

diff(X) in the ordinary differential cohomology of X.

Proof. Since [CartSpop
smooth, sSet]proj is a simplicial model category the morphism [CartSpop, sSet](X̂, exp(µ, cs))

is a fibration because exp(µ, cs) is and X̂ is cofibrant.
It follows from the general theory of homotopy pullbacks that the ordinary pullback of simplicial presheaves

Stringdiff,tw(X) //

��

H4
diff(X)

��
[CartSpop, sSet](X̂, cosk3 exp(bR→ gµ)ChW) // [CartSpop, sSet](X̂,B3U(1)ChW)

is a presentation for the defining ∞-pullback for Stringdiff,tw(X). �
We unwind the explicit expression for a twisted differential string structure under this equivalence. Any
twisting cocycle is in the above presentation given by a Čech-Deligne-cocycle, as discussed at 4.4.13.

Ĥ3 = ((H3)i, · · · )

with local connection 3-form (H3)i ∈ Ω3(Ui) and globally defined curvature 4-form G4 ∈ Ω4(X).

Observation 5.4.96. A twisted differential string structure on X, twisted by this cocycle, is on patches Ui
a morphism

Ω•(Ui)← W̃(bR→ gµ)

in dgAlg, subject to some horizontality constraints. The components of this are over each Ui a collection of
differential forms of the following structure


Fω = dω + 1

2 [ω ∧ ω]
H3 = ∇B := dB + CS(ω)− C3

G4 = dC3

dFω = −[ω ∧ Fω]
dH3 = G4 − 〈Fω ∧ Fω〉
dG4 = 0


i

ta 7→ ωa

ra 7→ F aω
b 7→ B
c 7→ C3

h 7→ H3

g 7→ G4oo �


ra = dta + 1

2C
a
bct

b ∧ tc
h = db+ cs− c
g = dc
dra = −Cabctb ∧ ra
dh = 〈−,−〉 − g
dg = 0

 .
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Here we are indicating on the right the generators and their relation in W̃ (bR→ gµ) and on the left their
images and the images of the relations in Ω•(Ui). This are first the definitions of the curvatures themselves
and then the Bianchi identities satisfied by these.

By prop. 4.4.104 we have that for g an L∞-algebra and

BG := coskn+1 exp(g)

the delooping of the smooth Lie n-group obtained from it by Lie integration, def. 4.4.44 the coefficient for
∞-connections on G-principal ∞-bundles is

BGconn := coskn+1 exp(g)conn .

Proposition 5.4.97. The 2-groupoid of entirely untwisted differential string structures, def. 5.4.81, on X
(the twist being 0 ∈ H4

diff(X)) is equivalent to that of principal 2-bundles with 2-connection over the string
2-group, def. 5.1.10, as discussed in 1.3.5.7.2:

Stringdiff,tw=0(X) ' String2Bund∇(X) .

Proof. By 5.4.7.3.1 we compute Stringdiff,tw=0(X) as the ordinary fiber of the morphism of simplicial
presheaves

[CartSpop, sSet](C({Ui}), cosk3 exp(bR→ gµ))→ [CartSpop, sSet](C({Ui}),B3U(1)diff)

over the identically vanishing cocycle.
In terms of the component formulas of observation 5.4.96, this amounts to restricting to those cocyles

for which over each U ×∆k the equations

C = 0

G = 0

hold. Comparing this to the explicit formulas for exp(bR → gµ) and exp(bR → gµ)conn in 5.4.7.3.1 we see
that these cocycles are exactly those that factor through the canonical inclusion

gµ → (bR→ gµ)

from observation 5.4.88. �

5.4.7.3.2 The Green-Schwarz mechanism in heterotic supergravity Local differential form
data as in observation 5.4.96 is known in theoretical physics in the context of the Green-Schwarz mechanism
for 10-dimensional supergravity. We conclude with some comments on the meaning and application of this
result (for background and references on the physics story see for instance [SSS09b]).

The standard action functionals of higher dimensional supergravity theories are generically anomalous
in that instead of being functions on the space of field configurations, they are just sections of a line bundle
over these spaces. In order to get a well defined action principle as input for a path-integral quantization to
obtain the corresponding quantum field theories, one needs to prescribe in addition the data of a quantum
integrand. This is a choice of trivialization of these line bundles, together with a choice of flat connection.
For this to be possible the line bundle has to be trivializable and flat in the first place. Its failure to be
tivializable – its Chern class – is called the global anomaly, and its failure to be flat – its curvature 2-form –
is called its local anomaly.

But moreover, the line bundle in question is the tensor product of two different line bundles with con-
nection. One is a Pfaffian line bundle induced from the fermionic degrees of freedom of the theory, the
other is a line bundle induced from the higher form fields of the theory in the presence of higher electric
and magnetic charge. The Pfaffian line bundle is fixed by the requirement of supersymmetry, but there is
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freedom in choosing the background higher electric and magnetic charge. Choosing these appropriately such
as to ensure that the tensor product of the two anomaly line bundles produces a flat trivializable line bundle
is called an anomaly cancellation by a Green-Schwarz mechanism.

Concretely, the higher gauge background field of 10-dimensional heterotic supergravity is the Kalb-
Ramond field, which in the absence of fivebrane magnetic charge is modeled by a circle 2-bundle (bundle
gerbe) with connection and curvature 3-form H3 ∈ Ω3

cl(X), satisfying the higher Maxwell equation

dH3 = 0 .

Notice that we may think of a circle 2-bundle as a homotopy from the trivial circle 3-bundle to itself.
In order to cancel the relevant quantum anomaly it turns out that a magnetic background charge density

is to be added to the system whose differential form representative is the difference jmag := 〈F∇SU
∧F∇SU

〉−
〈F∇Spin ∧ F∇Spin〉 between the Pontryagin forms of the Spin-tangent bundle and a given SU-gauge bundle.
This modifies the above Maxwell equation locally, on a patch Ui ⊂ X to

dHi = 〈FAi ∧ FAi〉 − 〈Fωi ∧ Fωi〉 .

Comparing with prop. 5.4.96 and identifying the curvature of the twist with G4 = 〈FAi ∧ FAi〉 we see
that, while such Hi can no longer be the curvature 3-form of a circle 2-bundle, it can be the local 3-form
component of a twisted circle 3-bundle that is part of the data of a twisted differential string-structure. The
above differential form equation exhibits a de Rham homotopy between the two Pontryagin forms. This is
the local differential aspect of the very defnition of a twisted differential string-structure: a homotopy from
the Chern-Simons circle 3-bundle of the Spin-tangent bundle to a given twisting circle 3-bundle.

For many years the anomaly cancellation for the heterotic superstring was known at the level of precision
used in the physics community, based on a seminal article by Killingback. Recently [Bunk09] has given a
rigorous proof in the special case that underlying topological class of the twisting gauge bundle is trivial. This
proof used the model of twisted differential string structures with topologically tivial twist given in [Wal09].
This model is explicitly constructed in terms of bundle 2-gerbes and doees not exhibit the homotopy pullback
property of def. 3.6.6 explicitly. However, the author shows that his model satisfies the abstract properties
following from the universal property of the homotopy pullback.

When we take into account also gauge transformations of the gauge bundle, we should replace the
homotopy pullback defining twisted differential string structurs this by the full homotopy pullback

GSBackground(X) //

��

Hconn(X,BU)

ĉ2

��
Hconn(X,BSpin)

1
2 p̂1 // HdR(X,B3U(1))

.

The look of this diagram makes manifest how in this situation we are looking at the structures that homo-
topically cancel the differential classes 1

2 p̂ and ĉ2 against each other.
Since HdR(X,B3U(1)) is abelian, we may also consider the corresponding Mayer-Vietoris sequence by

realizing GSBackground(X) equivalently as the homotopy fiber of the difference of differential cocycles
1
2 p̂1 − ĉ2.

GSBackground(X) //

��

∗

��
Hconn(X,BSpin×BU)

1
2 p̂1−ĉ2 // HdR(X,B4U(1))

.
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5.4.8 The supergravity C-field

We consider a slight variant of twisted differential c-structures, where instead of having the twist directly
in differential cohomology, it is instead first considered just in de Rham cohomology but then supplemented
by a lift of the structure ∞-group.

We observe that when such a twist is by the sum of the first fractional Pontryagin class with the second
Chern class, and when the second of these two steps is considered over the boundary of the base manifold,
then the differental structures obtained this way exhibit some properties that a differential cohomological
description of the C3-field in 11-dimensional supergravity, 5.3.3.2, is expected to have.

This section draws from [FiSaScII] and [FiSaScIII].

The supergravity C-field is subject to a certain Z2-twist [Wi96] [Wi97a], due to a quadratic refinement
of its action functional, which we review below in 5.4.8.1. A formalization of this twist in abelian differential
cohomology for fixed background spin structure has been given in [HoSi05], in terms of differential integral
Wu structures. These we review in 5.4.8.2 and refine them from Z2-coefficients to circle n-bundles. Then we
present a natural moduli 3-stack of C-field configurations that refines this model to nonabelian differential
cohomology, generalizing it to dynamical gravitational background fields, in 5.4.8.4. We discuss a natural
boundary coupling of these fields to E8-gauge fields in 5.4.8.6.

5.4.8.1 Higher abelian Chern-Simons theories with background charge The supergravity C-
field is an example of a general phenomenon of higher abelian Chern-Simons QFTs in the presence of
background charge. This phenomenon was originally noticed in [Wi96] and then made precise in [HoSi05].
The holographic dual of this phenomenon is that of self-dual higher gauge theories, which for the supergravity
C-field is the nonabelian 2-form theory on the M5-brane [FiSaScIII]. We review the idea in a way that will
smoothly lead over to our refinements to nonabelian higher gauge theory in section 5.4.8.

Fix some natural number k ∈ N and an oriented manifold (compact with boundary) X of dimension
4k + 3. The gauge equivalence class of a (2k + 1)-form gauge field Ĝ on X is an element in the differential
cohomology group Ĥ2k+2(X). The cup product Ĝ ∪ Ĝ ∈ Ĥ4k+4(X) of this with itself has a natural higher
holonomy over X, denoted

exp(iS(−)) : Ĥ2k+2(X) → U(1)

Ĝ 7→ exp(i

∫
X

Ĝ ∪ Ĝ) .

This is the exponentiated action functional for bare (4k+ 3)-dimensional abelian Chern-Simons theory. For
k = 0 this reduces to ordinary 3-dimensional abelian Chern-Simons theory. Notice that, even in this case,
this is a bit more subtle that Chern-Simons theory for a simply-connected gauge group G. In the latter case
all fields can be assumed to be globally defined forms. But in the non-simply-connected case of U(1), instead
the fields are in general cocycles in differential cohomology. If, however, we restrict attention to fields C in
the inclusion H2k+1

dR (X) ↪→ Ĥ2k+2(X), then on these the above action reduces to the familiar expression

exp(iS(C)) = exp(i

∫
X

C ∧ ddRC) .

Observe now that the above action functional may be regarded as a quadratic form on the group Ĥ2k+2(X).
The corresponding bilinear form is the (“secondary”, since X is of dimension 4k + 3 instead of 4k + 4)
intersection pairing

〈−,−〉 : Ĥ2k+2(X)× Ĥ2k+2(X)→ U(1)

(â1, â2) 7→ exp(i

∫
X

â1 ∪ â2) .
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But note that from exp(iS(−)) we do not obtain a quadratic refinement of the pairing. A quadratic refinement
is, by definition, a function

q : Ĥ2k+2(X)→ U(1)

(not necessarily homogenous of degree 2 as exp(iS(−)) is), for which the intersection pairing is obtained via
the polarization formula

〈â1, â2〉 = q(â1 + â2)q(â1)−1q(â2)−1q(0) .

If we took q := exp(iS(−)), then the above formula would yield not 〈−,−〉, but the square 〈−,−〉2, given
by the exponentiation of twice the integral.

The observation in [Wi96] was that for the correct holographic physics, we need instead an action func-
tional which is indeed a genuine quadratic refinement of the intersection pairing. But since the differential
classes in Ĥ2k+2(X) refine integral cohomology, we cannot in general simply divide by 2 and pass from
exp(i

∫
X
Ĝ ∪ Ĝ) to exp(i

∫
X

1
2 Ĝ ∪ Ĝ). The integrand in the latter expression does not make sense in general

in differential cohomology. If one tried to write it out in the “obvious” local formulas one would find that
it is a functional on fields which is not gauge invariant. The analog of this fact is familiar from nonabelian
G-Chern-Simons theory with simply-connected G, where also the theory is consistent only at interger levels.
The “level” here is nothing but the underlying integral class G ∪ G. Therefore the only way to obtain a
square root of the quadratic form exp(iS(−)) is to shift it. Here we think of the analogy with a quadratic
form

q : x 7→ x2

on the real numbers (a parabola in the plane). Replacing this by

qλ : x 7→ x2 − λx

for some real number λ means keeping the shape of the form, but shifting its minimum from 0 to 1
2λ. If we

think of this as the potential term for a scalar field x then its ground state is now at x = 1
2λ. We may say

that there is a background field or background charge that pushes the field out of its free equilibrium.

To lift this reasoning to our action quadratic form exp(iS(−)) on differential cocycles, we need a differ-

ential class λ̂ ∈ H2k+2(X) such that for every â ∈ H2k+2(X) the composite class

â ∪ â− â ∪ λ̂ ∈ H4k+4(X)

is even, hence is divisible by 2. Because then we could define a shifted action functional

exp(iSλ(−)) : â 7→ exp

(
i

∫
X

1

2
(â ∪ â− â ∪ λ̂)

)
,

where now the fraction 1
2 in the integrand does make sense. One directly sees that if this exists, then this

shifted action is indeed a quadratic refinement of the intersection pairing:

exp(iSλ(â+ b̂)) exp(iSλ(â))−1 exp(iSλ(b̂))−1 exp(iSλ(0)) = exp(i

∫
X

â ∪ b̂) .

The condition on the existence of λ̂ here means, equivalently, that the image of the underlying integral class
vanishes under the map

(−)Z2
: H2k+2(X,Z)→ H2k+2(X,Z2)

to Z2-cohomology:
(a)Z2 ∪ (a)Z2 − (a)Z2 ∪ (λ)Z2 = 0 ∈ H4k+4(X,Z2) .

Precisely such a class (λ)Z2
does uniquely exist on every oriented manifold. It is called the Wu class

ν2k+2 ∈ H2k+2(X,Z2), and may be defined by this condition. Moreover, if X is a Spin-manifold, then every
second Wu class, ν4k, has a pre-image in integral cohomology, hence λ does exist as required above

(λ)Z2
= ν2k+2 .
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It is given by polynomials in the Pontrjagin classes of X (discussed in section E.1 of [HoSi05]). For instance
the degree-4 Wu class (for k = 1) is refined by the first fractional Pontrjagin class 1

2p1

( 1
2p1)Z2

= ν4 .

In the present context, this was observed in [Wi96] (see around eq. (3.3) there).
Notice that the equations of motion of the shifted action exp(iSλ(â)) are no longer curv(â) = 0, but are

now
curv(â) = 1

2curv(λ̂) .

We therefore think of exp(iSλ(−)) as the exponentiated action functional for higher dimensional abelian
Chern-Simons theory with background charge 1

2λ.
With respect to the shifted action functional it makes sense to introduce the shifted field

Ĝ := â− 1
2 λ̂ .

This is simply a re-parameterization such that the Chern-Simons equations of motion again look homogenous,
namely G = 0. In terms of this shifted field the action exp(iSλ(â)) from above equivalently reads

exp(iSλ(Ĝ)) = exp(i

∫
X

1
2 (Ĝ ∪ Ĝ− ( 1

2 λ̂)2)) .

For the case k = 1, this is the form of the action functional for the 7d Chern-Simons dual of the 2-form
gauge field on the 5-brane first given as (3.6) in [Wi96]

In the language of twisted cohomological structures, def. 3.6.33, we may summarize this situation as
follows: In order for the action functional of higher abelian Chern-Simons theory to be correctly divisible,
the images of the fields in Z2-cohomology need to form a twisted Wu-structure, [Sa11c].Therefore the fields
themselves need to constitute a twisted λ-structure. For k = 1 this is a twisted String-structure [SSS09c]
and explains the quantization condition on the C-field in 11-dimensional supergravity.

In [HoSi05] a formalization of the above situation has been given in terms of a notion there called
differential integral Wu structures. In the following section we explain how this follows from the notion of
twisted Wu structures with the twist taken in Z2-coefficients. Then we refine this to a formalization to
twisted differential Wu structures with the twist taken in smooth circle n-bundles.

5.4.8.2 Differential integral Wu structures We discuss some general aspects of smooth and differ-
ential refinements of Z2-valued universal characteristic classes. For the special case of Wu classes we show
how these notions reduce to the definition of differential integral Wu structures given in [HoSi05]. We then
construct a refinement of these structures that lifts the twist from Z2-valued cocycles to smooth circle n-
bundles. This further refinement of integral Wu structures is what underlies the model for the supergravity
C-field in section 5.4.8.

Recall from prop. 5.2.4 the characterization of Spinc as the loop space object of the homotopy pullback

BSpinc //

��

BU(1)

c1 mod 2

��
BSO

w2 // B2Z2

.

For general n ∈ N the analog of the first Chern class mod 2 appearing here is the higher Dixmier-Douady
class mod 2

DDmod 2 : BnU(1)
DD // Bn+1Z mod 2 // Bn+1Z2 .

Let now
νn+1 : BSO→ Bn+1Z2
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be a representative of the universal smooth Wu class in degree n+1, the (Π a Disc)-adjunct of the topological
universal Wu class using that Bn+1Z is discrete as a smooth ∞-groupoid, and using that Π(BSO) ' BSO
is the ordinary classifying space, by prop. 4.3.32.

Definition 5.4.98. Let Spinνn+1 be the loop space object of the homotopy pullback

BSpinνn+1 //

νint
n+1

��

BSO

νn+1

��
BnU(1)

mod 2 // Bn+1Z2

.

We call the left vertical morphism νn+1 appearing here the universal smooth integral Wu structure in degree
n+ 1.

A morphism of stacks
νn+1 : X → BSpinνn+1

is a choice of orientation structure on X together with a choice of smooth integral Wu structure lifting the
corresponding Wu class νn+1.

Example 5.4.99. The smooth first fractional Pontrjagin class 1
2p2, prop. 5.1.5, fits into a diagram

BSpin

$$

1
2p1

$$

u

%%
BSpinν4 //

νint
4

��

BSO

ν4

��
B3U(1)

mod 2 // B4Z2

.

In this sense we may think of 1
2p1 as being the integral and, moreover, smooth refinement of the universal

degree-4 Wu class on BSpin.

Proof. Using the defining property of 1
2p1, this follows with the results discussed in appendix E.1 of

[HoSi05]. �

Proposition 5.4.100. Let X be a smooth manifold equipped with orientation

oX : X → BSO

and consider its Wu-class [νn+1(oX)] ∈ Hn+1(X,Z2)

νn+1(oX) : X
oX // BSO

νn+1 // Bn+1Z2 .

The n-groupoid D̂Dmod2Struc[ν2k](X) of [νn+1]-twisted differential DDmod2-structures, according to def.
3.6.33, hence the homotopy pullback

D̂Dmod2Struc[νn+1](X) //

��

∗

νn+1(oX)

��
H(X,B3U(1)conn)

D̂Dmod 2 // H(X,Bn+1Z2)

,

categorifies the groupoid Ĥn+1
νn+1

(X) of differential integral Wu structures as in def. 2.12 of [HoSi05]: its
1-truncation is equivalent to the groupoid defined there

τ1D̂Dmod2Struct[νn+1](X) ' Ĥn+1
νn+1

(X) .
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Proof. By prop. 4.4.76, the canonical presentation of DDmod2 via the Dold-Kan correspondence is given
by an epimorphism of chain complexes of sheaves, hence by a fibration in [CartSpop, sSet]proj. Precisely, the
composite

D̂Dmod 2 : BnU(1)conn
// BnU(1)

DD // Bn+1Z mod 2 // Bn+1Z2

is presented by the vertical sequence of morphisms of chain complexes

Z �
� //

��

C∞(−,R)
ddRlog //

��

Ω1(−)
ddR //

��

· · · ddR // Ωn(−)

��
Z �
� //

��

C∞(−,R) //

��

0 //

��

· · · // 0

��
Z //

��

0 //

��

0 //

��

· · · // 0

��
Z2

// 0 // 0 // · · · // 0

.

By remark 2.3.13 we may therefore compute the defining homotopy pullback for D̂Dmod2Struct[νn+1](X)
as an ordinary fiber product of the corresponding simplicial sets of cocycles. The claim then follows by
inspection. �

Remark 5.4.101. Explicitly, a cocycle in τ1D̂Dmod2Struct[νn+1](X) is identified with a Čech cocycle with
coefficients in the Deligne complex

( Z �
� // C∞(−,R)

ddRlog // Ω1(−)
ddR // · · · ddR // Ωn(−) )

such that the underlying Z[n+ 1]-valued cocycle modulo 2 equals the given cocycle for νn+1. A coboundary
between two such cocycles is a gauge equivalence class of ordinary Čech-Deligne cocycles such that their
underlying Z-cocycle vanishes modulo 2. Cocycles of this form are precisely those that arise by multiplication
with 2 or arbitrary Čech-Deligne cocycles.

This is the groupoid structure discussed on p. 14 of [HoSi05], there in terms of singular instead of Čech
cohomology.

We now consider another twisted differential structure, which refines these twisting integral Wu structures
to smooth integral Wu structures, def. 5.4.98.

Definition 5.4.102. For n ∈ N, write BnU(1)
νn+1
conn for the homotopy pullback of smooth moduli n-stacks

BnU(1)
νn+1
conn

//

��

BnU(1)conn

��
BSpinνn+1 ×BnU(1)

νint
n+1−2DD

// BnU(1)

,

where ν int
n+1 is the universal smooth integral Wu class from def. 5.4.98, and where 2DD : BnU(1)→ BnU(1)

is the canonical smooth refinement of the operation of multiplication by 2 on integral cohomology.
We call this the moduli n-stack of smooth differential Wu-structures.

By construction, a morphism X → BnU(1)
νn+1
conn classifies also all possible orientation structures and

smooth integral lifts of their Wu structures. In applications one typically wants to fix an integral Wu
structure lifting a given Wu class. This is naturally formalized by the following construction.
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Definition 5.4.103. For X an oriented manifold, and

νn+1 : X → BSpinνn+1

a given smooth integral Wu structure, def. 5.4.98, write Hνn+1
(X,BnU(1)

νn+1
conn ) for the n-groupoid of cocycles

whose underlying smooth integral Wu structure is νn+1, hence for the homotopy pullback

Hνn+1(X,BnU(1)
νn+1
conn ) //

��

H(X,BnU(1)
νn+1
conn )

��
H(X,BnU(1))

(νn+1,id) //

��

H(X,BSpinνn+1 ×BnU(1))

��
∗

νn+1 // H(X,BSpinνn+1)

.

Proposition 5.4.104. Cohomology with coefficients in BnU(1)
νn+1
conn over a given smooth integral Wu struc-

ture coincides with the corresponding differential integral Wu structures:

Ĥn+1
νn+1

(X) ' Hνn+1
(X,BnU(1)νn+1

conn ) .

Proof. Let C({Ui}) be the Čech-nerve of a good open cover of X. By prop. 4.4.76 the canonical
presentation of BnU(1)conn → BnU(1) is a projective fibration. Since C({Ui}) is projectively cofibrant and
[CartSpop, sSet]proj is a simplicial model category, the morphism of Čech cocycle simplicial sets

[CartSpop, sSet](C({Ui}),BnU(1)conn)→ [CartSpop, sSet](C({Ui}),BnU(1))

is a Kan fibration. Hence, by remark 2.3.13, its homotopy pullback may be computed as the ordinary
pullback of simplicial sets of this map. The claim then follows by inspection.

Explicitly, in this presentation a cocycle in the pullback is a pair (a, Ĝ) of a cocycle a for a circle n-bundle
and a Deligne cocycle Ĝ with underlying bare cocycle G, such that there is an equality of degree-n Čech
U(1)-cocycles

G = νn+1 − 2a .

A gauge transformation between two such cocycles is a pair of Čech cochains γ̂, α such that γ = 2α (the
cocycle νn+1 being held fixed). This means that the gauge transformations acting on a given Ĝ solving the
above constraint are precisely the all Deligne cocychains, but multiplied by 2. This is again the explicit
description of Ĥνn+1

(X) from remark 5.4.101. �

5.4.8.3 Twisted differential String(E8)-structures We discuss smooth and differential refinements of
the canonical degree-4 universal characteristic class

a : BE8 → K(Z, 4)

for E8 the largest of the exceptional semimple Lie algebras.

Proposition 5.4.105. There exists a differential refinement of the canonical integral 4-class on BE8 to
the smooth moduli stack of E8-connections with values in the smooth moduli 3-stack of circle 3-bundles with
3-connection

â : (BE8)conn
// B3U(1)conn .
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Using the L∞-algebraic data provided in [SSS09a], this was constructed in [FSS10].

Proposition 5.4.106. Under geometric realization, prop. 3.5.2, the smooth class a becomes an equivalence

|a| : BE8 '16 B
3U(1) ' K(Z, 4)

on 16-coskeleta.

Proof. By [BoSa58] the 15-coskeleton of the topological space E8 is a K(Z, 4). By [FSS10], a is a smooth
refinement of the generator [a] ∈ H4(BE8,Z). By the Hurewicz theorem this is identified with π4(BE8) ' Z.
Hence in cohomology a induces an isomorphism

π4(BE8) ' [S4, BE8] ' H1(S4, E8)
|a|
' // H4(S4,Z) ' [S4,K(Z, 4)] ' π4(S4) .

Therefore |a| is a weak homotopy equivalence on 16 coskeleta. �

5.4.8.4 The moduli 3-stack of the C-field As we have reviewed above in section 5.4.8.1, the flux
quantization condition for the C-field derived in [Wi97a] is the equation

[G4] = 1
2p1 mod 2 in H4(X,Z) (5.16)

in integral cohomology, where [G4] is the cohomology class of the C-field itself, and 1
2p1 is the first fractional

Pontrjagin class of the Spin manifold X. One can equivalently rewrite (5.16) as

[G4] = 1
2p1 + 2a in H4(X,Z), (5.17)

where a is some degree 4 integral cohomology class on X. By the discussion in section 5.4.8.2, the correct
formalization of this for fixed spin structure is to regard the gauge equivalence class of the C-field as a
differential integral Wu class relative to the integral Wu class νint

4 = 1
2p1, example 5.4.99, of that spin

structure. By prop. 5.4.104 and prop. 5.1.9, the natural refinement of this to a smooth moduli 3-stack of
C-field configurations and arbitrary spin connections is the homotopy pullback of smooth 3-stacks

BnU(1)
νn+1
conn

//

��

B3U(1)conn

��
BSpinconn ×B3U(1)

1
2 p̂1+2DD

// B3U(1)

.

Here the moduli stack in the bottom left is that of the field of gravity (spin connections) together with an
auxiliary circle 3-bundle / 2-gerbe. Following the arguments in [FiSaScIII] (the traditional ones as well as
the new ones presented there), we take this auxiliary circle 3-bundle to be the Chern-Simons circle 3-bundle
of an E8-principal bundle. According to prop. 5.4.105 this is formalized on smooth higher moduli stacks by
further pulling back along the smooth refinement

a : BE8 → B3U(1)

of the canonical universal 4-class [a] ∈ H4(BE8,Z). Therefore we are led to formalize the E8-model for the
C-field as follows.

Definition 5.4.107. The smooth moduli 3-stack of spin connections and C-field configurations in the
E8-model is the homotopy pullback CField of the moduli n-stack of smooth differential Wu structures
BnU(1)ν4

conn, def. 5.4.102, to spin connections and E8-instanton configurations, hence the homotopy pull-
back

CField //

��

B3U(1)ν4
conn

��
BSpinconn ×BE8

(u,a) // BSpinν4 ×B3U(1)

, (5.18)

where u is the canonical morphism from example 5.4.99.
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Remark 5.4.108. By the pasting law, prop. 2.3.1, CField is equivalently given as the homotopy pullback

CField
Ĝ4 //

��

B3U(1)conn

��
BSpinconn ×BE8

1
2 p1+2a // B3U(1)

. (5.19)

Spelling out this definition, a C-field configuration

(∇so,∇b2R, PE8
) : X → CField

on a smooth manifold X is the datum of

1. a principal Spin-bundle with so-connection (PSpin,∇so) on X;

2. a principal E8-bundle PE8 on X;

3. a U(1)-2-gerbe with connection (PB2U(1),∇B2U(1)) on X;

4. a choice of equivalence of U(1)-2-gerbes between between PB2U(1) and the image of PSpin ×X PE8
via

1
2p1 + 2a.

It is useful to observe that there is the following further equivalent reformulation of this definition.

Proposition 5.4.109. The moduli 3-stack CField from def. 5.4.107 is equivalently the homotopy pullback

CField //

��

Ω4
cl

��
BSpinconn ×BE8

( 1
2 p1+2a)dR // [dRB4R

, (5.20)

where the bottom morphism of higher stacks is presented by the correspondence of simplicial presheaves

BSpinconn × (BE8)diff
//

o
����

BSpindiff × (BE8)diff

(
1
2p1+2a)diff //

o
����

B3U(1)diff
curv //

o
����

[dRB4R

BSpinconn ×BE8
// BSpin×BE8

1
2p1+2a

// B3U(1)

. (5.21)

Moreover, it is equivalently the homtopy pullback

CField //

��

Ω4
cl

��
BSpinconn ×BE8

( 1
4 p1+a)dR // [dRB4R

, (5.22)

where now the bottom morphism is the composite of the bottom morphism before, postcomposed with the
morphism

1
2 : [dRB4R→ [dRB4R

that is given, via Dold-Kan, by division of differential forms by 2.
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Proof. By the pasting law for homotopy pullbacks, prop. 2.3.1, the first homotopy pullback above may
be computed as two consecutive homotopy pullbacks

CField //

��

BnU(1)conn
//

��

Ω4
cl

��
BSpinconn ×BE8

1
2p1+2a

// B3U(1)
curv // [dRB4R

,

which exhibits on the right the defining pullback of def. 4.4.76, and thus on the left the one from def. 5.4.107.
The statement about the second homotopy pullback above follows analogously after noticing that

Ω4
cl

1/2 //

��

Ω4
cl

��
[dRB4R

1/2 // [dRB4R

. (5.23)

is a homotopy pullback. �
It is therefore useful to introduce labels as follows.

Definition 5.4.110. We label the structure morphism of the above composite homotopy pullback as

CField
Ĝ4 //

��

B3U(1)conn
G4 //

G4

��

Ω4
cl

��
BSpinconn ×BE8 1

2 p2+2a

// B3U(1)
curv

// [dRB4U(1)

H3

'
u}

'
v~

.

Here Ĝ4 sends a C-field configuration to an underlying circle 3-bundle with connection, whose curvature
4-form is G4.

Remark 5.4.111. These equivalent reformulations show two things.

1. The C-field model may be thought of as containing E8-pseudo-connections. That is, there is a higher
gauge in which a field configuration consists of an E8-connection on an E8-bundle – even though there
is no dynamical E8-gauge field in 11d supergravity – but where gauge transformations are allowed to
freely shift these connections.

2. There is a precise sense in which imposing the quantization condition (5.17) on integral cohomology
is equivalent to imposing the condition [G4]/2 = 1

4p1 + a in de Rham cohomology / real singular
cohomology.

Observation 5.4.112. When restricted to a fixed Spin-connection, gauge equivalence classes of config-
urations classified by CField naturally form a torsor over the ordinary degree-4 differential cohomology
H4

diff(X).

Proof. By the general discussion of differential integral Wu-structures in section 5.4.8.2. �

5.4.8.5 The homotopy type of the moduli stack We discuss now the homotopy type of the the
3-groupoid

CField(X) := H(X,CField)

of C-field configurations over a given spacetime manifold X. In terms of gauge theory, its 0-th homotopy
group is the set of gauge equivalence classes of field configurations, its first homotopy group is the set of
gauge-of-gauge equivalence classes of auto-gauge transformations of a given configuration, and so on.
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Definition 5.4.113. For X a smooth manifold, let

BSpinconn

��
X

PSpin //

∇so

::

BSpin

be a fixed spin structure with fixed spin connection. The restriction of CField(X) to this fixed spin con-
nection is the homotopy pullback

CField(X)PSpin
//

��

CField(X)

��
H(X,BE8)

((PSpin,∇so),id) // H(X,BSpinconn ×BE8)

.

Proposition 5.4.114. The gauge equivalence classes of CField(X)PSpin
naturally surjects onto the differ-

ential integral Wu structures on X, relative to 1
2p1(PSpin) mod 2, (example 5.4.99):

π0CField(X)PSpin
// // Ĥn+1

1
2p1(PSpin)

(X) .

The gauge-of-gauge equivalence classes of the auto-gauge transformation of the trivial C-field configuration
naturally surject onto H2(X,U(1)):

π1CField(X)PSpin
// // H2(X,U(1)) .

Proof. By def. 5.4.107 and the pasting law, prop. 2.3.1, we have a pasting diagram of homotopy pullbacks
of the form

CField(X)PSpin
// //

��

H 1
2p1(PSpin)

(X,BnU(1)ν4
conn) //

��

H(X,BnU(1)ν4
conn)

��
H(X,BE8)

H(X,a) // // H(X,B3U(1))
(∇so,id) // H(X,BSpinconn ×B3U(1))

(u,id) // H(X,BSpinν4 ×B3U(1))

,

where in the middle of the top row we identified, by def. 5.4.103, the n-groupoid of smooth differential Wu
structures lifting the smooth Wu structure 1

2p1(PSpin).
Due to prop. 5.4.104 we are therefore reduced to showing that the top left morphism is surjective on π0.
But the bottom left morphism is surjective on π0, by prop. 5.4.106. Now, the morphisms surjective on

π0 are precisely the effective epimorphisms in ∞Grpd, and these are stable under pullback. Hence the first
claim follows.

For the second, we use that

π1CField(X)PSpin
' π0ΩCField(X)PSpin

and that forming loop space objects (being itself a homotopy pullback) commutes with homotopy pullbacks
and with taking cocycles with coefficients in higher stacks, H(X,−).

Therefore the image of the left square in the above under Ω is the homotopy pullback

ΩCField(X)PSpin
// //

��

H 1
2p1(PSpin)

(X,BnU(1)ν4
conn)

��
C∞(X,E8)

H(X,Ωa) // // H(X,B2U()1)

,
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where in the bottom left corner we used

ΩH(X,BE8) ' H(X,ΩBE8)

' H(X,E8)

' C∞(X,E8)

,

and similarly for the bottom right corner. This identifies the bottom morphism on connected components as
the morphism that sends a smooth function X → E8 to its homotopy class under the homotopy equivalence
E8 '15 B

2U(1) ' K(Z, 3), which holds over the 11-dimensional X.
Therefore the bottom morphism is again surjective on π0, and so is the top morphism. The claim then

follows with prop. 5.4.100. �

5.4.8.6 Boundary moduli of the C-field We consider now ∂X (a neighbourhood of) the boundary
of spacetime X, and discuss a variant of the moduli stack CField that encodes the boundary configurations
of the supergravity C field.

Two different kinds of boundary conditions for the C-field appear in the literature.

• On an M5-brane boundary, the integral class underlying the C-field vanishes. (For instance page 24 of
[Wi96]).

• On the fixed points of a 3-bundle-orientifold, def. 5.4.5, for the case that X has an S1//Z2-orbifold
factor, the C-field vanishes entirely. (This is considered in [HoWi95]. See section 3.1 of [Fal] for details.)

We construct higher moduli stacks for both of these conditions in the following. In addition to being
restricted, the supergravity fields on a boundary also pick up additional degrees of freedom

• The E8-principal bundle over the boundary is equipped with a connection.

We present now a sequence of natural morphisms of 3-stacks

CFieldbdr′ //

ι′

33CFieldbdr ι // CField

into the moduli stack of bulk C-fields, such that C-field configurations on X with the above behaviour over
∂X correspond to the relative cohomology, def. 3.3.150, with coefficients in ι or ι′,respectively, hence to
commuting diagrams of the form

∂X
φbdr //� _

��

CFieldbdr

ι

��
X

φ // CField

,

and analogously for the primed case. (This is directly analogous to the characterization of type II supergravity
field configurations in the presence of D-branes as discussed in 5.4.7.2.)

To this end, recall the general diagram of moduli stacks from def. 3.6.31 that relates the characteristic
map 1

2p1 + 2a with its differential refinement 1
2 p̂1 + 2â:

B(Spin× E8)
[ 1

2 p1+2[a //

��

[B3U(1)

��
B(Spin× E8)conn

1
2 p̂1+2â //

��

B3U(1)conn

��
B(Spin× E8)

1
2 p1+2a // B3U(1)

.
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The defining ∞-pullback diagram for CField factors the lower square of this diagram as follows

B(Spin× E8)conn

))

##

1
2 p̂1+2â

++
CField

��

Ĝ4 // B3U(1)conn

��
BSpinconn ×BE8

// BSpin×BE8

1
2 p1+2a // B3U(1)

.

Here the dashed morphism is the universal morphism induced from the commutativity of the previous
diagram together with the pullback property of the 3-stack CField. This morphism is the natural map
of moduli which induces the relative cohomology that makes the E8-bundle pick up a connection on the
boundary.

It therefore remains to model the condition that G4 or even Ĝ4 vanishes on the boundary. This condition
is realized by further pulling back along the sequence

∗ 0 // Ω3(−) // B3U(1)conn .

Definition 5.4.115. Write CFieldbdr and CFieldbdr′ , respectively, for the moduli 3-stacks which arise as
homotopy pullbacks in the top rectangles of

CFieldbdr′ //

ι′

&&

��

∗

0

��
CFieldbdr //

ι

%%

��

Ω3(−)

��
B(Spin× E8)conn

1
2 p̂1+2â //

��

B3U(1)conn

CField
Ĝ4 // B3U(1)conn

.

For X a smooth manifold with boundary, we say that the 3-groupoid of C-field configurations with boundary
data on X is the hom ∞-groupoid

HI(∂X → X , CFieldbdr ι→ CField) ,

in the arrow category of the ambient∞-topos H = Smooth∞Grp, where on the right we have the composite
morphism indicated by the curved arrow above, and analogously for the primed case.

Observation 5.4.116. The moduli 3-stack CFieldbrd is equivalent to is the moduli 3-stack of twisted

String2a-2-connections whose underlying twist has trivial class. The moduli 3-stack CFieldbdr′ is equivalent
to the moduli 3-stack of untwisted String2a-2-connections

CFieldbdr′ ' String2a
conn .

This is presented via Lie integration of L∞-algebras as

CFieldbdr′ ' cosk3 exp((so⊕ e8)µso
3 +µ

e8
3

)conn .
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The presentation of CFieldbdr by Lie integration is locally given by


FA = dA+ 1

2 [A ∧A]
H3 = ∇B := dB + CS(A)− C3

G4 = dC3

dFA = −[A ∧ FA]
dH3 = 〈FA ∧ FA〉 − G4

dG4 = 0


i

ta 7→ Aa

ra 7→ F aA
b 7→ B
c 7→ C3

h 7→ H3

g 7→ G4oo �


ra = dta + 1

2C
a
bct

b ∧ tc+
h = db+ cs− c
g = dc
dra = −Cabctb ∧ ra
dh = 〈−,−〉 − g
dg = 0

 ,

where
g = so⊕ e8

and hence
A = ω +Ae8

.

Proof. By definition 3.6.34 and prop. 5.2.13. �

Remark 5.4.117. Notice that with respect to String-connections, there are two levels of twists here:

1. The C-field 3-form twists the String2a-2-connections.

2. For vanishing C-field 3-form, a String2a-2-connection is still a twisted String-2-connection, where the
twist is now by the Chern-Simons 3-bundle with connection of the underlying E8-bundle with connec-
tion.

5.4.8.7 Hořava-Witten boundaries are membrane orientifolds We now discuss a natural formu-
lation of the origin of the Hořava-Witten boundary conditions [HoWi95] in terms of higher stacks and
nonabelian differential cohomology, specifically, in terms of what we call membrane orientifolds. From this
we obtain a corresponding refinement of the moduli 3-stack of C-field configurations which now explicitly
contains the twisted Z2-equivariance of the Hořava-Witten background.

Recall the notion of higher orientifolds and their identification with twisted differential Jn-structures
from 5.4.5.

Observation 5.4.118. Let U//Z2 ↪→ Y//Z2 be a patch on which a given Ĵn-structure has a trivial underlying
integral class, such that it is equivalent to a globally defined (n + 1)-form CU on U . Then the components
of this this 3-form orthogonal to the Z2-action are odd under the action. In particular, if U ↪→ Y sits in the
fixed point set of the action, then these components vanish. This is the Hořava-Witten boundary condition
on the C-field on an 11-dimensional spacetime Y = X × S1 equipped with Z2-action on the circle. See for
instance section 3 of [Fal] for an explicit discussion of the Z2 action on the C-field in this context.

We therefore have a natural construction of the moduli 3-stack of Hořava-Witten C-field configurations
as follows

Definition 5.4.119. Let CFieldJ(Y ) be the homotopy pullback in

CFieldJ(Y )

��

// ĴStrucρ(Y//Z2)

��
H(Y,B3U(1)conn)

��
H(Y,BSpinconn ×BE8)

H(Y,
1
2p1+2a)

// H(Y,B3U(1)) ,
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where the top right morphism is the map Ĝρ 7→ Ĝ from remark 5.4.46.

The objects of CFieldJ(Y ) are C-field configurations on Y that not only satisfy the flux quantization
condition, but also the Hořava-Witten twisted equivariance condition (in fact the proper globalization of
that condition from 3-forms to full differential cocycles). This is formalized by the following.

Observation 5.4.120. There is a canonical morphism CFieldJ(Y )→ CField(Y ), being the dashed mor-
phism in

CFieldJ(Y )

��

// ĴStrucρ(Y//Z2)

��
CField(Y ) //

��

H(Y,B3U(1)conn)

��
H(Y,BSpinconn ×BE8)

H(Y,
1
2p1+2a)

// H(Y,B3U(1)) ,

which is given by the universal property of the defining homotopy pullback of CField, remark 5.4.108.

A supergravity field configuration presented by a morphism Y → CField into the moduli 3-stack of
configurations that satisfy the flux quantization condition in addition satisfies the Hořava-Witten boundary
condition if, as an element of CField(Y ) := H(Y,CField) it is in the image of CFieldJ(Y )→ CField(Y ).
In fact, there may be several such pre-images. A choice of one is a choice of membrane orientifold structure.

5.4.9 Differential T-duality

In [KaVa10] (see also the review in section 7.4 of [BuSc10]) a formalization of the differential refinement of
topological T-duality is given. We discuss here how this is naturally an example of the twisted differential
c-structures, 3.6.6.

(...)
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5.5 Symplectic higher geometry

The notion of symplectic manifold formalizes in physics the concept of a classical mechanical system. The
notion of geometric quantization, 3.6.11, of a symplectic manifold is one formalization of the general concept
in physics of quantization of such a system to a quantum mechanical system.

Or rather, the notion of symplectic manifold does not quite capture the most general systems of classical
mechanics. One generalization requires passage to Poisson manifolds. The original methods of geometric
quantization become meaningless on a Poisson manifold that is not symplectic. However, a Poisson structure
on a manifold X is equivalent to the structure of a Poisson Lie algebroid P over X. This is noteworthy,
because the latter is again symplectic, as a Lie algebroid, even if the underlying Poisson manifold is not
symplectic: it is a symplectic Lie 1-algebroid, prop. 5.5.16.

Based on related observations it was suggested, [Wei89] that a notion of symplectic groupoid should
naturally replace that of symplectic manifold for the purposes of geometric quantization to yield a notion of
geometric quantization of symplectic groupoids. Since a symplectic manifold can be regarded as a symplectic
Lie 0-algebroid, prop. 5.5.16, and also as a symplectic smooth 0-groupoid this step amounts to a kind of
categorification of symplectic geometry.

More or less implicitly, there has been evidence that this shift in perspective is substantial: the deforma-
tion quantization of a Poisson manifold famously turns out [Kon03] to be constructible in terms of correlators
of the 2-dimensional TQFT called the Poisson σ-model, 5.6.9.4, associated with the corresponding Poisson
Lie algebroid. The fact that this is 2-dimensional and not 1-dimensional, as the quantum mechanical system
that it thus encodes, is a direct reflection of this categorification shift of degree.

On general abstract grounds this already suggests that it makes sense to pass via higher categorification
further to symplectic Lie n-algebroids, def. 5.5.14, as well as to symplectic 2-groupoids, symplectic 3-
groupoids, etc. up to symplectic ∞-groupoids, def. 5.5.21.

Formal hints for such a generalization had been noted in [Sev01] (in particular in its concluding table).
More indirect – but all the more noteworthy – hints came from quantum field theory, where it was observed
that a generalization of symplectic geometry to multisymplectic geometry [Hél11] of degree n more naturally
captures the description of n-dimensional QFT (notice that quantum mechanics may be understood as
(0 + 1)-dimensional QFT). For, observe that the symplectic form on a symplectic Lie n-algebroid is, while
always “binary”, nevertheless a representative of de Rham cohomology in degree n+ 2.

There is a natural formalization of these higher symplectic structures in the context of any cohesive ∞-
topos. Moreover, by 5.5.2 symplectic forms on L∞-algebroids have a natural interpretation in∞-Lie theory:
they are L∞-invariant polynomials. This means that the ∞-Chern-Weil homomorphism applies to them.

Observation 5.5.1. From the perspective of ∞-Lie theory, a smooth manifold Σ equipped with a sym-
plectic form ω is equivalently a Lie 0-algebroid equipped with a quadratic and non-degenerate L∞-invariant
polynomial (def. 4.4.92).

This observation implies

1. a direct ∞-Lie theoretic analog of symplectic manifolds: symplectic Lie n-algebroids and their Lie
integration to symplectic smooth ∞-groupoids

2. the existence of a canonical ∞-Chern-Weil homomorphism for every symplectic Lie n-algebroid.

This is spelled out below in 5.5.1, 5.5.2, 5.5.3, which is taken from [FRS11a]. The ∞-group extensions, def.
3.3.141, that are induced by the unrefined∞-Chern-Weil homomorphism, 3.6.5, on a symplectic∞-groupoid
are their prequantum circle (n+ 1)-bundles, the higher analogs of prequantum line bundles in the geometric
quantization of symplectic manifolds. This we discuss in 4.4.17. Further below in 5.6.9 we show that the
refined ∞-Chern-Weil homomorphism, 3.6.9, on a symplectic ∞-groupoid constitutes the action functional
of the corresponding AKSZ σ-model (discussed below in 5.6.9).

• 5.5.1 – Symplectic dg-geometry;
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• 5.5.2– Symplectic L∞-algebroids;

• 5.5.3 – Symplectic smooth ∞-groupoids;

The parts 5.5.1 and 5.5.2 are taken from [FRS11a].

5.5.1 Symplectic dg-geometry

In 4.5 we considered a general abstract notion of infinitesimal thickenings in higher differential geometry and
showed how from the point of view of ∞-Lie theory this leads to the notion of L∞-algebroids, def. 4.5.10.
As is evident from that definition, these can also be regarded as objects in dg-geometry [ToVe05]. We make
explicit now some basic aspects of this identification.

The following definitions formulate a simple notion of affine smooth graded manifolds and affine smooth
dg-manifolds. Despite their simplicity these definitions capture in a precise sense all the relevant structure:
namely the local smooth structure. Globalizations of these definitions can be obtained, if desired, by general
abstract constructions.

Definition 5.5.2. The category of affine smooth N-graded manifolds – here called smooth graded manifolds
for short – is the full subcategory

SmoothGrMfd ⊂ GrAlgop
R

of the opposite category of N-graded-commutative R-algebras on those isomorphic to Grassmann algebras
of the form

∧•C∞(X0)Γ(V ∗) ,

where X0 is an ordinary smooth manifold, V → X0 is an N-graded smooth vector bundle over X0 degreewise
of finite rank, and Γ(V ∗) is the graded C∞(X)-module of smooth sections of the dual bundle.

For a smooth graded manifold X ∈ SmoothGrMfd, we write C∞(X) ∈ cdgAlgR for its corresponding
dg-algebra of functions.

Remarks.

• The full subcategory of these objects is equivalent to that of all objects isomorphic to one of this form.
We may therefore use both points of view interchangeably.

• Much of the theory works just as well when V is allowed to be Z-graded. This is the case that genuinely
corresponds to derived (instead of just higher) differential geometry. An important class of examples
for this case are BV-BRST complexes which motivate much of the literature. For the purpose of this
short note, we shall be content with the N-graded case.

• For an N-graded C∞(X0)-module Γ(V ∗) we have

∧•C∞Γ(V ∗) = C∞(X0)⊕ Γ(V ∗0 )⊕
(
Γ(V ∗0 ) ∧C∞(X0) Γ(V ∗0 )⊕ Γ(V ∗1 )

)
⊕ · · · ,

with the leftmost summand in degree 0, the next one in degree 1, and so on.

• There is a canonical functor
SmoothMfd ↪→ SmthGrMfd

which identifies an ordinary smooth manifold X with the smooth graded manifold whose function
algebra is the ordinary algebra of smooth functions C∞(X0) := C∞(X) regarded as a graded algebra
concentrated in degree 0. This functor is full and faithful and hence exhibits a full subcategory.

All the standard notions of differental geometry apply to differential graded geometry. For instance for
X ∈ SmoothGrMfd, there is the graded vector space Γ(TX) of vector fields on X, where a vector field is
identified with a graded derivation v : C∞(X) → C∞(X). This is naturally a graded (super) Lie algebra
with super Lie bracket the graded commutator of derivations. Notice that for v ∈ Γ(TX) of odd degree we
have [v, v] = v ◦ v + v ◦ v = 2v2 : C∞(X)→ C∞(X).
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Definition 5.5.3. The category of (affine, N-graded) smooth differential-graded manifolds is the full sub-
category

SmoothDgMfd ⊂ cdgAlgop
R

of the opposite of differential graded-commutative R-algebras on those objects whose underlying graded
algebra comes from SmoothGrMfd.

This is equivalently the category whose objects are pairs (X, v) consisting of a smooth graded manifold
X ∈ SmoothGrMfd and a grade 1 vector field v ∈ Γ(TX), such that [v, v] = 0, and whose morphisms
(X1, v1)→ (X2, v2) are morphisms f : X1 → X2 such that v1 ◦ f∗ = f∗ ◦ v2.

Remark 5.5.4. The dg-algebras appearing here are special in that their degree-0 algebra is naturally not
just an R-algebra, but a smooth algebra (a “C∞-ring”, see [Stel10] for review and discussion).

Definition 5.5.5. The de Rham complex functor

Ω•(−) : SmoothGrMfd→ cdgAlgop
R

sends a dg-manifold X with C∞(X) ' ∧•C∞(X0)Γ(V ∗) to the Grassmann algebra over C∞(X0) on the graded

C∞(X0)-module
Γ(T ∗X)⊕ Γ(V ∗)⊕ Γ(V ∗[−1]) ,

where Γ(T ∗X) denotes the ordinary smooth 1-form fields on X0 and where V ∗[−1] is V ∗ with the grades
increased by one. This is equipped with the differential d defined on generators as follows:

• d|C∞(X0) = ddR is the ordinary de Rham differential with values in Γ(T ∗X);

• d|Γ(V ∗) → Γ(V ∗[−1]) is the degree-shift isomorphism

• and d vanishes on all remaining generators.

Definition 5.5.6. Observe that Ω•(−) evidently factors through the defining inclusion SmoothDgMfd ↪→
cdgAlgR. Write

T(−) : SmoothGrMfd→ SmoothDgMfd

for this factorization.

The dg-space TX is often called the shifted tangent bundle of X and denoted T [1]X.

Observation 5.5.7. For Σ an ordinary smooth manifold and for X a graded manifold corresponding to a
vector bundle V → X0, there is a natural bijection

SmoothGrMfd(TΣ, X) ' Ω•(Σ, V )

where on the right we have the set of V -valued smooth differential forms on Σ: tuples consisting of a smooth
function φ0 : Σ → X0, and for each n > 1 an ordinary differential n-form φn ∈ Ωn(Σ, φ∗0Vn−1) with values
in the pullback bundle of Vn−1 along φ0.

The standard Cartan calculus of differential geometry generalizes directly to graded smooth manifolds.
For instance, given a vector field v ∈ Γ(TX) on X ∈ SmoothGrMfd, there is the contraction derivation

ιv : Ω•(X)→ Ω•(X)

on the de Rham complex of X, and hence the Lie derivative

Lv := [ιv,d] : Ω•(X)→ Ω•(X) .
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Definition 5.5.8. For X ∈ SmoothGrMfd the Euler vector field ε ∈ Γ(TX) is defined over any coordinate
patch U → X to be given by the formula

ε|U :=
∑
a

deg(xa)xa
∂

∂xa
,

where {xa} is a basis of generators and deg(xa) the degree of a generator. The grade of a homogeneous
element α in Ω•(X) is the unique natural number n ∈ N with

Lεα = nα .

Remarks.

• This implies that for xi an element of grade n on U , the 1-form dxi is also of grade n. This is why we
speak of grade (as in “graded manifold”) instead of degree here.

• Since coordinate transformations on a graded manifold are grading-preserving, the Euler vector field
is indeed well-defined. Note that the degree-0 coordinates do not appear in the Euler vector field.

The existence of ε implies the following useful statement (amplified in [Royt02]), which is a trivial variant
of what in grade 0 would be the standard Poincaré lemma.

Observation 5.5.9. On a graded manifold, every closed differential form ω of positive grade n is exact: the
form

λ :=
1

n
ιεω

satisfies
dλ = ω .

Definition 5.5.10. A symplectic dg-manifold of grade n ∈ N is a dg-manifold (X, v) equipped with 2-form
ω ∈ Ω2(X) which is

• non-degenerate;

• closed;

as usual for symplectic forms, and in addition

• of grade n;

• v-invariant: Lvω = 0.

In a local chart U with coordinates {xa} we may find functions {ωab ∈ C∞(U)} such that

ω|U =
1

2
dxa ωab ∧ dxb ,

where summation of repeated indices is implied. We say that U is a Darboux chart for (X,ω) if the ωab are
constant.

Observation 5.5.11. The function algebra of a symplectic dg-manifold (X,ω) of grade n is naturally
equipped with a Poisson bracket

{−,−} : C∞(X)⊗ C∞(X)→ C∞(X)

which decreases grade by n. On a local coordinate patch {xa} this is given by

{f, g} =
f ∂

xa ∂
ωab

∂g

∂xb
,

where {ωab} is the inverse matrix to {ωab}, and where the graded differentiation in the left factor is to be
taken from the right, as indicated.
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Definition 5.5.12. For π ∈ C∞(X) and v ∈ Γ(TX), we say that π is a Hamiltonian for v, or equivalently,
that v is the of π if

dπ = ιvω .

Note that the convention (−1)n+1dπ = ιvω is also frequently used for defining Hamiltonians in the
context of graded geometry.

Remark 5.5.13. In a local coordinate chart {xa} the defining equation dπ = ιvω becomes

dxa
∂π

∂xa
= ωabv

a ∧ dxb = ωabdx
a ∧ vb ,

implying that

ωabv
b =

∂π

∂xa
.

5.5.2 Symplectic L∞-algebroids

Here we discuss L∞-algebroids, def. 4.5.10, equipped with symplectic structure, which we conceive of as:
equipped with de Rham cocycles that are invariant polynomials, def. 4.4.92.

Definition 5.5.14. A symplectic Lie n-algebroid (P, ω) is a Lie n-algebroid P equipped with a quadratic
non-degenerate invariant polynomial ω ∈W (P) of degree n+ 2.

This means that

• on each chart U → X of the base manifold X of P, there is a basis {xa} for CE(a|U ) such that

ω =
1

2
dxa ωab ∧ dxb

with {ωab ∈ R ↪→ C∞(X)} and deg(xa) + deg(xb) = n;

• the coefficient matrix {ωab} has an inverse;

• we have
dW(P)ω = dCE(P)ω + dω = 0 .

The following observation essentially goes back to [Sev01] and [Royt02].

Proposition 5.5.15. There is a full and faithful embedding of symplectic dg-manifolds of grade n into
symplectic Lie n-algebroids.

Proof. The dg-manifold itself is identified with an L∞-algebroid by def. 4.5.10. For ω ∈ Ω2(X) a
symplectic form, the conditions dω = 0 and Lvω = 0 imply (d + Lv)ω = 0 and hence that under the
identification Ω•(X) 'W(a) this is an invariant polynomial on a.

It remains to observe that the L∞-algebroid a is in fact a Lie n-algebroid. This is implied by the fact
that ω is of grade n and non-degenerate: the former condition implies that it has no components in elements
of grade > n and the latter then implies that all such elements vanish. �
The following characterization may be taken as a definition of Poisson Lie algebroids and Courant Lie
2-algebroids.

Proposition 5.5.16. Symplectic Lie n-algebroids are equivalently:

• for n = 0: ordinary symplectic manifolds;

• for n = 1: Poisson Lie algebroids;

• for n = 2: Courant Lie 2-algebroids.
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See [Royt02, Sev01] for more discussion.

Proposition 5.5.17. Let (P, ω) be a symplectic Lie n-algebroid for positive n in the image of the embedding
of proposition 5.5.15. Then it carries the canonical L∞-algebroid cocycle

π :=
1

n+ 1
ιειvω ∈ CE(P)

which moreover is the Hamiltonian, according to definition 5.5.12, of dCE(P).

Proof. Since dω = Lvω = 0, we have

dιειvω = dιvιεω

= (ιvd− Lv)ιεω
= ιvLεω − [Lv, ιε]ω
= nιvω − ι[v,ε]ω
= (n+ 1)ιvω,

where Cartan’s formula [Lv, ιε] = ι[v,ε] and the identity [v, ε] = −[ε, v] = −v have been used. Therefore

π := 1
n+1 ιειvω satisfies the defining equation dπ = ιvω from definition 5.5.12. �

Remark 5.5.18. On a local chart with coordinates {xa} we have

π
∣∣
U

=
1

n+ 1
ωab deg(xa)xa ∧ vb .

Our central observation now is the following.

Proposition 5.5.19. The cocycle 1
nπ from prop. 5.5.17 is in transgression with the invariant polynomial

ω. A Chern-Simons element witnessing the transgression according to def. 4.4.96 is

cs =
1

n
(ιεω + π) .

Proof. It is clear that i∗cs = 1
nπ. So it remains to check that dW(P)cs = ω. As in the proof of proposition

5.5.17, we use dω = Lvω = 0 and Cartan’s identity [Lv, ιε] = ι[v,ε] = −ιv. By these, the first summand in
dW(P)(ιεω + π) is

dW(P)ιεω = (d + Lv)ιεω
= [d + Lv, ιε]ω
= nω − ιvω
= nω − dπ

.

The second summand is simply
dW(P)π = dπ

since π is a cocycle. �

Remark 5.5.20. In a coordinate patch {xa} the Chern-Simons element is

cs
∣∣
U

=
1

n

(
ωab deg(xa)xa ∧ dxb + π

)
.

In this formula one can substitute d = dW − dCE, and this kind of substitution will be crucial for the proof
our main statement in proposition 5.6.35 below. Since dCEx

i = vi and using remark 5.5.18 we find∑
a

ωabdeg(xa)xa ∧ dCEx
b = (n+ 1)π ,
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and hence

cs
∣∣
U

=
1

n

(
deg(xa)ωabx

a ∧ dW(P)x
b − nπ

)
.

In the section 5.6.9 we show that this transgression element cs is the AKSZ-Lagrangian.

5.5.3 Symplectic smooth ∞-groupoids

We define symplectic smooth ∞-groupoids in terms of their underlying symplectic L∞-algebroids.
Recall that for any n ∈ N, a symplectic Lie n-algebroid (P, ω) is (def. 5.5.14) an L∞-algebroid P that is

equipped with a quadratic and non-degenerate L∞-invariant polynomial. Under Lie integration, def. 4.4.44,
P integrates to a smooth n-groupoid τn exp(P) ∈ Smooth∞Grpd. Under the∞-Chern-Weil homomorphism,
4.4.14, the invariant polynomial induces a differential form on the smooth ∞-groupoid, 3.6.1:

ω : τn exp(P)→ [dRBn+2R

representing a class [ω] ∈ Hn+2
dR (τn exp(P)).

Definition 5.5.21. Write

SymplSmooth∞Grpd ↪→ Smooth∞Grpd/(
∐
n

[dRBn+2R)

for the full sub-∞-category of the over-∞-topos of Smooth∞Grpd over the de Rham coefficient objects on
those objects in the image of this construction.

We say an object on SymplSmooth∞Grpd is a symplectic smooth ∞-groupoid.

Remark 5.5.22. There are evident variations of this for the ambient Smooth∞Grpd replaced by some
variant, such as SynthDiffInfGrpd∞Grpd, or SmoothSuper∞Grpd, 4.6).

We now spell this out for n = 1. The following notion was introduced in [Wei89] in the study of geometric
quantization.

Definition 5.5.23. A symplectic groupoid is a Lie groupoid G equipped with a differential 2-form ω1 ∈
Ω2(G1) which is

1. a symplectic 2-form on G1;

2. closed as a simplicial form:
δω1 = ∂∗0ω1 − ∂∗1ω1 + ∂∗2ω1 = 0 ,

where ∂i : G2 → G1 are the face maps in the nerve of G.

Example 5.5.24. Let (X,ω) be an ordinary symplectic manifold. Then its fundamental groupoid Π1(X)
canonically is a symplectic groupoid with ω1 := ∂∗1ω − ∂∗0ω.

Proposition 5.5.25. Let P be the symplectic Lie 1-algebroid (Poisson Lie algebroid), def. 5.5.14, induced
by the Poisson manifold structure corresponding to (X,ω). Write

ω : TP→ Tb3R

for the canonical invariant polynomial.
Then the corresponding ∞-Chern-Weil homomorphism according to 4.4.14

exp(ω) : exp(P)diff → B3
dRR

exhibits the symplectic groupoid from example 5.5.24.
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Proof. We start with the simple situation where (X,ω) has a global Darboux coordinate chart {xi}.
Write {ωij} for the components of the symplectic form in these coordinates, and {ωij} for the components
of the inverse.

Then the Chevalley-Eilenberg algebra CE(P) is generated from {xi} in degree 0 and {∂i} in degree 1,
with differential given by

dCEx
i = −ωij∂j

dCE∂i =
∂πjk

∂xi
∂j ∧ ∂k = 0 .

The differential in the corresponding Weil algebra is hence

dWx
i = −ωij∂j + dxi

dW∂i = d∂i .

By prop. 5.5.16, the symplectic invariant polynomial is

ω = dxi ∧ d∂i ∈W (P) .

Clearly it is useful to introduce a new basis of generators with

∂i := −ωij∂j .

In this new basis we have a manifest isomorphism

CE(P) = CE(TX)

with the Chevalley-Eilenberg algebra of the tangent Lie algebroid of X.
Therefore the Lie integration of P is the fundamental groupoid of X, which, since we have assumed

global Darboux oordinates and hence contractible X, is just the pair groupoid:

τ1 exp(P) = Π1(X) = ( X ×X //
// X ) .

It remains to show that the symplectic form on P makes this a symplectic groupoid.
Notice that in the new basis the invariant polynomial reads

ω = −ωijdxi ∧ d∂j

= d(ωij∂
i ∧ dxj)

.

The corresponding ∞-Chern-Weil homomorphism, 4.4.14, that we need to compute is given by the ∞-
anafunctor

exp(P)diff
exp(ω)//

'
��

exp(b3R)dR

∫
∆• // [dRB3R

exp(P)

.

Over a test space U ∈ CartSp and in degree 1 an element in exp(P)diff is a pair (Xi, ηi)

Xi ∈ C∞(U ×∆1)

ηi ∈ Ω1
vert(U ×∆1)

subject to the constraint that along ∆1 we have

d∆1Xi + ηi∆1 = 0 .
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The vertical morphism exp(P)diff → exp(P) has in fact a section whose image is given by those pairs for
which ηi has no leg along U . We therefore find the desired form on exp(P) by evaluating the top morphism
on pairs of this form.

Such a pair is taken by the top morphism to

(Xi, ηj) 7→
∫

∆1

ωijFXi ∧ F∂j

=

∫
∆1

ωij(ddRX
i + ηi) ∧ ddRη

j ∈ Ω3(U)

.

Using the above constraint and the condition that ηi has no leg along U , this becomes

· · · =
∫

∆1

ωijdUX
i ∧ dUd∆1Xj .

By the Stokes theorem the integration over ∆1 yields

· · · = ωijddRX
i ∧ ddRX

j |0 − ωijddRX
i ∧ ddRX

j |1
= ∂∗1ω − ∂∗0ω

.

�
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5.6 ∞-Chern-Simons functionals

We consider the realization of the general abstract∞-Chern-Simons functionals from 3.6.9 in the context of
smooth, synthetic-differential and super-cohesion. We discuss general aspects of the class of quantum field
theories defined this way and then identify a list of special cases of interest. This section builds on [FRS11a]
and [FRS11b].

• 5.6.1 – ∞-Chern-Simons field theory

• Examples

– 5.6.2 – 1d Chern-Simons functionals

– 5.6.3 – 3d Chern-Simons functionals

∗ 5.6.3.1 – Ordinary Chern-Simons theory

∗ 5.6.3.2 – Ordinary Dijkgraaf-Witten theory

– 5.6.4 – 4d Chern-Simons functionals

∗ 5.6.4.1 – 4d BF theory and topological Yang-Mills theory

∗ 5.6.4.2 – 4d Yetter model

– 5.6.5 – Abelian gauge coupling of branes

– 5.6.6 – Higher abelian Chern-Simons functionals

∗ 5.6.6.1 – (4k + 3)d U(1)-Chern-Simons functionals;

∗ 5.6.6.2 – Higher electric coupling and higher gauge anomalies.

– 5.6.7.2 – 7d Chern-Simons functionals

∗ 5.6.7.1 – The cup product of a 3d CS theory with itself;

∗ 5.6.7.2 – 7d CS theory on string 2-connection fields;

∗ 5.6.7.3 – 7d CS theory in 11d supergravity on AdS7.

– 5.6.6.2 – Higher electric coupling and higher gauge anomalies

– 5.6.8 – Action of closed string field theory type

– 5.6.9 – AKSZ σ-models

∗ 5.6.9.3 – Ordinary Chern-Simons as AKSZ theory

∗ 5.6.9.4 – Poisson σ-model

∗ 5.6.9.5 – Courant σ-model

∗ 5.6.9.6 – Higher abelian Chern-Simons theory in dimension 4k + 3
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5.6.1 ∞-Chern-Simons field theory

By prop. 5.1.9 the action functional of ordinary Chern-Simons theory [Fre] for a simple Lie group G may
be understood as being the volume holonomy, 4.4.16, of the Chern-Simons circle 3-bundle with connection
that the refined Chern-Weil homomorphism assigns to any connection on a G-principal bundle.

We may observe that all the ingredients of this statement have their general abstract analogs in any
cohesive∞-topos H: for any cohesive∞-group G and any representatative c : BG→ BnA of a characteristic
class for G there is canonically the induced ∞-Chern-Weil homomorphism, 3.6.5

Lc : Hconn(−,BG)→ Hn
diff(−)

that sends intrinsic G-connections to cocycles in intrinsic differential cohomology with coefficients in A. This
may be thought of as the Lagrangian of the ∞-Chern-Simons theory induced by c.

In the cohesive ∞-topos Smooth∞Grpd of smooth ∞-groupoids, 4.4, we deduced in 4.4.16 a natural
general abstract procedure for integration of Lc over an n-dimensional parameter space Σ ∈ H by a realization
of the general abstract construction described in 3.6.9. The resulting smooth function

exp(Sc) : [Σ,BGconn]→ U(1)

is the exponentiated action functional of ∞-Chern-Simons theory on the smooth ∞-groupoid of field config-
urations. It may be regarded itself as a degree-0 characteristic class on the space of field configurations. As
such, its differential refinement d exp(Sc) : [Σ,BGconn] → [dRBU(1) is the Euler-Lagrange equation of the
theory.

We show that this construction subsumes the action functional of ordinary Chern-Simons theory, of
Dijkgraaf-Witten theory, of BF-theory coupled to topological Yang-Mills theory, of all versions of AKSZ
theory including the Poisson sigma-model and the Courant sigma model in lowest degree, as well as Chern-
Simons supergravity.

This section draws from [FRS11a].
Recall for the following the construction of the ∞-Chern-Weil homomorphism by Lie integration of

Chern-Simons elements, 4.4.14, for L∞-algebroids, 4.5.1.
A Chern-Simons element cs witnessing the transgression from an invariant polynomial 〈−〉 to a cocycle

µ is equivalently a commuting diagram of the form

CE(a) oo
µ

CE(bnR) cocycle

W(a)

OO

oo cs
W(bnR)

OO

Chern-Simons element

inv(a)

OO

oo 〈−〉 inv(bnR)

OO

invariant polynomial

in dgAlgR. On the other hand, an n-connection with values in a Lie n-algebroid a is a span of simplicial
presheaves

Σ̂

'
��

∇ // cosk exp(a)conn

Σ

with coefficients in the simplicial presheaf coskn+1 exp(a)conn, def. 4.4.103, that sends U ∈ CartSp to the
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(n+ 1)-coskeleton, def. 3.3.7, of the simplicial set, which in degree k is the set of commuting diagrams

Ω•vert(U ×∆k) oo
Avert

CE(a) transition function

Ω•(U ×∆k)

OO

oo A W(a)

OO

connection forms

Ω•(U)

OO

oo 〈FA〉 inv(a)

OO

curvature characteristic forms

,

such that the curvature forms FA of the ∞-Lie algebroid valued differential forms A on U ×∆k with values
in a in the middle are horizontal.

If µ is an∞-Lie algebroid cocycle of degree n, then the∞-Chern-Weil homomorphism operates by sending
an ∞-connection given by a Čech cocycle with values in simplicial sets of such commuting diagrams to the
obvious pasting composite

Ω•vert(U ×∆k) oo
Avert

CE(a) oo
µ

CE(bnR) : µ(Avert)

Ω•(U ×∆k)

OO

oo A W(a)

OO

oo cs
W(bnR)

OO

: cs(A) Chern-Simons form

Ω•(U)

OO

oo 〈FA〉 inv(a)

OO

oo 〈−〉 inv(bnR)

OO

: 〈FA〉 curvature

.

Under the map to the coskeleton the group of such cocycles for line n-bundle with connection is quotiented
by the discrete group Γ of periods of µ, such that the ∞-Chern-Weil homomorphism is given by sending the
∞-connection ∇ to

Σ̂

'
��

∇ // coskn exp(a)conn

exp(cs) // Bn(R/Γ)conn

Σ

.

This presents a circle n-bundle with connection, 4.4.13, whose connection n-form is locally given by the
Chern-Simons form cs(A). This is the Lagrangian of the ∞-Chern-Simons theory defined by (a, 〈−〉) and
evaluated on the given ∞-connection. If Σ is a smooth manifold of dimension n, then the higher holonomy,
4.4.16, of this circle n-bundle over Σ is the value of the Chern-Simons action. After a suitable gauge
transformation this is given by the integral

exp(iS(A)) = exp(i

∫
Σ

cs(A)) ,

the value of the ∞-Chern-Simons action functional on the ∞-connection A.

Proposition 5.6.1. Let g be an L∞-algebra and 〈−, · · · ,−〉 an invariant polynomial on g. Then the ∞-
connections A with values in g that satisfy the equations of motion of the corresponding ∞-Chern-Simons
theory are precisely those for which

〈−, FA ∧ FA ∧ · · ·FA〉 = 0 ,

as a morphism g→ Ω•(Σ), where FA denotes the (in general inhomogeneous) curvature form of A.
In particular for binary and non-degenerate invariant polynomials the equations of motion are

FA = 0 .
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Proof. Let A ∈ Ω(Σ× I, g) be a 1-parameter variation of A(t = 0), that vanishes on the boundary ∂Σ.
Here we write t : [0, 1]→ R for the canonical coordinate on the interval.

A(0) is critical if (
d

dt

∫
Σ

cs(A)

)
t=0

= 0

for all extensions A of A(0). Using Cartan’s magic formula and the Stokes theorem the left hand expression
is (

d

dt

∫
Σ

cs(A)

)
t=0

=

(∫
Σ

d

dt
cs(A)

)
t=0

=

(∫
Σ

dι∂tcs(A) +

∫
Σ

ι∂tdcs(A)

)
t=0

=

(∫
Σ

dΣ(ι∂tcs(A)) +

∫
Σ

ι∂t〈FA ∧ · · ·FA〉
)
t=0

=

(∫
∂Σ

ι∂tcs(A) + n

∫
Σ

〈( d
dt
A) ∧ · · ·FA〉

)
t=0

=

(
n

∫
Σ

〈( d
dt
A) ∧ · · ·FA〉

)
t=0

.

Here we used that ι∂tFA = d
dtA and that by assumption this vanishes on ∂Σ. Since d

dtA can have arbitrary
values, the claim follows. �

5.6.2 1d Chern-Simons functionals

We discuss examples of the intrinsic notion of∞-Chern-Simons action functionals, 4.4.16, over 1-dimensional
base spaces.

Example 5.6.2. For some n ∈ N let
tr : u(n)→ u(1) ' R

be the trace function, with respect to the canonical identification of u(n) with the Lie algebra of skew-
Hermitean complex matrices.

This is both a 1-cocycle as well as an invariant polynomial on u(n), the former corresponding to a
degree-1 element in the Chevalley-Eilenberg algebra CE(u(n)) and the latter corresponding to an element
dWc ∈ W(u(n)) of degree 2 in the Weil algebra. Hence c is also the corresponding Chern-Simons element,
def. 4.4.96. By prop. 5.4.62 this controls the universal differential first Chern class.

The corresponding Chern-Simons action functional is defined on the groupoid of u(n)-valued differential
1-forms on a line segment Σ and given by

A 7→
∫

Σ

tr(A) .

Any choice of coordinates Σ ↪→ R canonically identifies A ∈ Ω1(Σ, u(n)) with a u(n)-valued function φ. We
may think of φ̄ :=

∫
Σ
A =

∫
Σ
φdt as the average of this function. In terms of this the action functional is

simply the trace function itself
φ̄ 7→ tr(φ̄) .

Degenerate as this case is, it is sometimes useful to regard the trace as an example of 1-dimensional Chern-
Simons theory, for instance in the context of large-N compactified gauge theory as discussed in [Na06].

Example 5.6.3. Below in 5.6.9 we discuss in detail how (derived) L∞-algebroids equipped with non-
degenerate binary invariant polynomials of grade 0 (hence total degree 2) give rise to 1-dimensional Chern-
Simons theories.

For derived L∞-algebroids of the form T ∗Bg the resulting QFT is discussed in detail in [GrGw11].
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5.6.3 3d Chern-Simons functionals

We discuss examples of the intrinsic notion of∞-Chern-Simons action functionals, 4.4.16, over 3-dimensional
base spaces. This includes the archetypical example of ordinary 3-dimensional Chern-Simons theory, but
also its discrete analog, Dijkgraaf-Witten theory.

• 5.6.3.1 – Ordinary Chern-Simons theory;

• 5.6.3.2 – Ordinary Dijkgraaf-Witten theory.

5.6.3.1 Ordinary Chern-Simons theory We discuss the action functional of ordinary 3-dimensional
Chern-Simons theory (see [Fre] for a survey) from the point of view of intrinsic Chern-Simons action func-
tionals in Smooth∞Grpd.

Theorem 5.6.4. Let G be a simply connected compact simple Lie group. For

[c] ∈ H4(BG,Z) ' Z

a universal characteristic class that generates the degree-4 integral cohomology of the classifying space BG,
there is an essentially unique smooth lift c of the characteristic map c of the form

c : BG→ B3U(1) ∈ Smooth∞Grpd

on the smooth moduli stack BG of smooth G-principal bundles with values in the smooth moduli 3-stack of
smooth circle 3-bundles. The differential refinement

ĉ : BGconn → B3U(1)conn ∈ Smooth∞Grpd

to the moduli stacks of the corresponding n-bundles with n-connections induces over any any compact 3-
dimensional smooth manifold Σ a smooth functional

exp(iSCS(−)) : [Σ,BGconn]
ĉ // [Σ,B3U(1)conn]

∫
Σ // U(1)

on the moduli stack of G-principal connections on Σ, which on objects A ∈ Ω1(Σ, g) is the exponentiated
Chern-Simons action functional

exp(iSCS(A)) = exp(i

∫
Σ

〈A ∧ ddRA〉+
1

6
〈A ∧ [A ∧A]〉) .

Proof. This is theorem 5.1.9 combined with 4.4.105. �
For more computational details that go into this see also 5.6.9.3 below

5.6.3.2 Ordinary Dijkgraaf-Witten theory Dijkgraaf-Witten theory (see [FrQu93] for a survey) is
commonly understood as the analog of Chern-Simons theory for discrete structure groups. We show that
this becomes a precise and systematic statement in Smooth∞Grpd: the Dijkgraaf-Witten action functional
is that induced from applying the ∞-Chern-Simons homomorphism to a characteristic class of the form
DiscBG→ B3U(1), for Disc :∞Grpd→ Smooth∞Grpd the canonical embeedding of discrete∞-groupoids,
4.1, into all smooth ∞-groupoids.

Let G ∈ Grp→∞Grpd
Disc→ Smooth∞Grpd be a discrete group regarded as an∞-group object in discrete

∞-groupoids and hence as a smooth ∞-groupoid with discrete smooth cohesion. Write BG = K(G, 1) ∈
∞Grpd for its delooping in ∞Grpd and BG = DiscBG for its delooping in Smooth∞Grpd.

We also write ΓBnU(1) ' K(U(1), n). Notice that this is different from BnU(1) ' ΠBU(1), reflecting
the fact that U(1) has non-discrete smooth structure.
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Proposition 5.6.5. For G a discrete group, morphisms BG→ BnU(1) correspond precisely to cocycles in
the ordinary group cohomology of G with coefficients in the discrete group underlying the circle group

π0Smooth∞Grpd(BG,BnU(1)) ' Hn
Grp(G,U(1)) .

Proof. By the (Disc a Γ)-adjunction we have

Smooth∞Grpd(BG,BnU(1)) ' ∞Grpd(BG,K(U(1), n)) .

�

Proposition 5.6.6. For G discrete

• the intrinsic de Rham cohomology of BG is trivial

Smooth∞Grpd(BG, [dRBnU((1)) ' ∗;

• all G-principal bundles have a unique flat connection

Smooth∞Grpd(X,BG) ' Smooth∞Grpd(Π(X),BG) .

Proof. By the (Disc a Γ)-adjunction and using that Γ ◦ [dRK ' ∗ for all K. �
It follows that for G discrete

• any characteristic class c : BG→ BnU(1) is a group cocycle;

• the ∞-Chern-Weil homomorphism coincides with postcomposition with this class

H(Σ,BG)→ H(Σ,BnU(1)) .

Proposition 5.6.7. For G discrete and c : BG→ B3U(1) any group 3-cocycle, the ∞-Chern-Simons theory
action functional on a 3-dimensional manifold Σ

Smooth∞Grpd(Σ,BG)→ U(1)

is the action functional of Dijkgraaf-Witten theory.

Proof. By proposition 4.4.105 the morphism is given by evaluation of the pullback of the cocycle α : BG→
B3U(1) along a given ∇ : Π(Σ) → BG, on the fundamental homology class of Σ. This is the definition of
the Dijkgraaf-Witten action (for instance equation (1.2) in [FrQu93]).

�

5.6.4 4d Chern-Simons functionals

We discuss some 4-dimensional Chern-Simons functionals

• 5.6.4.1 – 4d BF theory and topological Yang-Mills;

• 5.6.4.2 – 4d Yetter model.
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5.6.4.1 BF theory and topological Yang-Mills theory We discuss how the action functional of
nonabelian BF-theory [Hor89] in 4-dimensions with a “cosmological constant” and coupled to topological
Yang-Mills theory is a higher Chern-Simons theory.

Let g = (g2
∂→ g1) be a strict Lie 2-algebra, coming from a differential crossed module, def. 1.3.7, as

indicated. Let exp(g) be the universal Lie integration, according to def. 4.4.44. Field configurations with
values in exp(g) are locally Lie 2-algebra valued forms (A ∈ Ω1(Σ, g0)) and B ∈ Ω2(Σ, g1) as in prop. 1.3.44.

The following observation is due to [SSS09a].

Proposition 5.6.8. We have

1. every invariant polynomial 〈−〉g1
∈ inv(g1) on g1 gives rise, under the canonical inclusion inv(g1) ↪→

W(g), not to an invariant polynomial, but to a Chern-Simons element on g, exhibiting the transgression
to a trivial L∞-algebra cocycle;

2. for g1 a semisimple Lie algebra and 〈−〉g1
the Killing form, Σ a 4-dimensional compact manifold, the

corresponding Chern-Simons action functional

exp(iS〈−〉g1
) : [Σ, exp(g)conn]→ B4Rconn

on Lie 2-algebra valued forms is

Ω•(X) oo
(A,B)

W(g2 → g1) oo
(〈−〉g1

,dW 〈−〉g1
)
W(bn−1R)

the sum of the action functionals of topological Yang-Mills theory with BF-theory with cosmological
constant:

cs〈−〉g1
(A,B) = 〈FA ∧ FA〉g1

− 2〈FA ∧ ∂B〉g1
+ 2〈∂B ∧ ∂B〉g1

,

where FA is the ordinary curvature 2-form of A.

Proof. For {ta} a basis of g1 and {bi} a basis of g2 we have

dW(g) : dta 7→ dW(g1) + ∂aidb
i .

Therefore with 〈−〉g1
= Pa1···andra1 ∧ · · ·dtan we have

dW(g)〈−〉g1
= nPa1···an∂

a1
idb

i ∧ · · ·dtan .

The right hand is a polynomial in the shifted generators of W(g), and hence an invariant polynomial on g.
Therefore 〈−〉g1

is a Chern-Simons element for it.
Now for (A,B) ∈ Ω1(U ×∆k, g) an L∞-algebra-valued form, we have that the 2-form curvature is

F 1
(A,B) = FA − ∂B .

Therefore
cs〈−〉g1

(A,B) = 〈F 1
(A,B) ∧ F

1
(A,B)〉g1

= 〈FA ∧ FA〉g1
− 2〈FA ∧ ∂B〉g1

+ 2〈∂B ∧ ∂B〉g1

.

�

5.6.4.2 4d Yetter model The discussion of 3-dimensional Dijkgraaf-Witten theory as in 5.6.3.2 goes
through verbatim for discrete groups generalized to discrete ∞-groups G, 4.1.2, and cocycles α : BG →
BnU(1) of any degree n. A field configurations over an n-dimensional manifold Σ is a G-principal∞-bundle,
4.1.4, necessarily flat, and the induced action functional

exp(iSα) : H(Σ,BG)→ U(1)

sends a G-principal ∞-bundle classified by a cocycle g : Σ → BG to the canonical pairing of the singular
cocycle corresponging to α(g) : Σ→ BG

α→ BnU(1) with the fundamental class of Σ.
For n = 4 such action functionals sometimes go by the name “Yetter model” [Mack00][MaPo07], in honor

of [Yet93], which however did non consider a nontrivial 4-cocycle.
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5.6.5 Abelian gauge coupling of branes

The gauge coupling term in the action of an (n−1)-brane charged under an abelian n-form background gauge
field (electromagnetism, B-field, C-field, etc.) is an example of an∞-Chern-Simons functional. We spell this
out in a moment. Here one typically considers the target space of the (n−1)-brane to be a smooth manifold
or at most an orbifold. The formal structure, however, allows to consider target spaces that are arbitrary
smooth ∞-groupoids / smooth ∞-stacks. When generalized to this class of target spaces, the class of brane
gauge coupling functionals in fact coincides with that of all ∞-Chern-Simons functionals. Conversely, every
∞-Chern-Simons theory in dimension n may be regarded as the field theory of a “topological (n− 1)-brane”
whose target space is the higher moduli stack of field configurations of the given ∞-Chern-Simons theory.

For X a smooth manifold, let c ∈ Hn+1(X,Z) be a class in integral cohomology, to be called the higher
background magnetic charge. A smooth refinement of this class to a morphism

c : X → BnU(1)

is a circle n-bundle on X, whose topological class is c

ĉ : X → BnU(1)conn

A differential refinement of this is a choice of refinement to a circle n-bundle with connection ∇.
Now let Σ the compact n-dimensional worldvolume of an (n− 1)-brane. Then [Σ, X] is the diffeological

space (def. 4.4.14) of smooth maps φ : Σ→ X. The induced ∞-Chern-Simons functional

exp(iSĉ) : [Σ, X]
[ĉ,Σ] // [Σ,BnU(1)conn]

∫
Σ // U(1)

is the ordinary n-volume holonomy of ∇ over trajectories φ : Σ→ X.

5.6.6 Higher abelian Chern-Simons functionals

We discuss higher Chern-Simons functionals on higher abelian gauge fields, notably on circle n-bundles with
connection.

• 5.6.6.1 – (4k + 3)d U(1)-Chern-Simons functionals;

• 5.6.6.2 – Higher electric coupling and higher gauge anomalies.

5.6.6.1 (4k + 3)d U(1)-Chern-Simons functionals We discuss higher dimensional abelian Chern-
Simons theories in dimension 4k + 3.

The basic ideas can be found in [HoSi05]. We refine the discussion there from differential cohomology
classes to higher moduli stacks of differential cocycles. The case in dimension 3 (k = 0) is discussed for
instance in [GuTh08]. The case in dimension 7 (k = 1) is the higher Chern-Simons theory whose holographic
boundary theory encodes the self-dual 2-form gauge theory on the single 5-brane [Wi97b]. Generally, for
every k the (4k + 3)-dimensional abelian Chern-Simons theory induces a self-dual higher gauge theory
holographically on its boundary, see [BeMo06].

Proposition 5.6.9. The cup product in integral cohomology

(−) ∪ (−) : Hk+1(−,Z)×H l+1(−,Z)→ Hk+l+2(−,Z)

has a smooth and differential refinement to the moduli ∞-stacks BnU(1)conn, prop. 4.4.76, for circle n-
bundles with connection

(−)∪̂(−) : BkU(1)conn ×BlU(1)conn → Bk+l+1U(1)conn .
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Proof. By the discussion in 4.4.13 we have that BkU(1)conn is presented by the simplicial presheaf

ΞZ∞D [k + 1] ∈ [CartSpop, sSet]. ,

which is the image of the Deligne-Beilinson complex, def. 1.3.60, under the Dold-Kan correspondence,
prop. 2.2.4. A lift of the cup product to the Deligne complex is given by the Deligne-Beilinson cup product
[Del71][Bel85]. Since the Dold-Kan functor Ξ : [CartSpop,Ch•] → [CartSpop, sSet] is right adjoint, it pre-
serves products and hence this cup product. �

Definition 5.6.10. Let Σ be a compact manifold of dimension 4k+ 3 for k ∈ N. Consider the moduli stack
[Σ,BkU(1)conn] of circle (2k + 1)-bundles with connection on Σ.

On this space, the action functional of higher abelian Chern-Simons theory is defined to be the composite

exp(iS(−)) : [Σ,B2k+1U(1)conn]
(−)∪̂(−) // [Σ,B4k+3U(1)conn]

∫
Σ // U(1) .

Observation 5.6.11. When restricted to differential (2k+1)-forms, regarded as connections on trivial circle
(2k + 1)-bundles

Ω2k+1(Σ) ↪→ [Σ,B2k+1U(1)conn]

this action functional sends a (2k + 1)-form C to

exp(iS(C)) = exp(i

∫
Σ

C ∧ ddRC) .

From this expression one sees directly why the corresponding functional is not interesting in the remaining
dimensions, because for even degree forms we have C ∧ dC = 1

2d(C ∧ C) and hence for these the above
functional would be constant.

5.6.6.2 Higher electric coupling and higher gauge anomalies The action functional of ordinary
Maxwell electromagnetism in the presence of an electric background current involves a differential cup-
product term similar to that in def. 5.6.10. This has a direct generalization to higher electromagnetic fields
and the corresponding higher electric currents. If, moreover, a background magnetic current is present,
then this action functional is, in general, anomalous. The “higher gauge anomalies” in higher dimensional
supergravity theories arise this way. This is discussed in [Free00].

Here we refine this discussion from differential cohomology classes to higher moduli stacks of differential
cocycles.

Definition 5.6.12. Let Σ be a compact smooth manifold of dimension d.
By prop. 5.6.9 the universal cup product class

(−) ∪ (−) : BnU(1)×Bd−n−1U(1)→ BdU(1)

for any 0 ≤ n ≤ d has a smooth and differential refinement ∪̂. We write

exp(iS∪) : [Σ,BnU(1)conn ×Bd−n−1U(1)conn]
(−)∪̂(−) // [Σ,BdU(1)conn]

∫
Σ // U(1)

for the corresponding higher Chern-Simons action functional on the higher moduli stack of pairs consisting
of an n-connection and an (d− n− 1)-connection on Σ.

Remark 5.6.13. When restricted to pairs of differential forms

(B1, B2) ∈ Ωn(Σ)× Ωd−n−1(Σ) ↪→ [Σ,BnU(1)conn ×Bd−n−1U(1)conn]

this functional sends

(B1, B2) 7→ exp(i

∫
Σ

B1 ∧ dB2) .
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The higher Chern-Simons functional of def. 5.6.6.1 is the diagonal of this functional, where B1 = B2.
We now consider another variant, where only B1 is taken to vary, but B2 is regarded as fixed.

Let X be an d-dimensional manifold. The configuration space of higher electromagnetic fields of degree
n on X is the moduli stack of circle n-bundles with connection [X,BnU(1)conn] on X.

Definition 5.6.14. An electric background current on X for degree p electromagnetism is a circle (d−n−1)-
bundle with connection ĵel : X → Bd−n−1U(1)conn.

The electric coupling action functional of the higher electromagnetic field in the presence of the back-
ground electric current is

exp(iSel) : [X,BnU(1)conn]
(−)∪̂ĵel // [X,BdU(1)conn]

∫
X // U(1) ,

where the first morphism is the differentially refined cup product from prop. 5.6.9.

Remark 5.6.15. For the case of ordinary Maxwell theory, with n = 1 and d = 4, the electric current
is a circle 2-bundle with connection. Its curvature 3-form is traditionally denoted jel. If X is equipped
with Lorentzian structure, then its integral over a (compact) spatial slice is the background electric charge.
Integrality of this value, following from the nature of differential cohomology, is the Dirac charge quantization
that makes electric charge appear in integral multiples of a fixed unit charge.

For A ∈ Ω1(X) → [X,BU(1)conn] a globally defined connection 1-form, the above action functional is
given by

A 7→ exp(i

∫
X

A ∧ jel) .

In the limiting case that the background electric charge is that carried by a charged point particle, jel is the
current which is Poincaré-dual to the trajectory γ : S1 → X of the particle. In this case the above goes to

· · · → exp(i

∫
Σ

A) ,

hence the line holonomy of A along the trajectory of the background charge.

(...)

5.6.7 7d Chern-Simons functionals

We discuss some higher Chern-Simons functionals over 7-dimensional parameter spaces.

• 5.6.7.1 – The cup product of a 3d CS theory with itself;

• 5.6.7.2 – 7d CS theory on string 2-connection fields;

• 5.6.7.3 – 7d CS theory in 11d supergravity on AdS7.

This section draws from [FiSaScIII].

5.6.7.1 The cup product of a 3d CS theory with itself Let G be a compact and simply connected
simple Lie group and consider from 5.6.3.1 the canonical differential characteristic map for the induced 3d
Chern-Simons theory

ĉ : BGconn → B3U(1)conn .

We consider the differentially refined cup product, prop. 5.6.9, of this differential characteristic map with
itself.
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Observation 5.6.16. The topological degree-8 class

c ∪ c : BG
(c,c) // K(Z, 4)×K(Z, 4)

∪ // K(Z, 8)

has a smooth and differential refinement of the form

ĉ∪̂ĉ : BGconn
ĉ // B3U(1)conn ×B3U(1)conn

∪̂ // B7U(1)conn .

Proof. By the discussion in 5.6.6.1. �

Definition 5.6.17. Let Σ be a compact smooth manifold of dimension 7. The higher Chern-Simons func-
tional

exp(iSCS(−)) : [Σ,BGconn]
ĉ∪̂ĉ // [Σ,B7U(1)conn]

∫
Σ // U(1)

defines the cup product Chern-Simons theory induced by c.

Remark 5.6.18. For ordinary Chern-Simons theory, 5.6.3.1, the assumption that G is simply connected
implies that BG is 3-connected, hence that every G-principal bundle on a 3-dimensional Σ is trivializable, so
that G-principal connections on Σ can be identified with g-valued differential forms on Σ. This is no longer
in general the case over a 7-dimensional Σ.

Proposition 5.6.19. If a field configuration A ∈ [Σ,BGconn] happens to have trivial underlying bundle,
then the value of the cup product CS theory action functional is given by

exp(iSCS(A)) =

∫
Σ

CS(A) ∧ 〈FA ∧ FA〉 ,

where CS(−) is the Lagrangian of ordinary Chern-Simons theory, 5.6.3.1.

5.6.7.2 7d CS theory on string 2-connection fields By theorem 5.1.32 we have a canonical differ-
ential characteristic map

1

6
p̂2 : BStringconn → B7U(1)conn

from the smooth moduli 2-stack of String-2-connections, 1.3.5.7.2, with values in the smooth moduli 7-stack
of circle 7-bundles (bundle 6-gerbes) with connection. This induces a 7-dimensional Chern-Simons theory.

Definition 5.6.20. For Σ a compact 7-dimensional smooth manifold, define exp(iS 1
6p2

(−)) to be the Chern-
Simons action functional induced by the universal differential second fractional Pontryagin class, theorem
5.1.32,

exp(iS 1
6p2

(−)) : [Σ,BStringconn]
1
6 p̂2 // [Σ,B7U(1)conn]

∫
Σ // U(1) .

Recall from 1.3.5.7.2 the different incarnations of the local differential form data for string 2-connections.

Proposition 5.6.21. Over a 7-dimensional Σ every field configuration (A,B) ∈ [Σ,BStringconn] is a string
2-connection whose underlying String-principal 2-bundle is trivial.

• In terms of the strict string Lie 2-algebra from def. 1.3.111 this is presented by a pair of nonabelian
differential forms A ∈ Ω1(Σ, P∗so), B ∈ Ω2(Σ, Ω̂∗so). The above action functional takes this to

exp(iS 1
6p2

(A,B)) =

∫
Σ

CS7(A(1))

=

∫
Σ

(〈Ae ∧ dAe ∧ dAe ∧ dAe〉+ k1〈Ae ∧ [Ae ∧Ae] ∧ dAe ∧ dAe〉

+ k2〈Ae ∧ [Ae ∧Ae] ∧ [Ae ∧Ae] ∧ dAe〉+ k3〈Ae ∧ [Ae ∧Ae] ∧ [Ae ∧Ae] ∧ [Ae ∧Ae]〉)

,

where Ae ∈ Ω1(Σ, so) is the 1-form of endpoint values of A in the path Lie algebra, and where the
integrand is the degree-7 Chern-Simons element of the quaternary invariant polynomial on so.
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• In terms of the skeletal string Lie 2-algebra from def. 1.3.110 this is presented by a pair of differential
forms A ∈ Ω1(Σ, so), B ∈ Ω2(Σ,R). The above action functional takes this to

exp(iS 1
6p2

(A,B)) =

∫
Σ

CS7(A) .

5.6.7.3 7d CS theory in 11d supergravity on AdS7 The two 7-dimensional Chern-Simons theories
from 5.6.7.1 and 5.6.7.2 can be merged to a 7d theory defined on field configurations that are 2-connections
with values in the String-2-group from def. 5.2.10. We define and dicuss this higher Chern-Simons theory
below in 5.6.7.3.2. In 5.6.7.3.1 we argue that this 7d Chern-Simons theory plays a role in AdS7/CFT6-duality
[AGMOO].

5.6.7.3.1 Motivation from AdS7/CFT6-holography We give here an argument that the 7-dimensional
nonabelian gauge theory discussed in section 5.6.7.3.2 is the Chern-Simons part of 11-dimensional supergrav-
ity on AdS7×S4 with 4-form flux on the S4-factor and with quantum anomaly cancellation conditions taken
into account. We moreover argue that this implies that the states of this 7-dimensional CS theory over a
7-dimensional manifold encode the conformal blocks of the 6-dimensional worldvolume theory of coincident
M5-branes. The argument is based on the available but incomplete knowledge about AdS/CFT-duality, such
as reviewed in [AGMOO], and cohomological effects in M-theory as reviewed and discussed in [Sa10a].

There are two, seemingly different, realizations of the holographic principle in quantum field theory. On
the one hand, Chern-Simons theories in dimension 4k + 3 have spaces of states that can be identified with
spaces of correlators of (4k+ 2)-dimensional conformal field theories (spaces of “conformal blocks”) on their
boundary. For the case k = 0 this was discussed in [Wi89], for the case k = 1 in [Wi96]. On the other hand,
AdS/CFT duality (see [AGMOO] for a review) identifies correlators of d-dimensional CFTs with states of
compatifications of string theory, or M-theory, on asymptotically anti-de Sitter spacetimes of dimension d+1
(see [Wi98a]).

In [Wi98b] it was pointed out that these two mechanisms are in fact closely related. A detailed analysis
of the AdS5/SYM4-duality shows that the spaces of correlators of the 4-dimensional theory can be identified
with the spaces of states obtained by geometric quantization just of the Chern-Simons term in the effective
action of type II string theory on AdS5, which locally reads

(BNS, BRR) 7→ N

∫
AdS5

BNS ∧ dBRR ,

where BNS is the local Neveu-Schwarz 2-form field, BRR is the local RR 2-form field, and where N is the
RR 5-form flux picked up from integration over the S5 factor.

As briefly indicated there, the similar form of the Chern-Simons term of 11-dimensional supergravity (M-
theory) on AdS7 suggests that an analogous argument shows that under AdS7/CFT6-duality the conformal
blocks of the (2, 0)-superconformal theory are identified with the geometric quantization of a 7-dimensional
Chern-Simons theory. In [Wi98b] that Chern-Simons action is taken, locally on AdS7, to be

C3 7→
∫

AdS7×S4

C3 ∧G4 ∧G4 = N

∫
AdS7

C3 ∧ dC3 ,

where now C3 is the local incarnation of the supergravity C-field, 5.3.3.2, where G4 is its curvature 4-form
locally equal to dC3, and where

N :=

∫
S4

G4

is the C-field flux on the 4-spehere factor.
This is the (4 · 1 + 3 = 7)-dimensional abelian Chern-Simons theory, 5.6.9.6, shown in [Wi96] to induce

on its 6-dimensional boundary the self-dual 2-form – in the abelian case.
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In order to generalize this to the nonabelian case of interest, we notice that there is a term missing in
the above Lagrangian. The quantum anomaly cancellation in 11-dimensional supergravity is known from
[DLM95](3.14) to require a corrected Lagrangian whose Chern-Simons term locally reads

(ω,C3) 7→
∫

AdS7×S4

C3 ∧
(
G4 ∧G4 − IdR

8 (ω)
)
,

where ω is the spin connection form, locally, and where 8IdR
8 (ω) is a de Rham representative of the integral

cohomology class

8I8 =
1

6
p2 − 8(

1

2
p1) ∪ (

1

2
p1) , (5.24)

with 1
2p1 and 1

6p2 the first and second fractional Pontrjagin classes, prop. 5.1.5, prop. 5.1.30, respectively,
of the given Spin bundle over 11-dimensional spacetime X.

This means that after passing to the effective theory on AdS7, this corrected Lagrangian picks up another
7-dimensional Chern-Simons term, now one depending on nonablian fields (with values in Spin and E8).
Locally this reads

S7dCS : (ω,C3) 7→ N

∫
AdS7

C3 ∧ dC3 −
N

8

∫
Ads7

CS8I8(ω) . (5.25)

where CS8I8(ω) is a Chern-Simons form for 8IdR
8 (ω), defined locally by

dCS8I8(ω) = 8IdR
8 (ω) .

But this action functional, which is locally a functional of a 3-form and a Spin-connection, cannot globally
be of this form, already because the field that looks locally like a Spin connection cannot globally be a Spin
connection. To see this, notice from the discussion of the C-field in 5.4.8, that there is a quantization
condition on the supergravity fields on the 11-dimensional X [Wi97a], which in cohomology requires the
identity

2[G4] =
1

2
p1 + 2a ∈ H4(X,Z) ,

where on the right we have the canonical characteristic 4-class a, prop. 5.2.8, of an ‘auxiliary’ E8 bundle
on 11-dimensional spacetime. Moreover, we expect that when restricted to the vicinity of the asymptotic
boundary of AdS7,

• the class of G4 vanishes;

• the E8-bundle becomes equipped with a connection, too (the E8-field “becomes dynamical”);

in analogy to what happens at the boundary for the Hořava-Witten compactification of the 11-dimensional
theory [HoWi95], as discussed in 5.4.8.6. Since, moreover, the states of the topological TFT that we are after
are obtained already from geometric quantization, 3.6.11, of the theory in the vicinity Σ× I of a boundary
Σ, we find the field configurations of the 7-dimensional theory are to satisfy the constraint in cohomology

1

2
p1 + 2a = 0 . (5.26)

Imposing this condition has two effects.

1. The first is that, according to 3.6.6, what locally looks like a spin-connection is globally instead a
twisted differential String structure, 5.4.7.3, or equivalently a 2-connection on a twisted String-principal
2-bundle, where the twist is given by the class 2a. By 1.3.1.3 the total space of such a principal 2-
bundle may be identified with a (twisted) nonabelian bundle gerbe. Therefore the configuration space
of fields of the effective 7-dimensional nonabelian Chern-Simons action above should not involve just
Spin connection forms, but String-2-connection form data. By 1.3.5.7.2 there is a gauge in which this
is locally given by nonabelian 2-form field data with values in the loop group of Spin.
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2. The second effect is that on the space of twisted String-2-connections, the differential 4-form tr(Fω ∧
Fω), that under the Chern-Weil homomorphism represents the image of 1

2p1 in de Rham cohomology,
according to 5.4.7.3.1, locally satisfies

dH3 = 〈Fω ∧ Fω〉 − 2〈FA ∧ FA〉 ,

where H3 is the 3-form curvature component of the String-2-connection, and where FA is the curva-
ture of a connection on the E8 bundle, locally given by an e8-valued 1-form A. Therefore with the
quantization condition of the C-field taken into account, the 7-dimensional Chern-Simons action (5.25)
becomes

S7dCS = N

∫
AdS7

(
C3 ∧ dC3 −

1

8
H3 ∧ dH3 −

1

4
(H3 + 2CSa(A) ∧ tr(Fω ∧ Fω) +

1

8
CS 1

6 p̂2
(ω)

)
. (5.27)

Here the first two terms are 7-dimensional abelian Chern-Simons actions as before, for fields that
are both locally abelian three forms (but have very different global nature). The second two terms,
however, are action functionals for nonabelian Chern-Simons theories. The third term involves the
familiar Chern-Simons 3-form of the E8-connection familiar from 3-dimensional Chern-Simons theory

CSa(A) = tr(A ∧ dA) +
2

3
tr(A ∧A ∧A) .

Finally the fourth term is the Chern-Simons 7-form that is locally induced, under the Chern-Weil ho-
momorphism, from the quartic invariant polynomial 〈−,−,−,−〉 : so⊗4 → R on the special orthogonal
Lie algebra so, in direct analogy to how standard 3-dimensional Chern-Simons theory is induced under
Chern-Weil theory from the quadratic invariant polynomial (the Killing form) 〈−,−〉 : so⊗ so→ R:

CS7(ω) =〈ω ∧ dω ∧ dω ∧ dω〉+ k1〈ω ∧ [ω ∧ ω] ∧ dω ∧ dω〉
+ k2〈ω ∧ [ω ∧ ω] ∧ [ω ∧ ω] ∧ dω〉+ k3〈ω ∧ [ω ∧ ω] ∧ [ω ∧ ω] ∧ [ω ∧ ω]〉

.

This line of arguments suggests that the Chern-Simons term that governs 11-dimensional supergravity
on AdS7 × S4 is an action functional on fields that are twisted String-2-connections such that the action
functional is locally given by (5.27). In 5.6.7.3.2 we show that a Chern-Simons theory satisfying these
properties naturally arises from the differential characteristic maps discussed above in 5.6.7.1 and 5.6.7.2.

5.6.7.3.2 Definition and properties We discuss now a twisted combination of the two 7-dimensional
Chern-Simons action functionals from 5.6.7.1 and 5.6.7.2 which naturally lives on the moduli 2-stack CField(−)bdr

of boundary C-field configurations from 5.4.115. We show that on ∞-connection field configurations whose
underlying ∞-bundles are trivial, this functional reduces to that given in equation (5.27).

It is instructive to first consider the simple special case where the E8 is trivial. In this case the boundary

moduli stack CFieldbdr′ from observation 5.4.116 restricts to just that of string 2-connections, BStringconn.

Definition 5.6.22. Write 8Î8 for the smooth universal differential characteristic cocycle

8Î8 : BStringconn

( 1
6 p̂2)−8( 1

2 p̂1∪̂ 1
2 p̂1) // B7U(1)conn ,

where 1
6 p̂2 is the differential second fractional Pontryagin class from theorem 5.1.32 and where 1

2 p̂1∪̂ 1
2 p̂1 is

the differential cup product class from observation 5.6.16.

Definition 5.6.23. For Σ a compact smooth manifold of dimension 7, the canonically induced action
functional exp(iS8I8(−)) from def. 3.6.40, on the moduli 2-stack of String-2-connections is the composite

exp(iS8I8(−)) : [Σ,BStringconn]
8Î8 // [Σ,B7U(1)conn]

∫
Σ // U(1) .
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We give now an explicit description of the field configurations in [Σ,BStringconn] and of the value of
exp(iS8I8(−)) on these in terms of differential form data.

Proposition 5.6.24. A field configuration in [Σ,BStringconn] ∈ Smooth∞Grpd is presented in the model
category [CartSpop, sSet]proj,loc, 4.4, by a correspondence of simplicial presheaves

C({Ui})
φ //

'
��

cosk3 exp(bR→ soµ) ˜conn

Σ

,

where soµ is the skeletal String Lie 2-algebra, def. 1.3.110, and where on the right we have the adapted
differential coefficient object from prop. 5.4.94; such that the projection

C({Ui})
φ // cosk3 exp(bR→ soµ) ˜conn

// B3U(1)conn

has a class.
The underlying nonabelian cohomology class of such a cocycle is that of a String-principal 2-bundle.
The local connection and curvature differential form data over a patch Ui is

Fω = dω + 1
2 [ω ∧ ω]

H3 = ∇B := dB + CS(ω)
dFω = −[ω ∧ Fω]
dH3 = 〈Fω ∧ Fω〉

Proof. Without the constraint on the C-field this is the description of twisted String-2-connections of
observation 5.4.96 where the twist is the C-field. The condition above picks out the untwisted case, where
the C-field is trivialized. What remains is an untwisted String-principal 2-bundle.

The local differential form data is found from the modified Weil algebra of (bR → (so)µso
) indicated on

the right of the following diagram


Fω = dω + 1

2 [ω ∧ ω]
H3 = ∇B := dB + CS(ω)− C3

G4 = dC3

dFω = −[ω ∧ Fω]
dH3 = 〈Fω ∧ Fω〉 − G4

dG4 = 0


i

taso 7→ ωa

raso 7→ Fω
b 7→ B
c 7→ C3

h 7→ H3

g 7→ G4oo �


raso = dtaso + 1

2C
a
sobct

b
so ∧ tcso

h = db+ csso − c
g = dc
draso = −Cabctbso ∧ raso
dh = 〈−,−〉 − g
dg = 0

 .

�

Remark 5.6.25. While the 2-form B in the presentation used in the above proof is abelian, the total
collection of forms is still connection data with coefficients in the nonabelian Lie 2-algebra string. We
explained in remark 1.3.114, that there is a choice of local gauge in which the nonabelianness of the 2-form
becomes manifest. For the discussion of the above proposition, however, this gauge is not the most convenient
one, and it is more convenient to exhibit the local cocycle data in the above form, which corresponds to the
second gauge of remark 1.3.114.

This is an example of a general principle in higher nonabelian gauge theory (“higher gerbe theory”).
Due to the higher gauge invariances, the local component presentation of a given structure does not usually
manifestly exhibit the gauge-invariant information in an obvious way.
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Proposition 5.6.26. Let φ ∈ [Σ,BStringconn] be a field configuration which, in the presentation of prop.
5.6.24, is defined over a single patch U = Σ.

Then the action functional of def. 5.6.23 sends this to

exp(iS8I8(ω,H3)) = exp

(
i

∫
Σ

(
−8H3 ∧ dH3 + CS 1

6 p̂2
(ω)
))

.

Proof. The first term is that of the cup product theory, 5.6.7.1, after using the identity tr(Fω∧Fω) = dH3

which holds on the configuration space of String-2-connections by prop. 5.6.24. The second term is that of
the 1

6p2-Chern-Simons theory from 5.6.7.2. �

Remark 5.6.27. Therefore comparison with equation (5.27) shows that the action functional S8I8 has
all the properties that in 5.6.7.3.1 we argued that the effective 7-dimensional Chern-Simons theory inside
11-dimensional supergravity compactified on S4 should have, in the following special case:

• the C-field flux on S4 is N = 8;

and

• the E8-field is trivial;

• the C-field on Σ is trivial.

By choosing any multiple of 8Î8 one can obtain C-field flux of arbitrary multiples of 8. In order to obtain
C-field flux that is not a multiple of 8 one needs to discuss further divisibility of 8Î8.

We discuss now a refinements of S8I8 that generalize away from the last two of these special conditions
to obtain the full form of (5.27).

Recall from def. 5.4.115 the higher moduli stack CFieldbdr of supergravity C-field configurations, which
by remark. 5.4.116 is the moduli 3-stack of twisted String2a-connections. We consider now an action
functional on this configuration stack.

Following remark 5.2.14 we write a corresponding field configuration, φ ∈ CFieldbdr(Σ), whose underlying
topological class is trivial as a tuple of forms

(ω,A,B2, C3) ∈ Ω1(Σ, so)× Ω1(Σ, e8)× Ω2(Σ)× Ω3(Σ)

and set
H3 := dB2 + cs(ω)− cs(A) .

Recall that by prop. 5.2.13 this object has a presentation by Lie integration as 5.4.7.3.1 as a sub-simplicial
set

cosk3 exp((R→ so⊕ e8)µso
3 −2µ

e8
3

)conn .

In terms of this presentation we have an evident differential characteristic class given by the Lie integration
of the Chern-Simons element cs 1

6p2
− 8cs 1

2 o1∪ 1
2p1

.

Definition 5.6.28. Write Î8 for the smooth universal characteristic map given by the composite

BString2a
exp(cs 1

6
p2
−8cs 1

2
p1∪

1
2
p1

)
// [Σ,B7(R/K)conn] ,

where the second morphism is the ∞-Chern-Weil homomorphism of I8, according to 4.4.14, with K ⊂ R the
given sublattice of periods.

Write

exp(iSI8(−)) : BString2a
conn

Î8 // [Σ,B7(R/K)conn]

∫
Σ // R/K

for the corresponding action functional.
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Finally we obtain the refinement of the 7-dimensional Chern-Simons action (5.27) to the full higher
moduli stack of boundary C-field configurations.

Proposition 5.6.29. Let φ ∈ CFieldbdr(Σ)) be a boundary C-field configuration according to remark.
5.4.116, whose underlying String2a-principal 2-bundle is trivial, which is hence a quadruple of forms

φ = (ω,A,B2, C3) ∈ Ω1(Σ, so)× Ω1(Σ, e8)× Ω2(Σ)× Ω3(Σ) .

The combination of the action functional of def. 5.6.10 and the action functional of def. 5.6.28 sends this to

exp(iS(C3)) exp(iS8I8(ω,A,B2)) =

∫
Σ

C3∧dC3+8

(
H3 ∧ dH3 + (H3 + cs(A)) ∧ 〈Fω ∧ Fω〉+

1

8
cs 1

6p2
(ω)

)
modK ,

where H3 = dB + cs(ω)− 2cs(A).

Proof. By the nature of the exp(−)-construction we have

exp(iS8I8(ω,A,B)) =

∫
Σ

(
8cs(ω) ∧ dcs(ω) + cs 1

6p2
(ω)
)

.

Inserting here the equation for H3 satisfied by the String2a-connections yields

· · · =
∫

Σ

(
8(H3 + 2cs(A)− dB) ∧ d(H3 + 2cs(A)− dB) + cs 1

6p2
(ω)
)

=

∫
Σ

(
8(H3 + 2cs(A)) ∧ d(H3 + 2cs(A)) + cs 1

6p2
(ω)
)

=

∫
Σ

8

(
H3 ∧ dH3 + (H3 + 2cs(A)) ∧ 〈Fω ∧ Fω〉+

1

8
cs 1

6p2
(ω)

) .

�

5.6.8 Action of closed string field theory type

We discuss the form of ∞-Chern-Simons Lagrangians, 5.6.1, on general L∞-algebras equipped with a
quadratic invariant polynomial. The resulting action functionals have the form of that of closed string
field theory [Zw93].

Proposition 5.6.30. Let g be any L∞-algebra equipped with a quadratic invariant polynomial 〈−,−〉.
The ∞-Chern-Simons functional associated with this data is

S : A 7→
∫

Σ

(
〈A ∧ ddRA〉+

∞∑
k=1

2

(k + 1)!
〈A ∧ [A ∧ · · ·A]k〉

)
,

where
[−, · · · ,−] : g⊗k → g

is the k-ary bracket of g (prop. 1.3.74).

Proof. There is a canonical contracting homotopy operator

τ : W(g)→W(g)

such that [dW, τ ] = IdW(g). Accordingly a Chern-Simons element, def. 4.4.96, for 〈−,−〉 is given by

cs := τ〈−,−〉 .
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We claim that this is indeed the Lagrangian for the above action functional.
To see this, first choose a basis {ta} and write

Pab := 〈ta, tb〉

for the components of the invariant polynomial in that basis and

Caa1,··· ,ak := [ta1
, · · · , tak ]ak

as well as
Ca0,a1,··· ,ak := Pa0aC

a
a1,··· ,ak

for the structure constant of the k-ary brackets.
In terms of this we need to show that

cs = Pabt
a ∧ dWt

b +

∞∑
k=1

2

(k + 1)!
Ca0,··· ,akt

a0 ∧ · · · ∧ tak .

The computation is best understood via the free dg-algebra F (g) on the graded vector space g∗, which
in the above basis we may take to be generated by elements {ta,dta}. There is a dg-algebra isomorphism

F (g)
'→W(g)

given by sending ta 7→ ta and dta 7→ dCE(g) + ra.

On F (g) the contracting homotopy is evidently given by the map 1
Lh, where L is the word length operator

in the above basis and h the graded derivation which sends ta 7→ 0 and dta 7→ ta. Therefore τ is given by

W(g)

'
��

τ //W(g)

F (g)
1
Lh // F (g)

'

OO
.

With this we obtain

cs := τ〈−,−〉

= τPab

(
dWt

a +

∞∑
k=1

Caa1,··· ,akt
a1 ∧ · · · ∧ tak

)
∧

(
dWt

b +

∞∑
k=1

Cbb1,··· ,bkt
b1 ∧ · · · ∧ tbk

)

= Pabt
a ∧ dWt

b +

∞∑
k=1

2

k!(k + 1)
PabC

b
b1,··· ,bkt

a ∧ tb1 ∧ · · · ∧ tbk

.

�

Remark 5.6.31. If here Σ is a completely odd-graded dg-manifold, such as Σ = R0|3, then this is the kind
of action functional that appears in closed string field theory [Zw93][KaSt08]. In this case the underlying
space of the (super-)L∞-algebra g is the BRST complex of the closed (super-)string and [−, · · · ,−]k is the
string’s tree-level (k + 1)-point function.

5.6.9 AKSZ theory

We now consider symplectic Lie n-algebroids P. These carry canonical invariant polynomials ω. We show
that the∞-Chern-Simons action functional associated to such ω is the action functional of the AKSZ σ-model
quantum field theory with target space P (due to [AKSZ97], usefully reviewed in [Royt06]).

This section is based on [FRS11a].
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• AKSZ σ-models – 5.6.9.1;

• 5.6.9.2 – The AKSZ action as a Chern-Simons functional ;

• 5.6.9.3 – Ordinary Chern-Simons theory;

• 5.6.9.4 – Poisson σ-model;

• 5.6.9.5 – Courant σ-model;

• 5.6.9.6 – Higher abelian Chern-Simons theory.

5.6.9.1 AKSZ σ-Models The class of topological field theories known as AKSZ σ-models[AKSZ97]
contains in dimension 3 ordinary Chern-Simons theory (see [Fre] for a comprehensive review) as well as
its Lie algebroid generalization (the Courant σ-model [Ike03]), and in dimension 2 the Poisson σ-model
(see [CaFe00] for a review). It is therefore clear that the AKSZ construction is some sort of generalized
Chern-Simons theory. Here we demonstrate that this statement is true also in a useful precise sense.

Our discussion proceeds from the observation that the standard Chern-Simons action functional has
a systematic origin in Chern-Weil theory (see for instance [GHV] for a classical textbook treatment and
[HoSi05] for the refinement to differential cohomology that we need here):

The refined Chern-Weil homomorphism assigns to any invariant polynomial 〈−〉 : g⊗n → R on a Lie
algebra g of compact type a map that sends g-connections ∇ on a smooth manifold X to cocycles [p̂〈−〉(∇)] ∈
Hn+1

diff (X) in ordinary differential cohomology. These differential cocycles refine the curvature characteristic
class [〈F∇〉] ∈ Hn+1

dR (X) in de Rham cohomology to a fully fledged line n-bundle with connection, also
known as a bundle (n − 1)-gerbe with connection. And just as an ordinary line bundle (a “line 1-bundle”)
with connection assigns holonomy to curves, so a line n-bundle with connection assigns holonomy holp̂(Σ)
to n-dimensional trajectories Σ → X. For the special case where 〈−〉 is the Killing form polynomial and
X = Σ with dim Σ = 3 one finds that this volume holonomy map ∇ 7→ holp̂〈−〉(∇)(Σ) is precisely the
standard Chern-Simons action functional. Similarly, for 〈−〉 any higher invariant polynomial this holonomy
action functional has as Lagrangian the corresponding higher Chern-Simons form. In summary, this means
that Chern-Simons-type action functionals on Lie algebra-valued connections are the images of the refined
Chern-Weil homomorphism.

In 3.6.5 a generalization of the Chern-Weil homomorphism to higher (“derived”) differential geometry
has been established. In this context smooth manifolds are generalized first to orbifolds, then to general Lie
groupoids, to Lie 2-groupoids and finally to smooth ∞-groupoids (smooth ∞-stacks), while Lie algebras are
generalized to Lie 2-algebras etc., up to L∞-algebras and more generally to Lie n-algebroids and finally to
L∞-algebroids.

In this context one has for a any L∞-algebroid a natural notion of a-valued ∞-connections on exp(a)-
principal smooth∞-bundles (where exp(a) is a smooth∞-groupoid obtained by Lie integration from a). By
analyzing the abstractly defined higher Chern-Weil homomorphism in this context one finds a direct higher
analog of the above situation: there is a notion of invariant polynomials 〈−〉 on an L∞-algebroid a and these
induce maps from a-valued ∞-connections to line n-bundles with connections as before .

This construction drastically simplifies when one restricts attention to trivial ∞-bundles with (nontrivial)
a-connections. Over a smooth manifold Σ these are simply given by dg-algebra homomorphisms

A : W(a)→ Ω•(Σ) ,

where W(a) is the Weil algebra of the L∞-algebroid a [SSS09a], and Ω•(Σ) is the de Rham algebra of Σ
(which is indeed the Weil algebra of Σ thought of as an L∞-algebroid concentrated in degree 0). Then for
〈−〉 ∈ W(a) an invariant polynomial, the corresponding ∞-Chern-Weil homomorphism is presented by a
choice of “Chern-Simons element” cs ∈W(a), which exhibits the transgression of 〈−〉 to an L∞-cocycle (the
higher analog of a cocycle in Lie algebra cohomology): the dg-morphism A naturally maps the Chern-Simons
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element cs of A to a differential form cs(A) ∈ Ω•(Σ) and its integral is the corresponding ∞-Chern-Simons
action functional S〈−〉

S〈−〉 : A 7→ hol ˆp〈−〉(Σ) =

∫
Σ

cs〈−〉(A) .

Even though trivial∞-bundles with a-connections are a very particular subcase of the general∞-Chern-
Weil theory, they are rich enough to contain AKSZ theory. Namely, here we show that a symplectic dg-
manifold of grade n – which is the geometrical datum of the target space defining an AKSZ σ-model – is
naturally equivalently an L∞-algebroid P endowed with a quadratic and non-degenerate invariant polynomial
ω of grade n. Moreover, under this identification the canonical Hamiltonian π on the symplectic target dg-
manifold is identified as an L∞-cocycle on P. Finally, the invariant polynomial ω is naturally in transgression
with the cocycle π via a Chern-Simons element csω that turns out to be the Lagrangian of the AKSZ σ-model:∫

Σ

LAKSZ(−) =

∫
Σ

csω(−) .

(An explicit description of LAKSZ is given below in def. 5.6.33)
In summary this means that we find the following dictionary of concepts:

Chern-Weil theory AKSZ theory

cocycle π Hamiltonian

transgression element cs Lagrangian

invariant polynomial ω symplectic structure

More precisely, we (explain and then) prove here the following theorem:

Theorem 5.6.32. For (P, ω) an L∞-algebroid with a quadratic non-degenerate invariant polynomial, the
corresponding ∞-Chern-Weil homomorphism

∇ 7→ holp̂ω (Σ)

sends P-valued ∞-connections ∇ to their corresponding exponentiated AKSZ action

· · · = exp(i

∫
Σ

LAKSZ(∇)) .

.

The local differential form data involved in this statement is at the focus of attention in this section here
and contained in prop. 5.6.35 below.

We consider, in definition 5.6.33 below, for any symplectic dg-manifold (X,ω) a functional SAKSZ on
spaces of maps TΣ→ X of smooth graded manifolds. While only this precise definition is referred to in the
remainder of the section, we begin by indicating informally the original motivation of SAKSZ. The reader
uncomfortable with these somewhat vague considerations can take note of def. 5.6.33 and then skip to the
next section.

Generally, a σ-model field theory is, roughly, one

1. whose fields over a space Σ are maps φ : Σ→ X to some space X;

2. whose action functional is, apart from a kinetic term, the transgression of some kind of cocycle on X
to the mapping space Map(Σ, X).
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Here the terms “space”, “maps” and “cocycles” are to be made precise in a suitable context. One says that
Σ is the worldvolume, X is the target space and the cocycle is the background gauge field.

For instance, an ordinary charged particle (such as an electron) is described by a σ-model where Σ =
(0, t) ⊂ R is the abstract worldline, where X is a (pseudo-)Riemannian smooth manifold (for instance our
spacetime), and where the background cocycle is a line bundle with connection on X (a degree-2 cocycle
in ordinary differential cohomology of X, representing a background electromagnetic field). Up to a kinetic
term, the action functional is the holonomy of the connection over a given curve φ : Σ → X. A textbook
discussion of these standard kinds of σ-models is, for instance, in [DM99].

The σ-models which we consider here are higher generalizations of this example, where the background
gauge field is a cocycle of higher degree (a higher bundle with connection) and where the worldvolume is
accordingly higher dimensional. In addition, X is allowed to be not just a manifold, but an approximation
to a higher orbifold (a smooth ∞-groupoid).

More precisely, here we take the category of spaces to be SmoothDgMfd from def. 5.5.3. We take target
space to be a symplectic dg-manifold (X,ω) and the worldvolume to be the shifted tangent bundle TΣ of a
compact smooth manifold Σ. Following [AKSZ97], one may imagine that we can form a smooth Z-graded
mapping space Maps(TΣ, X) of smooth graded manifolds. On this space the canonical vector fields vΣ and
vX naturally have commuting actions from the left and from the right, respectively, so that their sum vΣ +vX
equips Maps(TΣ, X) itself with the structure of a differential graded smooth manifold.

Next we take the “cocycle” on X (to be made precise in the next section) to be the Hamiltonian π (def.
5.5.12) of vX with respect to the symplectic structure ω, according to def. 5.5.10. One wants to assume that
there is a kind of Riemannian structure on TΣ that allows to form the transgression∫

TΣ

ev∗ω := p!ev∗ω

by pull-push through the canonical correspondence

Maps(TΣ, X) oo
p

Maps(TΣ, X)× TΣ
ev // X .

When one succeeds in making this precise, one expects to find that
∫
TΣ

ev∗ω is in turn a symplectic structure
on the mapping space.

This implies that the vector field vΣ + vX on mapping space has a Hamiltonian

S ∈ C∞(Maps(TΣ, X)) , s.t. dS = ιvΣ+vx

∫
TΣ

ev∗ω .

The grade-0 component
SAKSZ := S|Maps(TΣ,X)0

constitutes a functional on the space of morphisms of graded manifolds φ : TΣ → X. This is the AKSZ
action functional defining the AKSZ σ-model with target space X and background field/cocycle ω.

In [AKSZ97], this procedure is indicated only somewhat vaguely. The focus of attention there is on a
discussion, from this perspective, of the action functionals of the 2-dimensional σ-models called the A-model
and the B-model. In [Royt06] a more detailed discussion of the general construction is given, including an
explicit formula for S, and hence for SAKSZ. That formula is the following:

Definition 5.6.33. For (X,ω) a symplectic dg-manifold of grade n with global Darboux coordinates {xa},
Σ a smooth compact manifold of dimension (n+ 1) and k ∈ R, the AKSZ action functional

SAKSZ : SmoothGrMfd(TΣ, X)→ R

is

SAKSZ : φ 7→
∫

Σ

(
1

2
ωabφ

a ∧ ddRφ
b − φ∗π

)
,

where π is the Hamiltonian for vX with respect to ω and where on the right we are interpreting fields as
forms on Σ according to prop. 5.5.7.
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This formula hence defines an infinite class of σ-models depending on the target space structure (X,ω).
(One can also consider arbitrary relative factors between the first and the second term, but below we shall
find that the above choice is singled out). In [AKSZ97], it was already noticed that ordinary Chern-Simons
theory is a special case of this for ω of grade 2, as is the Poisson σ-model for ω of grade 1 (and hence, as
shown there, also the A-model and the B-model). The main example in [Royt06] spells out the general case
for ω of grade 2, which is called the Courant σ-model there. (We review and re-derive all these examples in
detail below.)

One nice aspect of this construction is that it follows immediately that the full Hamiltonian S on the
mapping space satisfies {S,S} = 0. Moreover, using the standard formula for the internal hom of chain
complexes, one finds that the cohomology of (Maps(TΣ, X), vΣ +vX) in degree 0 is the space of functions on
those fields that satisfy the Euler-Lagrange equations of SAKSZ. Taken together, these facts imply that S is
a solution of the “master equation” of a BV-BRST complex for the quantum field theory defined by SAKSZ.
This is a crucial ingredient for the quantization of the model, and this is what the AKSZ construction is
mostly used for in the literature (for instance [CaFe00]).

Here we want to focus on another nice aspect of the AKSZ-construction: it hints at a deeper reason for
why the σ-models of this type are special. It is indeed one of the very few proposals for what a general
abstract mechanism might be that picks out among the vast space of all possible local action functionals
those that seem to be of relevance “in nature”.

We now proceed to show that the class of action functionals SAKSZ are precisely those that higher
Chern-Weil theory canonically associates to target data (X,ω). Since higher Chern-Weil theory in turn is
canonically given on very general abstract grounds, this in a sense amounts to a derivation of SAKSZ from
“first principles”, and it shows that a wealth of very general theory applies to these systems.

5.6.9.2 The AKSZ action as an ∞-Chern-Simons functional We now show how an L∞-algebroid
a endowed with a triple (π, cs, ω) consisting of a Chern-Simons element transgressing an invariant polynomial
ω to a cocycle π defines an AKSZ-type σ-model action. The starting point is to take as target space the
tangent Lie∞-algebroid Ta, i.e., to consider as space of fields of the theory the space of maps Maps(TΣ,Ta)
from the worldsheet Σ to Ta. Dually, this is the space of morphisms of dgcas from W(a) to Ω•(Σ), i.e., the
space of degree 1 a-valued differential forms on Σ from definition 1.3.98.

Remark 5.6.34. As we noticed in the introduction, in the context of the AKSZ σ-model a degree 1 a-valued
differential form on Σ should be thought of as the datum of a (notrivial) a-valued connection on a trivial
principal ∞-bundle on Σ.

Now that we have defined the space of fields, we have to define the action. We have seen in definition
1.3.100 that a degree 1 a-valued differential form A on Σ maps the Chern-Simons element cs ∈ W(a) to a
differential form cs(A) on Σ. Integrating this differential form on Σ will therefore give an AKSZ-type action
which is naturally interpreted as an higher Chern-Simons action functional:

Maps(TΣ,Ta)→ R

A 7→
∫

Σ

cs(A).

Theorem 5.6.32 then reduces to showing that, when {a, (π, cs, ω)} is the set of L∞-algebroid data arising
from a symplectic Lie n-algebroid (P, ω), the AKSZ-type action dscribed above is precisely the AKSZ action
for (P, ω). More precisely, this is stated as follows.

Proposition 5.6.35. For (P, ω) a symplectic Lie n-algebroid coming by proposition 5.5.15 from a symplectic
dg-manifold of positive grade n with global Darboux chart, the action functional induced by the canonical
Chern-Simons element

cs ∈W(P)

from proposition 5.5.19 is the AKSZ action from definition 5.6.33:∫
Σ

cs =

∫
Σ

LAKSZ .
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In fact the two Lagrangians differ at most by an exact term

cs ∼ LAKSZ .

Proof. We have seen in remark 5.5.20 that in Darboux coordinates {xa} where

ω =
1

2
ωabdx

a ∧ dxb

the Chern-Simons element from proposition 5.5.19 is given by

cs =
1

n

(
deg(xa)ωabx

a ∧ dW(P)x
b − nπ

)
.

This means that for Σ an (n+ 1)-dimensional manifold and

Ω•(Σ)←W(P) : φ

a (degree 1) P-valued differential form on Σ we have∫
Σ

cs(φ) =
1

n

∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b − nπ(φ)

 ,

where we used φ(dW(P)x
b) = ddRφ

b, as in remark 1.3.99. Here the asymmetry in the coefficients of the first
term is only apparent. Using integration by parts on a closed Σ we have∫

Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b =

∫
Σ

∑
a,b

(−1)1+deg(xa)deg(xa)ωab(ddRφ
a) ∧ φb

=

∫
Σ

∑
a,b

(−1)(1+deg(xa))(1+deg(xb))deg(xa)ωabφ
b ∧ (ddRφ

a)

=

∫
Σ

∑
a,b

deg(xb)ωabφ
a ∧ (ddRφ

b)

,

where in the last step we switched the indices on ω and used that ωab = (−1)(1+deg(xa))(1+deg(xb))ωba.
Therefore∫

Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b =
1

2

∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b +
1

2

∫
Σ

∑
a,b

deg(xb)ωabφ
a ∧ ddRφ

b

=
n

2

∫
Σ

ωabφ
a ∧ ddRφ

b .

.

Using this in the above expression for the action yields∫
Σ

cs(φ) =

∫
Σ

(
1

2
ωabφ

a ∧ ddRφ
b − π(φ)

)
,

which is the formula for the action functional from definition 5.6.33. �

We now unwind the general statement of proposition 5.6.35 and its ingredients in the central examples
of interest, from proposition 5.5.16: the ordinary Chern-Simons action functional, the Poisson σ-model
Lagrangian, and the Courant σ-model Lagrangian. (The ordinary Chern-Simons model is the special case
of the Courant σ-model for P having as base manifold the point. But since it is the archetype of all models
considered here, it deserves its own discussion.)

By the very content of proposition 5.6.35 there are no surprises here and the following essentially amounts
to a review of the standard formulas for these examples. But it may be helpful to see our general ∞-Lie
theoretic derivation of these formulas spelled out in concrete cases, if only to carefully track the various signs
and prefactors.
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5.6.9.3 Ordinary Chern-Simons theory Let P = bg be a semisimple Lie algebra regarded as an L∞-
algebroid with base space the point and let ω := 〈−,−〉 ∈ W(bg) be its Killing form invariant polynomial.
Then (bg, 〈−,−〉) is a symplectic Lie 2-algebroid.

For {ta} a dual basis for g, being generators of grade 1 in W(g) we have

dWt
a = −1

2
Cabct

a ∧ tb + dta

where Cabc := ta([tb, tc]) and

ω =
1

2
Pabdt

a ∧ dtb ,

where Pab := 〈ta, tb〉. The Hamiltonian cocycle π from prop. 5.5.17 is

π =
1

2 + 1
ιvιεω

=
1

3
ιvPabt

a ∧ dtb

= −1

6
PabC

b
cdt

a ∧ tc ∧ td

=: −1

6
Cabct

a ∧ tb ∧ tc.

Therefore the Chern-Simons element from prop. 5.5.19 is found to be

cs =
1

2

(
Pabt

a ∧ dtb − 1

6
Cabct

a ∧ tb ∧ tc
)

=
1

2

(
Pabt

a ∧ dWt
b +

1

3
Cabct

a ∧ tb ∧ tc
)
.

This is indeed, up to an overall factor 1/2, the familiar standard choice of Chern-Simons element on a Lie
algebra. To see this more explicitly, notice that evaluated on a g-valued connection form

Ω•(Σ)←W(bg) : A

this is

2cs(A) = 〈A ∧ FA〉 −
1

6
〈A ∧ [A,A]〉 = 〈A ∧ ddRA〉+

1

3
〈A ∧ [A,A]〉 .

If g is a matrix Lie algebra then the Killing form is proportional to the trace of the matrix product: 〈ta, tb〉 =
tr(tatb). In this case we have

〈A ∧ [A,A]〉 = Aa ∧Ab ∧Ac tr(ta(tbtc − tctb))
= 2Aa ∧Ab ∧Ac tr(tatbtc)

= 2 tr(A ∧A ∧A)

and hence

2cs(A) = tr

(
A ∧ FA −

1

3
A ∧A ∧A

)
= tr

(
A ∧ ddRA+

2

3
A ∧A ∧A

)
.

5.6.9.4 Poisson σ-model Let (M, {−,−}) be a Poisson manifold and let P be the corresponding Poisson
Lie algebroid. This is a symplectic Lie 1-algebroid. Over a chart for the shifted cotangent bundle T ∗[−1]X
with coordinates {xi} of degree 0 and {∂i} of degree 1, respectively, we have

dWx
i = −πij∂j + dxi;
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where πij := {xi, xj} and
ω = dxi ∧ d∂i .

The Hamiltonian cocycle from prop. 5.5.17 is

π =
1

2
ιvιεω = −1

2
πij∂i ∧ ∂j

and the Chern-Simons element from prop. 5.5.19 is

cs = ιεω + π

= ∂i ∧ dxi − 1

2
πij∂i ∧ ∂j

.

In terms of dW instead of d this is
cs = ∂i ∧ dWx

i − π

= ∂i ∧ dWx
i +

1

2
πij∂i∂j .

So for Σ a 2-manifold and
Ω•(Σ)←W(P) : (X, η)

a Poisson-Lie algebroid valued differential form on Σ – which in components is a function X : Σ → M and
a 1-form η ∈ Ω1(Σ, X∗T ∗M) – the corresponding AKSZ action is∫

Σ

cs(X, η) =

∫
Σ

η ∧ ddRX +
1

2
πij(X)ηi ∧ ηj .

This is the Lagrangian of the Poisson σ-model [CaFe00].

5.6.9.5 Courant σ-model A Courant algebroid is a symplectic Lie 2-algebroid. By the previous example
this is a higher analog of a Poisson manifold. Expressed in components in the language of ordinary differential
geometry, a Courant algebroid is a vector bundle E over a manifold M0, equipped with: a non-degenerate
bilinear form 〈·, ·〉 on the fibers, a bilinear bracket [·, ·] on sections Γ(E), and a bundle map (called the
anchor) ρ : E → TM , satisfying several compatibility conditions. The bracket [·, ·] may be required to
be skew-symmetric (Def. 2.3.2 in [Royt02]), in which case it gives rise to a Lie 2-algebra structure, or,
alternatively, it may be required to satisfy a Jacobi-like identity (Def. 2.6.1 in [Royt02]), in which case it
gives a Leibniz algebra structure.

It was shown in [Royt02] that Courant algebroids E → M0 in this component form are in 1-1 corre-
spondance with (non-negatively graded) grade 2 symplectic dg-manifolds (M, v). Via this correspondance,
M is obtained as a particular symplectic submanifold of T ∗[2]E[1] equipped with its canonical symplectic
structure.

Let (M,v) be a Courant algebroid as above. In Darboux coordinates, the symplectic structure is

ω = dpi ∧ dqi +
1

2
gabdξ

a ∧ dξb,

with
deg qi = 0, deg ξa = 1, deg pi = 2,

and gab are constants. The Chevalley-Eilenberg differential corresponds to the vector field:

v = P iaξ
a ∂

∂qi
+ gab

(
P ibpi −

1

2
Tbcdξ

cξd
) ∂

∂ξa
+

(
−∂P

j
a

∂qi
ξapj +

1

6

∂Tabc
∂qi

ξaξbξc
)

∂

∂pi
.
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Here P ia = P ia(q) and Tabc = Tabc(q) are particular degree zero functions encoding the Courant algebroid
structure. Hence, the differential on the Weil algebra is:

dW q
i = P iaξ

a + dqi

dW ξ
a = gab

(
P ibpi −

1

2
Tbcdξ

cξd
)

+ dξa

dW pi = −∂P
j
a

∂qi
ξapj +

1

6

∂Tabc
∂qi

ξaξbξc + dpi.

Following remark. 5.5.18, we construct the corresponding Hamiltonian cocycle from prop. 5.5.17:

π =
1

n+ 1
ωab deg(xa)xa ∧ vb

=
1

3

(
2pi ∧ v(qi) + gabξ

a ∧ v(ξb)
)

=
1

3

(
2piP

i
aξ
a + ξaP iapi −

1

2
Tabcξ

aξbξc
)

= P iaξ
api −

1

6
Tabcξ

aξbξc.

The Chern-Simons element from prop. 5.5.19 is:

cs =
1

2

(∑
ab

deg(xa)ωabx
a ∧ dWxb − 2π

)

= pidW q
i +

1

2
gabξ

adW ξ
b − π

= pidW q
i +

1

2
gabξ

adW ξ
b − P iaξapi +

1

6
Tabcξ

aξbξc.

So for a map
Ω•(Σ)←W(P) : (X,A,F )

where Σ is a closed 3-manifold, we have∫
Σ

cs(X,A,F ) =

∫
Σ

Fi ∧ ddRX
i +

1

2
gabA

a ∧ ddRA
b − P iaAa ∧ Fi +

1

6
TabcA

a ∧Ab ∧Ac.

This is the AKSZ action for the Courant algebroid σ-model from [Ike03] [Royt02][Royt06].

5.6.9.6 Higher abelian Chern-Simons theory in d = 4k+3 We discuss higher abelian Chern-Simons
theory, 5.6.6.1, from the point of view of AKSZ theory.

For k ∈ N, let a be the delooping of the line Lie 2k-algebra, def. 4.4.49: a = b2k+1R. By observation
4.4.94 there is, up to scale, a unique binary invariant polynomial on b2k+1R, and this is the wedge product
of the unique generating unary invariant polynomial γ in degree 2k + 2 with itself:

ω := γ ∧ γ ∈W(b4k+4R) .

This invariant polynomial is clearly non-degenerate: for c the canonical generator of CE(b2k+1R) we have

ω = dc ∧ dc .

Therefore (b2k+1R, ω) induces an∞-Chern-Simons theory of AKSZ σ-model type in dimension n+1 = 4k+3.
(On the other hand, on b2kR there is only the 0 binary invariant polynomial, so that no AKSZ-σ-models are
induced from b2kR.)
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The Hamiltonian cocycle from prop. 5.5.17 vanishes

π = 0

because the differential dCE(b2k+1R) is trivial. The Chern-Simons element from prop. 5.5.19 is

cs = c ∧ dc .

A field configuration, def. 1.3.98, of this σ-model over a (2k + 3)-dimensional manifold

Ω•(Σ)←W(b2k+1) : C

is simply a (2k + 1)-form. The AKSZ action functional in this case is

SAKSZ : C 7→
∫

Σ

C ∧ ddRC .

The simplicity of this discussion is deceptive. It results from the fact that here we are looking at ∞-Chern-
Simons theory for universal Lie integrations and for topologically trivial ∞-bundles. More generally the
∞-Chern-Simons theory for a = b2k+1R is nontrivial and rich, as discussed in 5.6.6.1. Its configuration space
is that of circle (2k+1)-bundles with connection (4.4.13) on Σ, classified by ordinary differential cohomology
in degree 2k + 2, and the action functional is given by the fiber integration in differential cohomology to
the point over the Beilinson-Deligne cup product, which is locally given by the above formula, but contains
global twists.
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5.7 ∞-WZW functionals

We discuss examples of higher WZW functionals, def. 3.6.10.

• 1d WZW functionals

– 5.7.1 – Massive non-relativistic particle

– 5.7.2 – Green-Schwarz superparticle

• 2d WZW functionals

– 5.7.3 – Bosonic string on a Lie group;

– 5.7.4 – Green-Schwarz superstring;

• 6d WZW functionals

– 5.7.5 – Bosonic 5-brane on the String-2-group

This section draws from [FiSaScIII].

5.7.1 Massive non-relativistic particle

The action functional of the free massive non-relativistic particle is a special low dimensional case of higher
WZW action functionals. A discussion is in section 8.3 of [AzIz95].

5.7.2 Green-Schwarz superparticle

The action functional of the Green-Schwarz superparticle is a special low dimensional case of higher WZW
action functionals. A discussion is in section 8.7 of [AzIz95].

5.7.3 Bosonic string on a Lie group

The ordinary 2d WZW model describing a string propagating on a Lie group G (see for instance [Ga00] for
a review) is controled by the surface holonomy of a canonical circle 2-bundle on G. We discuss this classical
theory from the point of view of the ∞-topos Smooth∞Grpd. We recover the treatment of the differential
geometry and differential cohomology of Chern-Simons and WZW-theories as discussed in [CJMSW05] and
[Wal08] and generalizes it from cohomology and classifying spaces to cocycles and moduli stacks.

Let now G be a compact and simply connected Lie group and let

ĉ : BGconn → B3U(1)conn

be the Chern-Simons functional, from 5.6.3.1.
Recall that

• by prop. 4.4.39 the object [dRBG is presented by the simplicial presheaf given by the sheaf of flat
g-valued forms;

• by theorem 4.4.75 the object BnU(1)conn is presented by the simplicial presheaf which is the image of
the Beilinson-Deligne complex under the Dold-Kan map.

Proposition 5.7.1. Let X be a smooth manifold. In terms of these presentations the composite morphism

H(X, [dRBG→ [BG→ BGconn
ĉ→ Bn+1U(1)conn)

from def. 3.6.44 sends a flat g-valued form A ∈ Ω1
flat(X, g) to the Deligne cocycle which is trivial except for

a globally defined connection 3-form C = 1
2 〈A ∧ [A ∧A]〉.
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Proof. By theorem 5.1.9 the morphism ĉ is presented by exp(cs) : cosk3 exp(g)conn → B3U(1)conn. To
compute the composite we therefore need to construct a compatible composite of anafunctors. By lemma
4.4.55, prop. 4.4.39 and lemma 4.4.55 this can be given by

cosk3 exp(g)dR
//

'
��

cosk3 exp(g)flat

'
��

// cosk3 exp(g)conn

exp(cs) // B3U(1)conn

[dRBG // [BGch

.

Chasing an element A : X → [dRBG through this diagram shows the claimed statement. �
It follows that a cocycle with coefficients in the differential WZW coefficient object B2U(1)conn|F=θ(g), def.

3.6.44, is given by a Deligne cocycle with curvature 3-form 1
2 〈A ∧ [A ∧ A]〉. For a more detailed statement,

consider the following.

Lemma 5.7.2. For n ∈ N, there is a pasting diagram of ∞-pullbacks

BnU(1)conn
F //

��

Ωn+1
cl (−)

��
BnU(1)conn

//

��

Ωn+1(−)

��
∗ // Bn+1U(1)conn

,

where the top morphism is the curvature projection of def. 4.4.73.

Proof. We use the presentation of Bn+1U(1)conn by the image of the Beilinson-Deligne complex under the
Dold-Kan map from theorem 4.4.75.

To compute the∞-pullback, we produce a fibration replacement in [CartSpop, sSet]proj of the lower right
moprhism. By prop. 2.3.12 it is then sufficient to check that the ordinary fiber of that morphism is weakly
equivalent to BnU(1)conn.

Consider therefore the simplicial presheaf

Ω̃n+1(−) := Ξ


C∞(−, U(1))

ddR //

id

((

Ω1(−)
ddR //

id

&&

· · · ddR//

id

$$

Ωn+1(−)

⊕ · · · ⊕

C∞(−, U(1))
ddR // · · · ddR // Ωn(−)


with Ξ from prop. 2.2.31. One checks that there is a morphism of simplicial presheaves

Ω̃n+1(−)→ Ωn+1(−)

which in degree 0 is given by

Ωn+1(−)

id

&&
⊕

Ωn(−)
ddR // Ωn+1(−)

and which is a weak equivalence in [CartSpop, sSet]proj. This induces a weak equivalence of pullback diagrams

∗ //

=

��

B3U(1)conn
oooo

=

��

Ω̃3(−)

'
��

∗ // B3U(1)conn
oo Ω3(−)

.
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Since we manifestly have an ordinary pullback of simplicial presheaves

BnU(1)conn
//

��

Ω̃n+1(−)

��
∗ // Bn+1U(1)conn

(using that the right adjoint Ξ preserves pullback) this proves the claim. �

Proposition 5.7.3. There is a canonical morphism

H(X,B2U(1)conn|F=θ(g))→ H(X,B2U(1)conn)

whose image exhibits the full sub-2-groupoid of circle 2-bundles whose curvature 3-form is of the form 1
2 〈A∧

[A ∧A]〉 for some A ∈ Ω1
flat(X, g). Moreover, the WZW cocycle

WZWĉ : G→ B2U(1)conn ↪→ B2U(1)conn

exhibits, up to equivalence, the traditional WZW gerbe with connection on G.

Proof. By lemma 5.7.2 and prop. 5.7.1 we have a pasting diagram of ∞-bullbacks

B2U(1)conn|F=θ(g)
//

����

Ω1
flat(−, g)

����
� _

��

{C ∈ Ω3(−)|∃g : C = 1
2 〈g
∗θ ∧ [g∗θ ∧ g∗θ]〉}

� _

��
B2U(1)conn

//

��

Ω3(−)

��
∗ // B3U(1)conn

.

�

5.7.4 Green-Schwarz superstring

The Green-Schwarz superstring on flat spacetime (see for instance D’Hoker’s lecture 10 in [DM99] for a
standard review) is a WZW coset σ-model whose target space is the supermanifold obtained as the quotient
of the super-Poincaré-group by the Lorentz group, and whose background gauge field is a super circle 2-bundle
with connection whose super-curvature 3-form is the 3-cocycle from prop. 5.3.13.

In this Lie-theoretic perspective this statement is made explicit for instance in chapter 8 of [AzIz95].
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5.7.5 Bosonic 5-brane on String

We consider the 6-dimensional WZW action corresponding to the 7-dimensional Chern-Simons functional of
5.6.7.2.

String
WZW 1

6
p̂6 //

��

B6U(1)conn|F=θ(g)
//

��

[dRBString

��
∗ // BFivebraneconn

//

��

BStringconn

1
6 p̂2

��
∗ // B7U(1)conn

(...)
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5.8 Higher geometric prequantization

We discuss here the application of cohesive higher geometric prequantization, 3.6.11, to the natural action
functionals that we found above in 5.6 and 5.7.

• 5.8.1 – Prequantum mechanics;

• 5.8.2 – Prequantum 2d field theory;

• 5.8.3 – Prequantum Chern-Simons theory;

• 5.8.4 – Prequantization of symplectic Lie n-algebroids

5.8.1 n = 1 – prequantum mechanics

Let V = C be the 0-groupoid of complex numbers and V//U(1) the action groupoid with respect to the
standard action.

Proposition 5.8.1. For P → X a principal U(1)-bundle, we have that Γ(X,P ×U(1) C) is the ordinary
space of smooth sections of the associated line bundle.

Corollary 5.8.2. For n = 1 the definition of prequantum operators in def. 3.6.54 is the traditional one.

5.8.2 n = 2 – prequantum 2d field theory

Let V = Core(Vect(−)) ∈ Smooth∞Grpd be the maximal groupoid-valued stack inside the stack of smooth
vector bundles of finite rank. Let V//BU(1)→ B2U(1) be the canonical action.

Proposition 5.8.3. For given circle 2-bundle P → X, the groupoid Γ(X,P ×BU(1) V ) is the groupoid of
P -twisted vector bundles on X, discussed in 4.4.7.

5.8.3 n = 3 – prequantum Chern-Simons theory

Let G be a simply connected semisimple Lie group. The Lagrangian for G-Chern-Simons theory is refined
to the moduli stack of G-connections

ĉ : BGconn → B3U(1)conn .

Proposition 5.8.4. Let Σ3 be a compact smooth manifold of dimension 3. Then the composite

exp(iS(−)) : [Σ3,BGconn]
ĉ // [Σ3,B

3U(1)conn]

∫
Σ // U(1)

is the action functional of Chern-Simons theory.

Proof. By theorem 5.1.9. �

Proposition 5.8.5. Let Σ2 be a smooth manifold of dimension 2. Then the curvature 4-form of the circle
3-bundle with connection given by the the composite

Σ2 × [Σ2,BGconn]→ BGconn
ĉ→ B3U(1)conn

is the canonical symplectic current plus terms whose fiber integral over Σ2 vanishes.

It follows that the transgression of the Chern-Simons circle 3-bundle ĉ to the phase space [Σ2,BGconn]
is the prequantum circle bundle with connection for ordinary Chern-Simons theory.
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5.8.4 Prequantization of symplectic Lie n-algebroids

By the discussion in 5.5, the symplectic form on a symplectic n-groupoid, def. 5.5.14, may be regarded as
the image of an invariant polynomial under the unrefined ∞-Chern-Weil homomorphism, 4.4.14,

ω : X → [dRBn+1R .

Therefore the passage to the prequantum n-bundle with connection on X corresponds to passing to the
refined ∞-Chern-Weil homomorphism

ω̂ : X → BnU(1)conn .

Definition 5.8.6. Let (X,ω) be a symplectic ∞-groupoid, def. 5.5.3. Then ω represents a class

[ω] ∈ Hn+1
dR (X) .

We say this form is integral if it is in the image of the curvature-projection,

curv : Hdiff(X,BnU(1))→ Hn+1
dR (X)

from the ordinary differential cohomology, 4.4.13, of X
In this case we say a prequantum circle n-bundle with connection for (X,ω) is a lift of ω to Hdiff(X,Bn+1U(1)).

Write X̂ → X for the underlying circle (n+ 1)-group-principal ∞-bundle.

Proposition 5.8.7. If (X,ω) indeed comes from the Lie integration of a symplectic Lie n-algebroid (P, ω)
such that the periods of the L∞-cocycle π that ω transgresses to are integral, then X̂ is the Lie integration
of the L∞-extension, def. 4.4.82,

bnR→ P̂→ P

classified by π:
X̂ ' τn+1 exp(P̂) .

Example 5.8.8. For n = 1 this reduces to the discussion in [WeXu91].

Example 5.8.9. For g a semisimple Lie algebra with quadratic invariant polynomial ω, the pair (bg, ω) is
a symplectic Lie 2-algebroid (Courant Lie 2-algebroid) over the point.

In this case the infinitesimal prequantum line 2-bundle is the delooping of the string Lie 2-algebra, def.
5.1.15

b̂g ' bstring

and the prequantum circle 2-group-principal 2-bundle is the delooping of the smooth string 2-group, def.
5.1.10

(X̂ → X) = (BString→ BG) .

491



References

[AGMOO] O. Aharony, S. Gubser, J. Maldacena, H. Ooguri, Y. Oz, Large N Field Theories, String Theory
and Gravity, Phys.Rept.323:183-386,2000, [hep-th/9905111]

[ACDP03] D. Alekseevsky, V. Cortés, C. Devchand, A. Van Proeyen, Polyvector Super-Poincaré Algebras,
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[DAFr82] R. D’Auria, P- Fré, Geometric supergravity in D = 11 and its hidden supergroup, Nuclear Physics
B, 201 (1982)
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(2009)

[SSS09b] H. Sati, U. Schreiber, J. Stasheff, Fivebrane structures, Rev. Math. Phys., 21(10):1197–1240 (2009)

[SSS09c] H. Sati, U. Schreiber, J. Stasheff, Twisted differential string- and fivebrane structures, Communi-
cations in Mathematical Physics (2012) arXiv:0910.4001

[Scho10] C. Schommer-Pries, Central extensions of smooth 2-groups and a finite-dimensional string 2-group,
arXiv:0911.2483

[SSW05] U. Schreiber, C. Schweigert, K. Waldorf, Unoriented WZW models and Holonomy of Bundle
Gerbes, Communications in Mathematical Physics, Volume 274, Issue 1 (2007)

[ScWaI] U. Schreiber, K. Waldorf, Parallel transport and functors, J. Hom. Relat. Struct., 4, 187-244 (2009)

[ScWaII] U. Schreiber, K. Waldorf, Smooth 2-functors and differential forms, Homology, Homotopy and
Applications (2010)

[ScWaIII] U. Schreiber, K. Waldorf, Connections on nonabelian gerbes, arXiv:0808.1923

[Schw84] A. Schwarz, On the definition of superspace Teoret. Mat. Fiz., Volume 60, Number 1 (1984)

[Sega70] G. Segal, Cohomology of topological groups, Symposia Mathematica, Vol IV (1970) p. 377

[Sega73] G. Segal, Configuration-Spaces and Iterated Loop-Spaces, Inventiones math. 21, 213-221 (1973)

500
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[ToVe02] B. Toën, G. Vezzosi, Segal topoi and stacks over Segal categories, Proceedings of the
Program Stacks, Intersection theory and Non-abelian Hodge Theory, MSRI, Berkeley, (2002),
arXiv:math.AG/0212330.
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