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Abstract

The fundamental notion of non-abelian generalized cohomology gained recognition in algebraic topology as
the non-abelian Poincaré-dual to “topological factorization homology”, and in theoretical physics as providing
flux-quantization for non-linear Gauß laws. However, already the archetypical example — unstable Cohomo-
topy, first studied almost a century ago by Pontrjagin — may remain underappreciated as a cohomology theory.
In illustration and amplification of its cohomological nature, we construct the non-abelian analog of the Chern
character map on Z/2-equivariantized 7-Cohomotopy — in fact on its “twistorial” version classified by com-
plex projective 3-space — essentially by computing its equivariant minimal Sullivan model, and we highlight
some interesting integral cohomology classes which are extracted this way. We end with an outlook on the
application of this result to the the rigorous deduction of anyonic quantum states on M5-branes wrapped over
Seifert-orbifolds.
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1 Introduction & Overview

Algebraic topology, of course, is the study of spaces via systems of (co)homological invariants. Ever more gen-
eralized versions of cohomology are routinely discussed these days, but an ancient and archetypical example —
namely unstable Cohomotopy, which we will refer to as just Cohomotopy — has received little attention as a coho-
mology theory, since as such it falls outside the scope even of the generalized cohomology theories as commonly
understood today: it is a non-abelian generalized cohomology theory, as we recall in a moment.

Motivated by recent application [SS25a] in theoretical physics of non-abelian generalized cohomology in gen-
eral, and of Cohomotopy in particular, we present here a case study of constructions on and phenomena exhibited
by Cohomotopy when regarding it as a cohomology theory. Concretely we discuss a “twistorial” variant of low-
degree Cohomotopy in tangentially twisted and in Z/2-equivariant form, and our main result is the computation and
analysis of its character: the twisted equivariant non-abelian analog of the familiar Chern-character on K-theory.

At the heart of this computation is, for reasons explained in a moment, the computation of minimal Sullivan
models of fibrations of some basic cell complexes (like S7 and CP3) but in equivariant rational homotopy theory.
Since in this context even such basic examples have not been discussed in print before – to the best of our knowl-
edge – the reader may in part take this article as an exposition of the notoriously more intricate equivariant version
of dg-algebraic rational homotopy theory (which has seen little application in the past) along some illustrative
examples.

But for the inclined reader we end with a brief outlook on the somewhat remarkable implications of our
computations to recent questions in theoretical physics, specifically to the flux-quantization of M5-branes probing
A1-type orbi-singularities.

To set the scene, it is worthwhile to briefly take a step back and reconsider the notion of cohomology as such:

Cohomology via classifying spaces. It is a classical and yet possibly undervalued fact that reasonable cohomology
theories have classifying spaces (and more generally classifying stacks). To quickly recall (more details and
pointers in [FSS23, §2] 1):

Ordinary cohomology. This begins with the observation that (reduced) ordinary singular cohomology, with
coefficients in a discrete abelian group A, is classified in degree n by Eilenberg-MacLane spaces K(A,n) – in that
on well-behaved topological spaces X , notably on smooth manifolds, there are natural isomorphisms between the
ordinary cohomology groups and the connected components of the respective (pointed) mapping spaces:

Hn(X ; A) ≃ π0 Maps
(
X , K(A,n)

)
, H̃n(X ; A) ≃ π0 Maps∗/

(
X , K(A,n)

)
. (1)

This equivalence makes manifest the characteristic properties of cohomology: homotopy invariance, exactness and
wedge property, since these are now immediately implied by general abstract properties of mapping spaces.

Moreover, these EM-spaces are in fact loop spaces of each other, via weak homotopy equivalences

σn : K(A,n) ΩK(A,n+1)∼ (2)

that thereby represent the suspension isomorphisms between ordinary cohomology groups, as follows:

H̃n(X ;A) Maps∗/
(
X , K(A,n)

)
Maps∗/

(
X , ΩK(A,n+1)

)
Maps∗/

(
ΣX , K(A,n+1)

)
H̃n+1

(
ΣX ; A

)
.≃

(1)

(σn)∗

(2)
≃

adjunction
≃
(1)

Ordinary non-abelian cohomology. Note here that it is the loop space property (2), and hence the corre-
sponding suspension isomorphism, which reflect the fact that the coefficient A has been assumed to be an abelian
group: For a non-abelian group G, an Eilenberg-MacLane space K(G,1) ≃ BG still exists, but is not a loop space.

While the suspension isomorphism is thus lost for non-abelian coefficients, the assignment

X 7! H1(X ; G
)

:= π0 Maps
(
X , BG

)
∈ Set∗/ (3)

still satisfies homotopy invariance, exactness and wedge property, just by the general properties of mapping spaces,
and hence has all the characteristic properties of ordinary cohomology – except for its abelian-ness. Accordingly,
(3) is known as non-abelian cohomology, famous from early applications in Chern-Weil theory.

1The numbering in [FSS23] we refer to is that of the published version, which differs from the numbering in the preprint version, see
ncatlab.org/schreiber/show/The+Character+Map+in+Non-Abelian+Cohomology.
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Whitehead-generalized cohomology theory. But if or as long as we do insist on abelian cohomology groups
related by suspension isomorphisms, we may still immediately generalize ordinary cohomology in the form (1),
simply by using any other sequence of classifying spaces (En)

∞
n=0, being successive loop spaces of each other as in

(2),
σn : En ΩEn+1 ,

∼

as such called a sequential Ω-spectrum of spaces, or just a spectrum, for short. The Brown representability theorem
says that the resulting assignments

X 7! En(X) := π0 Maps
(
X ; En

)
are equivalently the generalized cohomology theories as introduced by Whitehead, including examples such as
K-theory, elliptic cohomology and cobordism cohomology.

Non-abelian generalized cohomology. But as we just saw, suspension isomorphisms are to be regarded as
extra structure on cohomology. Not necessarily requiring them leads to consider any pointed space A (which we
may as well assume to be connected) as the classifying space of a non-abelian generalized cohomology theory,
defined in evident generalization of (3) simply by

H1(X ; ΩA
)

:= π0 Maps
(
X , A

)
. (4)

Here the notation on the left is suggestive of the fact that any loop space ΩA canonically carries the structure of a
higher homotopy-coherent group – a groupal A∞-space or ∞-group, for short – whose de-looping is equivalent to
the connected component of the original space:

A ≃ BΩA . (5)

For instance, in the archetypical case where A ≡ Sn is the n-sphere, then the non-abelian generalized coho-
mology theory that it classifies is known as (unstable) Cohomotopy πn

H̃1(X ; ΩSn) ≡ π0 Maps∗/
(
X , Sn) ≡ π

n(X) , (6)

in dual reference to the familar homotopy groups

πn(X) ≃ π0 Maps∗/
(
Sn, X

)
.

Another example of non-abelian generalized cohomology is unstable topological K-theory [HK04], whose
classifying spaces are taken to be finite stages U(n) of the sequential colimits which construct the classifying
spaces of topological K-theory.

Developing non-abelian cohomology. Fundamental, elementary and compelling as the notion of non-abelian
generalized cohomology in (4) is, it has long remained underappreciated. For example, none of the original
authors [Bo36][Po38][Sp49] on Cohomotopy (6) address their subject as a cohomology theory, instead the early
development revolves around partial fixes for the perceived defect of co-homotopy sets to not in general carry group
structure. The situation does not improve with the early development of “non-abelian gerbes”, whose original
description [Gi71] appears unwieldy.

Explicit acknowledgement of (stacky) non-abelian generalized cohomology in the transparent guise (4) appears
only in a lecture [To02] (possibly following [Si02]). Two independent developments in 2009 finally put non-abelian
generalized cohomology into practical context:
• The discovery of non-abelian Poincaré duality [Lu09b, §3.8], relating non-abelian cohomology (later made

explicit in [Lu14, Def. 6]) of manifolds to “non-abelian homology” in the guise of “topological chiral homology”
(which, in contrast to non-abelian cohomology, takes work to define);

• The observation in theoretical physics [SS08][Sc09][SSS12] that charge/flux-quantization laws [SS25a] for
higher gauge fields are generally in non-abelian cohomology.

With non-abelian generalized cohomology thus recognized as a worthwhile subject, we are led to generalize
familiar constructions in abelian cohomology, as far as possible, and to explore the consequences.

First, we may straightforwardly equip non-abelian cohomology with further attributes: Considering the right
hand side of (4) not just for plain spaces but for sheaves of spaces (higher stacks) leads to non-abelian general-
ized sheaf cohomology, including, in particular, non-abelian generalized versions of twisted cohomology and of
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equivariant cohomology (also of differential cohomology, but this shall not concern as here):

Equivariant non-abelian cohomology. Via the above identification of cohomology sets with homotopy-
classes of maps to a classifying space, every flavor of homotopy theory comes with its corresponding flavor of
cohomology theories.

In equivariant homotopy theory one considers (cf. [SS25b]) topological spaces A equipped with the action
G ↷A of a (finite, for our purposes) group G and with G-equivariant maps between them – and the corresponding
flavor of cohomology is equivariant cohomology (which we also call proper equivariant cohomology in order to
distinguish it ffforma rom the coarser form of Borel-equivariance):

H1
G
(
X ; ΩA

)
= π0 Maps

(
G ↷X , G ↷A

)G
. (7)

Here the notion of G-homotopy equivalence of maps is straightforward but, at face value, technically cumber-
some to reason about. However, Elmendorf’s theorem (recalled as Prop. 2.26 below) reveals that G-homotopy
equivalences (between G-cell complexes) are nothing but systems of ordinary weak homotopy equivalences be-
tween the H-fixed spaces AH for all subgroups H ⊂G. These systems of fixed spaces are conveniently re-packaged
as presheaves on a small category called the orbit category Orb(G) of G, whence G-equivariant homotopy theory
is equivalently the homotopy theory of presheaves of spaces on Orb(G).

Twisted non-abelian cohomology. Somewhat similarly, given any space B in any homotopy theory, the B-
slice is the homotopy theory whose objects are spaces fibered over B with maps between them respecting the
fibration up to specified homotopy. If we assume, without essential restriction, that the base space is connected,
then we may identify it as B ≃ BG , as in (5), which exhibits any fibration over it as the Borel construction A �G
of the homotopy-quotient of a homotopy-coherent action G ↷A .

If we now think of a domain object X τ
−!BG in this BG-slice as a twist and of a codomain object A �G p

−!BG as
a local coefficient bundle, then the corresponding non-abelian cohomology is just the homotopy classes of sections
of the τ-associated A-fiber bundle, and as such is τ-twisted A-cohomology:

H1+τ
(
X , ΩA

)
:= π0 Maps

(
X , A�G

)
/BG =


A�G

X BG

p

τ

/
realtive

homotopy

(8)

This works generally: If all spaces here are in addition equipped with G-actions as in (7), hence if we are looking
at a slice of equivariant homotopy, then the above is automatically twisted equivariant non-abelian cohomology.

This is what we shall be concerned with here, concretely with the character map in this generality:

The non-abelian character. One famous construction on abelian cohomology is the Chern-Dold character
map to de Rham cohomology, which in the case of K-cohomology becomes the familar Chern character (and
which on ordinary cohomology is essentially just the de Rham theorem). One may think of the Chern-Dold
character as universally extracting the non-torsion data in the cohomology groups. Its generalization to non-abelian
cohomology was developed in [FSS23]:

Observing that the Chern-Dold character is essentially just the cohomology operation induced by rationaliza-
tion of the classifying space,

A LQAηQ

rationalization

as such it makes sense in the generality of non-abelian classifying spaces (immediately so under mild technical
assumptions, such as nilpotency, but with more work also more generally). In view of this, the fundamental theorem
of dg-algebraic rational homotopy theory may be re-cast as a non-abelian de Rham theorem which identifies, over
smooth manifolds X , the resulting non-abelian rational cohomology with the concordance classes of flat differential
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forms having coefficients in the real Whitehead-bracket L∞-algebra lA of the classifying space:

H1
(
X ; A

)
≡ π0 Maps

(
X , A

)
π0 Maps

(
X , LQA

)
H1

dR

(
X ; lA

)
non-abelian generalized cohomology non-abelian

rational cohomology
non-abelian

de Rham cohomology

(ηQ)∗

character map

rationalization of
classifying space

non-abelian
de Rham theorem

(9)

Since generalized cohomology theories are typically hard to analyze, in particular non-abelian ones, this char-
acter map may be regarded as extracting the first non-trivial stage of more tractable invariants. For instance, the
character of a non-abelian class is the first obstruction to a trivialization of that class.

(In the mentioned application to physics, the flux densities of a higher gauge field are sourced by charges which
appear as classes in non-abelian de Rham cohomology on the right, and the completion of the higher gauge theory
by a flux-quantization law means to lift these charges through the character map to classes in a chosen non-abelian
cohomology theory on the left.)

It is fairly straightforward to generalize the non-abelian character (9) to twisted non-abelian cohomology (8),
now using relative minimal Sullivan models.

The following table shows some examples of the resulting form of twisted non-abelian character maps that we
have computed elsewhere before – the first few examples are for general illustration and orientation, the last one is
the one of concern here: Our goal here is to equivariantize it.

local coefficient
bundle

A�G
#

BG

[FSS23]
Def. 5.4 H

twist
in H(

X ,B
G)

τ
( spacetim

e manifold

X ;
classif

ying space

A
)

twisted
non-abelian cohomology

chA

twisted
non-abelian character map

// H
twist

in HdR
(X ; , lB

G)

τdR
dR

( spacetim
e manifold

X;
Whitehead L∞

-algebra

lA
)

twisted
non-abelian de Rham cohomology

[c]τ
cocycle in

twisted A-cohomology

7−! chA

(
[c]
)

flux densities
satisfying Bianchi identities

BnZ
#
∗

[FSS23]
Ex. 4.9 Hn(X ; Z)

ordinary cohomology

dR
de Rham

homomorphism

//
{

Fn ∈ Ωn
dR(X)

∣∣ d Fn = 0
}
/∼

BU(n)
#
∗

[FSS23]
Thm. 4.26 H1

(
X ; U(n)

)
ordinary

non-abelian cohomology

cw
Chern-Weil

homomorphism

//


...,

c2(A),
c1(A)

∈ Ω2•
dR(X)

∣∣∣∣∣∣∣
...

d c2(A) = 0
d c1(A) = 0

/
∼

(
Z×BU

)
�BU(1)
#

B2U(1)

[FSS23]
Prop. 5.5 KUτ(X)

twisted
complex K-theory

chτ

twisted
Chern character

//
{

F2•,
H3

∈ Ω•
dR(X)

∣∣∣∣ d F2•+2 = H3 ∧F2•
d H3 = 0

}/
∼

S4�BŜp(2)
#

BŜp(2)

[FSS23]
Ex. 5.23a πτ(X)

J-twisted
4-Cohomotopy

chτ
π

twisted
FSS-character

//

{
2G7,

G4
∈ Ω•

dR(X)

∣∣∣∣∣ d 2G7 =−G4 ∧G4 +
(1

4 p1(ω)
)2

d G4 = 0

}
/
∼

CP3�BŜp(2)
#

BŜp(2)

[FSS23]
Ex. 5.23b T τ(X)

twistorial
Cohomotopy

chτ

T

twisted
FSS-character

//


H3
F2

2G7,
G4

∈ Ω•
dR(X)

∣∣∣∣∣∣∣∣∣
d H3 = G4 − 1

4 p1(ω)−F2 ∧F2
d F2 = 0

d 2G7 =−G4 ∧G4 +
(1

4 p1(ω)
)2

d G4 = 0

/
∼
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This identification of the character map on non-abelian cohomology with the passage of classifying spaces to their
minimal dgc-algebraic models in rational homotopy theory yields a new perspective on both subjects:

• On the one hand it becomes clear at once how to make sense of the twisted equivariant non-abelian character,
namely by construction of equivariant relative Sullivan models using the theory of [Tri82][Scu02, §11][Scu08]

• and conversely it provides a sudden wealth of motivation and applications of the latter (which arguably has led
a niche existence in the literature).

Main result. Here we lay out this construction of the twisted equivariant non-abelian character map 2 and apply
it to the example of twistorial Cohomotopy., with the following main result (whose proof culminates in Rem. 3.79
below):

Theorem 1.1. (i) The character map (Def. 3.78) in ZA
2 -equivariant twistorial Cohomotopy (Def. 2.48), on ZA

2 -
orbifolds (Def. 2.36) with Sp(1)-structure τ and -connection ω (Example 3.70), is of the following form (3.79):

equivariant
Local coefficient

bundle

A�G
#

BG
: H

twist
in H
( X

; BG
)

τ
( spacetim

e G-orbifold

X ;
classif

ying G-space

A
)

equivariant twisted
non-abelian cohomology

chA (X )

equivariant twisted
non-abelian character map

// H
twist

in HdR
( X

; lB
G
)

τdR
dR

( spacetim
e G-orbifold

X ;
Whitehead G-L∞

-algebra

lA
)

equivariant twisted
non-abelian de Rham cohomology

S
(

≺

( twisto
r space

CP3�
ZA

2
-equivariant

ZA
2
))

�
Sp(1

)-parametrized

Sp(1)

# (Ex. 2.44)

BSp(1)

: T
tangential twist

τ

ZA
2

( spacetim
e orbifold

with
A1-s

ingularity

≺

(
X�ZA

2
))

ZA
2 -equivariant twistorial Cohomotopy

equivariant
twistorial
character

chT

//

push-forward along
Sp(1)-parametrized

twistor fibration

��



fluxes

H3,
F2,

2G7,

G̃4

∈
Ω

•dR
(X

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

twisted Bianchi identities

d H3 = G̃4 − 1
2 p1(ω)−F2 ∧F2

d F2 = 0

d 2G7 =−G̃4 ∧
(
G̃4 − 1

2 p1(ω)
)

d G̃4 = 0,

dH3|XZA
2
=−1

2 p1
(
ω|XZA

2

)
−F2 ∧F2|XZA

2

dF2|XZA
2
= 0

G7|XZA
2
= 0

G̃4|XZA
2
= 0

bulk
fixed

locus

/
∼

G̃47!

G4 +
1
4 p1(ω)

����

S
4-sp

here

S4�
Sp(1

)-parametrized

Sp(1)
#

BSp(1)
: π

J-tw
ist

τ

ZA
2
(

spacetim
e

X)

J-twisted Cohomotopy

chπ

twisted
cohomotopical

character //


fluxes

2G7,
G4

∣∣∣∣∣∣
twisted Bianchi identities

d 2G7 =−G4 ∧G4 +
(1

4 p1(ω)
)2

d G4 = 0,

/
∼

(ii) Moreover, a necessary condition for differential forms to be in the image of this character map is their (shifted)
integrality, as follows:[

G̃4
]

:=
[
G4 +

1
4 p1(ω)

]
∈ H4

(
X ; Z

)
// H4
(
X ; R

)
,

[
F2
]

∈ H2
(
X ; Z

)
// H2
(
X ; R

)
. (10)

2More specifically, here we develop the equivariant non-abelian character for the case of classifying spaces which are equivariantly
(namely: fixed locus-wise) simply-connected. If one drops this assumption then the discussion becomes much more involved, as then
one needs to rationalize the fixed locus-wise covering spaces while retaining the respective actions of the fundamental groups by Deck
transformations on each fixed locus — this on top of the action of the equivariance group G and of the twisting group G .
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The computation at the heart of our proof. At the heart of the proof of Theorem 1.1 is the computation (Prop.
3.56 below) of the equivariant relative minimal model ([Tri82, §5][Scu02, §11][Scu08, §4], recalled as Def. 3.40
below) of the Z2-equivariant Sp(1)-parametrized twistor fibration in equivariant rational homotopy theory.

The equivariant twistor fibration. The twistor fibration tH ([At79, §III.1][Br82], see [FSS20c, §2]) is the map
from CP3 (“twistor space”) to HP1 ≃ S4 which sends complex lines to the right quaternionic lines that they span:

S2 ≃

fib(tH) ++

H×/C×

,,
CP3

tH
twistor

fibration

��

≃
(
C4 \{0}

)
/C×

��

∋
{

v · z |z ∈ C×}

HP1 ≃
(
H2 \{0}

)
/H× ∋

{
v ·q |q ∈H×}

(11)

The fiber of the twistor fibration is hence H×/C× ≃ CP1 ≃ S2.
(i) There is the evident action of Sp(2), on both CP3 and HP1, by left multiplication of homogeneous representa-
tives with unitary quaternion 2×2 matrices (58):

Sp(2)×CP3 // CP3 ,
(A , [v]) 7−! [A · v]

Sp(2)×HP1 // HP1 ,

(A , [v]) 7−! [A · v]
(12)

and the twistor fibration (being given by quotienting on the right) is manifestly equivariant under this left action.
(ii) Consider the following subgroups:

ZA
2 :=

{
1 :=

(
1 0
0 1

)
, σ :=

(
0 1
1 0

)}
⊂ Sp(2) , σ : [z1 : z2 : z3 : z4] 7! [z3 : z4 : z1 : z2] , (13)

Sp(1) :=
{

q· :=
( q 0

0 q
)∣∣ q ∈ S(H)

}
⊂ Sp(2) . (14)

Since these manifestly commute with each other, the homotopy quotient CP3�Sp(1) of twistor space (11) by Sp(1)
still admits the structure of a G-space (as in [tD79, §8][May96][Blu17]) for G = ZA

2 , fibered over BSp(1) (see Ex.
2.44 below for details).

The equivariant minimal relative dgc-algebra model of twistor space. Our Prop. 3.56 gives its equivariant
minimal model:

CP3

ZA
2

		
�Sp(1)

twistor space
homotopy-quotiented by Sp(1)

with residual ZA
2 -action

:

Z2/1

Z 2
-o

rb
it

ca
te

go
ry

��

Z2
��

� bulk // R
[1

4 p1
]

h3,
f2

ω7,
ω̃4

/


d h3 = ω̃4 − 1
2 p1 − f2 ∧ f2

d f2 = 0
d ω7 =−ω̃4 ∧

(
ω̃4 − 1

2 p1
)

d ω̃4 = 0


minimal ZA

2 -equivariant model
relative to BSp(1)

����

Z2/Z2
� singularity // R

[1
4 p1
][ h3,

f2

]/(d h3 = − 1
2 p1 − f2 ∧ f2

d f2 = 0

)
(15)

normalized (as in [FSS19b][FSS19c][FSS20c]) such that:
(a) all closed generators shown are rational images of integral and integrally in-divisble cohomology classes;
(b) ω := ω̃ − 1

4 p1 is fiberwise the volume form on HP1 ≃ S4, and f2 is fiberwise the volume form on CP1 ≃ S2.

As a non-trivial example of a (relative) minimal model in rational equivariant homotopy theory, this may be of
interest in its own right. Such examples computed in the literature are rare (we have not come across any). Here
we are concerned with a most curious aspect of this novel example: Under substituting the algebra generators in
(15) with differential forms on a ZA

2 -orbifold (essentially the non-abelian character map, Def. 3.78), the relations
in (15) are those expected for flux densities in “M-theory”, as briefly explained in §4:

(1
4 p1, ω̃4, ω7, f2, h3

)
dgc-algebra generators of

equivariant relative minimal model

 !
( 1

4 p1(ω)
Pontrjagin form

(gravitational flux density)

,

shifted
C-field flux density

G4 +
1
4 p1(ω) , 2G7

dual
C-field flux density

,
gauge flux

F2 , H3
B-field flux

)
.
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Outline.
In §2 we introduce equivariant non-abelian cohomology theory (in equivariant generalization of [FSS23, §2]) and
the example of equivariant twistorial Cohomotopy theory T τ

ZA
2
(−) (Def. 2.48).

In §3 we introduce equivariant non-abelian de Rham cohomology theory and the equivariant non-abelian character
map (in equivariant generalization of [FSS23, §3-5]) and compute the ZA

2 -equivariant relative minimal model of
Sp(1)-parametrized twistor space (Prop. 3.56).
In §4 we briefly indicate the application and impact of our result on the problem of flux-quantization of higher
gauge fields arising in super-gravity.

Notation. For various types of symmetry groups and their quotients, we use the following notation:

T Compact Borel equivariance group

Def. 2.11

S
(
X�T

)
Borel equivariant homotopy type Ex. 2.8

G Finite proper equivariance group ≺

(
X�G

)
Orbifold Ex. 2.20

S ≺

(
X�G

)
Proper equivariant homotopy type Def. 2.23

T ×G Borel & proper equivariance group S
(

≺(X�G)
)
�T Proper G-equivariant &

Borel T -equivariant homotopy type Ex. 2.43

G Simplicial group/∞-group Not.2.2 A �G Homotopy quotient Prop. 2.7

G G-equivariant ∞-group Rem. 2.42 A�G G-equivariant homotopy quotient (72)

Our notation for equivariant homotopy theory follows [SS20b]. The symbol “ ≺” refers to proper equivariant
objects (“orbi-singular objects”), parametrized over the orbit category (Def. 2.13) of the equivariance group (41):

Symbol Meaning Details

GActions
(
TopologicalSpaces

) G-actions on
topological spaces

Category of topological spaces equipped with contin-
uous action of the equivariance group G

Def. 2.11

GOrbits G-orbits Category of canonical orbits G/H of the equivariance
group, with equivariant maps between them

Def. 2.13

≺

GSimplicialSets
G-equivariant
simplicial sets

Category of contra-variant functors from G-orbits to
simplicial sets

Def. 2.19

≺

GVectorSpaces∨R
G-equivariant

dual vector spaces
Category of co-variant functors from G-orbits to vec-
tor spaces

Def. 3.5

≺

GDiffGradedCommAlgebras≥ 0
R

G-equivariant
dgc-algebras

Category of co-variant functors from G-orbits to con-
nective differential graded-commutative algebras

Def. 3.30

≺

GHomotopyTypes
G-equivariant

homotopy types
Homotopy category of projective model category of
contra-variant functors from G-orbits to simplicial sets

Def. 2.22

2 Equivariant non-abelian cohomology

In §2.1 we recall basics of ∞-groups and their ∞-actions and establish some technical Lemmas.
In §2.2 we recall basics of proper equivariant homotopy theory and introduce our running Example 2.44.
in §2.3 we introduce equivariant non-abelian cohomology theory.
in §2.4 we introduce twisted equivariant non-abelian cohomology theory.

Throughout, we illustrate all concepts in the
running example of the ZA

2 -equivariant and
Sp(1)-parametrized twistor fibration (Exam-
ple 2.44), the induced equivariant twistorial
Cohomotopy theory (Def. 2.48) and its char-
acter image in equivariant de Rham cohomol-
ogy (Example 3.74). We highlight that here
both flavors of equivariance are involved.

Borel equivariance Proper equivariance
Equivariance
group (§2) T = Sp(1) G = Z2

Equivariant
dR-cohomology (§3)

Borel-Weil-Cartan
model

Bredon-type
theory

Physical
effect (§4)

Flux quantization:
shift of G4 by 1

4 p1

orbifolding of
M5-brane
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We make free use of basic concepts from category theory and homotopy theory (for joint introduction see
[Rie14][Ri20]), in particular of model category theory ([Qu67], review in [Ho99][Hir02][Lu09a, A.2]). Relevant
concepts and facts are recalled in [FSS23, §A].

For C a category, and X , A ∈ C a pair of objects, we write

C (X ,A) ∈ Sets (16)
for its set of morphisms from X to A. This assignment is, of course, a contravariant functor in its first argument, to
be denoted:

C (−; A) : C op // Sets . (17)

Elementary as it is, this is of profound interest whenever C is the homotopy category of a homotopy topos [TV05]
[Lu09a][Re10], in which case the contravariant hom-functors (17) are non-abelian cohomology theories [To02]
[Sc13][SS20b][FSS23]. These subsume generalized and ordinary cohomology theories ([FSS23, §2]), as well as
their equivariant enhancements, which we consider below.

2.1 Homotopy theory of ∞-group actions

Plain homotopy theory.

Notation 2.1 (Classical homotopy category). (i) We write

TopologicalSpacesQu , SimplicialSetsQu ∈ ModelCategories (18)
for the classical model category structures on topological spaces and on simplicial sets, respectively ([Qu67, §II.3],
review in [Hir15][GJ99]).
(ii) The classical Quillen equivalence

TopologicalSpacesQu
oo |−|

Sing

≃Qu // SimplicialSetsQu (19)

induces an equivalence between the corresponding homotopy categories, which we denote:

SimplicialSets
γ

localization
// HomotopyTypes := Ho

(
SimplicialSetsQu

)
. (20)

(iii) We denote the localization functor from topological spaces to this classical homotopy category by “S”: 3

TopologicalSpaces
shape S

localization at weak homotopy equivalences
//

form singular
simplicial set

(19)

++

HomotopyTypes

SimplicialSets
γ localization (20)

33 . (21)

Borel-equivariant homotopy theory. We recall basics of Borel-equivariant homotopy theory, but in the generality
of equivariance for ∞-group actions (for the broader picture see [NSS12a][SS20b, §2.2]).

Notation 2.2 (Model category of simplicial groups). (i) We write

SimplicialGroups := Groups(SimplicialSets) (22)
for the category of simplicial groups.
(ii) This becomes ([Qu67, §II.3.7]) a model category

SimplicialGroupsproj ∈ ModelCategories

3The “esh”-symbol “S” stands for shape [Sc13, 3.4.5][Sh15, 9.7][SS20b, §3.1.1], following [Bo75], which for the well-behaved topo-
logical spaces of interest here is another term for their homotopy type [Lu09a, 7.1.6][Wa17, 4.6].
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by taking the weak equivalences and fibrations to be those of SimplicialSetsQu (Notation 2.1).
(iii) We denote the homotopy category of this model structure by

SimplicialGroupsproj
γ

localization at
weak homotopy equivalences

// Groups∞ := Ho
(
SimplicialGroupsproj

)
. (23)

and denote the generic object here by

G ∈ SimplicialGroups
γ // Groups∞ .

Example 2.3 (Shapes of topological groups are ∞-groups). For T ∈ TopologicalGroups, its singular simplicial set
(19) is canonically a simplicial group (22)

Sing(T ) ∈ SimplicialGroups , (24)

and, since the weak equivalence of simplicial groups are those of the underlying simplicial sets, its image in the
homotopy category is the shape ST (21), now equipped with induced ∞-group structure (Notation 2.2):

TopologicalGroups
∞-group shape S

localization at weak homotopy equivalences
//

form singular
simplicial group

(19), (24)

,,

Groups∞

SimplicialGroups
γ localization (23)

33 . (25)

Notation 2.4 (Model category of reduced simplicial sets). (i) We write

ReducedSimplicialSets �
� // SimplicialSets

for the full subcategory on those S ∈ SimplicialSets that have a single 0-cell, S0 = ∗.
(ii) This becomes ([GJ99, §V, Prop. 6.2]) a model category with weak equivalences and cofibrations those of
SimplicialSetsQu (Notation 2.1):

ReducedSimplicialSetsGJ ∈ ModelCategories .

(iii) Since reduced simplicial sets model those homotopy types (20) which are pointed and connected (e.g. [NSS12b,
Prop. 3.16]), we denote the corresponding homotopy category by

ReducedSimplicialSetsGJ
γ // HomotopyTypes∗/

≥ 1 := Ho
(
ReducedSimplicialSetsGJ

)
. (26)

Proposition 2.5 (Classifying space/loop space construction [GJ99, §V, Prop. 6.3][St12][NSS12b, §3.5]). There
exists a Quillen equivalence between the model categories of reduced simplicial sets (Notation 2.4) and that of
simplicial groups (Notation 2.2)

SimplicialGroupsproj
oo

W

≃Qu // ReducedSimplicialSets (27)

whose derived adjunction is given by forming homotopy types of based loop spaces and of classifying spaces:

∞-groups Groups∞

oo

based loop ∞-group

Ω(−)

B(−) := RW (−)
classifying space

≃ // HomotopyTypes∗/≥1
pointed & connected

homotopy types (28)

Notation 2.6 (Homotopy theory of simplicial group actions). For G ∈ SimplicialGroups (Notation 2.2)
(i) we write

G Actions := SimplicialFunctors
(
BG , SimplicialSets

)
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for the category of simplicial functors from the simplicial groupoid with a single object and G as its hom-object to
the simplicial category of simplicial sets.
(ii) This becomes a model category by taking the weak equivalences and fibrations to be those of underling sim-
plicial sets (evaluating at the single vertex of BG ):

G Actionsproj ∈ ModelCategories

and we denote its homotopy category by:

G Actionsproj
γ // Ho

(
G Actionsproj

)
=: G Actions∞ .

The following, Prop. 2.7, is pivotal for discussion of twisted non-abelian cohomology, notably for the no-
tion of equivariant local coefficient bundles below in Def. 2.45; for more background and context see [NSS12a,
§4][SS20b, §2.2][FSS23, Prop. 2.28].

Proposition 2.7 (∞-Group actions equivalent to fibrations over classifying space [DDK80, Prop. 2.3][Sh15]).
For G ∈ SimplicialGroups (Notation 2.2), the simplicial Borel construction (e.g. [NSS12b, Prop. 3.37]) is the
right adjoint of a Quillen equivalence

G Actionsproj
oo

G ↷ X 7! X×WG
G

simplicial Borel construction

≃Qu // SimplicialSets/WG
Qu (29)

between the projective model structure on simplicial G -actions (Notation 2.6) and the slice model structure
([Hir02, §7.6.4]) of the classical model strcuture on simplicial sets (18) over WG (27). Its derived equivalence of
homotopy categories

∞-actions of
∞-group G

G Actions∞

oo

homotopy fiber

hofib∗(p) [ (E
p
!BG)

G ↷ A 7! A�G
homotopy quotient

≃ // Ho
(

SimplicialSets/WG
Qu

)
homotopy types fibered

over classifying space BG
(30)

is given in one direction by forming homotopy fibers of fibrations over BG and in the other by forming homotopy
quotients of ∞-actions ([NSS12b, Prop. 3.73]):

G ∞-action on A

G ↷ A  !

A
hofib∗(ρA) //

A-fibration over
G -classifying space

A�G

ρA��
BG .

(31)

Example 2.8 (Homotopy type of Borel construction).
For T ∈ TopologicalGroups and T ↷ X ∈ T Actions

(
TopologicalSpaces

)
(Def. 2.11), passage to singular simpli-

cial sets (19) yields a simplicial action (Notation 2.6). The corresponding fibration (Prop. 2.7) is given by the
topological shape (21) of the Borel construction:

SX
hofib(ρX ) // S

(X×ET
T

)
=: S

(
X�T

)
.

ρX

��
SBT

Lemma 2.9 (Pasting law [Lu09a, Lem 4.4.2.1]). For C a model category, and given a pasting composite of two
commuting squares

A //

��

B //

�� (hpb)

C
��

D // E // F
such that the right square is homotopy Cartesian, then the left square is homotopy Cartesian if and only if the total
rectangle is.
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Lemma 2.10 (Homotopy fibers of homotopy-quotiented morphisms).

Let G ∈ Groups∞ (Notation 2.2) and (A,ρA)
( f ,ρ f )
−−−! (A′,ρA′) ∈ G Actions∗/∞ a morphism of ∞-actions (Notation 2.6)

preserving an G -fixed point pt : ∗! A
f
−! A′ (see also [SS20b, Def. 2.97]). Then:

(a) The homotopy fiber of the homotopy-quotiented morphism f �G (30) coincides with the homotopy fiber of f

hofib∗
(

f �G
)
≃ hofib∗( f ) . (32)

(b) The homotopy fiber of f is canonically equipped with an ∞-action by G :(
hofib∗( f ), ρh

)
∈ G Actions∞ .

(c) The corresponding homotopy quotient is equivalent to the homotopy fiber of the homotopy-quotiented morphism
parametrized over BG, namely the following homotopy pullback:

hofib∗( f )�G ≃ hofibBG

(
f �G

)
��

//

(hpb)

A�G

f�G
��

BG
pt′�G

// A′�G .

(33)

Proof. Consider the following pasting diagrams:
hofib∗

(
f �G

)
��

//

(hpb)

hofibBG

(
f �G

)
(hpb)

//

��

A�G

f �G

��
∗ // BG

pt′�G
// A′�G

≃
hofib∗( f )

(hpb)

��

// A

(hpb)

//

f

��

A�G

f �G

��
ρA

��

∗
pt′

// A′ //

��

(pb)

A′�G

ρA′

��
∗ // BG

(34)

With the right Cartesian square (33) given, the pasting law (Lem. 2.9) identifies the top left objects on both sides
as shown; in particular, the left square on the right gives (35). But, since the composite bottom morphism is the
same basepoint inclusion on both sides, this implies:

hofib∗
(

f �G
)

≃ hofib∗( f ) . (35)

Moreover, the left Cartesian square on the left of (34) exhibits, by Prop. 2.7, a G -action on hofib∗
(

f �G
)

with
homotopy quotient given by

hofib∗
(

f �G
)
�G ≃ hofibBG

(
f �G

)
. (36)

The combination of the equivalences (32) and (36) yields the claimed equivalence in (33).

2.2 Proper equivariant homotopy theory

We now recall relevant basics of proper4 equivariant homotopy theory [tD79, §8][May96][Blu17] and introduce
the examples of interest here.

G-Actions.

Definition 2.11 (Group actions on topological spaces). (i) For a given compact topological group, which serves as
the symmetry group of Borel equivariance in the following, generically to be denoted

4Here by “proper equivariance” we refer to the fine notion of equivariant homotopy/cohomology in the sense of Bredon, as opposed to
the coarse notion in the sense of Borel. For in-depth conceptual discussion of this distinction see [SS20b]. Besides the colloquial meaning
of “proper”, the action of our finite equivariance groups is necessarily proper in the technical sense of general topology (see Lemma 2.34
below), whence this terminology nicely matches that recently advocated in [DHLPS19].
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Borel equivariance group T ∈ CompactTopologicalGroups , (37)

we write

T Actions
(
TopologicalSpaces

)
∈ Categories (38)

for the category whose objects are topological spaces X equipped with a continuous T -action

T ↷ X : T ×X continuous // X
(t , x) 7−! t · x

such that: ∀
x∈X

e · x = x and ∀
x∈X

t1 , t2∈G

(
t1 · (t2 · x)

)
= (t1 · t2) · x (39)

and whose morphisms are T -equivariant continuous functions, which we denote as follows:

X1

T
�� f // X2

T
��

⇔
∀

x∈X
t∈T

f (t · x) = t · f (x) .
(40)

(ii) Throughout, our proper equivariance group is a finite group, to be denoted:

proper equivariance group G ∈ FiniteGroups . (41)
This finite group can be viewed as a topologically discrete topological group and we have the corresponding
category (38) of continuous actions:

GActions
(
TopologicalSpaces

)
∈ Categories . (42)

(iii) The full subcategory of the latter category on those objects, where also the topological space being acted on is
discrete, is that of G-actions on sets:

GActions
(
Sets

) � � // GActions
(
TopologicalSpaces

)
. (43)

(iv) Regarding the direct product group of the Borel equivariance group (37) with the proper equivariance group
(41) as a compact topological group

Borel & proper equivariance group T ×G ∈ CompactTopologicalGroups ,

we have the category of topological actions of this product group. This contains the previous categories, (38) and
(42), as full subcategories (via equipping a space with trivial action)

T Actions
(
TopologicalSpaces

) � � // (T×G
)
Actions

(
TopologicalSpaces

) oo ? _ GActions
(
TopologicalSpaces

)
. (44)

Example 2.12 (Representation spheres). Let V ∈ T Representationsfin
R be a finite-dimensional linear representation

of a compact topological group (37). Then the one-point compactification of V (the topological sphere of the same
dimension, e.g. [Ke55, p. 150]) inherits a topological T -action (Def. 2.11) via stereographic projection, denoted

SV ∈ T Actions
(
TopologicalSpaces

)
and called the representation sphere of V (e.g. [Blu17, §1.1.5][SS19a, §3]).

Definition 2.13 (Orbit category). The category of G-orbits or orbit category of the equivariance group G (41)

GOrbits ↪−! GActions
(
Sets

)
∈ Categories

is (up to equivalence of categories) the full subcategory of discrete G-actions (43) on the coset spaces G/H (which
are discrete spaces, since G is assumed to be finite) for all subgroup inclusions H

ι
↪! G.

Example 2.14 (Explicit parameterization of morphisms of GOrbits). The hom-sets (16) in the G-orbit category
(Def. 2.13) from any G/H1 to any G/H2 are in bijection with sets of conjugations, inside G, of H1 into subgroups
of H2, modulo conjugations in H2:

GOrbits
(
G/H1, G/H2

)
≃
{

φ : H1 ↪! H2, g ∈ G | Adg−1 ◦ ι1 = ι2 ◦φ
}(

(φ ,g)∼ (Adh−1
2
◦φ ,gh2) |h2 ∈ H2

) . (45)

(Here “Ad” denotes the adjoint action of the group on itself, and Hi
� � ιi // G are the two subgroup inclusions.)
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Example 2.15 (Orbit category of Z2). The orbit category (Def. 2.13) of the cyclic group Z2 := {e,σ |σ ◦σ = e}
is

Z2Orbits ≃

{
Z2/1

Z2
�� ∃! // Z2/Z2

1
��

}
.

Hence its hom-sets (16) are:

Z2Orbits
(
Z2/1 , Z2/1

)
≃ Z2 , Z2Orbits

(
Z2/Z2 , Z2/Z2

)
≃ 1 ,

Z2Orbits
(
Z2/1 , Z2/Z2

)
≃ ∗ , Z2Orbits

(
Z2/Z2 , Z2/1

)
≃ ∅ .

(46)

Example 2.16 (Automorphism groups in orbit category). For G a finite group and H ⊂ G a subgroup, the endo-
morphisms of G/H ∈ GOrbits (Def. 2.13) form the Weyl group WG(H) (e.g. [May96, p. 13]) of H in G,

EndGOrbits(G/H) ≃ AutGOrbits(G/H) = WG(H) := NG(H)/H , (47)

namely the quotient group by H of the normalizer NG(H) of H in G. For instance:

WG(1) = G , WG(G) = 1; generally: H ⊂
normal

G ⇒ WG(H) = G/H .

Generally:

Example 2.17 (Hom-sets in orbit category via Weyl groups). For any two subgroups K,H ⊂ G, the hom-set (16)
in the G-orbit category (Def. 2.13) between their corresponding coset spaces is, as a right WG(H)-set via Example
2.16, a disjoint union of copies of WG(H), one for each way of conjugating K into a subgroup of H:

GOrbits
(
G/K , G/H

)
≃

⊔
g ∈ G/NG(K)

s.t. g−1Kg ⊂ H

gWG(H) ∈ WG(H)Actions
(
Sets

)
. (48)

Example 2.18 (More examples of orbit categories).

Z2Orbits Z3Orbits Z4Orbits Z5Orbits Z6Orbits

Z2/1

Z2
��

��
Z2/Z2

Z3/1

Z3
��

��
Z3/Z3

Z4/1

Z4
��

��

��  
Z4/Z2

Z2
��

��
Z4/Z4

Z5/1

Z5
��

��
Z5/Z5

Z6/1

Z6
��

��

xx||�� ��  
Z3
��

Z6/Z2

""

Z6/Z3

Z2
��

��
Z6/Z6

(
ZL

2 ×ZR
2
)
Orbits

(ZL
2 ×ZR

2 )/(1×1)

ZL
2×ZR

2

		

ww~~   ''
(ZL

2 ×ZR
2 )/(ZL

2 ×1)

ZR
2



&&

(ZL
2 ×ZR

2 )/(1×ZR
2 )

ZL
2



xx
(ZL

2 ×ZR
2 )/(ZL

2 ×ZR
2 )

Equivariant homotopy types.

Definition 2.19 (Equivariant simplicial sets). We write

≺

GSimplicialSets := Functors
(
GOrbitsop , SimplicialSets

)
for the category of functors from the opposite of G-orbits (Def. 2.13) to simplicial sets.

Example 2.20 (Systems of fixed loci of topological G-actions). Let G ↷ X ∈ GActions
(
TopologicalSpaces

)
(Def.

2.11). For H ⊂ G any subgroup, a G-equivariant function (40)

G/H

G
�� f // X

G
��

⇔ f ([e]) ∈
H-fixed locus

XH :=
{

x ∈ X
∣∣∣∣ ∀

h∈H

(
h · x = x

)}
⊂ X (49)

from the corresponding G-orbit (Def. 2.13) is determined by its image f ([e])∈X of the class of the neutral element,
and that image has to be fixed by the action of H ⊂ G of X . Therefore, the corresponding G-equivariant mapping
spaces
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Maps
(
G/H, X

)G ≃ XH

are the topological subspaces of H-fixed points inside X , the H-fixed loci in G ↷ H. By functoriality of the mapping-
space construction, these fixed point loci are exhibited as arranging into a contravariant functor on the G-orbit
category (Def. 2.13):

≺(X�G) : GOrbitsop Maps(−,X)G
// TopologicalSpaces

G/H1

[(id,g)]
��

� // XH1 H1-fixed locus

G/H1
� //

[(φ ,e)]
��

XH1

≃ g·(−) residual action on
H2-fixed locus

OO

G/H2
� // XH2 H2-fixed locus

?�
φ∗ inclusion of

H2-fixed locus

OO

(50)

Here we used Example 2.14 to make explicit the nature of the continuous functions between fixed point spaces
that this functor assigns to morphisms of GOrbits. In particular, we see from Example 2.16 that the residual action
on the H-fixed locus XH is by the Weyl group WG(H) (47). Postcomposing (50) with the singular simplicial set
functor (19) yields an equivariant simplicial set (Def. 2.19), to be denoted (the notation follows [SS20b, §3.2,
5.1]):

G ↷ X 7−! Sing
(

≺

(
X�G

))
:= Sing

(
Maps

(
− , X

)G
)

∈

≺

GSimplicialSets . (51)

Proposition 2.21 (Model category of equivariant simplicial sets [Hir02, Thm. 11.6.1][Gui06, Thm. 3.3][St16,
§2.2]). The category of equivariant simplicial sets (Def. 2.19) carries a model category structure whose

(a) W – weak equivalences are the weak equivalences of SimplicialSetsQu over each G/H ∈ G Orbits;
(b) Fib – fibrations are the weak equivalences of SimplicialSetsQu over each G/H ∈ G Orbits.

We denote this model category by

≺

GSimplicialSetsproj ∈ ModelCategories .

Definition 2.22 (Equivariant homotopy types). We denote the homotopy category of the projective model structure
on equivariant simplicial sets (Prop. 2.21) by

≺

GSimplicialSetsproj
γ

localization
//

≺

GHomotopyTypes := Ho
(

≺

GSimplicialSetsproj
)
. (52)

The key source of equivariant homotopy types is the shapes of orbi-singularized homotopy quotients of topo-
logical spaces by continuous group actions (we follow [SS20b, §3.2] in terminology and notation):

Definition 2.23 (Equivariant shape). The composite of forming systems of fixed loci (Example 2.20) with local-
ization to equivariant homotopy types (Def. 2.22) is the equivariant shape operation, generalizing the plain shape
(21):

GActions
(
TopologicalSpaces

) G ↷ X 7−!

equivariant shape

S ≺(X�G)

localization at fixed locus-wise weak homotopy equivalences
//

form singular
equivariant simplicial set

(51)

,,

≺

GHomotopyTypes

≺

GSimplicialSets
γ localization (52)

33
. (53)

Example 2.24 (Smooth equivariant homotopy types). A topological space X equipped with trivial G-action has
equivariant shape (Def. 2.23) given by the functor on the orbit category which is constant on its ordinary shape
(21)

TopologicalSpaces
shape

S //

equip with
trivial action

��

HomotopyTypes

Smth form constant functor
on orbit category

��
GActions

(
TopologicalSpaces

)
equivariant shape

S
(
−�G

)
//

≺

GHomotopyTypes .

(54)

For brevity, we will mostly leave this embedding notationally implicit and write

15



X := Smth SX ∈

≺

GHomotopyTypes . (55)

Elmendorf’s theorem. In fact, every equivariant homotopy type (Def. 2.22) is the equivariant shape (Def. 2.23)
of some topological space with G-action (Def. 2.11). This is the content of Elmendorf’s theorem ([El83], see Prop.
2.26 below). Due to this fact, topological G-actions in equivariant homotopy theory are often conflated with their
G-equivariant shape, and jointly referred to as G-spaces (e.g., [tD79, §8][Blu17, §1]).

Proposition 2.25 (Model category of simplicial G-actions and fixed loci [Gui06, Thm. 3.12][St16, Prop. 2.6]).
The category GActions

(
SimplicialSets

)
of G-actions G ↷ S on simplicial sets (analogous to Def. 2.11) carries a

model category structure whose weak equivalences and fibrations are those that become so in the classical model
structure on simplicial sets (18) under the functor (analogous to Example 2.20)

GActions
(
SimplicialSets

) Maps(− ,−)G
//

≺

GSimplicialSets

G ↷ S 7−!
(
G/H 7! SH

) (56)

which sends a G-action G ↷ S to its system of H-fixed loci parametrized over G/H ∈ GOrbits.

We denote this model category by

GActions
(
SimplicialSets

)
fine ∈ ModelCategories .

Proposition 2.26 (Elmendorf’s theorem via model categories [St16, Thm. 3.17][Gui06, Prop. 3.15]). The functor
assigning systems of simplicial fixed loci (56) is the right adjoint in a Quillen equivalence

GActions
(
SimplicialSets

)
fine

oo (−)(G/1)

Maps(− ,−)G

≃Qu // ≺
GSimplicialSetsproj (57)

between the fine model structure on simplicial G-actions (Prop. 2.25) and the model category of equivariant
simplicial sets (Prop. 2.21).

Examples of equivariant homotopy types.

Example 2.27 (GADE-equivariant 4-sphere). Let

G := GADE ⊂ Spin(3) ≃ Sp(1)

be a finite subgroup of the Spin group in dimension 3; these are famously classified along an ADE-pattern (reviewed
in [HSS18, Rem. A.9]). Via the exceptional isomorphism with the quaternionic unitary group, this induces a
canonical smooth action (Def. 2.35) on the Euclidean 4-space underlying the space of quaternions (reviewed as
[HSS18, Prop. A.8]) and hence also on the corresponding representation 4-sphere (Example 2.12):

R4

GADE

		
, S4

GADE

		
∈ GADEActions

(
SmoothManifolds

)
.

The corresponding GADE-equivariant homotopy types (Def. 2.22) (their equivariant shape, Def. 2.23)

GADE-equivariant shape
of 4-sphere

S ≺

(
S4�GADE) ∈

≺

GADEHomotopyTypes

are the coefficients of ADE-equivariant Cohomotopy theory [HSS18, §5.2][SS19a, §3] (lifted to equivariant twisto-
rial Cohomotopy theory below in Def. 2.48).

Example 2.28 (ZA
2 -equivariant twistor space). Consider the quaternion unitary group (e.g. [FSS20c, §A] ) with its

two commuting subgroups from (13) and (14):
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ZA
2 , Sp(1) ⊂ Sp(2) :=

{
g ∈ Mat2×2(H)

∣∣g ·g† = 1
}
. (58)

Their canonical action on H2 ≃R R8 by left matrix multiplication induces an action (12) on CP3 (“twistor space”).
The fixed locus (49) of the subgroup ZA

2 (13) under this action is evidently given by those [z1 : z2 : z3 : z4] ∈ CP3

such that z1 + j · z2 = z3 + j · z4 ∈ H. Since these are exactly the elements that are sent by the twistor fibration
tH (11) to the base point [1 : 1] ∈ HP1, the ZA

2 -fixed locus in twistor space CP3 coincides with the S2-fiber of the
twistor fibration tH (11): (

CP3)ZA
2 ≃ S2 � � fib(tH) // CP3. (59)

Hence the Z2-equivariant homotopy type (21) of twistor space with its ZA
2 action (12) is given by the following

functor on the Z2-orbit category (2.15):

ZA
2 -equivariant shape

of twistor space

S ≺

(
CP3�ZA

2
)

:

Z2/1

Z2
��

��

7−! SCP3

ZA
2 		

Z2/Z2 7−! SS2
?�

fib(tH)
fiber inclusion of
twistor fibration

OO

(60)

Equivariant homotopy groups.

Definition 2.29 (Equivariant groups). (i) We write

≺

GGroups := Functors
(
GOrbitsop , Groups

)
for the category of contravariant functors on the G-orbit category (Def. 2.13) with values in groups.
(ii) We write

≺

GAbelianGroups := Functors
(
GOrbits , AbelianGroups

)
for the sub-category of contravariant functors with values in abelian groups.

Example 2.30 (Equivariant singular homology groups). For X ∈

≺

GHomotopyTypes (Def. 2.22), A ∈ AbelianGroups,
the ordinary A-homology groups in degree n ∈N of the stages of X form an equivariant abelian group in the sense
of Def. 2.29, to be denoted:

H n
(
X ; A

)
: G/H 7−! Hn

(
X (G/H); A

)
.

Definition 2.31 (Equivariant homotopy groups).
(i) For X ∈

≺

GHomotopyTypes (Def. 2.22), ≺(∗�G)
x
−!X a base-point, and n∈N, we say that the nth equivariant

homotopy group of X at x is the equivariant group (Def. 2.29) which is stage-wise the ordinary nth homotopy group,
to be denoted:

π n
(
X ,x

)
:=
(

G/H 7! πn
(
X(G/H),x(G/H)

))
. (61)

(ii) Similarly, for G ↷ X ∈ GActions
(
TopologicalSpaces

)
(Def. 2.11), G ↷ ∗

x
−! G ↷X a fixed base point, and

n ∈ N, we say that the nth equivariant homotopy group of G ↷ X is that (61) of its equivariant shape (21):

π n
(
X ,x
)

:= π n

(
S ≺

(
X�G

)
, S ≺

(
x�G

))
=
(

G/H 7! πn
(
XH , x

))
. (62)

Definition 2.32 (Equivariant connected homotopy types). We write

≺

GHomotopyTypes≥1
� � //

≺

GHomotopyTypes (63)
for the full subcategory on those equivariant homotopy types X (Def. 2.22) which

(a) are equivariantly connected, in that X (G/H) ∈ HomotopyTypes is connected for all H ⊂ G;
(b) admit an equivariant base point ≺

(
∗�G

)
! X .
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Definition 2.33 (Equivariant 1-connected homotopy types). (i) We write

≺

GHomotopyTypes≥2
� � //

≺

GHomotopyTypes≥1
� � //

≺

GHomotopyTypes (64)

for the further full subcategory on those equivariant homotopy types X (Def. 2.22) which
(a) are equivariantly connected and admit an equivariant base point (Def. 2.32);
(b) have trivial first equivariant homotopy group (Def. 2.31) at that base point:

π1(X , x) = 1 .

(ii) By the Hurewicz theorem, this implies that the equivariant real cohomology groups (Example 2.30) of these
objects are trivial in degrees ≤ 1

X ∈

≺

GHomotopyTypes≥2 ⇒
(

H0(X) ≃ R and H1(X) ≃ 0
)
.

(iii) We write

≺

GHomotopyTypesfinR
≥2
� � //

≺

GHomotopyTypes≥2
� � //

≺

GHomotopyTypes

for the further full subcategory of those equivariant 1-connected homotopy types (64) which are of finite type over
R, in that all their equivariant real homology groups (Example 2.30) are finite-dimensional:

∀
H⊂G
n∈N

dimR

(
Hn
(
X (G/H); R

))
< ∞ .

G-Orbifolds. Given a smooth manifold X equipped with a smooth group action G ↷ X , there are several some-
what different mathematical notions of what exactly counts as the corresponding quotient orbifold (review in
[MM03][Ka08, §6][IKZ10]).
• First, there is the singular quotient space X/G that dominates the early literature on orbifolds [Sa56][Sa57]

[Th80][Hae84] as well as the contemporary physics literature [BL99, §1.3].
• Second, there is the smooth stacky homotopy quotient X �G that has become the popular model for orbifolds

among Lie theorists [MP97][Moe02][Ler08][Am12].
• Third, there is the fine incarnation of orbifolds orbisingular homotopy quotients ≺

(
X�G

)
in singular cohesive

homotopy theory [SS20b], which unifies the above two perspectives and lifts them to make orbifolds carry proper
equivariant differential cohomology theories.

Here we extract from [SS20b] the essence of this latter fine perspective that is necessary and convenient for the
present purpose, as Def. 2.36 below.

Lemma 2.34 (Fixed loci of finite smooth actions are smooth manifolds). If G ↷ X ∈ GActions
(
TopologicalSpaces

)
(Def. 2.11) is such that X admits the structure of a smooth manifold and such that the action (39) of G is smooth,
then the fixed loci XH ↪! X (49) are themselves smooth submanifolds.

Proof. Since G is assumed to be finite (41), its smooth action is proper (e.g. [Lee12, Cor. 21.6]). But in smooth
manifolds with proper smooth G-action, every closed submanifold inside a fixed locus has a G-equivariant tubular
neighborhood [Bre72, §VI, Thm. 2.2][Ka07, Thm. 4.4]. This applies, in particular, to individual fixed points,
where it says that each such has a neighborhood in the fixed locus diffeomorphic to an open ball.

Definition 2.35 (Smooth group actions on smooth manifolds). (i) We write

GActions
(
SmoothManifolds

)
// GActions

(
TopologicalSpaces

)
for the category of smooth manifolds equipped with G-actions on the underlying topological spaces (Def. 2.11)
which are smooth.
(ii) Similarly, if the compact Borel-equivariance group (37) is equipped with smooth structure making it a Lie
group

T ∈ CompactLieGroups // CompactTopologicalGroups ,
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we write (
T×G

)
Actions

(
SmoothManifolds

)
//
(
T×G

)
Actions

(
TopologicalSpaces

)
for the category of smooth manifolds equipped with T ×G-actions on the underlying topological spaces (Def.
2.11) which are smooth.

Definition 2.36 (G-Orbifolds [SS20b]). (i) We write

GOrbifolds := Functors
(
GOrbitsop, SmoothManifolds

)
(65)

for the category of contravariant functors from G-orbits (Def. 2.13) to smooth manifolds.
(ii) By Lemma 2.34, the system of fixed loci (50) of a smooth action G ↷ X (Def. 2.35) takes values in smooth
manifolds

G ↷ X smoothly ⇒ ≺

(
X�G

)
: GOrbitsop // SmoothManifolds // TopologicalSpaces , (66)

and hence witnesses an object ≺

(
X �G

)
∈ GOrbifolds (2.36) which is a smooth geometric refinement of the

underlying equivariant homotopy type (Def. 2.23), in that we have the following commuting diagram of functors:

GActions
(
SmoothManifolds

)
forget smooth structure

(66)
��

G ↷ X 7−! ≺(X�G) // GOrbifolds

S equivariant shape
(Def. 2.23)

��
GActions

(
TopologicalSpaces

) G ↷ X 7−! S ≺(X�G)

(51)
//

≺

GHomotopyTypes .

2.3 Equivariant non-abelian cohomology theories

We introduce the general concept of equivariant non-abelian cohomology theories, in direct generalization of
[FSS23, §2.1], and consider some examples. This is in preparation for the twisted case in the next subsection.

In equivariant generalization of [FSS23, §2.1], we set:

Definition 2.37 (Equivariant non-abelian cohomology). Let X , A ∈

≺

GHomotopyTypes (Def. 2.22).
(i) The proper G-equivariant non-abelian cohomology of X with coefficients in A is the hom-set (16)

equivariant
non-abelian cohomology

H
(
X ; A

)
:=

≺

GHomotopyTypes
(
X , A

)
.

(ii) For X ∈ GActions
(
TopologicalSpaces

)
(Def. 2.11), with induced equivariant homotopy type S ≺

(
X�G

)
(21),

we write equivariant
non-abelian cohomology

HG
(
X ; A

)
:= H

(
S ≺

(
X�G

)
; A
)

:=

≺

GHomotopyTypes
(
S ≺

(
X�G

)
, A
)
.

(iii) We call the corresponding contravariant functor

GActions
(
TopologicalSpaces

)op

HG(−;A)

22
S ≺(−�G) //

≺

GHomotopyTypesop H(−;A) // Sets (67)

the equivariant non-abelian cohomology theory with coefficients in A .

Equivariant ordinary cohomology.

Example 2.38 (Equivariant representation ring). For H a finite group and F a field, write

RepF(X) ∈ Rings // AbelianGroups (68)
for the additive abelian group underlying the representation ring of H (i.e., the Grothendieck group of the semi-
group of finite-dimensional F-linear H-representations under tensor product of representations, review in [BSS19,
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§2.1]). Under the evident restriction of representations to subgroups and under conjugation action on representa-
tions, these groups arrange into a contravariant functor on the G-orbit category (Def. 2.13)

RepF : GOrbitsop // AbelianGroups
G/H 7−! RepF(H)

∈

≺

GAbelianGroups (69)

and hence consitute an equivariant abelian group (Def. 2.29).

Example 2.39 (Bredon cohomology [Bre67a, p. 3][Bre67b, Thm. 2.11 & (6.1)][GM95, p. 10]).
Given A ∈

≺

GAbelianGroups (Def. 2.29) and n ∈ N:
(i) There is the Eilenberg-MacLane G-space

K (A,n) ∈

≺

GHomotopyTypes (70)

in equivariant connected homotopy types (Def. 2.22), characterized by the fact that it admits a fixed point with
equivariant homotopy groups (Def. 2.31) given by

π k
(
K (A,n)

)
≃
{

A | k = n,
0 | otherwise.

(ii) The ordinary equivariant cohomology or Bredon cohomology in degree n of X ∈ GActions
(
TopologicalSpaces

)
(Def. 2.11) with coefficients in A is its equivariant non-abelian cohomology (Def. 2.37) with coefficients in K (A,n)
(70):

Bredon cohomology
(equivariant ordinary cohomology)

Hn
G
(
X ; A

)
≃ HG

(
X ; K (A,n)

)
= H

(
≺

(
X�G

)
, K (A,n)

)
.

Equivariant Cohomotopy.

Example 2.40 (Equivariant non-abelian Cohomotopy [tD79, §8.4][Pe94][Cr03] [SS19a]). For G ↷ V a linear G-
representation on a finite-dimensional real vector space V , the representation sphere (e.g. [Blu17, Ex. 1.1.5])

SV := V cpt ∈ GActions
(
TopologicalSpaces

) S ≺

(
−�G

)
//

≺

GHomotopyTypes

defines an equivariant homotopy type (21). This is the coefficient space for the equivariant non-abelian cohomology
theory (Def. 2.37) called (unstable) equivariant Cohomotopy in RO-degree V :

equivariant
Cohomotopy

π
V
G(X) := HG

(
X ; ≺

(
SV �G

))
≃ H

(

≺

(
X�G

)
; ≺

(
SV �G

))
.

Equivariant non-abelian cohomology operations.

Definition 2.41 (Equivariant non-abelian cohomology operations). For A , B ∈

≺

GHomotopyTypes (Def. 2.22),
a cohomology operation from equivariant non-abelian A-cohomology to B-cohomology (Def. 2.37) is a natural
transformation

H(−; A)
φ∗ // H(−; B)

of the corresponding equivariant non-abelian cohomology theories (67). By the Yoneda lemma, such operations
are induced by post-composition with morphisms between equivariant coefficient spaces:

A
φ // B ∈

≺

GHomotopyTypes . (71)

2.4 Equivariant twisted non-abelian cohomology theories

We introduce equivariant twisted non-abelian cohomology, in direct generalization of [FSS23, §2.2], and introduce
the main example of interest here (Def. 2.48 below).

Equivariant ∞-Actions.
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Remark 2.42 (Equivariant ∞-actions). (i) In equivariant generalization of Prop. 2.5 (and as a special case of
[NSS12a, Thm. 2.19][NSS12b, Thm. 3.30, Cor. 3.34]), every equivariantly pointed and equivariantly connected
equivariant homotopy type (Def. 2.32) is, equivalently, the equivariant classifying space BG of an equivariant
∞-group

G ∈

≺

GEquivariantGroups∞ := Ho
(

Functors
(
GOrbitsop , SimplicialGroups

)
proj

)
.

(ii) In equivariant generalization of Prop. 2.7 (and as a special case of [NSS12a, §4][SS20b, §2.2]), ∞-actions of
such equivariant ∞-groups on equivariant homotopy types A are, equivalently, homotopy fibrations of equivariant
homotopy types over BG with homotopy fiber A , hence a system of non-equivariant homotopy fibration (31)
parametrized by the G/H ∈ GOrbits (Def. 2.13), denoted as follows 5

A
hofib(ρA )

//

equivariant homotopy fibration
associated to ∞-action of G on A

A�G
ρA��

BG
∈

≺

GHomotopyTypes

G/H 7−!

A(G/H)
hofib(ρA (G/H))

//

homotopy fibration
associated to ∞-action of G(G/H) on A(G/H)

A(G/H)�G(G/H)

ρA (G/H)
��

BG(G/H)

∈ HomotopyTypes

(72)

A key source of equivariant ∞-actions are equivariant parametrized homotopy types, in the following sense:

Example 2.43 (Equivariant parametrized homotopy types). Consider T ∈ CompactTopologicalGroups (37), G ∈
FiniteGroups (41), and X ∈

(
T×G

)
Actions

(
TopologicalSpaces

)
(44).

(i) Since the two group actions separately commute with each other, we may consider forming the combined
(a) proper equivariant shape (Def. 2.23) with respect to the G-action;
(b) ordinary shape (21) of the homotopy quotient (Borel construction, Example 2.8) with respect to the T -action:

≺

GHomotopyTypes ∋
((

≺

(
X�G

))
�T
)

; G/H 7−! S
(
XH�T

)
. (73)

This is the G-equivariant homotopy type (Def. 2.22) given on G/H ∈ GOrbits (Def. 2.13) by the Borel homotopy
quotient construction (Example 2.8) of the T -action on the G ⊃ H-fixed locus (Example 2.20).
(ii) With the classifying space BT regarded as a smooth G-equivariant homotopy type (i.e., with trivial G-action,
Example 2.24) the G-equivariant T -parametrized space (73) sits in an equivariant fibration (72) over BT with
homotopy fiber the G-equivariant shape of X (Def. 2.23):

S ≺

(
X�G

) hofib(ρ ≺(X �G)) // S
((

≺

(
X�G

))
�T
)

ρ ≺(X �G)
��

BT
∈

≺

GHomotopyTypes

G/H 7−!

SXH hofib(ρXH ) // S
(
XH�T

)
ρXH

��
BT

∈ HomotopyTypes

We may refer to these objects as proper G-equivariant and Borel T -equivariant homotopy types , but for brevity
and due to their above fibration over BT , we will say G-equivariant T -parametrized homotopy types.

Example 2.44 (ZA
2 -equivariant Sp(1)-parametrized twistor fibration). Recall the ZA

2 -equivariant twistor fibration
(11) from Example 2.28. Since the Sp(2)-subgroups ZA

2 (13) and Sp(1) (14) commute with each other, the quotient

5Here and in the following we indicate the ambient category of a given diagram. The notation “Diagram ∈ Category” means that each
vertex of the diagram is an object in that category, and each arrow is a morphism in that category.
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by the action of Sp(1) of the Cartesian product of the twistor fibration (11) with (the identity map on) the total
space ESp(2) of the universal principal Sp(2)-bundle still has a residual equivariance under ZA

2 :

S2×ESp(2)
Sp(1)

��

fib(tH)×id
Sp(1) // CP3×ESp(2)

Sp(1)

ZA
2

�� twistor fibration

tH×id
Sp(1) //

��

S4×ESp(2)
Sp(1)

ZA
2

��

��
ESp(2)
Sp(1)

ESp(2)
Sp(1)

ESp(2)
Sp(1)

∈ ZA
2 Actions

(
TopologicalSpaces

)/ESp(2)
Sp(1) (74)

Hence, using Example 2.28 and identifying the Borel construction of homotopy quotients (e.g. [NSS12b, Prop.
3.73], here for subgroups H ⊂ G)

X ×EG
H

Borel construction

≃ X�H
homotopy
quotient

∈ HomotopyTypes , (75)

the ZA
2 -equivariant homotopy type (Def. 2.22) of the middle vertical morphism in (74) exhibits a ZA

2 -equivariant
Sp(1)-parametrized homotopy type (in the sense of Example 2.43) of this form:

SCP3�Sp(1)

ZA
2 		

OO

fib(tH)�Sp(1)

� ?

ρSCP3

""

S
(

≺

(
CP3�ZA

2
))

�Sp(1) :

ρS ≺

(
CP3 �ZA

2
)

ZA
2 -equivariant

& Sp(1)-parametrized
twistor space !!

Z2/1

Z2
��

��

7−!

SBSp(1)

S
(

≺

(
∗�ZA

2
))

�Sp(1) : SS2�Sp(1)

ρSS2

""

Z2/Z2 7−!

SBSp(1) .

(76)

The analogous statement holds for the vertical morphism on the right of (74), so that the full square on the right of
(74) exhibits a morphism in ZA

2 -equivariant Sp(1)-parametrized homotopy types (Example 2.43) of this form:
ZA

2 -equivariant
Sp(1)-parametrized

twistor space

S
(

≺

(
CP3�ZA

2
))

�Sp(1)

ZA
2 -equivariant

Sp(1)-parametrized
twistor fibration

S ≺

(
tH�ZA

2
)
�Sp(1)

//

))

ZA
2 -equivariant

Sp(1)-parametrized
4-sphere

S
(

≺

(
S4�ZA

2
))

�Sp(1)

uu
BSp(1)

∈ Ho
(

≺

Z2SimplicialSets/SBSp(1)
proj

)
, (77)

where BSp(1) := Smth SBSp(1) (Example 2.24).

Twisted equivariant non-abelian cohomology.
In twisted generalization of Def. 2.37 and in equivariant generalization of [FSS23, §2.2], we set:

Definition 2.45 (Twisted equivariant non-abelian cohomology). Let

A
hofib(ρA )

//
equivariant

local coefficient
bundle

A�G
ρA��

BG
∈

≺

GHomotopyTypes (78)

be an homotopy fibration as in Remark 2.42, to be regarded now as an equivariant local coefficient bundle, and let
X ∈

≺

GHomotopyTypes (Def. 2.22) equipped with an equivariant twist

[τ] ∈ H
(
X; BG

)
(79)

in equivariant non-abelian cohomology (Def. 2.37) with coefficients in BG . We say that the τ-twisted equivariant
non-abelian cohomology of X with coefficients in A is the hom-set from τ to ρA in the homotopy category of the
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slice model structure (see [FSS23, Ex. A.10]) over BG of the projective model structure on equivariant simplicial
sets (Prop. 2.21):

twisted equivariant
non-abelian cohomology

Hτ
(
X; A

)
:= Ho

(

≺

GSimplicialSets/BG
proj

)(
τ , ρA

)
.

Twisted equivariant ordinary cohomology.

Example 2.46 (Twisted Bredon cohomology). Let G ↷ X ∈ GActions
(
TopologicalSpaces

)
(Def. 2.11) with a base

point G ↷ ∗
x
−! G ↷ X , let A ∈

≺
GAbelianGroups (Def. 2.29), and let

r : π1(X)×A // A

be an action of the equivariant fundamental group (Def. 2.31) of X on A. For n ∈ N, there is an equivariant local
coefficient bundle (78) K (A,n) //

equivariant ordinary
local coefficients

K (A,n)�π1(X)

ρ
��

Bπ1(X)

with typical fiber the equivariant Eilenberg-MacLane space (70), such that the twisted equivariant non-abelian
cohomology with local coefficients in ρ coincides (by [Go97a, Cor. 3.6][MuSe10, Thm. 5.10]) with traditional
r-twisted Bredon cohomology in degree n ([MoSv93, Def. 2.1][MuMu96, Def. 3.8][MuPa02]):

twisted
Bredon cohomology

Hn+r
G

(
X ; A

)
≃ Hτ

(
X ; K (A,n)

)
.

Equivariant tangential structure. In equivariant generalization of [FSS23, Example 2.33], we have:

Definition 2.47 (Equivariant tangential structure). Let G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35) of di-

mension n := dim(X), and let G
φ
−! BGL(n) be a topological group homomorphism. An equivariant tangential

(G ,φ)-structure (or just G -structure, for short) on the orbifold ≺

(
X�G

)
(Def. 2.36) is a class in the equivariant

twisted non-abelian cohomology (Def. 2.45) of the equivariant shape (Def. 2.23) of the orbifold with equivariant
local coefficients (78) in

GL(n)�G // BG
Bφ��

BGL(n)

and with twist given by the classifying map τFr of the frame bundle:

(G ,φ)Structures
(

≺

(
X�G

))
:= HτFr

(

≺

(
X�G

)
; GL(n)�G

)
.

Equivariant twistorial Cohomotopy. In equivariant generalization of [FSS23, Ex. 2.44] we have:

Definition 2.48 (Equivariant twistorial Cohomotopy theory). Let X8 ∈ Z2Actions
(
TopologicalSpaces

)
(Def. 2.11)

be a smooth spin 8-manifold equipped with tangential structure (see [FSS19b, Ex. 2.33]) for the subgroup Sp(1)⊂
Sp(2) ⊂ Spin(8) (where the first inclusion is (13) and the second is again given by left quaternion multiplication,
e.g. [FSS19b, Ex. 2.12])

[τ] ∈ HZA
2

(
X8; BSp(1)

)
.

We say that:
(a) its ZA

2 -equivariant twistorial Cohomotopy T τ

ZA
2
(−) is the τ-twisted equivariant non-abelian cohomology theory

(Def. 2.45) with local coefficients in the ZA
2 -equivariant Sp(1)-parametrized twistor space;
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(b) its ZA
2 -equivariant J-twisted Cohomotopy πτ

ZA
2
(−) is the τ-twisted equivariant non-abelian cohomology theory

(Def. 2.45) with local coefficients in the ZA
2 -equivariant Sp(1)-parametrized 4-sphere;

(c) the twisted equivariant cohomology operation T τ

ZA
2
(−)−! πτ

ZA
2
(−) is that induced by the ZA

2 -equivariant Sp(1)-
parametrized twistor fibration;

all as induced by the (morphism of) local coefficient bundles (77) in Example 2.44:
equivariant

twistorial Cohomotopy

T τ

ZA
2
(X) := Hτ

ZA
2

(
X ; S ≺

(
CP3�ZA

2
)) push-forward along

equivariant parametrized
twistor fibration(

S ≺

(
tH�ZA

2
)
�Sp(1)

)
∗

// Hτ

ZA
2

(
X ; S ≺

(
S4�ZA

2
))

=:

equivariant
J-twisted Cohomotopy

πτ

ZA
2

(
X
)
. (80)

3 Equivariant non-abelian de Rham cohomology

We had shown in [FSS23, §3] how the fundamental theorem of dgc-algebraic rational homotopy theory ([BG76,
§9.4, §11.2]), augmented by differential-geometric observations [GM13, §9], provides a non-abelian de Rham
theorem for L∞-algebra valued differential forms, which serve as the recipient of non-abelian character maps.

The equivariant generalization of this fundamental theorem had been obtained in [Scu08] (following [Tri82])
without having found much attention yet. Here we review, in streamlined form and highlighting examples and
applications, the underlying theory of injective equivariant dgc-algebras/L∞-algebras in §3.1 and how these serve
to model equivariant rational homotopy theory in §3.2. Then we use this in §3.3 to prove the equivariant non-
abelian de Rham theorem (Prop. 3.63) including its twisted version (Prop. 3.67); which, in turn, we use in §3.4 to
construct the equivariant non-abelian character map (Def. 3.76) and its twisted version (Def. 3.78).

3.1 Equivariant dgc-algebras and equivariant L∞-algebras

We discuss here the generalization of the homotopy theory of connective dgc-algebras and of connective L∞-
algebras (following [FSS23, §3.1]) to G-equivariant homotopy theory, for any finite equivariance group G (41).
While the homotopy theory of equivariant connective dgc-algebras has been developed in [Tri82][Scu02][Scu08],
previously little to no examples or applications have been worked out. Here we develop equivariantized twistor
space as a running example (culminating in Prop. 3.56 below).

While the general form of the homotopy theory of plain dgc-algebras generalizes to equivariant dgc-algebras,
the crucial new aspect is that equivariantly not every connective cochain complex, and hence not every connective
dgc-algebra, is fibrant. The fibrant equivariant cochain complexes must be degreewise injective, which is now
a non-trivial condition (Prop. 3.12 below). The key effect on the theory is that equivariant minimal Sullivan
models (Def. 3.40) – which still exist and still have the expected general properties – are no longer given just by
iterative adjoining of (equivariant systems of) generators, but by adjoining of injective resolutions (Example 3.28)
of systems of generators. This has interesting effects, as shown in Example 3.42, which is at the heart of the proof
of Prop. 3.56 and thus of Theorem 1.1.

Plain homological algebra. For plain (i.e., non-equivariant) dgc-algebra, we follow the conventions of [FSS23,
§3.1]. In particular, we make use of the following notation:

Notation 3.1 (Generators/relations presentation of cochain complexes).
We may denote any V ∈ CochainComplexes≥ 0,fin

R by generators (a graded linear basis) and relations (the linear
relations given by the differential). For instance:

R⟨c2⟩
/
(d c2 = 0) ≃

(
0 // 0 // 1 // 0 // 0 // · · ·

)
,

R

〈
c′3,
c3,
b2

〉/( d c′3 = 0
d c3 = 0
d b2 = c3

)
≃

(
0 // 0 // 1 �

� // 2 // 0 // · · ·
)
.
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Notation 3.2 (Generators/relations presentation of dgc-algebras). We may denote the Chevalley-Eilenberg algebra
CE(g) ∈ DiffGradedCommAlgebras≥ 0,fin

R of any g ∈ L∞Algebras≥ 0
R,fin ([FSS23, Def. 3.25]) by generators (a graded

linear basis) and relations (the polynomial relations given by the differential). For instance (see [FSS23, Ex. 3.67,
3.68]):

R[c2]
/
(d c2 = 0) ≃ CE(bR) and R

[
ω7,
ω4

]/(d ω7 =−ω4 ∧ω4
d ω4 = 0

)
≃ CE

(
lS4) .

Similarly, for T a finite-dimensional compact and simply-connected Lie group with Lie algebra

t ≃
{
⟨ta⟩dim(T )

a=1 , [−,−]
}

∈ LieAlgebrasR,fin ,

the abstract Chern-Weil isomorphism (e.g. [FSS23, §4.2]) reads:(
R
[
{ra

2}
dim(T )
a=1

]/(
d ra

2 = 0
))T

≃ CE(lBT ) , (81)

where on the left (−)T denotes the T -invariant elements with respect to the coadjoint action on the dual vector
space of the Lie algebra.

Equivariant vector spaces.

Example 3.3 (Linear representations as functors). For G any finite group, write BG for the category with a single
object and with G as its endomorphisms (hence its automorphisms). Then functors on BG with values in vector
spaces are, equivalently, linear G-representations with G acting either from the left or from the right, depending on
whether the functor is contravariant or covariant:

GRepresentationsl
R ≃ Functors

(
BGop , VectorSpacesR

)
,

GRepresentationsr
R ≃ Functors

(
BG , VectorSpacesR

)
.

(82)

Example 3.4 (Irreducible Z2-representations). We write

1, 1sgn ∈ Z2Representationsr
R

for the two irreducible right representations (Example 3.3) of Z2, namely the trivial representation and the sign
representation, respectively.

Definition 3.5 (Equivariant vector spaces). We write

≺

GVectorSpacesfin
R := Functors

(
GOrbitsop , VectorSpacesfin

R

)
,

≺

GVectorSpaces∨,fin
R := Functors

(
GOrbits , VectorSpacesfin

R

) (83)

for the categories of contravariant or covariant functors, respectively, from the G-orbit category (Def. 2.13) to the
category of finite-dimensional vector spaces over the real numbers.

Notice that forming linear dual vector spaces constitutes an equivalence of categories

VectorSpacesfin
R

(−)∨

≃
//
(
VectorSpacesfin

R

)op

and hence induces an equivalence:(

≺

GVectorSpacesR
)op

=
(

Functors
(
GOrbitsop , VectorSpacesfin

R

))op

≃ Functors
(

GOrbits ,
(
VectorSpacesfin

R

)op
)

≃ Functors
(

GOrbits , VectorSpacesfin
R

)
=

≺

GVectorSpaces∨,fin
R .

This justifies extending the notation (83) to vector spaces which are not necessarily finite-dimensional
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≺

GVectorSpacesR := Functors
(
GOrbitsop , VectorSpacesR

)

≺

GVectorSpaces∨R := Functors
(
GOrbits , VectorSpacesR

)
and to speak of the latter as the category of equivariant dual vector spaces (denoted Vec∗G in [Tri82]).

Example 3.6 (Equivariant dual vector spaces of real cohomology groups). For X ∈

≺

GHomotopyTypes (Def. 2.22)
and n ∈ N, the stage-wise real cohomology groups in degree n form an equivariant dual vector space (Def. 3.5)

Hn(X ; R
)

: G/H 7−! Hn(X (G/H); R
)
.

If these are stage-wise finite-dimensional, then these are the linear dual equivariant vector spaces of the equiv-
ariant singular real homology groups H n

(
X ;R

)
from Example 2.30.

Example 3.7 (Z2-equivariant dual vector spaces). A (finite-dimensional) dual Z2-equivariant vector space (Def.
3.5) is a diagram of (finite-dimensional) vector spaces indexed by the Z2-orbit category (Example 2.15) Z2/1

Z2
��

��

7! N

Z2
��

φ
��

Z2/Z2 7! V

 ∈ Z2 ≺

GVectorSpaces∨R

hence constitutes:
– a right Z2-representation N (Example 3.3),
– a vector space V (finite-dimensional),
– a linear map φ from the underlying vector space of N to V .

Example 3.8 (Restriction of equivariant vector spaces to Weyl group linear representation). For H ⊂G a subgroup,
with Weyl group WG(H) = AutGOrbits(G/H) (Example 2.16), the canonical inclusion of categories

BWG(H) �
� iH // GOrbits (84)

induces restriction functors of equivariant vector spaces (Def. 3.5) to linear representations (Example 3.3):

WG(H)Representationsl
R
oo i∗H

≺

GVectorSpacesR ,

WG(H)Representationsr
R
oo i∗H

≺

GVectorSpaces∨R .

(85)

Example 3.9 (Regular equivariant vector space). For any subgroup K ⊂ G we have an equivariant dual vector
space (Def. 3.5) given by the R-linear spans of the hom-sets (16) out of G/K in the orbit category (Def. 2.13):

R
[
GOrbits(G/K ,−)

]
∈

≺

GVectorSpaces∨R .

For any further subgroup H ⊂ G, its restriction (Example 3.8) to a linear representation from the right (Example
3.3) of the Weyl group of H (Def. 2.16) is

i∗H
(
R
[
GOrbits(G/K ,−)

])
= R

[
GOrbits(G/K , G/H)

]
∈ WG(H)Representationsr

R ,

where WG(H) acts in linear extension of its canonical right action on the hom-set of the orbit category (Example
2.16).

Lemma 3.10 (Extension of linear representations to equivariant vector spaces). For any H ⊂ G, the restriction of
equivariant vector spaces to linear representations (Example 3.8) has a right adjoint

WG(H)Representationsr
R

oo iH

InjH

⊥ // ≺

GVectorSpaces∨R ,

where
InjH(V

∗) ∈

≺

GVectorSpaces∨R = Functors
(
GOrbits , VectorSpacesR

)
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is given by
InjH(V

∗) : G/K 7−!WG(H)Representationsr
R

(
R
[
GOrbits(G/K , G/H)

]
,V ∗) (86)

=
⊕

g ∈ G/NG(K)
s.t. g−1Kg ⊂ H

V ∗ . (87)

Here the regular WG(H)-representation in the first argument on the right of (86) is from Example 3.9.

Proof. Formula (86) is a special case of the general formula for right Kan extension [Ke82, (4.24)], here applied
to the inclusion (84) regarded in VectorSpacesR-enriched category theory. Its equivalence to (87) follows with
Example 2.17. See also [Tri82, (4.1)][Scu08, Lemma 2.3].

Injective equivariant dual vector spaces. Recall the general definition of injective objects (e.g. [HS71, p. 30]),
applied to equivariant dual vector spaces:

Definition 3.11 (Injective equivariant dual vector spaces). An object I ∈

≺

GVectorSpaces∨R (Def. 3.5) is called
injective if morphisms into it extend along all injections, hence if every solid diagram of the form

W ∃ // I injective
object

V: Zinjection

ll 22 (88)

admits a dashed morphism that makes it commute, as shown. We write

≺

GVectorSpaces∨, inj
R
� � //

≺
GVectorSpaces∨R

for the full sub-category on the injective objects.

Proposition 3.12 (Injective envelope of equivariant dual vector spaces [Tri82, p. 2][Scu02, Prop. 7.34][Scu08,
Lem. 2.4, Prop. 2.5]). For V ∈

≺

GVectorSpaces∨R (Def. 3.5), the direct sum of extensions Inj(−) (Def. 3.10)

Inj(V ) :=
⊕
[H⊂G]

InjH
(
VH
)

∈

≺

GVectorSpaces∨R , (89)

of those components at stage H which vanish on all deeper stages

VH :=


⋂

[K⊋H]

ker
(

V (G/H)
V (G/(H↪!K)) // V (G/K)

)
| H ̸= G

V (G/G) | H = G
(90)

receives an injection
V �
� // Inj(V ) (91)

that extends the canonical inclusion of the VH , and which is an injective envelope (e.g. [HS71, §I.9]) of V in

≺

GVectorSpaces∨R. In particular:
(i) the summands InjH(V ) (Example 3.10) are injective objects (Def. 3.11);
(ii) V is injective (Def. 3.11) precisely if (91) is an isomorphism.

Example 3.13 (Ground field is injective as equivariant dual vector space). The equivariant dual vector space (Def.
3.5) which is constant on the ground field

R := constGOrbits(R) : G/H 7−! R
is isomorphic to the right extension (Lemma 3.10) R ≃ InjG(1) of R ≃ 1 ∈ 1RepresentationsR, and hence is
injective, by Prop. 3.12.

Example 3.14 (Injective Z2-equivariant dual vector spaces, cf. [ST23, Prop. 4.1]). For G = Z2 (Example 2.15)
the irreducible representations

1, 1sgn ∈ Z2RepresentationsR , 1 ∈ 1RepresentationsR ≃ VectorSpacesR
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of the respective Weyl groups (Example 2.16, Example 3.4) induce by right extension (Def. 3.10) the following
three Z2-equivariant vector spaces (Example 3.7), which, by Prop. 3.12, are the direct summand building blocks
of all injective Z2-equivariant dual vector spaces:

Inj1(1) :

Z2/1

Z2
��

��

7−! 1
0
��

Z2/Z2 7−! 0 ,
Inj1(1sgn) :

Z2/1

Z2
��

��

7−! 1sgn

0
��

Z2/Z2 7−! 0 ,
(92)

and

InjZ2
(1) :

Z2/1

Z2
��

��

7−! 1
id
��

Z2/Z2 7−! 1 .
(93)

To see this, use (46) in (86) to get, for two cases,

Inj1(1) :

Z2/1

Z2
��

��

7−! Z2RepresentationsR
(
R
[
Z2Orbits(Z2/1 , Z2/1)

]︸ ︷︷ ︸
≃1⊕1sgn

, 1
)

≃ 1

0

��
Z2/Z2 7−! Z2RepresentationsR

(
R
[
Z2Orbits(Z2/Z2 , Z2/1)

]︸ ︷︷ ︸
≃0

, 1
)
≃ 0

and

InjZ2
(1) :

Z2/1

Z2
��

��

7−! 1RepresentationsR
(
R
[
Z2Orbits(Z2/1 , Z2/Z2)

]︸ ︷︷ ︸
≃1

, 1
)

≃ 1

id

��
Z2/Z2 7−! 1RepresentationsR

(
R
[
Z2Orbits(Z2/Z2 , Z2/Z2)

]︸ ︷︷ ︸
≃1

, 1
)
≃ 1 .

Lemma 3.15 (Tensor product preserves injectivity of finite-dim dual vector G-spaces [Go97b, Lem. 3.6, Rem 1.2]
[Scu02, Prop. 7.36]). Let V,W ∈

≺

GVectorSpaces∨,fin
R (Def. 3.5). If V and W are both injective (Def. 3.11), then so

is their tensor product V ⊗W : G/H 7−! V (G/H)⊗W (G/H).

Equivariant smooth differential forms. In preparation of discussing equivariant de Rham cohomology, consider:

Example 3.16 (Equivariant smooth differential forms). Let G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35)

and n ∈ N. Then there is the equivariant dual vector space (Def. 3.30)

Ω
n
dR
(

≺

(
X�G

))
∈

≺

GVectorSpaces∨R
given by the system of vector spaces of smooth differential n-forms (e.g. [BT82]) of the fixed submanifolds (66),
with pullback of differential forms along residual actions and along inclusions of fixed loci:

equivariant dual vector space
of equivariant smooth

differential n-forms

Ω
n
dR
(

≺

(
X�G

))
:

G/H1

g1∈WG(H1)

��

p

��

7−! Ωn
dR

(
XH1
)

ordinary differential forms
on fixed submanifold

X p∗ pullback along inclu-
sion of fixed loci

��

Xg∗1

		

G/H2

g2∈WG(H2)

VV
7−! Ωn

dR

(
XH2
)

Xg∗2

UU

28



Remark 3.17 (Equivariant smooth differential forms are injective). The following Lemmas 3.19, 3.20, 3.21 show
that the equivariant dual vector spaces of smooth differential n-forms (Def. 3.16) are injective objects (Def. 3.11),
at least if the equivariance group is of order 4 or cyclic of prime order (in which case cf. [ST23, Prop. 4.1]):

G ∈
{
Zp| p prime

}
∪
{
Z4, Z2 ×Z2

}
.

From the proofs of these lemmas, given below, it is fairly clear how to approach the proof of the general case. But
since this is heavy on notation if done properly, and since we do not need further generality for our application
here, we will not go into that.

Notation 3.18 (Extension of smooth differential forms away from fixed loci).
For G ↷ X ∈ GActions

(
SmoothManifolds

)
(Def. 2.35) and H ⊂ G, choose a tubular neighborhood (e.g. [Ko96,

§1.2]) NX
(
XH
)
⊂ X of the fixed locus (which exists by Lemma 2.34). Then multiplication of smooth n-forms

on XH with a choice of bump function in the neighborhood coordinates induces a linear section, which we denote
extH , of the operation of restricting differential forms to the fixed locus:

Ωn
dR

(
XH
) extH //

id

22Ωn
dR(X)

(−)|XH // Ωn
dR

(
XH
)
.

Lemma 3.19 (Zp-Equivariant smooth differential forms are injective). Let the equivariance group G = Zp be a
cyclic group of prime order. Then, for Zp ↷ X ∈ ZpActions

(
SmoothManifolds

)
(Def. 2.35), the equivariant dual

vector space of Zp-equivariant smooth differential n-forms (Def. 3.33) is injective (Def. 3.11):

Ω
n
dR
(

≺(X�Zp)
)

∈

≺

GVectorSpaces∨, inj
R . (94)

Proof. By extension of differential forms away from the fixed locus (Notation 3.18), we obtain the following
isomorphism of equivariant dual vector spaces to a direct sum of injective extensions (Lemma 3.10)

equivariant smooth
differential n-forms

Ωn
dR

(

≺(X�Zp)
) ≃ // InjZp

(differential n-forms
on fixed locus

Ωn
dR

(
XZp

))
⊕ Inj1

( differential n-forms whose
restriction to the fixed locus vanishes{

ω ∈ Ωn
dR

(
X
)∣∣ω|XZp = 0

})
Zp/1

Zp
��

��

α
� //

_

��

(
α|XZp

,

_

��

α − extZp

(
α|XZp

))
_

��

Zp/Zp α|XZp
� //

(
α|XZp

, 0
)
,

where we used, since p is assumed to be prime, that the only subgroups of G are 1 and Zp itself (Example 2.18).
By Prop. 3.12, this implies the claim (94).

Lemma 3.20 (Z4-Equivariant smooth differential forms are injective). Let the equivariance group G = Z4 be the
cyclic group of order 4. Then, for Z4 ↷ X ∈ Z4Actions

(
SmoothManifolds

)
(Def. 2.35), the equivariant dual

vector space of Z4-equivariant smooth differential n-forms (Def. 3.33) is injective (Def. 3.11):
Ω

n
dR
(

≺(X�Z4)
)

∈

≺

GVectorSpaces∨, inj
R . (95)

Proof. Since the subgroups of Z4 are linearly ordered 1 ⊂ Z2 ⊂ Z4 (Example 2.18), the proof of Lemma 3.19
generalizes immediately. Using extensions of differential n-forms (Notation 3.18), both from XZ4 as well as from
XZ2 , we obtain the following isomorphism of equivariant dual vector spaces to a direct sum of injective extensions
(Lemma 3.10)
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equivariant smooth
differential n-forms

Ωn
dR

(
≺(X�Z4)

) ≃ // InjZ4

(differential n-forms
on deep fixed locus

Ωn
dR

(
XZ4
))
⊕InjZ2

( differential n-forms on shallow fixed locus whose
restriction to the deep fixed locus vanishes{

ω ∈ Ωn
dR

(
XZ2
)∣∣ω|XZ4 = 0

})
⊕Inj1

( differential n-forms whose
restriction to the shallow fixed locus vanishes{
ω ∈ Ωn

dR

(
X
)∣∣ω|XZ2 = 0

})
Z4/1

Z4
��

��

α
� //

_

��

(
α|XZ4

,

_

��

(
α − extZ4

(
α|XZ4

))
|XZ2

_

��

, α − extZ2

(
α|XZ2

))
_

��

Z4/Z2

��

α|XZ2
� //

_

��

(
α|XZ4

_

��

, α|XZ2 −
(

extZ4

(
α|XZ4

))
|XZ2

_

��

, 0
)

_

��

Z4/Z4 α|XZ4
� //

(
α|XZ4

, 0 , 0
)

By Prop. 3.12, this implies the claim (95).

Lemma 3.21 (Z2 ×Z2-Equivariant smooth differential forms are injective). Let the equivariance group G = ZL
2 ×

ZR
2 be the Klein 4-group. Then, for ZL

2 ×ZR
2 ↷ X ∈ ZL

2 ×ZR
2 Actions

(
SmoothManifolds

)
(Def. 2.35), the equivariant

dual vector space of equivariant smooth differential n-forms (Def. 3.33) is injective (Def. 3.11):

Ω
n
dR
(

≺

(
X�ZL

2 ×ZR
2
))

∈
≺

GVectorSpaces∨, inj
R . (96)

Proof. We obtain an isomorphism to a direct sum of injective extensions (Lemma 3.10), much as in the proofs of
Lemmas 3.19 and 3.20,

equivariant smooth
differential n-forms

Ωn
dR

(

≺(X�Z4)
) ≃ // InjZ4

(differential n-forms
on deep fixed locus

Ωn
dR

(
XZ4
))
⊕

InjZL
2

( differential n-forms on shallow fixed loci whose
restriction to the deep fixed locus vanishes{

ω ∈ Ωn
dR

(
XZL

2
)∣∣∣ω|XZ4 = 0

})
⊕

InjZR
2

({
ω ∈ Ωn

dR

(
XZR

2
)∣∣∣ω|XZ4 = 0

}) ⊕Inj1


differential n-forms whose

restriction to the shallow fixed loci vanishes{
ω ∈ Ωn

dR

(
X
)∣∣∣∣ ω|

XZL
2
= 0

ω|
XZK

2
= 0

}

G/1

Z4
��

##

��

α
� //

_

��

(
α|XZ4

,

_

��

( =:β︷ ︸︸ ︷
α − extZL

2×ZR
2

(
α|

XZL
2×ZR

2

))
|
XZL

2+|XZR
2

_

��

,
β −extZR

2

(
β |

XZR
2

)
−extZL

2

(
β |

XZL
2

))
_

��G/ZR
2

��

G/ZL
2

��

α|XZ2
� //

_

��

(
α|XZ4

_

��

,
(

α − extZL
2×ZR

2

(
α|

XZL
2×ZR

2

))
|
XZL

2+|XZR
2

_

��

, 0
)

_

��

G/ZL
2 ×ZR

2 α|XZ4
� //

(
α|XZ4

, 0 , 0
)

and hence conclude the result, again by Prop. 3.12. The only further subtlety to take care of here is that the two
extensions extZL

2
and extZR

2
(Notation 3.18) need to be chosen compatibly, such as to ensure that each preserves the

property of a form to vanish on the corresponding other fixed locus:(
extZL

2

(
β |

XZL
2

))∣∣∣
ZR

2

= 0 ,
(

extZR
2

(
β |

XZR
2

))∣∣∣
ZL

2

= 0 .

This is achieved by choosing an equivariant tubular neighborhood (by [Bre72, §VI, Thm. 2.2][Ka07, Thm. 4.4])
around the intersection XZR

2 ∩XZL
2 and using this to choose the extension away from XZL

2 to be orthogonal to that
away from XZR

2 .

Equivariant graded vector spaces.

Definition 3.22 (Equivariant graded vector spaces). We write

≺

GGradedVectorSpaces≥ 0
R :=

≺

GVectorSpacesNR ≃ Functors
(
GOrbitsop , GradedVectorSpaces≥ 0

R

)
for the category of N-graded objects in equivariant vector spaces (Def. 3.5).
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Definition 3.23 (Equivariant rational homotopy groups). For X ∈

≺

GHomotopyTypes≥1 (Def. 2.32) and n ∈N, the
rationalized nth equivariant homotopy group (Def. 2.31) hence the stage-wise rationalized simplicial homotopy
group (Def. 2.31)

π n
(
X
)
⊗Z R : G/H 7−! πn

(
X (G/H)

)
⊗Z R ,

form an equivariant graded vector space (Def. 3.22):

π •+1
(
X
)
⊗Z R ∈

≺

GVectorSpacesR .

Example 3.24 (ZA
2 -Equivariant rational homotopy groups of twistor space). The Z2-equivariant rational homotopy

groups (Def. 3.23) of ZA
2 -equivariant twistor space (Example 2.28) are, by (60), given by the rational homotopy

groups of CP3 and, on the fixed locus, of S2. Hence these look as follows (using, e.g., [FSS20c, Lemma 2.13] with
[FSS23, Prop. 3.65]):

π
Z/2
•
(
CP3)⊗Z R≃

Z2/H
(
CP3

)H
π2 ⊗R π3 ⊗R π4 ⊗R π5 ⊗R π6 ⊗R π7 ⊗R π8 ⊗R π9 ⊗R · · ·

Z2/1 CP3 1 0 0 0 0 1 0 0 · · ·
Z2/Z2 S2 1 1 0 0 0 0 0 0 · · ·

(97)

Equivariant cochain complexes.

Definition 3.25 (Equivariant cochain complexes). We write

≺

GCochainComplexes≥ 0
R ;= Functors

(
GOrbits , CochainComplexes≥ 0

R

)
for the category of functors from the G-orbit category (Def. 2.13) to the category of connective cochain complexes
(i.e., in non-negative degrees with differential of degree +1) over the real numbers.

Definition 3.26 (Delooping of equivariant cochain complexes). For V ∈
≺

GCochainComplexes≥ 0
R (Def. 3.25), we

denote its delooping as

bV : G/H 7−!
(

0 // V 0(G/H)
d0

V // V 1(G/H)
d1

V // V 2(G/H) // · · ·
)
.

As an instance of the general notion of mapping cones (e.g. [Scha11, Def. 3.2.2]), we get:

Example 3.27 (Cone on an equivariant cochchain complex). For V ∈

≺

GCochainComplexes≥ 0
R (Def. 3.25), we say

that the cone on its delooping bV (Def. 3.26) is the equivariant cochain complex eV ∈

≺

GCochainComplexes≥ 0
R

given by

eV := Cone(bV ) : G/H 7−!


V 0(G/H)

−d0
V //

⊕ id
''

V 1(G/H)
−d1

V //

⊕ id
''

V 2(G/H)
−d2

V //

⊕ id
''

V 3(G/H)
−d3

V //

⊕ id
%%

· · ·

0
0

// V 0(G/H)
d0

V

// V 1(G/H)
d1

V

// V 2(G/H)
d2

V

// · · ·

 .

This sits in the evident cofiber sequence:

V oo
cofib(ibV )

eVOO
ibV

bV
∈

≺

GCochainComplexes≥ 0
R . (98)

As an instance of the general notion of injective resolutions (e.g. [Scha11, §4.5]), we have:

Example 3.28 (Injective resolution of equivariant dual vector spaces).
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Let V ∈

≺

GVectorSpaces∨R (Def. 3.5).
Then, by Prop. 3.12, we obtain an in-
jective resolution (e.g. [HS71, p. 129])
of V given by the equivariant cochain
complex (Def. 3.25) which in degree 0
is the injective envelope (89) of V , and
whose differentials are, recursively, the
injective envelope inclusions (91) of
the quotients by the image of the pre-
vious degree.

...OO
...OO

0OO // Inj
(
coker(d1)

)
OO
d2

0OO // Inj
(
coker(d0)

)
OO
d1

0 //
OO Inj

(
Inj(V )/V

)
OO
d0

V �
� // Inj(V )

=: Inj•(V ) ∈

≺

GCochainComplexes≥ 0
R

This is such that for any A• ∈

≺

GCochainComplexes≥ 0
R which is

degreewise injective (Def. 3.11) and any morphism of equivariant
dual vector spaces{

V
φ // An

clsd

}
∈

≺

GVectorSpaces∨R
from V to the subspace of closed elements (cocycles) in An, there
exists an extension to a morphism{

bnInj•(V )
φ•
// A• } ∈

≺

GCochainComplexes≥ 0
R (99)

of equivariant cochain complexes (as shown on the right) given
recursively by using injectivity of An+i+1 to obtain dashed exten-
sions (88):

Inji+1(V )
φ n+i+1

// An+i+1 .

Inji(V )/im(di−1)
?�

OO
dA◦φ i

22

...OO
...

Inj
(
coker(d1)

)
OO
d2

φ n+3
// An+3

dn+3
A

OO

Inj
(
coker(d0)

)
OO
d1

φ n+2
// An+2

dn+2
A

OO

Inj
(
Inv(V )/V

)
OO
d0

φ n+1
// An+1

dn+1
A

OO

Inj(V )
φ n

// An

dn
A

OO

V
?�

OO

φ =: φ n
|V // An

clsd

?�

OO

Example 3.29 (Injective resolution of Z2-equivariant dual vector spaces).

Consider the Z2-equivariant dual vector space (Example
3.7) given by Z2/1

Z2
��

��

7−! 0
0��

Z2/Z2 7−! 1

 ∈ Z2 ≺

GVectorSpaces∨R . (100)

Recalling the three injective atoms of Z2-equivariant dual
vector spaces from Example 3.14, we find that the injective
resolution (Example 3.28) of (100) is the Z2-equivariant
cochain complex shown on the right.

...

0

��

EE

...

1

��

II

0

GG

Z2/1

Z2
��

��

7! 0

��

� � // 1

id

��

id
HH

0

HH

Z2/Z2 7! 1 �
� // 1

FF

In terms of generators-and-relations (Notation 3.1), this says:

Inj•


Z2/1

Z2
��

��

7−! 0

��
Z2/Z2 7−! R⟨c0⟩

/
(d c0 = 0)

 =


Z2/1

Z2
��

��

7−! R
〈

c′0,c1
c0

〉/d c′0 = c1
d c1 = 0
d c0 = 0


����

Z2/Z2 7−! R⟨c0⟩
/(

d c0 = 0
)

 . (101)

Equivariant dgc-algebras.
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Definition 3.30 (Equivariant dgc-Algebras). We write

≺

GDiffGradedCommAlgebras≥ 0
R := Functors

(
GOrbits , DiffGradedCommAlgebras≥ 0

R

)
for the category of functors from the G-orbit category (Def. 2.13) to the category of connective dgc-algebras over
the real numbers.

Definition 3.31 (Equivariant cochain cohomology groups). For A ∈

≺

GDiffGradedCommAlgebras≥ 0
R (Def. 3.30)

and n ∈ N, we write

Hn(A) ∈

≺

GVectorSpaces∨R
for the equivariant dual vector space (Def. 3.5) of cochain cohomology groups

Hn(A) : G/H 7−! Hn(A(G/H)
)
.

Example 3.32 (Equivariant base dgc-algebra).
We write R ∈

≺

GDiffGradedCommAlgebras≥ 0
R for the equivariant

dgc-algebra (Def. 3.30) which is constant on the ground field R:

R : G/H 7−! R .
For the case G = Z2 (Example 2.15), this is shown on the right.

Z2/1

Z2
��

��

7−! R
id��

Z2/Z2 7−! R

Example 3.33 (Equivariant smooth de Rham complex). For G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35).

there is the equivariant dgc-algebra (Def. 3.30)

Ω
•
dR
(

≺(X�G)
)

∈

≺

GDiffGradedCommAlgebras≥ 0
R

of equivariant smooth differential forms (Example 3.16) equipped with the wedge product and de Rham differential
formed stage-wise, as in the ordinary smooth de Rham complex (e.g. [BT82]) of the fixed loci.

Example 3.34 (Free equivariant dgc-algebra on equivariant cochain complex). For V • ∈

≺

GCochainComplexes≥ 0
R

(Def. 3.25):
(i) We obtain the free equivariant dgc-algebra (Def. 3.30)

Sym(V •) ∈

≺

GDiffGradedCommAlgebras≥ 0
R ,

given over each G/H ∈ GOrbits, by the free dgc-algebra on the cochain complex at that stage:

Sym(V •) : G/H 7! Sym
(
V •(G/H)

)
,

with all structure maps induced by the functoriality of the non-equivariant Sym-construction.
(iii) This extends to a functor

≺

GDiffGradedCommAlgebras≥ 0
R

oo Sym

CchnCmplx
⊥ // ≺

GCochainComplexes≥ 0
R , (102)

which is left adjoint to the evident assignment of underlying equivariant cochain complexes.

In terms of generators and relations (Notation 3.1, 3.2), passing to free dgc-algebras means to replace angular
brackets by square brackets:

Example 3.35 (Free Z2-equivariant dgc-algebra on injective resolution). In the case G = Z2 (Example 2.15), the
free Z2-equivariant dgc-algebra (Example 3.34) on the n-fold delooping (Def. 3.26) of the injective resolution
(101) from Example 3.29 is:

Sym◦bn◦Inj•


Z2/1

Z2
��

��

7−! 0

��
Z2/Z2 7−! R⟨c0⟩

/
(d c0 = 0)

=


Z2/1

Z2
��

��

7−! R
[

c′n,cn+1
cn

]/ d c′n = cn+1
d cn+1 = 0

d cn = 0


����

Z2/Z2 7−! R[cn]
/
(d cn = 0)

 . (103)
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In equivariant generalization of [FSS23, Def. 3.25], we have:

Definition 3.36 (Equivariant L∞-algebras). We write

≺

GL∞Algebras≥ 0
R,fin
� � CE //

(

≺

GDiffGradedCommAlgebras≥ 0
R

)op

g 7−! CE
(
g
) (104)

for the opposite of the full subcategory of equivariant dgc-algebras (Def. 3.30) on those that are stage-wise
Chevalley-Eilenberg algebras of L∞-algebras (connective and finite-type over the real numbers, as in [FSS23, Def.
3.25]).

In generalization of Example 3.33, we have:

Example 3.37 (Proper G-equivariant and Borel-Weil-Cartan T -equivariant smooth de Rham complex).
Let

(
T × G

)

↷ X ∈
(
T × G

)
Actions

(
SmoothManifolds

)
(Def 2.35), where T ∈ CompactLieGroups is finite-

dimensional with Lie algebra denoted (as in Notation 3.1)

t ≃
{
⟨ta⟩dim(T )

a=1 , [−,−]
}

∈ LieAlgebrasR,fin . (105)

Consider the equivariant dgc-algebra (Def. 3.30)

Ω
•
dR

((

≺(X�G)
)
�T
)

∈
≺

GDiffGradedCommAlgebras≥ 0
R

of T -invariants in the tensor product of proper G-equivariant smooth differential forms (Example 3.16) with the
free symmetric graded algebra on

b2t∨ ≃ ⟨ra
2 ⟩

dim(T )
a=1 ,

(the linear dual space of (105) in degree 2) and equipped with the sum of the de Rham differential

ddR : ω ∧ ra1
2 ∧·· ·∧ rap

2 7−!
(
ddRω

)
∧ ra1

2 ∧·· ·∧ rap
2

and the operator
ra

2 ∧ ι ta : ω ∧ ra1
2 ∧·· ·∧ ra

2 7−!
(
ι taω

)
∧ ra

2 ∧ ra1
2 ∧·· ·∧ ra

2 ,
where
• ω ∈ Ω•

dR(−),
• ι ta denotes the contraction of differential forms with the vector field that is the derivative of the action T ×X! X

along ta,
• summation over the index a ∈ {1, · · · ,dim(T )} is understood, and
• the T -action on t∨ is the coadjoint action and on that differential forms is by pullback along the given action on

X : proper G-equivariant & Borel T -equivariant
smooth de Rham complex

Ω
•
dR

((

≺(X�G)
)
�T
)

: G/H 7−!

Cartan model for T -equivariant Borel cohomology of H-fixed locus XH(
Ω

•
dR
(
XH)[{ra

2}
dim(T )
a=1

]
, ddR + ra

2 ∧ ιta

)T
. (106)

This is, stage-wise over G/H ∈ GOrbits (Def. 2.13), the Cartan model dgc-algebra for Borel T -equivariant de
Rham cohomology ([AB84][MQ86, §5][Ka93][GS99], review in [Me06][KT15][Pe17]), here formed for the fixed
submanifolds (Lemma 2.34) of the all the subgroups of the G-action.

Homotopy theory of equivariant dgc-algebras.

Proposition 3.38 (Projective model structure on connective equivariant dgc-algebras [Scu02, Theorem 3.2]). There
is the structure of a model category on

≺

GDiffGradedCommAlgebras≥ 0
R (Def. 3.30) whose

W – weak equivalences are the quasi-isomorphisms over each G/H ∈ G Orbits;
Fib – fibrations are the degreewise surjections whose degreewise kernels are injective (Def. 3.11).

We denote this model category by(

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj ∈ ModelCategories .
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A key technical subtlety of the model structure on equivariant dgc-algebras (Prop. 3.38), compared to its non-
equivariant version ([BG76, §4.3][GM96, §V.3.4][FSS23, Prop. 3.36]), is that not all objects are fibrant anymore,
since equivariantly the injectivity condition (Def. 3.11) is non-trivial (Prop. 3.12). However, we have the following
class of examples of fibrant objects:

Proposition 3.39 (Equivariant smooth de Rham complex is projectively fibrant).
For G ↷ X ∈ GActions

(
SmoothManifolds

)
(Def. 2.35), the equivariant smooth de Rham complex (Example 3.33)

is a fibrant object in the projective model structure (Prop. 3.38)

Ω•
dR

(
≺(X�G)

) ∈ Fib // 0 ∈
(

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj ,

at least if G is of order 4 or cyclic of prime order.

Proof. By Prop. 3.38, the statement is equivalent to the claim that the equivariant dual vector spaces of equivariant
smooth differential n-forms are injective. This is indeed the case, by Lemmas 3.19, 3.20, 3.21 (Remark 3.17).

Next we turn to discussion of fibrant and cofibrant equivariant dgc-algebras.

Minimal equivariant dgc-algebras.

Definition 3.40 (Minimal equivariant dgc-algebras [Tri82, Construction 5.10][Scu02, §11][Scu08, §4]).
Let A ∈

≺

GDiffGradedCommAlgebras≥ 0
R (Def. 3.30) be such that, for all k ∈ N, the underlying ChnCmplx(A)k ∈

≺

GCochainComplexes≥ 0
R is injective (Def. 3.11).

(i) For n ∈ N, an elementary extension A ↪−! A[bnV ]φ of A in degree n is a pushout of the image under Sym
(Example 3.34) of the cone inclusion (Example 3.27) of the (n+ 1)-fold delooping (Def. 3.26) of the injective
resolution Inj•(V ) (Example 3.28)

A
[
bnVn

]
φnOO

� ?

oo

(po)

Sym
(
ebnInj•(Vn)

)
OO

Sym
(
ibn+1Inj•(Vn)

)
� ?

A oo
φ̃•

n Sym
(
bn+1Inj•(Vn)

) ∈

≺

GDiffGradedCommAlgebras≥ 0
R (107)

along the adjunct φ̃ • (102) of an injective extension (99)

A• oo φ•
n

bn+1Inj•(Vn) ∈

≺

GCochainComplexes≥ 0
R (108)

of a given attaching map out of a given equivariant dual vector space Vn (Def. 3.5):

An+1
clsd
oo φn Vn ∈

≺

GVectorSpaces∨R . (109)(ii) An inclusion

B• � � min // A• ∈

≺

GDiffGradedCommAlgebras≥ 0
R (110)

of degreewise injective (Def. 3.11) equivariant dgc-algebras (Def. 3.30) which are equivariantly 1-connected

B0 ≃ R , B1 ≃ R
is called relative minimal if it is isomorphic under B• to the result of a sequence of elementary extensions (107)
in strictly increasing degrees (noticing with Lemma 3.15, that the result of an elementary extension (107) is again
degreewise injective).
(iii) An equivariant dgc-algebra A•, such that the unique inclusion of the equivariant ground field R (which is
clearly 1-connected and injective, by Example 3.13) is a relative minimal dgc-algebra (110)

R �
� min // A• ∈

≺

GDiffGradedCommAlgebras≥ 0
R , (111)

is called a minimal equivariant dgc-algebra.
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Definition 3.41 (Minimal equivariant L∞-algebra). Any minimal equivariant dgc-algebra A (Def. 3.40) is the
equivariant Chevalley-Eilenberg algebra (104)

A ≃ CE
(
gA)

of an equivariant L∞-algebra gA ∈

≺

GL∞Algebras≥ 0
R,fin (Def. 3.36), defined uniquely up to isomorphism. We say

that the underlying graded equivariant vector space (Def. 3.22)

gA
• ∈

≺

GGradedVectorSpaces≥ 0
R

of this equivariant L∞-algebra is the linear dual of the spaces of generators V A
n ∈

≺

GVectorSpaces∨R (109) of the
elementary extensions (107) that exhibit the minimality of A:

gA
n :=

(
V A

n
)∨ ∈

≺

GVectorSpacesR .

Example 3.42 (A minimal Z2-equivariant dgc-algebra). We spell out the construction of an equivariant minimal
dgc-algebra (Def. 3.40), for G =Z2 (Example 2.15), which involves three basic cases of the elementary extensions
(107):
(i) In the first stage, begin with the equivariant base algebra R (Example 3.32) and consider the attaching map
(109) in degree 2 given by

φ2 :

Z2/1

Z2
��

��

7−! R
id
��

oo 0 [ c3 R⟨c3⟩
id
��

Z2/Z2 7−! R oo 0 [ c3 R⟨c3⟩
(112)

By Example 3.14, the equivariant dual vector space on the right is already injective (93), so that we may extend
this attaching map immediately to an equivariant cochain map (108)

φ
•
2 :

Z2/1

Z2
��

��

7−! R
id
��

oo 0 [ c3 R⟨c3⟩
/
(d c3 = 0)

id
��

Z2/Z2 7−! R oo 0 [ c3 R⟨c3⟩
/
(d c3 = 0) ,

where on the right we are using the generators-and-relations Notation 3.1. By Example 3.35, its adjunct morphism
of equivariant dgc-algebras is

φ̃
•
2 :

Z2/1

Z2
��

��

7−! R
id
��

oo 0 [ c3 R[c3]
/
(d c3 = 0)

id
��

Z2/Z2 7−! R oo 0 [ c3 R[c3]
/
(d c3 = 0) .

Since all these diagrams so far are constant on the orbit category, the resulting pushout (107) is computed over both
objects Z2/H ∈ Z2Orbits as in non-equivariant dgc-theory, and thus yields this minimal equivariant dgc-algebra:

Z2/1

Z2
��

��

7−! R[ f2]
/
(d f2 = 0)

id
��

Z2/Z2 7−! R[ f2]
/
(d f2 = 0) .

(113)

(ii) Consider next the following attaching map (109) in degree 3 to the equivariant dgc-algebra (113):
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φ3 :

Z2/1

Z2
��

��

7−! R[ f2]
/
(d f2 = 0)

id
��

oo 0

��
Z2/Z2 7−! R[ f2]

/
(d f2 = 0) oo

f2∧ f2 [ c4 R⟨c4⟩ .
(114)

Here the equivariant dual vector space on the right is not injective: Its injective envelope is given in Example 3.29,
and the free dgc-algebra on this is given in Example 3.35, which says that the required extension (108) of the
attaching map φ is hence of this form:

φ̃
•
3 :

Z2/1

Z2
��

��

7−! R[ f2]
/
(d f2 = 0)

id
��

oo

0  [ c5
f2 ∧ f2  [ c4

R
[

c5
c4

]/(d c5 = 0
d c4 = c5

)
����

Z2/Z2 7−! R[ f2]
/
(d f2 = 0) oo

f2∧ f2 [ c4 R[c4]
/
(d c4 = 0) .

The pushout (107) along this map is the following, yielding the next stage of the minimal equivariant dgc-algebra
on the rear left:

R

h3,
ω4,
f2

/ d h3 = ω4 − f2 ∧ f2
d ω4 = 0
d f2 = 0

 oo 0  [ c5
f2 ∧ f2  [ c4

ω4  [ b4
h3  [ b3

����

bb

1 Q

R
[

c5, b4,
c4, b3

]/(d c5 = 0 , d b4 = c5
d c4 = c5 , d b3 = b4 − c4

)
ee

3 S

����

R[ f2]
/
(d f2 = 0)

id

��

oo

0  [ c5
f2 ∧ f2  [ c4

R
[

c5
c4

]/(d c5 = 0
d c4 = c5

)

����

R
[

h3,
f2

]/(d h3 =− f2 ∧ f2
d f2 = 0

)
oo f2 ∧ f2  [ c4

h3  [ b3
dd

2 R

R[c4,b3]
/
(d c4 = c5 , d b3 =−c4)ff

4 T

R[ f2]
/
(d f2 = 0) oo

f2 ∧ f2  [ c4 R[c4]
/
(d c4 = 0) .

(iii) Finally, consider the following further attaching map (109) to the previous stage, in degree 7:

φ7 :

Z2/1

Z2
��

��

7−! R

 h3,
ω4,
f2

/ d h3 = ω4 − f2 ∧ f2
d ω4 = 0
d f2 = 0


����

oo −ω4 ∧ω4  [ c8 R⟨c8⟩

��
Z2/Z2 7−! R

[
h3,
f2

]/(d h3 = − f2 ∧ f2
d f2 = 0

)
oo 0 .

(115)

Here the equivariant dual vector space on the right is again injective, by (92) in Example 3.14. Therefore, the
corresponding elementary extension (107) is by pushout along the following morphism of dgc-algebras
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φ̃
•
7 :

Z2/1

Z2
��

��

7−! R

 h3,
ω4,
f2

/ d h3 = ω4 − f2 ∧ f2
d ω4 = 0
d f2 = 0


����

oo −ω4 ∧ω4  [ c8 R[c8]
/
(d c8 = 0)

��
Z2/Z2 7−! R

[
h3,
f2

]/(d h3 = − f2 ∧ f2
d f2 = 0

)
oo 0 .

This pushout is the identity on Z2/Z2, and is an ordinary cell attachment of plain dgc-algebras on Z2/1, hence
yields the following equivariant dgc-algebra, which is thereby seen to be minimal (Def. 3.40):

A :=

Z2/1

Z2
��

��

7−! R


ω7,
h3,
ω4,
f2

/


d ω7 =−ω4 ∧ω4
d h3 = ω4 − f2 ∧ f2
d ω4 = 0
d f2 = 0


����

Z2/Z2 7−! R
[

h3,
f2

]/(d h3 = − f2 ∧ f2
d f2 = 0

)
.

(116)

In summary, the graded equivariant dual vector space of generators (Def. 3.41) of this minimal equivariant dgc-
algebra is the following:

gA
• =

Z2/H gA
2 gA

3 gA
4 gA

5 gA
6 gA

7 gA
8 gA

9 · · ·
Z2/1 1 0 0 0 0 1 0 0 · · ·
Z2/Z2 1 1 0 0 0 0 0 0 · · ·

(112) (114) (115)

∈ Z2GradedVectorSpaces≥ 0
R . (117)

Lemma 3.43 (Minimal equivariant dgc-algebras are projectively cofibrant [Scu08, Thm. 4.2]). All elementary
extensions (107) are cofibrations

A ∈ Cof // A
[
bnVn

]
φn

∈
(

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj .

Hence all relative minimal equivariant dgc-algebra inclusions (110) are cofibrations and, in particular, all minimal
equivariant dgc-algebras (111) are cofibrant objects in the model category

(

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

(Prop. 3.38).

Proposition 3.44 (Existence of equivariant minimal models [Scu02, Thm. 3.11, Cor. 3.9]).
Let A ∈

≺

GDiffGradedCommAlgebras≥ 0
R (Def. 3.30) be cohomologically 1-connected, in that the equivariant

cochain cohomology groups (Def. 3.31) are trivial in degrees ≤ 1:

H0(A) ≃ R and H1(A) ≃ 0 . (118)
(i) There exists a minimal equivariant dgc-algebra (Def. 3.40) equipped with a quasi-isomorphism

Amin
pmin

A

∈ W
// A . (119)

(ii) This is unique up to isomorphism, in that for A′
min

∈W
−! A any other such, there is a commuting diagram of the

form
Amin

∈W ++

≃ // A′
min

∈WssA
with the top morphism an isomorphism of equivariant dgc-algebras.
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Remark 3.45 (Existence of equivariant relative minimal models(?)). By analogy with the theory of (relative)
minimal models in non-equivariant dgc-algebraic rational homotopy theory (e.g., [BG76, §7][Ha83][FHT00, Thm.
14.12][FSS23, Prop. 3.50]), it is to be expected that Prop. 3.44 holds in greater generality:

(a) The existence of equivariant minimal models should hold more generally for fixed locus-wise nilpotent G-spaces
(not necessarily fixed-locus wise simply-connected).

(b) There should exist also equivariant relative minimal models, unique up to relative isomorphism, of any morphism
between fixed locus-wise nilpotent spaces of R-finite homotopy type.

While a proof of these more general statements should be a fairly straightforward generalization of the proofs of
the existing results, it does not seem to be available in the literature. Nonetheless, for our main example of interest
(Example 2.44) we explicitly find the equivariant relative minimal model (in Prop. 3.56 below).

3.2 Equivariant rational homotopy theory

We review the fundamentals of equivariant rational homotopy theory [Tri82][Tri96][Go97b][Scu02][Scu08] and
prove our main technical result (Prop. 3.56 below). Throughout we make free use of plain (non-equivariant)
dgc-algebraic rational homotopy theory [BG76] (review in [FHT00][He07][GM13][FSS23, §3.2]).

Equivariant rationalization. Equivariant rational homotopy theory is concerned with the following concept:

Definition 3.46 (Equivariant rationalization [May96, §II.3][Tri82, §2.6]).
Let X ∈

≺

GHomotopyTypes≥2 (Def. 2.33).
(i) X is called rational (here: over the real numbers, see [FSS23, Rem. 3.51]) if all its equivariant homotopy groups
(Def. 2.31) carry the structure of equivariant vector spaces (here: over the real numbers, Def. 3.5):

X is rational over the reals ⇔ π •+1(X) ∈

≺

GVectorSpacesR //

≺

GGroups . (120)

(ii) A rationalization of X (here: over the real numbers) is a morphism

X
ηR

X // LRX ∈

≺

GHomotopyTypes (121)

to a rational equivariant homotopy type (120) which induces isomorphisms on all equivariant rational cohomology
groups (Example 3.6):

H•(LRX ; R
) (

ηR
X
)∗

≃
// H•(X ; R

)
.

In other words: equivariant rationalization is plain rationalization (e.g. [FSS23, Def. 3.55]) at each stage G/H ∈
GOrbits.

Proposition 3.47 (Uniqueness of equivariant rationalization [May96, §II, Thm. 3.2]). Equivariant rationalization
(Def. 3.46) of equivariantly simply-connected equivariant homotopy types exists essentially uniquely.

Equivariant PL de Rham theory.

Definition 3.48 (Equivariant PL de Rham complex). Write

≺

GSimplicialSets
Ω•

PLdR //
(

≺

GDiffGradedCommAlgebras≥ 0
R

)op

X 7−!

(
G/H 7! Ω•

PLdR

(
X (G/H)

))
for the functor from equivariant simplicial sets (Def. 2.19) to the opposite of equivariant dgc-algebras (Def. 3.30).
This applies the plain PL de Rham functor [Su77][BG76, p. 1.-7][FSS23, Def. 3.56] (assigning dgc-algebras of
piecewise polynomial differential forms) to diagrams of simplicial sets parametrized over the orbit category.

Proposition 3.49 (Equivariant PL de Rham theorem [Tri82, Thm. 4.9]). For any X ∈

≺

GSimplicialSets (Def. 2.19)
and AR ∈

≺

GVectorSpacesR (Def. 3.5), we have a natural isomorphism
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H•(X ; AR
)

≃ H•(
Ω

•
PLdR(X ; AR)

)
between the Bredon cohomology of X (Example 2.39) with coefficients in AR, and the cochain cohomology of the
equivariant PL de Rham complex of X (Def. 3.48) with coefficients in AR.

Proposition 3.50 (Quillen adjunction between equivariant simplicial sets and equivariant dgc-algebras [Scu08,
Prop. 5.1]). The equivariant PL de Rham complex construction (Def. 3.48) is the left adjoint in a Quillen adjunc-
tion (

≺

GDiffGradedCommAlgebras≥ 0
R

)op
proj

oo
Ω•

PLdR

exp
⊥Qu // GSimplicialSetsproj

between the projective model structure on equivariant simplicial sets (Prop. 2.21) and the opposite of the projective
model structure on connective equivariant dgc-algebras (Prop. 3.38).

The fundamental theorem of dgc-algebraic equivariant rational homotopy theory.

Proposition 3.51 (Fundamental theorem of dgc-algebraic equivariant rational homotopy theory [Scu08, Thm.
5.6]). On equivariant 1-connected R-finite homotopy types (Def. 2.33):
(i) The derived PL de Rham adjunction (Prop. 3.50) restricts to an equivalence of homotopy categories

(

≺

GHomotopyTypesfinR
≥2

)R oo LΩ•
PLdR

Rexp
≃ // Ho

((
≺

GDiffGradedCommAlgebras≥ 0
R

)op
proj

)≥2

fin

between those simply-connected R-finite equivariant homotopy types (Def. 2.33) which are rational (Def. 3.46)
over the real numbers and formal duals of cohomologically connected 1-connected (118) equivariant dgc-algebras.
(ii) The derived adjunction unit is equivariant rationalization (Def. 3.46):

X ∈

≺

GHomotopyTypesfinR
≥2 ⇒

X
DηPLdR

X // Rexp ◦LΩ•
PLdR

(
X
)
.

≃
��

X
ηR

X // LRX
(122)

Remark 3.52. That the equivariant derived PLdR-unit (122) models equivariant rationalization is not made explicit
in [Scu08], but it follows immediately from the fact that:
(a) by definition, the equivariant PLdR adjunction is stage-wise over G/H ∈ GOrbits the plain PLdR adjunction;
(b) the derived unit of the plain PLdR-adjunction models plain rationalization by the non-equivariant fundamental
theorem (e.g. [FSS23, Prop. 3.60]); and
(c) that equivariant rationalization (Def. 3.46) is stage-wise plain rationalization.

Equivariant rational Whitehead L∞-algebras

Definition 3.53 (Equivariant Whitehead L∞-algebra). For S ≺

(
X�G

)
∈

≺

GHomotopyTypesfinR
≥2 (Def. 2.33), we say

that its equivariant Whitehead L∞-algebra

l ≺

(
X�G

)
∈

≺

GL∞Algebras≥ 0
R,fin

is the equivariant L∞-algebra (Def. 3.36) whose equivariant Chevalley-Eilenberg algebra (104) is the minimal
model (well-defined by Prop. 3.44) of the equivariant PL de Rham complex (Def. 3.48) of S ≺

(
X�G

)
:

CE
(
l ≺

(
X�G

))
:= Ω•

PLdR(X)min
pmin

∈ W
// Ω•

PLdR(X) ∈

≺

GDiffGradedCommAlgebras≥ 0
R . (123)

Proposition 3.54 (Equivariant rational homotopy groups in the equivariant Whitehead L∞-algeba [Tri82, Thm.
6.2 (2)]). For S ≺

(
X�G

)
∈

≺

GHomotopyTypesfinR
≥2 (Def. 2.33), the equivariant rational homotopy groups of ΩX

(Example 3.23) are equivalent to the underlying equivariant graded vector space (Def. 3.41) of the equivariant
Whitehead L∞-algebra (Def. 3.53) of ≺

(
X�G

)
:
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equivariant
Whitehead L∞-algebra(
l ≺

(
X�G

))
• ≃

equivariant rational
homotopy groups of

equivariant loop space

π •(ΩX)⊗Z R . (124)

Examples of equivariant Whitehead L∞-algebras.

Proposition 3.55 (Z2-Equivariant minimal model of twistor space). The equivariant minimal model (Def. 3.40) of
the ZA

2 -equivariant twistor space (Example 2.28) is the following Z2-equivariant dgc-algebra (Def. 3.30):

CE
(
l ≺

(
CP3�Z2

))
:

Z2/Z2OO
7! R

[
h3,
f2

]/(d h3 = − f2 ∧ f2
d f2 = 0

)
OOOO

Z2/1

Z2

VV
7! R


h3,
f2

ω7,
ω4

/


d h3 = ω4 − f2 ∧ f2
d f2 = 0
d ω7 =−ω4 ∧ω4
d ω4 = 0


∈ Z2DiffGradedCommAlgebras≥ 0

R (125)

Proof. (i) Checking that (125) is indeed a minimal equivariant dgc-algebra is the content of Example 3.42, where
this minimal algebra is obtained in (116).
(ii) It remains to see that (125) has indeed the algebraic homotopy type of the rationalized equivariant twistor space,
under the fundamental theorem (Prop. 3.51). By (60), this amounts to showing that the right vertical morphism of
ordinary dgc-algebras in (125) is a dgc-algebraic model (under the non-equivariant fundamental theorem of rational
homotopy theory, [BG76, §8] reviewed as [FSS23, Prop. 3.59]) of the inclusion of the fiber of the twistor fibration
(11). But, by [FSS23, Lem. 3.71]), the dgc-algebra model for this fiber is the cofiber of the minimal relative model
of the twistor fibration. The latter is given in [FSS20c, Lem. 2.13], and its cofiber manifestly coincides with (125).
(iii) As a consistency check, notice that the equivariant rational homotopy groups of twistor space (97) do match
the generators (117) of this minimal model; as it must be, by Prop. 3.54.

Proposition 3.56 (Z2-Equivariant relative minimal model of Sp(1)-parametrized twistor space). The equivariant
relative minimal model (Def. 3.40) of the ZA

2 -equivariant Sp(1)-parametrized twistor space (Example 2.44) is the
following Z2-equivariant dgc-algebra (Def. 3.30) under CE

(
lBSp(1)

)
= R

[
1
4 p1
]/(

d 1
4 p1 = 0

)
:

CE
((
lBSp(1)

(

≺(
tw

ist
or

space

CP3

orbifo
lded

wrt
Z
A

2

�ZA
2 )
) parametr

ize
d

wrt
Sp(1

)

�Sp(1)
))

:

Z2/1

��

Z2
��
7−! CE

(
lBSp(1)

)
h3,
f2

ω7,
ω̃4

/


d h3 = ω̃4 − 1
2 p1 − f2 ∧ f2

d f2 = 0
d ω7 =−ω̃4 ∧

(
ω̃4 − 1

2 p1
)

d ω̃4 = 0


����

Z2/Z2 7−! CE
(
lBSp(1)

)[ h3,
f2

]/(d h3 = − 1
2 p1 − f2 ∧ f2

d f2 = 0

)
,

(126)

where
(a) all closed generators are normalized such as to be rational images of integral and integrally in-divisible classes;
(b) ω := ω̃ − 1

4 p1 is fiberwise the pullback along CP3 tH−! S4 (11) of the volume element on S4;

(c) f2 is fiberwise the volume element on S2 fib(tH)
−−−! CP3.

Proof. (i) To see that (126) is relative minimal, observe that it is obtained from the equivariant base dgc-algebra

Z2/1

Z2
��

��

7−! CE
(
lBSp(1)

)
id ��

R
[1

4 p1
]/(

d 1
4 p1 = 0

)
Z2/Z2 7−! CE

(
lBSp(1)

)
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by the same three cell attachments as in the construction of the absolute minimal model of Example, 3.42 for the
plain equivariant twistor space (Prop. 3.55), subject only to these replacements:

f2 ∧ f2 7−! f2 ∧ f2 +
1
2 p1

ω4 ∧ω4 7−! ω̃4 ∧
(
ω̃4 − 1

2 p1
)

in the attaching maps φ3 (114) and φ7 (115), respectively.
(ii) By the fundamental theorem (Prop. 3.51), it remains to see that (126) is weakly equivalent to the relative
equivariant PL de Rham complex of equivariant parametrized twistor space:
(ii.1) First observe that the relative minimal model CE

(
l
(
tH �Sp(1)

))
for the non-equivariant Sp(1)-parametrized

twistor fibration tH, relative to the minimal model of S4�Sp(1) relative to BSp(1), is as follows, with generators
normalized as stated in the claim above:

S2�Sp(1)

hofibBSp(1)(tH �Sp(1))
≃ hofib(tH)�Sp(1)

(by Lemma 2.10)

��
ρS2

��

R
[

1
4 p1
][h3,

f2,

]/(d h3 = − 1
2 p1 − f2 ∧ f2

d f2 = 0

)
OOOO

cofBSp(1)

(
CE
(
l(tH �Sp(1))

))

CP3�Sp(1)

tH�Sp(1)

��

ρCP3

xx

R
[

1
4 p1
]

h3,
f2,
ω7,
ω̃4

/


d h3 = ω̃4 − 1
2 p1 − f2 ∧ f2

d f2 = 0
d ω7 =−ω̃4 ∧

(
ω̃4 − 1

2 p1
)

d ω̃4 = 0


OO

CE
(
l(tH �Sp(1))

) relative minimal model
for tH �Sp(1) (by [FSS20c, Thm. 2.14])

� ?

BSp(1) R
[

1
4 p1
] ( � 66

w�

**

S4�Sp(1)

ρS4

hh

R
[

1
4 p1
][ω7,

ω̃4

]/(d ω7 =−ω̃4 ∧
(
ω̃4 − 1

2 p1
)

d ω̃4 = 0

)

(127)

This is the statement of [FSS20c, Thm. 2.14], using the following notational simplifications in the present case:
(a) the Euler 8-class χ8 appearing in [FSS20c, (39)] vanishes here under restriction along BSp(1)! BSp(2);
(b) we have applied to [FSS20c, (49)] the dgc-algebra isomorphism given by

h3 ↔ h3 , f2 ↔ f2 , ω7 ↔ ω7 , ω4 ↔ ω̃4 − 1
4 p1 . (128)

(ii.2) This being a non-equivariant relative minimal model, it comes with horizontal weak equivalences of non-
equivariant dgc-algebras as shown in the bottom square of the following commuting diagram (by, e.g., [FHT00,
Thm. 14.12]), which induces (by the fiber lemma [BK72, §II] in the form [FHT00, Prop. 15.5][FHT15, Thm.
5.1]) a weak equivalence on plain cofibers (which is forms on S2, by Lemma 2.10), as shown in the following top
square:
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Ω•
PLdR

(
S2

)
OO

Ω•
PLdR

(
fib
(
tH �Sp(1)

))
oo ∈ W R

[
h3,
f2,

]/(d h3 = − f2 ∧ f2
d f2 = 0

)
OOOO

cof
(

CE
(
l(tH �Sp(1))

))

Ω•
PLdR

(
CP3�Sp(1)

)
OO

Ω•
PLdR

(
tH �Sp(1)

)
oo ∈ W R

[
1
4 p1
]

h3,
f2,
ω7,
ω̃4

/


d h3 = ω̃4 − 1
2 p1 − f2 ∧ f2

d f2 = 0
d ω7 =−ω̃4 ∧

(
ω̃4 − 1

2 p1
)

d ω̃4 = 0


OO

CE
(
l(tH �Sp(1))

)
� ?

Ω•
PLdR

(
S4�Sp(1)

)
oo ∈ W R

[
1
4 p1
][ω7,

ω̃4

]/(d ω7 =−ω̃4 ∧
(
ω̃4 − 1

2 p1
)

d ω̃4 = 0

)

(129)

(Here we are using that with tH also tH � Sp(1) := tH×WSp(1)
Sp(1) is a fibration, by the right Quillen functor (29) in

Prop. 2.7, and that all spaces involved are simply-connected, so that all the technical assumptions in [FHT15, (5.1)]
are indeed met.)
(ii.3) Then observe that

H•(S2�Sp(1); R
)
≃ R

[
ω2,

1
4 p1
]
/
(
(ω2)

2) ≃ H•(BSp(1); R
)
⊗R H•(S2; R

)
. (130)

This follows readily from the Gysin exact sequence (e.g. [Sw75, §15.30])

· · · // H•(BSp(1); R
) ρ∗

S2 // H•(S2�Sp(1); R
) ∫

S2 // H•−2
(
BSp(1); R

) c∪(−)

=0
// H•+1

(
BSp(1); R

)
// · · · (131)

for the S2-fiber sequence S2 hofib(ρS2 )
−−−−−! S2 �Sp(1)

ρS2
−−! BSp(1) that corresponds to the Sp(1)-action on S2, by Prop.

2.7; and using that H•(BSp(1); R
)

≃ R
[

1
4 p1
]

(e.g. [FSS23, Lemma 4.24]) is concentrated in degrees divisible
by 4 (so that, in particular, the Euler class c ∈ H3

(
BSp(1); R

)
≃ 0 in (131) vanishes).

But using (130) in (129) implies that also the induced map on relative fibers (33) over BSp(1) is a weak equivalence:

Z2/Z2OO
Ω•

PLdR

(
S2 �Sp(1)

)
OO

Ω•
PLdR

(
fibBSp(1)

(
tH �Sp(1)

))
≃ Ω•

PLdR

(
fib(tH)�Sp(1)

)
oo ∈ W R

[
1
4 p1
][h3,

f2,

]/(d h3 = − 1
2 p1 − f2 ∧ f2

d f2 = 0

)
OOOO

cofBSp(1)

(
CE
(
l(tH �Sp(1))

))

Z2/1

Z2

VV
Ω•

PLdR

(
CP3�Sp(1)

)
oo ∈ W R

[
1
4 p1
]

h3,
f2,
ω7,
ω̃4

/


d h3 = ω̃4 − 1
2 p1 − f2 ∧ f2

d f2 = 0
d ω7 =−ω̃4 ∧

(
ω̃4 − 1

2 p1
)

d ω̃4 = 0



(132)

(ii.4) By Lemma 2.10 applied to (76), we see that the left morphism in (132) is equivalently the inclusion of
the fixed-locus in the ZA

2 -equivariant Sp(1)-parametrized twistor space (Example 2.44). Thus, by the stage-wise
definition of the equivariant PL de Rham complex (Def. 3.48), it follows that the left morphism in (132) is
the PL de Rham complex of ZA

2 -equivariant Sp(1)-parametrized twistor space (as indicated by alignment with
the ZA

2 -orbit category on the far left of (129)). Finally this means, by the fundamental theorem (Prop. 3.51),
that the commuting square in (129) exhibits the claimed equivariant dgc-algebra (15) as indeed modeling the
equivariant rational homotopy type of the ZA

2 -equivariant Sp(1)-parametrized twistor space. (The images on the
left of the generators on the right of (129) are indeed all invariant under the ZA

2 ⊂ Sp(2)-action, by [BMSS19,
Lemma 5.5]).
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3.3 Equivariant non-abelian de Rham theorem

We introduce properly equivariant non-abelian de Rham cohomology with coefficients in equivariant L∞-algebras,
in direct generalization of the non-equivariant discussion in [FSS23, §3.3]. Our key example here is the non-abelian
cohomology of equivariant twistorial differential forms (Example 3.74 below). The main result is the proper
equivariant non-abelian de Rham theorem (Prop. 3.63) and its twisted version (Prop. 3.67). The specialization to
traditional Borel-equivariant abelian de Rham cohomology is the content of Prop. 3.72 below.

Flat equivariant L∞-algebra valued differential forms.
In equivariant generalization of [FSS23, Def. 3.77], we set:

Definition 3.57 (Flat equivariant L∞-algebra valued differential forms). Let g ∈

≺

GL∞Algebras≥ 0
R,fin (Def. 3.36) and

G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35). Then the set of flat equivariant g-valued differential forms on

X is the hom-set (16)

ΩdR
(

≺

(
X�G

)
; g
)

flat :=
≺

GDiffGradedCommAlgebras≥ 0
R

(
CE
(
g
)
, Ω

•
dR
(

≺

(
X�G

)))
of equivariant dgc-algebras (Def. 3.30) from the equivariant Chevalley-Eilenberg algebra (104) of g to the equiv-
ariant smooth de Rham complex (Def. 3.33) of X .

In equivariant generalization of [FSS23, Def. 3.92], we set:

Definition 3.58 (Flat twisted equivariant L∞-algebra valued differential forms on G-orbifold). Consider an equiv-
ariant L∞-algebraic local coefficient bundle in the form of a fibration of equivariant L∞-algebras (Def. 3.36) whose
equivariant Chevalley-Eilenberg algebras (104), are relative minimal (Def. 3.40)

g
fib(p)

//

equivariant L∞-algebraic
local coefficient bundle

b̂
p����

b

∈

≺

GL∞Algebras≥ 0
R,fin . (133)

Then, for G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35) equipped with an equivariant non-abelian de Rham

twist

τdR ∈ ΩdR
(

≺

(
X�G

)
; b
)

flat (134)

given by a flat equivariant b-valued differential form (Def. 3.57) on X , the set of flat τdR-twisted equivariant g-
valued differential forms on X is the hom-set (16) in the co-slice category of

≺

GDiffGradedCommAlgebras≥ 0
R (Def.

3.30) under CE(g) from CE(p) to τdR:

Ω
τdR
dR

(

≺

(
X�G

)
, g
)

flat :=
(

≺

GDiffGradedCommAlgebras≥ 0
R

)CE(b)/(CE
(
p
)
, τdR

)

=


Ω•

dR

(

≺

(
X�G

))
kk

twist τdR

oo
flat twisted equivariant

g-valued differential form
CE
(
b̂
)

44

CE(p) local coefficients�&CE
(
b
)

 .
(135)

Equivariant non-abelian de Rham cohomology.

Notation 3.59 (Cylinder orbifold). For G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35), let the product mani-

fold X ×R be equipped with the G-action given by
G× (X ×R)−! X ×R
(g, (x, t)) 7−! (g · x , t) .

We say that the resulting G-orbifold (Def. 2.36) ≺

(
(X ×R)�G

)
∈GOrbifolds is the cylinder orbifold of ≺

(
X�G

)
,

and we write
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≺

(
X�G

)
≃ ≺

(
(X ×{0})�G

) � � i0 // ≺

(
(X ×R)�G

)
oo i1 ? _ ≺

(
(X ×{1})�G

)
≃ ≺

(
X�G

)
(136)

for the canonical inclusion maps and

≺

(
(X ×R)�G

) pX // ≺

(
X�G

)
(137)

for the canonical projection map.

In equivariant generalization of [FSS23, Def. 3.83], we set:

Definition 3.60 (Coboundaries between flat equivariant L∞-algebra valued differential forms).
Let g ∈

≺

GL∞Algebras≥ 0
R,fin (Def. 104) and G ↷ X ∈ GActions

(
SmoothManifolds

)
(Def. 2.35).

(i) Then, given flat differential forms A0,A1 ∈ ΩdR
(

≺(X�G); g
)

flat (Def. 3.57), a coboundary between them

A0
Ã +3 A1

is a flat equivariant g-valued differential form (Def. 3.57) on the cylinder orbifold (Notation 3.59)

Ã ∈ ΩdR

( cylinder orbifold
≺

(
(X ×R)�G

)
; g
)

flat
(138)

such that this restricts to the given pair of forms

i∗0
(

Ã
)
= A0 and i∗1

(
Ã
)
= A1 (139)

along the canonical inclusions (136).
(ii) We denote the relation given by existence of such a coboundary by A1 ∼ A2.

Lemma 3.61 (Equivalence of equivariant smooth and PL de Rham complex of smooth orbifold). Let G ↷ X ∈
GActions

(
SmoothManifolds

)
(Def. 2.35). Then the corresponding equivariant PL de Rham complex (Def. 3.48)

is isomorphic to the equivariant smooth de Rham complex (Example 3.33) in the homotopy category of equivariant
dgc-algebras (Prop. 3.38):

Ω
•
dR
(

≺(X�G)
)

≃ Ω
•
PLdR

(

≺(X�G)
)

∈ Ho
((

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

)
. (140)

Proof. Observe that the analogous non-equivariant statement holds by [FSS23, Lem. 3.90], using [GM13, Cor.
9.9], and that its proof proceeds by analyzing natural constructions applied to a choice of smooth triangulation of
the given smooth manifold X .

Now, for a smooth manifold equipped with a smooth G-action G ↷ X , we may choose a G-equivariant smooth
triangulation, by the equivariant triangulation theorem [Il78][Il83]. Given this, the remainder of the non-equivariant
proof applies stage-wise over the orbit category. Since the weak equivalences of equivariant dgc-algebras are the
stage-wise weak equivalences of non-equivariant dgc-algebras (Prop. 3.38), the claim follows.

In equivariant generalization of [FSS23, Def. 3.84], we set:

Definition 3.62 (Equivariant non-abelian de Rham cohomology). Let G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def.

2.35) and g ∈

≺

GL∞Algebras≥ 0
R,fin (Def. 3.36). The equivariant non-abelian de Rham cohomology of G ↷ X with

coefficients in g is the quotient of the set of flat equivariant differential forms (Def. 3.57) by the coboundary
relation (Def. 3.60):

HdR
(

≺

(
X�G

)
; g
)

:=
(

ΩdR
(

≺(X�G); g
)

flat

)/
∼

.

In equivariant generalization of [FSS23, Thm. 3.87], we have:
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Proposition 3.63 (Equivariant non-abelian de Rham theorem). Let A ∈

≺

GHomotopyTypesfinR
≥2 (Def. 2.33) and

G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35), such that its equivariant shape (Def. 2.23) is also equivariantly

simply-connected and of R-finite type: S ≺

(
X�G

)
∈

≺

GHomotopyTypesfinR
≥2 . Then, at least if G has order 4 or is

cyclic of prime order (Remark 3.17), there is an equivalence between:
(a) real equivariant non-abelian cohomology (Def. 2.37) with coefficients in the equivariant rationalization LRA
(Def. 3.46) and
(b) equivariant non-abelian de Rham cohomology (Def. 3.62) of the G-orbifold ≺

(
X�G

)
(Def. 2.36) with coeffi-

cients in the equivariant Whitehead L∞-algebra lA (Def. 3.53):

equivariant non-abelian
real cohomology

H
(

S ≺

(
X�G

)
; LRA

)
≃

equivariant non-abelian
de Rham cohomology

HdR

(

≺

(
X�G

)
; lA
)
. (141)

Proof. Consider the following sequence of bijections:

H
(

≺

(
X�G

)
; LRA

)
:=

≺

GHomotopyTypes
(

≺

(
X�G

)
, LRA

)
≃ Ho

((

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

)(
Ω

•
PLdR(A) , Ω

•
PLdR

(

≺

(
X�G

)))
≃ Ho

((

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

)(
CE
(
lA
)
, Ω

•
dR
(

≺

(
X�G

)))
≃
(

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

(
CE
(
lA
)
, Ω

•
dR
(

≺

(
X�G

)))/
∼right homotopy

≃
(

ΩdR
(

≺

(
X�G

)
; lA
)

flat

)/
∼

=: HdR
(

≺

(
X�G

)
; lA
)
.

The first step is Def. 2.37, while the second step is the fundamental theorem (Prop. 3.51). In the third step we are:
(a) post-composing in the homotopy category with the isomorphism Ω•

PLdR(−) ≃ Ω•
dR(−) (140);

(b) pre-composing with the isomorphism CE
(
lA
)
≃ Ω•

PLdR

(
A
)

exhibiting the minimal model (123).
Now the domain object CE(lA) is cofibrant (by Lemma 3.43) and the codomain object Ω•

dR

(

≺(X �G)
)

is
fibrant (by Prop. 3.39). Consequently, the hom-set in the homotopy category is equivalently given ([Qu67, §I.1
Cor. 7], see [FSS23, Prop. A.16]) by right-homotopy classes of equivariant dgc-algebra homomorphisms between
these objects, shown in the fourth step.

To exhibit these right homotopies, we may choose as path-space object ([Qu67, Def. I.4], see [FSS23, A.11])
the equivariant de Rham complex on the cylinder orbifold (Notation 3.59): this qualifies as a path space object
by stage-wise application of [FSS23, Lem. 3.88] and using again the argument of Lemmas 3.19, 3.20, 3.21 for
equivariant fibrancy. But with this choice of path space object, the right homotopy relation manifestly coincides
(by stage-wise application of [FSS23, Lem. 3.89]) with the coboundary relation on equivariant non-abelian forms
(Def. 3.60). which is the fifth step above. With this, the last step is Def. 3.62.

In conclusion, the composite of this chain of bijections gives the claimed bijection (141).

Twisted equivariant non-abelian de Rham cohomology.
In equivariant generalization of [FSS23, Def. 3.97], we set:

Definition 3.64 (Coboundaries between flat twisted equivariant L∞-algebra valued differential forms). Given an
equivariant L∞-algebraic local coefficient bundle (133)

g
fib(p)

//

equivariant L∞-algebraic
local coefficient bundle

b̂

p
����
b

∈

≺

GL∞Algebras≥ 0
R,fin , (142)
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and given G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35) equipped with an equivariant non-abelian de Rham

twist (134)

τdR ∈ ΩdR

(

≺

(
X�G

)
; b
)
,

(i) we say that a coboundary between a pair

A0, A1 ∈ Ω
τdR
dR

(

≺

(
X�G

)
; g
)

of flat equivariant τdR-twisted g-valued differential forms (Def. 3.57) is such a form on the cylinder orbifold
(Notation 3.59)

Ã ∈ Ω
p∗X (τdR
dR)

( cylinder orbifold

≺

(
(X ×R)�G

)
; g
)

twisted by the pullback of the given twist to the cylinder orbifold (along the canonical projection (137)), such that
this restricts to the given pair of forms

i∗0
(

Ã
)
= A0 and i∗1

(
Ã
)
= A1 (143)

along the canonical inclusions (136).
(ii) We denote the relation that there exists such a coboundary by A0 ∼ A1.

In equivariant generalization of [FSS23, Def. 3.98], we set:

Definition 3.65 (Twisted equivariant non-abelian de Rham cohomology). Let G ↷ X ∈GActions
(
SmoothManifolds

)
(Def. 2.35) and let g! b̂! b be an equivariant L∞-algebraic local coefficient bundle (133), and let[

τdR
]
∈ HdR

(

≺(X�G); b
)

flat (144)

be the equivariant non-abelian de Rham cohomology class (Def. 3.62) of an equivariant twist (134). Then we say
that the equivariant τdR-twisted de Rham cohomology of the G-orbifold ≺

(
X�G

)
(Def. 2.36) with coeffcients in

g is the quotient of the set of equivariant τdR-twisted g-valued differential forms (Def. 3.58) by the coboundary
relation from Def. 3.64:

HτdR
dR

(

≺

(
X�G

)
; g
)

:= Ω
τdR
dR

(

≺

(
X�G

)
; g
)/

∼
.

Notation 3.66 (Equivariant local coefficient bundle with relative minimal model). Given an equivariant local co-
efficient bundle (78)

A
hofib(ρA) //
equivariant

local coefficient
bundle

A�G
ρA
��

BG
∈

≺

GHomotopyTypesfinR
≥2 (145)

all of whose objects are equivariantly 1-connected and of R-finite type (Def. 2.33), assume (Remark 3.45) that ρA

admits an equivariant relative minimal model (Def. 3.40). This is to be denoted as follows:

CE
(
lA
)
oo

cofib
(
CE(lρA)

)
CE
(
lBG(A�G)

)
OO

CE
(
lρA
) equivariant relative

minimal model

Ω•
PLdR

(
A
)
oo Ω•

PLdR

(
hofib(ρA)

)
Ω•

PLdR

(
A�G

)
OO

equivariant dgc-algebra model
of local coefficient bundle Ω•

PLdR(ρA )

qq
pminBG

A�G ∈W

CE
(
lBG

)
equivariant

minimal model

Ω•
dR

(
BG
) rr pmin

BG ∈W

(146)

Notice that the corresponding fibration of equivariant L∞-algebras (Def. 3.36) serves as an equivariant L∞-algebraic
local coefficient bundle (133).
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In equivariant generalization of [FSS23, Thm. 3.104], we have:

Proposition 3.67 (Twisted equivariant non-abelian de Rham theorem). Consider the following
• Let ρA be an equivariant local coefficient bundle of equivariantly 1-connected G-spaces of finite R-homotopy

type, which admits an equivariant relative minimal model; all as in Notation 3.66.
• Moreover, let G ↷ X ∈ GActions

(
SmoothManifolds

)
(Def. 2.35) be such that also its equivariant shape (Def.

2.23) is equivariantly 1-connected and of R-finite type, S ≺

(
X �G

)
∈

≺

GHomotopyTypesfinR
≥2 and let this be

equipped with an equivariant twist τ (79) with coefficients in the equivariant rationalization (Def. 3.46) of
BG .

• Write τdR for a representative of the image under the equivariant non-abelian de Rham theorem (Prop. 3.63)
of the class of this twist in equivariant lBA-valued de Rham cohomology (Def. 3.62) that the equivariant local
coefficient bundle (145) admits an equivariant relative minimal model (Def. 3.40)

H
(

S ≺

(
X�G

)
; LRBG

)
≃ HdR

(

≺

(
X�G

)
; lBG

)
.

rational twist

[τ]

equivariant non-abelian
de Rham theorem

7−!
de Rham twist

[τdR]

(147)

Then there is an equivalence between:
(a) the τ-twisted equivariant real non-abelian cohomology (Def. 2.45) with local coefficients in ρA , and
(b) the τdR-twisted equivariant de Rham cohomology (Def. 3.65) with local coefficients in lBG ρA (146):

twisted equivariant
non-abelian real cohomology

Hτ

(
S ≺

(
X�G

)
; LRA

)
≃

twisted equivariant
non-abelian de Rham cohomology

HτdR
(

≺
(
X�G

)
; lA
)
. (148)

Proof. The proof proceeds in direct joint generalization of the proofs of Prop. 3.63 (equivariant case) and [FSS23,
Thm. 3.104] (twisted case).
First, by the fundamental theorem (Prop. 3.51), the twisted real cohomology is given by morphisms in the homo-
topy category of the co-slice model category of this form:
Ω•

PLdR

(
S ≺

(
X�G

))
jj

Ω•
PLdR(τ)

oo Ω•
PLdR

(
A�G

)
55

Ω•
PLdR(ρA )

Ω•
PLdR

(
BG
) ∈ Ho

((

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

)
. (149)

Second, by
(a) post-composition with the isomorphism Ω•

PLdR(−) ≃ Ω•
dR(−) (140),

(b) pre-composition with the equivalence from the equivariant relative minimal model (146),
this becomes equivalent to morphisms of this form:

Ω•
dR

(
S ≺

(
X�G

))
jj
τdR

oo Ω•
PLdR

(
A�G

)
55

CE
(
lρA
)

CE
(
lBG

) ∈ Ho
((

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

)
. (150)

But, in this form,

(a) the codomain τdR is a fibrant object in the coslice model category, since Ω•
dR

(
−
)

is fibrant in the un-sliced model
structure (Prop. 3.39);

(b) the relative minimal model domain CE
(
lρA
)

is cofibrant, by Lemma 3.43.

It follows ([Qu67, §I.1 Cor. 7], see [FSS23, Prop. A.16]) that a morphism of the form (150) in the homotopy
category is equivalently the right homotopy class of an actual homomorphism of equivariant dgc-algebras in the
coslice, hence is equivalently the right homotopy class of a flat equivariant twisted lA-valued differential form, by
Def. 3.58.

Finally, in joint generalization of the proof of Prop. 3.63 (equivariant case) and [FSS23, Lem. 3.105] (twisted
case), we see that a path space object ([Qu67, Def. I.4], see [FSS23, A.11]) exhibiting these right homotopies in
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the coslice is given by pullback to the equivariant smooth de Rham complex of the cylinder orbifold (138). But
with that choice, right homotopies are manifestly the same as coboundaries of flat equivariant twisted lA-valued
differential forms (Def. 3.64), and hence the claim follows.

Twisted non-abelian Borel-Weil-Cartan equivariant de Rham cohomology. Finally, we combine traditional
Borel(-Weil-Cartan) T -equivariant de Rham cohomology ([AB84][MQ86, §5][Ka93][GS99], review in [Me06]
[KT15][Pe17]), with proper G-equivariance and generalize it to non-abelian L∞-algebra coefficients.

By Prop. 2.7 and Remark 2.42, any Borel T -equivariantized G-orbifold carries a canonical twist in equivariant
non-abelian cohomology H1(−,T ) ≃ H(−,BT ). The following is the de Rham image of that twist:

Definition 3.68 (Canonical de Rham twist on Borel T -equivariant G-orbifolds).
Let
(
T×G

)

↷ X ∈
(
T×G

)
Actions

(
SmoothManifolds

)
(Def 2.35) for T ∈ CompactLieGroups finite-dimensional

and simply-connected, with Lie algebra t (105), regarded as a smooth G-equivariant L∞-algebra (Def. 3.36). We
say that the canonical de Rham twist on the corresponding T -parametrized G-orbifold is the canonical inclusion
of equivariant dgc-algebras (Def. 3.30) from the minimal model for the classifying space of T (regarded as a
smooth G-equivariant homotopy type, Example 2.24) into the proper G-equivariant & Borel T -equivariant smooth
de Rham complex (Example 3.37):

Ω•
dR

((

≺

(
X�G

))
�T
)

OO

τcan
dR

Cartan model for T -equivariant Borel cohomology of H-fixed locus XH(
Ω•

dR

(
XH
)
⊗R

[
{ra

2}
dim(T )
a=1

]
, ddR + ra

2 ∧ ιta

)T

OO

� ?
: G/H 7−!

CE
(
lBT
) (

R
[
{ra

2}
dim(T )
a=1

])T

where on the bottom we used the abstract Chern-Weil isomorphism (81) in the form discussed in [FSS23, §4.2].

Example 3.69 (Equivariant Cartan map). In the situation of Def. 3.68, consider the case when the T -action is
free, hence that X := P is the total space of a G-equivariant T -principal bundle P! B := P/T (e.g. [KT15, p
.2]). Then, for any choice of G-invariant N-principal connection ∇ ∈ NConnections(P)G, we have the following
weak equivalence (in the sense of Prop. 3.38) of G-equivariant dgc-algebras (Def. 3.30) in the co-slice under the
minimal model dgc-algebra of the classifying space (81):

Ω•
dR

((

≺

(
X�G

))
�T
)

∈ W //
dd

τcan
dR

Ω•
dR

(

≺

(
B�G

))
>>

cwT

(
Ω•

dR

(
XH
)[
{ra

2}
dim(T )
a=1

])T
ω 7! ω hor
ra

2 7! Fa
∇ //

hh

5 U

Ω•
dR

(
BH
)

::
c 7!c(F∇)

Chern-Weil hom.
: G/H 7−!

CE
(
lBT
) (

R
[
{ra

2}
dim(T )
a=1

])T

This is from the proper G-equivariant Borel T -equivariant smooth de Rham complex of X (Example 3.37) to
the proper G-equivariant smooth de Rham complex over X/T (Example 3.33), which is stage-wise over G/H the
Cartan map quasi-isomorphism [GS99, §5] (review in [Me06, (20), (30)]) from the Cartan model of XH (106) to the
ordinary smooth de Rham complex of BH = (X/N)H . This sends the Cartan model generators ra

2 to the curvature
form component Fa

∇
of the given connection, and hence restricts on universal real characteristic classes, represented

by invariant polynomials c, to the Chern-Weil homomorphism assigning characteristic forms: c 7! c(F∇).

Example 3.70 (Tangential de Rham twists on G-orbifolds with T -structure). In further specialization of Example
3.69, let X ↷ B ∈ GActions

(
SmoothManifolds

)
(Def. 2.35) be equipped with G-equivariant T ⊂ GL(dim(X))-

structure (see [SS20b, p. 9] for pointers), namely with a G-equivariant reduction of its GL(dim(X))-frame bundle
to a T -principal T -frame bundle T Fr(X):

T -frame bundle T Fr(X)
,,

T×G

��
� �

G-equivariant
T -structure // Fr(X) frame bundle

T×G

��

rrX

G

YY
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Then Example 3.69 induces on the G-orbifold ≺

(
X �G

)
(Def. 2.36) an equivariant non-abelian de Rham twist

(144) encoding all the real characteristic forms of the given G-equivariant T -structure on X (the tangential twist):

Ω•
dR

((
≺

(
T Fr(X)�G

))
�T
)

∈ W

Cartan map equivalence //
ll τcan

dR
canonical de Rham twist on
orbifold’s T -frame bundle

Ω•
dR

(

≺

(
X�G

))
.22

cwT
tangential de Rham twist

on G-orbifoldCE
(
lBT
)

In further generalization of Def. 3.65, we set:

Definition 3.71 (Proper G-equivariant & Borel T -equivariant twisted non-abelian de Rham cohomology). Let
(T ×G) ↷ X ∈

(
T ×G

)
Actions

(
SmoothManifolds

)
(Def. 2.35) for T finite-dimensional, compact and simply-

connected, and let
g

hofib(p)
// b̂

p��
lBT

(151)

be an equivariant L∞-algebraic local coefficient bundle (133) over the Whitehead L∞-algebra of BT (i.e., whose
Chevalley-Eilenberg algebra is (81)).
(i) We say that the set of flat, canonically twisted, proper G-equivariant & Borel T -equivariant, g-valued differen-
tial forms on X is the hom-set (16) in the co-slice of G-equivariant dgc-algebras (Def. 3.30) from CE

(
p
)

(104) to
the canonical de Rham twist (Def. 3.68) on the corresponding T -parametrized G-orbifold:

Ω
τcan

dR
dR

((

≺

(
X�G

))
�T ; g

)
:=

((

≺

GDiffGradedCommAlgebras≥ 0
R

)
proj

)CE(lBT )/(
CE
(
p
)
,τcan

dR

)

=

Ω•
dR

((

≺(X�G)
)
�T
)
oo

flat canonically-twisted
proper G-equivariant & Borel T -equivariant

g-valued differential form

mm
τcan

dR

CE
(
b̂
)

22

CE(p)CE
(
lBT
)

 .
(152)

(ii) A coboundary between two such elements is defined, as in Def. 3.60, by a concordance form on the cylinder
orbifold:

Ã ∈ Ω
p∗X (τ

can
dR )

dR

((

≺

(
(X ×R)�G

))
�T ; g

)
. (153)

The corresponding twisted equivariant non-abelian de Rham cohomology is defined, as in Def. 3.65, to be the set
of coboundary-classes of the elements in the set (152):

Hτcan
dR

dR

((

≺

(
X�G

))
�T ; g

)
:= Ω

τcan
dR

dR

((

≺

(
X�G

))
�T ; g

)/
∼
.

In Borel-equivariant generalization of [FSS23, Prop. 3.86], we have:

Proposition 3.72 (Reproducing traditional Borel-Weil-Cartan equivariant de Rham cohomology). For the case
of trivial proper equivariance, G = 1, consider T ↷ X ∈ GActions

(
SmoothManifolds

)
(Def. 2.35) and let the

equivariant L∞-algebraic coefficient bundle (151) be the trivial bundle with fiber the line Lie n-algebra bn+1R
([FSS23, Ex. 3.27]). Then the canonically twisted proper G-equivariant & Borel T -equivariant non-abelian de
Rham cohomology of X (Def. 3.71) reduces to the traditional Borel-Weil-Cartan equivariant de Rham cohomology
(the cochain cohomology of the Cartan model complex (106)) in degree n:

Borel-Weil-Cartan equivariant
de Rham cohomology

Hn
dR,T

(
X
)

≃ HdR
(
X�T ; bnR

)
.

Proof. From unravelling the definitions it is clear that, under the given assumptions, the defining set of cochains
(152) reduces to the set of closed degree n elements in the Cartan model complex (106) on X = X1. Hence, given
any pair of such, it is sufficient to see that the coboundaries according to (153) exist precisely if a coboundary with
respect to the Cartan model differential ddR + ra

2 ∧ ι ta exists.
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In the case when the second summand ra
2 ∧ ι ta vanishes, this is shown by the proof in [FSS23, Prop. 3.86],

using the fiberwise Stokes theorem for fiber integration over [0,1] ⊂ R. Inspection shows that this proof general-
izes verbatim in the presence of the second summand in the Cartan differential, using that this second summand
evidently anti-commutes with the fiber integration operation:

ra ∧ ι ta

∫
[0,1]

C̃ = −
∫
[0,1]

ra ∧ ι taC̃ .

Remark 3.73 (Localization in gauge theory). Prop. 3.72 means that the equivariant de Rham cohomology consid-
ered here subsumes the traditional Borel-equivariant de Rham cohomology that is used, for instance, in localization
of gauge theories (see [Pe12][PZ+17]), and generalizes it to finite proper equivariance groups and to non-abelian
coefficients.

In equivariant generalization of [FSS23, Ex. 3.96], we have:

Example 3.74 (Flat equivariant twistorial differential forms). Consider the equivariant relative Whitehead L∞-
algebra (126) of ZA

2 -equivariant & Sp(1)-parametrized twistor space (76) (from Thm. 3.56) as an equivariant
L∞-algebraic local coefficient bundle (133)

l ≺

(
CP3�ZA

2
)

// lBSp(1)
(

≺

(
CP3�ZA

2
)
�Sp(1)

)
ρ ≺

(
CP3�ZA

2
)

��
lBSp(1)

(154)

Let X ∈ Z2Actions
(
SmoothManifolds

)
(Def. 2.35) be a spin 8-manifold with fixed locus (49) denoted

≺

(
X �Z2

)
:

Z2/1

Z2
��

��

7−! X11

Z2
		

OO
� ?

Z2/Z2 7−! XZA
2

(155)

and equipped with Z2-invariant Sp(1)-structure τ , compatible ZA
2 -invariant Sp(1)-connection ∇∈Sp(1)Connections(X),

and corresponding tangential de Rham twist (Example 3.70)

Ω•
dR

(

≺

(
X�Z2

))
oo τdR CE

(
lBSp(1)

)
.

1
4 p1(∇)  − [ 1

4 p1

Then the set of flat τdR-twisted equivariant differential forms (Def. 135) with local coefficients in (154) is of the
following form:

flat equivariant twistorial differential forms on Z2-orbifold X

Ω
τdR
dR

(

≺

(
X�Z2

)
; l ≺

(
CP3�ZA

2
))

flat

=


H3,
F2,

2G7,

G̃4

∈ Ω
•
dR
(
X11)

∣∣∣∣∣∣∣∣∣∣∣∣∣

twisted Bianchi identities in bulk ZA
2 -orientifold

d H3 = G̃4 − 1
2 p1(∇)−F2 ∧F2,

d F2 = 0,

d 2G7 =−G̃4 ∧
(
G̃4 − 1

2 p1(∇)
)

d G̃4 = 0,

restriction to ZA
2 -fixed locus

dH3|XZA
2
=− 1

2 p1
(
∇|XZA

2

)
−F2 ∧F2|XZA

2

G7|XZA
2
= 0,

G̃4|XZA
2
= 0


.

(156)

This follows as an immediate consequence of Prop. 3.56, according to which an element F of this set of forms is
a morphism of equivariant dgc-algebras of the following form (see around (??) for further discussion):
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F :

Z2/1

��

Z2
��
7−! Ω•

dR(X) oo

H3  [ h3
F2  [ f2

2G7  [ ω7

G̃4  [ ω̃4
α7!

α|XZ2

��

CE
(
lBSp(1)

)
h3,
f2

ω7,
ω̃4

/


d h3 = ω̃4 − 1
2 p1 − f2 ∧ f2

d f2 = 0
d ω7 =−ω̃4 ∧

(
ω̃4 − 1

2 p1
)

d ω̃4 = 0


����

Z2/Z2 7−! Ω•
dR

(
XZ2
)
oo CE

(
lBSp(1)

)[ h3,
f2

]/(d h3 = − 1
2 p1 − f2 ∧ f2

d f2 = 0

)
.

(157)

3.4 Equivariant non-abelian character map

The Chern character in K-theory is just one special case of a plethora of character maps in a variety of fla-
vors of generalized cohomology theories. In fact, as highlighted in [FSS23][SS25a], from the point of view of
homotopy-theoretic non-abelian cohomology theory – where all cohomology classes are represented by (relative,
parametrized) homotopy classes of maps into a classifying space (fibered, parametrized ∞-stack) – character maps
are naturally realized as the non-abelian cohomology operations induced by rationalization of the classifying space
(followed by a de Rham-Dold-type equivalence that brings the resulting rational cohomology theory into canonical
shape).

Seen through the lens of Elmendorf’s theorem (Prop. 2.26), rationalization in proper equivariant homotopy
theory (Def. 3.46) is stage-wise, on fixed loci, given by rationalization in non-equivariant homotopy theory. Con-
sequently, the equivariant character maps are fixed loci-wise given by non-equivariant characters, hence are fixed
loci-wise given by rationalization (followed by a de Rham equivalence).

For this reason we will be brief here and refer to [FSS23] for background and further detail. We just make
explicit now the concrete model of the equivariant non-abelian character map by means of the equivariant PL
de Rham Quillen adjunction from Prop. 3.50. and then we discuss one example (in ??): the character map in
equivariant twistorial Cohomotopy theory.

The character map in equivariant non-abelian cohomology.
In equivariant generalization of [FSS23, Def. 4.1], we set:

Definition 3.75 (Rationalization in equivariant non-abelian cohomology). Let A ∈

≺

GHomotopyTypesfinR
≥2 (Def.

2.33). Then we say that rationalization in A-cohomology is the equivariant non-abelian cohomology operation
(Def. 2.41) from A-cohomology to real LRA-cohomology which is induced (71) by the rationalization unit (121)
on A :

H
(
−;A

) (
ηR

A
)
∗ // H

(
−;LRA

)
.

In equivariant generalization of [FSS23, Def. 4.2], we set:

Definition 3.76 (Equivariant non-abelian character map). Let G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def. 2.35)

and g (Def. 3.36). Then the equivariant non-abelian character map on equivariant non-abelian A-cohomology
(Def. 2.37) over the orbifold ≺

(
X � G

)
(Def. 2.36) is the composite of the rationalization cohomology operation

(Def. 3.75) with the equivariant non-abelian de Rham theorem (Prop. 3.63) over the orbifold ≺(X�G) (Def. 2.36)

equivariant non-abelian
character map

chA(X) : H
(

≺

(
X�G

)
; A
)

equivariant non-abelian
A-cohomology

(
ηR

A
)
∗

rationalization // H
(

≺

(
X�G

)
; LRA

)
≃

equivariant non-abelian
de Rham theorem // HdR

(

≺

(
X�G

)
; lA
)
.

equivariant non-abelian de Rham cohomology
with coefficient in equivariant Whitehead L∞-algebra

(158)
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The character map in twisted equivariant non-abelian cohomology.
In equivariant generalization of [FSS23, Def. 5.2], we set:

Definition 3.77 (Rationalization in twisted equivariant non-abelian cohomology). Let ρA be an equivariant local
coefficient bundle of equivariantly 1-connected G-spaces of finite R-homotopy type, which admits an equivariant
relative minimal model; all as in Notation 3.66. Then rationalization in twisted equivariant non-abelian cohomol-
ogy with local coefficients in ρA (Def. 2.45) is the equivariant non-abelian cohomology operation

(
η
R
ρA

)
∗ : Hτ

(
X ; A

) (
DηPLdR

ρA
◦ (−)

)
◦ L
(
ηR

BG
)

! // HLRτ
(
X ; LRA

)
which is induced (as shown in [FSS23, (264)]) by the pasting composite with the naturality square on ρA of the
rationalization unit (Def. 3.46). By the fundamental theorem (Prop. 3.51), this means explicitly: the left derived
base change (e.g. [FSS23, Ex. A.18]) along the PLdR-adjunction unit (Prop. 3.50) on BG followed by composition
with the following commuting square, regarded as a morphism in the slice over its bottom right object:

Dη
R
ρA

:=



A�G

ρA

��

ηPLdR
A�G

//

DηPLdR
A�G ≃ ηR

A�G
--

exp ◦ΩPLdR
(
A�G

)
p

minBG
A�G

//

exp ◦Ω•
PLdR

(
ρA
)
��

exp ◦CE
(
lBG(A�G)

)
exp ◦CE(lρA )

��
BG

ηPLdR
BG //

DηPLdR
BG ≃ ηR

BG

22exp ◦Ω•
PLdR

(
BG
) pmin

BG // exp ◦CE
(
l(BG)

)


.

Here the left hand side is the naturality square of the equivariant PL de Rham adjunction (Prop. 3.50), while the
right hand side is the image under exp of the relative minimal model (146). (Hence the composite represents the
naturality square of the derived PL de Rham adjunction unit, see e.g. [FSS23, Ex. A.21]).

In equivariant generalization of [FSS23, Def. 5.4], we set:

Definition 3.78 (Twisted equivariant non-abelian character map). Let G ↷ X ∈ GActions
(
SmoothManifolds

)
(Def.

2.35), and let ρA be an equivariant local coefficient bundle of equivariantly 1-connected G-spaces of finite R-
homotopy type, which admits an equivariant relative minimal model; all as in Notation 3.66. Then the twisted
equivariant non-abelian character map is the twisted equivariant cohomology operation

twisted equivariant
non-abelian character

chτ
A : Hτ

(

≺

(
X�G

)
; A
)

twisted equivariant
non-abelian A-cohomology

(
ηR

ρA

)
∗

rationalization // HLRτ
(

≺

(
X�G

)
; LRA

)
≃

equivariant twisted non-abelian
de Rham theorem // HτdR

(
≺

(
X�G

)
; lA
)

twisted equivariant
non-abelian de Rham cohomology

(159)

from twisted equivariant non-abelian cohomology (Def. 2.45) with local coefficients in ρA to twisted equivariant
non-abelian de Rham cohomology (Def. 3.65) with coefficients in lρA (as in Notation 3.66).

Finally, we have:

Remark 3.79 (Proof of Theorem 1.1). We collect together our results:
(i) That the Bianchi identities in the twistorial character map are as shown on p. 6 follows by Prop. 3.56, as
discussed in Example 3.74.
(ii) That the quantization conditions in the twistorial character are as shown in (10) follows by observing that the
twisted equivariant character map (Def. 3.78) is fixed-locus wise equivalent to the corresponding non-equivariant
twisted character map [FSS23, Def. 5.4] (for instance by the fundamental theorem, Prop. 3.51, using that the
equivariant PL de Rham adjunction is stage-wise given by the non-equivariant PL de Rham adjunction, Prop.
3.50).
(iii) In particular, at global stage ZA

2/1 ∈ Z2Orbits on the bulk X1 = X , the equivariant twistorial character restricts
to the non-equivariant twistorial character map for which the claimed flux quantization condition have been proven
in [FSS20b, Prop. 3.13][FSS20c, Thm. 4.8][FSS20c, Cor. 3.11], see also [FSS23, §5.3].
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4 Application to flux-quantization

In conclusion, here we briefly indicate the meaning and significance of the above algebro-topological result in and
to theoretical physics, specifically concerning the problem of “flux quantization” [SS25a] in a candidate theory of
strongly-coupled quantum systems going by the working title “M-theory”.
Cohomology and Gauge fields. Beyond all the details, a remarkable general fact — that the applied algebraic
topologists may find entertaining — is the fundamental role that cohomology (generalized, twisted, equivariant,
differential, non-abelian, ...) has come to play in the fine-grained description of gauge fields (“force fields”)
in fundamental physics, especially of “higher gauge fields” – whose flux-densities are higher-degree differential
forms on spacetime satisfying differential “Bianchi” or “Gauß law” equations – that appear in attempts to fill
certain gaps in the contemporary understanding of fundamental physics.

In short, such flux densities are to be regarded as but the character images (9) of classes in some (general-
ized non-abelian) cohomology theory, the choice of which is a flux-quantization law that controls global (brane-)
charges imprinted on the gauge field, and the further refinement of these to cocycles in differential cohomology
encodes the “gauge potentials” typically discussed in the physics literature, on which the eponymous gauge trans-
formations are given by the corresponding coboundaries.

Table CG. While cohomology has of course many and
diverse applications, in physics no less than in other
fields, the role of cohomology specifically in the global
description of (higher) gauge fields (“force fields”) is
profound: In generalization of the seminal historical
observation (“Dirac charge quantization”) that electro-
magnetic field configurations are globally to be identi-
fied with 2-cocycles in ordinary differential cohomol-
ogy of spacetime, higher gauge field species are simi-
larly to be identified with generalized cohomology the-
ories whose further properties and attributes closely re-
flect the field’s physical nature, as indicated on the right.

cohomology gauge fields

-theory flux-quantization law

cocycle field configuration

coboundary gauge transformation

character flux densities

ordinary- electromagnetic

differential- gauge potentials

twisted- background fields

equivariant- on orbifolds

Real- on orientifolds

nonabelian- nonlinear Gauß law

Conversely this means that a fair amount of algebro-topological sophistication may be needed to propose or
construct a cohomology theory suitable for flux quantization of a given higher gauge theory, and then to deduce its
implications to be compared with physical expectations and, ultimately, with experiment. Much room is left here
for applied algebraic topologists to get involved.

We briely indicate how the equivariant twistorial Cohomotopy from the main text is motivated as a flux-
quantization law:

Characters arising in supergravity. With the character map (9) describing which generalized cohomology the-
ories A may serve as flux-quantization laws for given generalized Gauß laws lA on flux densities, we have to
ask: What are natural generalized such Gauß laws lA? Remarkably, a profound source is super-gravity, in the
following way (pointers in [GSS24a]):

It is a century-old observation due to É. Cartan that a field configuration of gravity is most usefully understood
as a torsion-free coframe field E (Cartan’s “moving frame”) on spacetime with coefficients in the typical tangent
space R1,d (Minkowski spacetime), subject to a corresponding “1st order”-formulation of Einstein’s equations.
A miracle happens as this situation is generalized from ordinary tangent spaces to tangent super-spaces R1,d |N,
meaning to super-vector spaces (namely: Z/2-graded vector spaces regarded with the unique non-trivial symmetric
braided monoidal category structure) whose odd component carries the structure of a real spinor representation
N ∈ RepR

(
Spin(1,d)

)
:
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11D Super-gravity. Namely a field configuration of 11D super-gravity is a supertorsion-free super-coframe
field (E,Ψ) on super-spacetime with coefficients in R1,10 |32, where – remarkably – the corresponding Einstein-
Rarita-Schwinger equations of motion are now equivalent [GSS24a, Thm. 3.1] simply to the statement that flux
super-densities of the following form (meaning: super-differential forms whose local expansion in the co-frame
field is of a prescribed form 6):

Gs
4 ≡ (G4)a1···a4Ea1 · · ·Ea4 + 1

2

(
ΨΓa1a2 Ψ

)
Ea1Ea2 ,

Gs
7 ≡ −(G7)a1···a7Ea1 · · ·Ea7 − 1

5!

(
ΨΓa1···a5 Ψ

)
Ea1 · · ·Ea5

(160)

satisfy the non-linear Bianchi/Gauß law encoded by the Whitehead L∞-algebra of the 4-sphere:

X Ω1(−; lS4)flat
(Gs

4,G
s
7) ⇔

 dGs
4 = 0

dGs
7 = −1

2 Gs
4 Gs

4

 ⇔


Equations of Motion
of 11D Supergravity
on supertorsion-free

super-coframe (E,Ψ)
(161)

(In particular, the equations of motion include the Hodge duality relation Gs
7 = −⋆ Gs

4 over the underlying ordinary
spacetime.)

Hence the non-linear Gauß law lS4 not only arises in but effectively constitutes 11D supergravity. But the
miracle does not end here:

M5-brane probes. Given the above Cartan-geometric formulation of 11D super-gravity, all based on consid-
eration of the Kleinian local model space R1,d |N, it is natural to consider Kleinian sub-spaces and ask for their
globalization to sub-supermanifolds of 11D spacetime. These are the “worldvolumes” of “probe super-branes”:

Concretely, any Clifford algebra basis element Γp+1··· ∈ Pin+(1,d) which squares to +1 (a “p-brane involu-
tion” [HSS18, §4.1]) corresponds to a projection operator on the Kleinian model space

P := 1
2

(
id + Γp+1···

)
: R1,d |N R1,p |N/2 R1,d |N (162)

which projects out a sub-space R1,p |N/2 of half the odd dimensionl (jargon: “1/2BPS”). Thus we may ask for super-
manifolds Σ1,p |N/2 carrying such a 1/2BPS-valued coframe field (e,ψ) and immersed into an ambient X1,d |N with
coframe field (E,Ψ) such the inclusion relation (162) is suitably exhibited tangentspace-wise.

Such 1/2BPS super-immersions ([GSS24b, Def. 2.19] essentially known in the literature as “super-embeddings”)
exist in 11D supergravity in particular for p = 5, known as immersions of probe M5-branes into spacetime. Re-
markably, the 1/2BPS-immersion condition entails and is essentially implied by the existence of a 3-flux density
super-form

Hs
3 ≡ (H3)a1a2a3ea1 ea2 ea3

on the M5’s worldvolume Σ1,p |28+ , such that it is a coboundary for the pullback of the 4-flux to the worldvolume,
and hence constitutes a lift to the Gauß law encoded by the quaternionic Hopf fibration lS4S7:

Σ1,5 |2·8+ Ω1
dR

(
−; lS4S7

)
flat

X1,10 |32 Ω1
dR

(
−; lS4

)
flat

Hs
3

φ

1 /
2B

PS
im

m
er

si
on

l(H-Hopf fib.)

(Gs
4,G

s
7)

⇔



dH3 = φ ∗Gs
4

dG4 = 0

dG7 = −Gs
4 Gs

4


⇔


1/2BPS immersion

of M5-worldvolume
in 11D SuGra solution

(163)

This means that at this point, a valid flux-qunatizaton law for these fields is given by Cohmotopy: 4-Cohomotopy
for the bulk C-field (as such proposed in [Sa13, §2.5] and developed in [FSS19b][GS21][GSS24a]), twisting 3-
Cohomotopy (classified by the S3-fiber of the quaternionic Hopf fibration) on the brane’s worldvolume (discussed
in [FSS19c][FSS21][GSS24b]).

But here we take into account one more field:

6In (160) we include a convetional sign in the definition of Gs
7 to comply with the sign convention used in the main text.
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Chern-Simons gauge field. In view of this effective re-definition – of on-shell 11D supergravity with probe
branes – in terms of (non-linear) Gauß laws for super-flux densities on super-space, we may go ahead and consider
a further super-flux density

Fs
2 ≡ (F2)a1a2ea1 ea2

on the M5-worldvolume, subjected to the Gauß law for an ordinary gauge field, but again imposed on super-space:

dFs
2 = 0 .

Analysis of the super-components immediately shows that this is equivalent to the further equation of motion

F2 = 0 (164)

as befits a(n abelian) Chern-Simons gauge field.
While this equation of motion (164) means that such super-flux Fs

2 is actually “rationally invisible”, under
flux-quantization it may still contribute pure torsion-effects to the other higher gauge fields: Namely if we add —
without changing the above equations of motion!, due to (164) — a summand of Fs

2 Fs
2 to the Gauß law for Hs

3, then
(according to Thm. 1.1) it is no longer controlled by the quaternionic Hopf fibration but by the twistor fibration:

Σ1,5 |2·8+ Ω1
dR

(
−; lS4CP3

)
flat

X1,10 |32 Ω1
dR

(
−; lS4

)
flat

(Fs
2 ,H

s
3)

φ l(twistor. fib.)∗

(Gs
4,G

s
7)

⇔



dFs
2 = 0

dH3 = φ ∗Gs
4

−Fs
2 Fs

2

dG4 = 0

dG7 = −Gs
4 Gs

4


⇔


1/2BPS immersion

of M5-worldvolume
with CS gauge field

in 11D SuGra solution

(165)
As the notation already suggests, an admissible flux-quantization law admissible for this system of non-linear

Gauß laws is the non-abelian cohomology theory whose classifying space is CP3 (over S4), hence the “twistorial
Cohomotopy” of [FSS20c][SS23a]. The character map on this cohomology theory is of course just what we
develop in the main text, in twisted equivariant generalization, and we close by commenting on the consequences:

Tangential twisting and shifted integrality. The higher gauge fields (flux densities) considered above are all
defined on given (immersions of) super-spacetimes, and as such with respect to the background field of (super-
gravity). According to the dictionary of Table CG, background fields manifest as twisting of the flux-quantizing
cohomology theory. Since the topological charges of gravity are encoded in the the frame bundle (or its associ-
ated tangent bundle) of spacetime, classified by a map X FrX−−! BSpin(1,10), we are looking for a corresponding
“tangential” twisting of twistorial Cohomotopy. The subgroup of Spin(1,10) that preserves the quaternionic Hopf
fibration is Sp(2) ·Sp(1) [FSS19b, Prop. 2.20], and the subgroup that preserves the twistor fibration is still Sp(2)
[FSS20c, Prop. 2.2], of which finally in the main text we consider the further subgroup Sp(1), for definiteness.

The shifted flux quantization (10) of G4 which is implied [FSS19b, Prop. 3.13] by this tangential twisting is
thought to be [Wi97] a key aspect of the completion of 11D SuGra to “M-theory”.

Equivariance and anyonic solitons. As indicated in Table CG, passage to equivariant cohomology on G-
spaces corresponds to considering higher gauge fields on (super) G-orbifolds (cf. [SS19a][BSS19]).

In the present context, an interesting situation are M5-branes wrapped on S1-bundles over 2-dimensional orb-
ifolds locally of the following form (Seifert-like orbifolds, as also considered in [Pei16, (2.14)]):

Σ
1,5 ≡ R1,0 ×R2

∪{∞}× S1 ×R2 ,

Z/2

where Z/2 acts on R2 by point reflection, and where (−)∪{∞} denotes one-point compactification by adding a “point
at infinity”, as suitable for measuring solitonic charges ([SS25a, §2.2]).

On worldvolume domains, of this form, flux-quantization in equivariant twistorial Cohomotopy restricts on the
orbi-singularity to flux-quantization in 2-Cohomotopy (76) .
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Z/2/1 R1,0 ×R2
∪{∞}×S1 ×R2 CP2

Z/2/Z/2 R1,0 ×R2
∪{∞}×S1 S2

By a recent result [SS24b], this has the interesting consequence of implying that the corresponding solitonic
feld configurations have anyonic quantum states described by abelian quantum Chern-Simons theory. Such a
derivation is of considerable interest in application to quantum materials and quantum computation (cf. [SS23b]);
several authors have argued for a similar conclusion on more informal grounds, following [CGK20]. We will
further discuss this elsewhere.
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[Lu14] J. Lurie, Nonabelian Poincaré Duality, Lecture 8 in Tamagawa Numbers via Nonabelian Poincaré Duality (282y)
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