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Foreword

The theory presented here — geometric cohomology formulated modally in
cohesive ∞-toposes — goes back to 2009 [SSS12] and has seen a number
contributions since, but a published monograph had been missing.

The nucleation seed of this book were developments in 2019, when we
found further evidence [FSS20] for the hypothesis (Hypothesis H) that some-
thing called flux-quantization of 11D super-gravity (reviewed in [SS25a]) on
spacetime manifolds should take place in the generalized cohomology theory
named tangentially twisted unstable 4-Cohomotopy, since we also found [SS20]
that in the neighbourhood of orbifold-singularities the relevant cohomology
theory should really be proper equivariant unstable 4-Cohomotopy in the RO-
degree given by the singularity’s isotropy representation. The proof that the
latter is indeed a special case of the former, when the notion of “tangential
twist” is generalized from manifolds to orbifolds, became the seed text (now
Thm. 6.2.6, see Fig. 7 on p. 20) that eventually grew into this book.

However, while a first draft of the book circulated — which (as referees
rightly remarked) did not dwell on more traditional orbifold cohomology theo-
ries such as notably K-theory — we became absorbed with first discovering and
then developing the relation of Hypothesis H to quantum materials relevant
for topological quantum computing – this via orbifold K-theory [SS23a][SS23b]
whose natural dicussion via cohesion in ∞-toposes meanwhile turned into a
monograph of its own [SS25d].

Concretely, Hypothesis H has led (applied to M5-branes probes of orbifolds)
to an understanding [SS25g] of symmetry-protected anyonic topological order
in crystalline fractional Chern insulators. Connecting this back to the more
traditional K-theory classification of topological phases of matter requires ana-
lyzing the Boardman homomorphism from unstable Cohomotopy to K-theory,
but generalized to an operation between orbifold cohomology theories twisted
by the corresponding crystallographic point group. This is the content of §xy
below.

The eventual ambition of these applications, to resolve yet more fine-
grained geometric aspects such as (super-)conformal structure, motivates the
detailed development of modal orbifold geometry in §5.
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Preface

Both the geometry and the cohomology of orbifolds have received fair at-
tention, but less so the systematic combination of these two aspects. This
book provides a unified framework of geometric orbifold cohomology, natu-
rally based on the principle of cohesion in higher toposes, and develops several
key examples.

Although generally abstract, the topic has strong motivation from con-
temporary (experimental) physics: First, configuration spaces X of matter
systems are (super-geometric) manifolds by default and generically orbifolds
when subject to symmetries, a key example being the spaces of quasi-momenta
of electrons in a crystal. On this backdrop, the (effective) force fields (like
Berry connections) in their full global (non-perturbative, solitonic) guise are
represented by maps X Φ

−! A to more general classifying spaces (or rather
moduli stacks) of which only their gauge equivalence classes [Φ] are physi-
cally discernible; these classes constitute the geometric A-cohomology of the
orbifold X! From this perspective, geometric orbifold cohomology is about
the very foundations of physical systems including their oft-neglected global
“topological” aspects, and the book concludes with outlook on application to
contemporary questions in the study of both quantum materials and high-
energy physics.

In pure mathematics, this principle of (functorially) assigning cohomology
classes [Φ] to their base spaces X is of course the hallmark of algebraic topol-
ogy, which in conjunction with homotopy theory is understood as systems of
homotopy classes of maps X Φ

−!A — and this book emphasizes our perspec-
tive that all manner of generalized and adjective-laden cohomology theories
(hyper, sheaf, étale, extra-ordinary, twisted, equivariant, differential,...) are
uniformly to be understood as represented by objects A of suitable (cohesive)
higher toposes. As a prime example the book lays out a useful model of orb-
ifold K-theory this way, relates it to the orbifold Cohomotopy and indicates
applications to the physics of topological quantum materials.

The technical task then is to give precise meaning and tractable operabil-
ity to the symbols

[
X Φ
−!A

]
in view of the joint geometric, orbifolded and

classifying nature of the spaces involved, and this book offers a neat and nat-
ural way to do so, tying together separate traditional discussions to provide a
unified and practical basis for discussing geometric orbifold cohomology.
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1
Introduction

CONTENTS
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1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1 Motivation
Orbifolds. Where a manifold is a space that looks locally like a Cartesian
space Rn (cf. [Lee12]), so an orbifold ([Sa56][Sa57][Th80][Hae84], review in
[MM03][Ka08, §6][BG08, §4][IKZ10]) is, more generally, a space that looks
locally like the quotient (suitably understood) of an Rn by the action of a
finite group G of diffeomorphisms. Here the G-action may have fixed-points
which in the quotient become singular points, such as a crease in a piece of
paper or the tip of a cone, cf. Fig. 1:

Figure 1 – Orbifold charts.

local chart
of a manifold

group action
on the chart

quotient chart
of an orbifold

The purpose of orbifold structure is to generalize the differentiable structure
of manifolds to allow for singular loci of such form: orbi-singularities.

A basic class of examples is provided by the orbifold quotients Tn �Z2
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2 Geometric Orbifold Cohomology

of the n-torus Tn := Rn/Zn by the Z2-action that swaps the signs of the
canonical coordinates:

Figure 2 – The pillowcase orbifold T2 �Z2 (graphics from [Dr11, Fig. 2.6]).

T0 �Z2 is – in a sense which we will discuss in detail – the classifying or
delooping groupoid BZ2 (1.14): A single point but equipped with a
non-trivial involution.

T1 �Z2 plays a central role in Hořava-Witten theory [HW96].
T2 �Z2 is known as the pillowcase orbifold (cf. Fig. 2);
T3 �Z2 does not have a special name but appears as the space of effective

crystal momenta for quantum materials with time-reversal symme-
try (cf. §xy).

T4 �Z2 is the time-honored Kummer surface (cf. [Do20] and Fig. 3).
T5 �Z2 is the background of MO5-planes M-theory (cf. [Wi96][SS20]).

Figure 3 – The Kummer orbifold T4 �Z2. Shown is a sequence of pro-
jections to 2d of the 4-dimensional structure (graphics from [Do20]).

Thus, orbifolds have become commonplace in mathematics (e.g.
[BLP05][Rat06, §13][JY11]), and play a decisive role in theoretical physics
(see [AMR02]), notably so in string/M theory ([DHVW85][DHVW86][BL99]
[SS20]) and in solid state physics ([JBD96][Jo99][GT19][SS23b][SS22b]) —
in fact it is via “geometric engineering” of quantum field theories [KKV97]
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(cf. [Ka98, §1.4.1][DZ23]), on the branes of string/M-theory, probing orbi-
singularities, that modern descriptions [SS25e] of strongly-correlated quantum
materials arise [SS25b][SS25c]. This book is to provide rigorous but practical
mathematical framework and tools notably for such applications.

This is not, a priori, immediate: Definition of the geometric homotopy
theory (cf. §I) thus of the geometric cohomology (§II) of orbifolds may appear
subtle and elusive, as witnessed by the convoluted history of the concept (cf.
[Le08, Intro.][IKZ10, §1]). In fact, the issue had remained somewhat open, as
we proceed to recall:
Orbifolds as étale stacks? A proposal popular among Lie theorists [MP97]
(see [Mo02][Le08][Am12]) is to regard an orbifold with local charts Gi ↷ Ui

(2.13) as

• the étale groupoid; in particular: Lie groupoid (see [MM03][TX06]) or
topological groupoid (see [CPRST14]);

• equivalently, the étale geometric stack; in particular: differentiable or topo-
logical stack ([Ca11][Ca19][Gi13])

obtained by gluing the corresponding homotopy quotient stacks Ui�Gi (1.15).
This proposal is directly modeled (explictly so in [Jo12, §8]) on the concept
of Deligne-Mumford stacks in algebraic geometry ([DM69], review in [Kr09])
and extends to a concept of general étale ∞-stacks [Ca20][Ca16]. It relies on
the fact that étale stacks, in their role as homotopy-theoretic generalizations
of sheaves, fully capture geometric aspects (via generalized sheaf cohomology
[Br73], see [NSS12a]), while in their role as geometric refinements of classifying
spaces they support Borel equivariant cohomology (see [Tu11]). However, Borel
cohomology is coarser than the proper equivariant cohomology that is generally
relevant in theory and in applications:
Proper equivariant cohomology1, formulated in equivariant homotopy
theory (review in [Blu17][May96]), is obtained by refining the purely
homotopy-theoretic nature of Borel cohomology by the geometric (“cohesive”,
see §1.2) nature of fixed loci (see Ex. 4.2.26) of topological group actions –
hence by the characteristic nature of orbifold geometry – as encoded in the
category of orbits of the equivariance group (recalled in §2.2). The proper
equivariant version of ordinary cohomology is known as Bredon cohomology
[Br67a][Br67b] (review in [Blu17, §1.4][tD79, §7]); beyond that, there is a
wealth of proper equivariant generalized cohomology theories (Def. 2.2.6 be-
low) such as equivariant K-theory [Se68][AS69] (which is proper equivariant
by [AS04, §6 & A3.2][FHT07, A.5][DL98]) and equivariant Cohomotopy theory
[Se71][tD79, §8][SS20][BSS19].

However, if orbifolds are modeled just by étale stacks, then their proper
1We follow [DHLPS19] with the terminology “proper equivariant cohomology”, see Re-

mark 5.2.47 below, using it to distinguish from näıve or Borel equivariance.
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equivariant cohomology remains, by and large, invisible. This is true even for
Chen-Ruan orbifold cohomology:

Traditional orbifold cohomology and its shortcomings. Given an orb-
ifold X, we write (see §1.2) ⊂X for the étale stack underlying it, and2 S ⊂X for
its geometric realization or classifying space (often denoted BX ). In the case
that X is the global quotient orbifold of a G-space X, this is the homotopy
type of the Borel construction; so that we may generally call S ⊂X the Borel
space of the orbifold. Now, traditional orbifold cohomology is [ALR07, p. 38]
just the ordinary cohomology (e.g. singular cohomology) of this Borel space,
hence is Borel cohomology:

traditional
orbifold cohomology

H•
trad

(
X, A

)
:=

Borel cohomology
H•

sing
singular

cohomology

(
S ⊂X
Borel
space

, A
)
. (1.1)

This can be considered with any kind of coefficients A, notably in the gener-
ality of local coefficient systems [MP99], but it always remains an invariant
of just the Borel space. Moreover, for a coefficient ring that inverts the order
of the isotropy groups of X , hence in particular for rational, real and com-
plex number coefficients A ∈ {Q,R,C}, the purely torsion cohomology of the
orbifold’s finite isotropy groups becomes invisible, and traditional orbifold co-
homology reduces further (e.g. [ALR07, Prop. 2.12]) to an invariant of just
the shape S <X of the singular quotient space <X (the “coarse moduli space”)
underlying the orbifold (often denoted |X |):

traditional rational
orbifold cohomology

H•
trad

(
X, Q

)
≃

ordinary cohomology

H•
sing

singular
cohomology

(
S < X
näıve/coarse

quotient
space

, Q
)
. (1.2)

It is in this form that orbifold cohomology was originally introduced (in [Sa56,
Thm. 1], following [Ba54], reviewed in [ALR07, 2.1]).

Of course it did not go unnoticed that this coarse notion of orbifold co-
homology is insensitive to the actual nature of orbifolds. In reaction (and
motivated by algebraic constructions [DHVW85][DHVW86] on 2d conformal
field theories interpreted as describing strings propagating on orbifold space-
times), Chen and Ruan famously proposed a new orbifold cohomology theory
in [CR04]. But in fact Chen-Ruan cohomology of an orbifold is (see [Cl14, p.
4,7] for review) just Satake’s coarse cohomology (1.2), but applied to the cor-
responding “inertia orbifold” (cf. [LU04b][SS24]) Map

(
SS1,X

)
of maps from

2The “esh”-symbol “S” stands for shape [Sc13, 3.4.5][Sh15, 9.7], following [Bo75], which
for well-behaved topological spaces is another term for their homotopy type [Lu09a,
7.1.6][Wa17, 4.6]; see Ex. 4.1.18.
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the shape of the circle:
Chen-Ruan

orbifold cohomology

H•
CR
(
X
)

≃
traditional orbifold cohomology

H•
trad

(
Map(SS1,X )

inertia orbifold
, C
)
. (1.3)

Still, it turns out that, for global G-quotient orbifolds X = ≺(X�G), Chen-
Ruan cohomology is equivalent to a proper equivariant cohomology theory,
namely to Bredon cohomology with coefficient system given specifically by:

ACR : G/H 7−! ClassFunctions(H,C) . (1.4)
This was observed in [Mo02, p. 18], using [Ho90, Thm. 5.5] with [Ho88, Prop.
6.5 b)]: Chen-Ruan cohomology

H•
CR
(

≺(X�G)
global quotient

orbifold

, C
)

≃
Bredon cohomology

H•
G

(
X , ACR
specific system

of coefficients (1.4)

)
. (1.5)

Thus the success of Chen-Ruan cohomology (surveyed in [ALR07, §4,5]) high-
lights the relevance of proper equivariance in orbifold cohomology. At the same
time, this means that to detect the full proper equivariant homotopy type of
orbifolds, one needs an orbifold cohomology theory that induces Bredon coef-
ficient systems more general than (1.4); and, in fact, one that subsumes also
generalized equivariant cohomology theories such as equivariant K-theory. In
[AR01] the authors define orbifold K-theory to be the equivariant K-theory
of any global quotient presentation (see also [ARZ06][BU09][HW11]):

traditional
orbifold K-theory

K•( ≺(X�G)
global quotient

orbifold

)
:=

equivariant
K-theory

K•
G(X) . (1.6)

This has been justified for this specific case of K-theory by checking explicitly
[PS10, Prop. 4.1] that the right hand side of (1.6) is independent of the choice
of global quotient presentation on the left. However, in general, this approach
of circumventing an intrinsic definition of orbifold cohomology by just defining
it to be equivariant cohomology of global quotient presentations is, besides
being somewhat unsatisfactory, in need of justification:

Orbifolds in global equivariant homotopy theory? That orbifold co-
homology should also capture proper equivariant cohomology was suggested
explicitly in [PS10]. However, the fundamental issue remained that a quotient
presentation X ≃ ≺(X�G) of an orbifold is not intrinsic to the orbifold, sim-
ilarly to a choice of coordinate atlas, while in equivariant cohomology theory
the equivariance group G is traditionally taken to be fixed. But this suggests
[Schw17, Intro.][Schw18, p. ix-x] (details in [Ju20]) that the right context for
orbifold cohomology is “global” equivariant homotopy theory [Schw18] (follow-
ing [HG07] and originally motivated from patterns seen in genuine equivariant
stable homotopy theory [Se71][LMS86]) where the equivariance group G is al-
lowed to vary in a prescribed class of groups. On the other hand, plain global
homotopy theory retains no geometric information!
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The open problem is thus to set up a mathematical theory of proper orbifold
cohomology which unifies:

(i) the higher geometric and differential aspects of orbifolds captured by
geometric/differential homotopy theory; and

(ii) the singular (equivariant) aspects of orbifolds captured by proper and
global equivariant homotopy theory.

differential
homotopy theory

equivariant
homotopy theory

singular cohesive
homotopy theory

To achieve this, we turn to higher topos theory ([TV05][Lu09a][Re10],
see §3.1) as the ambient foundational homotopy theory in which we for-
mulate higher orbi-geometry by means of systems of cohesive modalities
([Sc13][Sc19][Sc25][SS25d], see §4, §5):

Higher toposes, where higher geometry takes place. For our purposes,
a higher topos is a universe of generalized & higher geometric spaces (exposi-
tion in [Sc25]):

smooth-,
infinitesimal-,

super-geometric...

generalized
geometry

higher
geometry

gauged-
classifying-,

moduli-spaces...

higher topos

(a) Here “generalized geometry” refers to what Grothedieck called func-
torial geometry [Gr65] (review in [DG80]), which he urged in [Gr73] should
supersede any point-set (locally ringed) definition of geometric spaces (fur-
ther amplified by Lawvere, cf. [La86][La91]): The idea is to define spaces
operationally – much as envisioned in physics – by how they may be
probed by a small category of probe spaces (affine spaces or charts, see
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[FSS14][JSSW19][Sc25][GS25] and Def. 4.1.9 below), such as
Chrt =

CrtSpc (Def. 3.1.5)
JetCrtSp (Def. 4.1.22)
SuperCrtSp (Def. 4.1.41)
Snglrt (Def. 4.2.1)
SnglrChrt (Lem. 4.2.15)
. . . ,

(1.7)

and then to encode a would-be generalized (“target”-)space X by assigning to
each Σ ∈ Chrt the collection

probe space

Σ 7−!

collection of probinges of
generalized space X by Σ

X (Σ) :=
{

“ Σ! X ”
}

(1.8)
of geometric (e.g. smooth, super-geometric, etc.) maps into X ; where the quo-
tation marks indicate that, at this point of bootstrapping X into existence,
the category in which these probings are actual maps is yet to be specified. To
that end, one observes that a minimal set of consistency conditions on such an
abstract assignment (1.8) to be anything like collections of maps into a space
X are:

(1) Functoriality of probes. For every map ϕ of Chrt there is an operation
of “pre-composition of probe maps by ϕ”:

map of
probe spaces

Σ1

ϕ

��

pre-composition operation
on collections of probes

X (Σ1)

Σ2 X (Σ2)

X (ϕ) = “ (−)◦ϕ ”

OO
such that

X (ϕ2)◦X (ϕ1)
≃

X (ϕ2 ◦ϕ1) .

(1.9)

(2) Gluing of probes. If { Ui
// Σ }i∈I is a cover of Σ ∈ Chrt by several

Ui ∈ Chrt, then probingses of X by Σ should be equivalent to those tuples
of probinges by the Ui which are coherently identified on intersections:

X (Σ) ≃


tuples of probes Ui −! X

identified on intersections Ui ∩ Uj

compatibly on Ui ∩ Uj ∩ Uk

etc.

 . (1.10)

In the jargon of topos theory (see [MLM92][Joh02]), condition (1.9) says that
the collection X (−) of probes of X is a pre-sheaf on Chrt, while condition
(1.10) says that this is in fact a sheaf. Hence the category of generalized geo-
metric spaces probeable by Chrt is the category of sheaves (the Grothendieck
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topos) on Chrt:
topos of generalized

geometric spaces GnrlzdSpc := Shv
(
Chrt

) category of sheaves
on site of charts (1.11)

Now, every Σ ∈ Chrt is itself canonically regarded as a generalized space y(Σ) ∈
GnrlzdSpc, by taking its probes to be those given by morphisms of Chrt (this
is the Yoneda embedding3, recalled as Prop. 3.1.37 below):

chart regarded as
generalized space

y(Σ) : Σ′

collection of its
Σ′-shaped probes{

Σ′! Σ
}

=: Chrt(Σ′,Σ) (1.12)

Hence we have completed the bootstrap construction of generalized spaces
X in (1.8) if we may remove the quotation marks there, hence if for X ∈
GnrlzdSpc there is a natural equivalence

Σ-shaped
probes of X

X (Σ) ≃
actual maps from y(Σ) to X{

y(Σ)! X
}

:= GnrlzdSpc
(
y(Σ),X

)
. (1.13)

That this is indeed the case is the statement of the Yoneda lemma (recalled
as Prop. 3.1.38 below), which thus implies consistency and existence of gen-
eralized geometry!
(b) On the other hand, “higher geometry” (see [FSS14][FSS19][JSSW19]
for exposition and applications) refers to the refinement of the above the-
ory of generalized geometric spaces, where the collection of probes (1.8) of
a generalized space is not necessarily just a set, but may be a set equipped
with equivalences between its elements (a gauged set), and with higher order
equivalences (higher gauge transformations) between these, etc. – called an
∞-groupoid (typically modeled as a Kan simplicial set, see [GJ99, I.3]). For
example, for X ∈ Set and G a discrete group acting on X, the correspond-
ing action groupoid (Ex. 3.1.15 below) consists of the elements x ∈ X, but
equipped with an equivalence between x1 and x2 for every group element
whose action takes x1 to x2:

homotopy
quotient X�G ≃


y

gi

��

g1·x

g3·g2

��

g2

  
x

g1

BB

g3·g2·g1 $$

g2·g1 // g2·g1·x

g3xx
g3·g2·g1·x

z

g1
��

\\

g−1
1

g1·z

g2
""

dd

g−1
2

g2·g1·z · · ·


plain

quotient X/G ≃
{

[y] [x] [z] · · ·
}

τ0

This is a model for the homotopy quotient of X by G, which resolves the plain
quotient X/G (the set of equivalence classes) by remembering not only that

3Shown here for sub-canonical Grothendieck topologies on Chrt, which is the case in all
examples of interest here.



Introduction 9

but how pairs of elements are equivalent. More precisely, the action groupoid
remembers the graph and syzygies of the G-action, encoded in its Kan simpli-
cial nerve (Ex. 3.1.69 below):

X �G ≃
set of

homotopies
X ×G×G

(x,g1,g2)7!(g1·x,g2) //
oo

(x,g1,g2)7!(x,g2·g1) //
oo

(x,g1,g2)7!(x,g1) //

set of
maps

X ×G

(x,g)7!g·x //
oo (x,e) [x

(x,g)7!x
//

set of
objects

X

 .

In particular, if an element y ∈ X is fixed by the group action, then in the
homotopy quotient it appears as the one-object delooping groupoid of G:

BG ≡ ∗�G =
{

∗

g

�� | g ∈ G
}

. (1.14)

More generally, if X ∈ Chrt in the list (1.7) is equipped with the action of
a discrete group G, then we obtain a higher generalized space X := X�G
whose ∞-groupoid of Σ-shaped probes (1.8) is the action groupoid of the
induced action on the set of Σ-shaped probes of X (the following formula is
for contractible charts, Lemma 4.1.12):

global quotient
orbifold

X�G : Σ 7−!

groupoid of its Σ-shaped probes(
X�G

)
(Σ) := X(Σ)�G = Chrt(Σ,X)�G. (1.15)

Such a higher generalized space with collections of probes (1.8) being
groupoids, and satisfying the appropriate gluing condition (1.10), may be
called a 2-sheaf or sheaf of groupoids [Br93] on Chrt, in generalization of
(1.11), but is commonly known as a stack [DM69][Gi72][Ja01][Ho08], follow-
ing champ [Gi66]. Generally, a higher generalized space with ∞-groupoids of
probes is thus an ∞-sheaf or ∞-stack on Chrt, in generalization of (1.11):

∞-topos

H :=
higher category of

higher generalized spaces
HigherGnrlzdSpc :=

∞-category of ∞-stacks

Shv∞
(

Chrt
∞-site of

probe spaces

)
. (1.16)

Higher topos theory. The theory of ∞-stacks originates with [Br73], de-
veloped in [Ja87][Ja96] (survey in [Ja15]) and brought into the more abstract
form in [TV05][Lu09a][Re10] (introduction in [Re19]). While the theory has a
reputation of being intricate, this is really a reflection of its simplicial models
and hence of the richness of its implications, while – on the contrary — fini-
tary constructions internal to ∞-toposes behave so very well that they may
naturally be formulated [Sh19] in a kind of programming language now known
as homotopy type theory [UFP13]. While we will not dwell on this here, we do
focus on elegant internal constructions. For some of these, a homotopy type-
theoretic formulation has already been explored in the literature, cf. Table
1.
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Table 1 – Existing formalizations.
Theory internal
to an ∞-topos

Formulation in
ordinary math

Formulation in
ho-type theory

Galois theory §3.2 [NSS12a] [BvDR18]

modalities & cohesion §4.1 [SSS12][Sc13] [RSS17][Sh15]

étale ∞-stacks §5.2 [KS17] [Ch24][CRi20]

cohomology §6 [SSS12][NSS12a] [Cav15][BH18]

In particular a key aspect of our treatment here is that we capture
(orbi-)geometry in terms of systems of adjoint modal operators on the am-
bient higher topos:

Dual modalities in an ∞-Topos. In view of the above every ∞-topos
H may be thought of as a homotopy theory of generalized geometric spaces
of a a certain nature. In order to narrow back in, among these very gen-
eralized spaces, onto those which are relatively tame, we may, in the spirit
of [La91][La94][La07], axiomatize qualities of geometric spaces (such as be-
ing discrete, smooth, étale, reduced, bosonic, singular, etc.) via the systems of
(co-)reflective sub-∞-categories H#,H2, · · · ⊂ H, that the objects with these
properties (should) form inside H [SSS12][Sc13]:
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(1.17)

These reflections induce systems of adjoint (co-)projection operators # ⊣ 2 :
H!H, the associated idempotent (co-)monads:

# := i∗ ◦ i! , 2 := i∗ ◦ i∗ or # := i∗ ◦ i∗ , 2 := i! ◦ i∗ , (1.18)
to which we refer as modal operators or just modalities [Sc13][RSS17][Co20].
These are idempotent (Prop. 3.1.29),

##X ≃ #X , 22X ≃ 2X , (1.19)
which means that they act like projecting out certain qualitative aspects of
generalized spaces, while them being adjoint means that they project out an
opposite pair of such qualities. Therefore, their (co-)unit transformations η2

(3.25) and ϵ# (3.26) exhibit every X ∈ H as carrying a quality intermediate
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to these two opposite extreme aspects [LR03, p. 245]:

#X
pure

#-aspect

ϵ#
X // X

generalized
geometric space

η2
X // 2X

pure
2-aspect

.

It turns out that by axiomatizing, this way, that every space X has a pair
of opposite extreme aspects #X and 2X to it, the spaces X themselves are
forced to behave like carrying the kind of extra geometric structure which may
be in between these opposites.
Differential topology in an ∞-topos. For example, any adjoint modality
♭ ⊣ ♯ (see Def. 4.1.1 below) that contains the initial modality ∅ ⊣ ∗ (which
globally projects to the initial and the terminal object, respectively) acts like
projecting out discrete and purely continuous (co-discrete, chaotic) aspects of
a space. Consequently, the existence of such a modality on H exhibits each
space X ∈ H as carrying quality intermediate to these extremes, hence, in this
example, as equipped with a kind of topology (see [Sh15, §3], following [La94]).

We observe here that extending this basic example to a larger system
of adjoint modalities allows to abstractly encode the presence of differential
geometric structure (Def. 4.1.21 below) and of super-geometric structure (Def.
4.1.40 below) in a powerful abstract way.

Generalized cohomology in an ∞-topos. At the same time, ∞-toposes
may be understood as naturally embodying the ultimate notion of generalized
cohomology theories (following [SSS12][NSS12a][Sc13]) subsuming and com-
bining all of the examples listed in Table 2 on p. 12.

Namely, all these cohomology theories become “representable” in ∞-topos
theory, meaning that their cohomology classes are simply the (homotopy)
equivalence classes of maps in the ∞-topos to a given classifying object A ∈ H:

Concretely, for X,A ∈ H a pair of objects, with X regarded as a domain
“space” and A as the “coefficients” of cohomology, then A-cohomology of X
is embodied by the morphisms from X to A:

(i) a morphism X
c // A is a cocycle;

(ii) a homotopy X

c1
%%

c2

99 A�� is a coboundary;

(iii) the homotopy groups of the cocycle space
H−n(X,A) := πn H(X,A) ≃ π0 H(X,ΩnA) (1.20)

are the cohomology sets of X with coefficients in A. (Here Ωn(−) is the
n-fold based looping operation.)

This is the intrinsic cohomology theory of the ∞-topos H — we discuss various
examples below in §6.
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Table 2 – Generalized cohomology and ∞-toposes

Flavor of
cohomology

realized in
∞-toposes

Sheaf hyper-
cohomology

non-discrete
∞-toposes [Br73]

Non-abelian
cohomology

general
∞-toposes [SSS12][NSS12a, 3]

Twisted non-abelian
cohomology

slice
∞-toposes Prp. 3.1.46, Rem. 3.2.21

Twisted extraordinary
cohomology

tangent
∞-toposes Ex. 3.1.51, Rem. 3.2.23

Differential
cohomology

cohesive
∞-toposes Def. 4.1.1, Rem. 4.1.20

Étale
cohomology

elastic
∞-toposes Def. 4.1.21, Def. 6.2.1

Superspace
cohomology

solid
∞-toposes Def. 4.1.40, Rem. 4.1.44

Proper equivariant
cohomology

singular
∞-toposes

Def. 4.2.3, Rem. 6.1.4,
Thm. 6.1.9

Geometric orbifold cohomology in cohesive ∞-toposes. In summary,
this suggests that the otherwise thorny question of how to conceive of

(i) orbifold geometry with its delicate interplay of differential geometric
with equivariant and homotopy theoretic aspects

(ii) orbifold cohomology sensitive to this peculiar orbi-geometry while un-
constrained by it in generality

finds a natural and powerful solution when orbifolds are understood as objects
of ∞-toposes equipped with systems of adjoint geometric modalities. This
approach we lay out in the present book.
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1.2 Results
With this machinery in hand, we develop the following results.
Axiomatic orbifold geometry in modal homotopy theory. By the
above, to formulate proper orbifold cohomology we ask for ∞-toposes (1.16)
equipped with a system of adjoint modalities (1.18) that capture both aspects
of proper orbifold cohomology:

(i) the geometric (differential, étale) aspect
(ii) the singular (proper equivariant) aspect.

Table 3 – Modalities for Singu-
lar Super-Geometry (§4). The table
shows the symbols used for the modali-
ties in the main text, and indicates the
modal geometric quality which they
express. For example a space X is dis-
crete or bosonic or singular iff it is
equivalent to its purely discrete aspect
X ≃ ♭X, or its purely bosonic aspect,
X ≃

⇝
X , or its purely singular aspect

X ≃ <X, respectively.
The modality τn expresses that an ob-
ject contains higher gauge transforma-
tion only of degree ≤ n.

τn

n-groupoidal

S
shaped

♭
discrete

♯
continuous

ℜ
reduced

ℑ
étale

L
locally constant

⇒
even

⇝
bosonic

Rh
rheonomic

<

singular

⊂

smooth

≺

orbi-singular

1. The geometric aspect of orbifold theory. In order to formulate, in suit-
able ∞-toposes, the (a) differential topology, (b) differential geometry, and
(c) super-geometry of orbifolds (hence of manifolds, super-manifolds, super-
orbifolds, etc.) in their smooth guise as étale ∞-stacks (1.16), we consider a
corresponding progression of adjoint modalities (1.18), which starts out in the
form of the “axiomatic cohesion” of [La07], on to a second layer that contains
a “de Rham shape” operation ℑ as considered in [Si96][ST97], and then to a
third layer which captures super-geometry in a new axiomatic way [Sc13]:

id ⊣

∨

id
∨

⇒ ⊣ ⇝ ⊣

∨

Rh
∨

for super-geometry in
solid ∞-toposes (Def. 4.1.40)

ℜ ⊣ ℑ ⊣

∨

L
∨

for differential geometry in
elastic ∞-toposes (Def. 4.1.21)

S ⊣ ♭ ⊣

∨

♯

∨

for differential topology in
cohesive ∞-toposes (Def. 4.1.1)

∅ ⊣ ∗
Table 4 – Progression of the
geometric modalities.
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The key observation then is how this system of geometric cohesion goes
along with a parallel system of cohesive modalities axiomaizing orbi-singular
structure [Re14]:
2. The singular aspect of orbifold theory. Envision the picture of an
orbifold singularity ≺ and a mathematical magnifying glass held over the
singular point. Under this magnification, one sees resolved the singular point
as a fuzzy fattened point, to be denoted ≺

G. Removing the magnifying glass,
what one sees with the bare eye depends on how one squints:

(i) The physicists (like [BL99, §1.3]) and the classical geometers (like
[IKZ10][Wat15]) say that they see an actual singular point, such as the
tip of a cone <. This is the plain quotient

<

G := ∗/G = ∗, a point.

(ii) The higher geometers (like [MP97] [CPRST14]) say that still they see the
smooth G-action on that point, hence a smooth (stacky) geometry ⊂. This
is the homotopy quotient ⊂

G := ∗�G = BG (1.14), a groupoid.

Figure 4 – Two opposite aspects of orbi-singularities.

Singular
ordinary quotient

Smooth
homotopy quotient

orbi-singularity

≺

G




project onto

purely
smooth

aspect

⊂

%%
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purely
singular aspect

<

zz

opposite extreme
aspects of orbifold singularities

<

G = ∗/G= ∗

singular
quotient

⊂

G = ∗�G= BG

smooth
homotopy quotient

We observe in §4.2 that just this pair of dual perspectives is captured by the
cohesive structure on global equivariant homotopy theory that had been found
in [Re14], but whose conceptual interpretation had remained open [Re14, Foot-
note 8]. We find that the resulting system of modalities < ⊣ ⊂ ⊣ ≺ serves to
neatly axiomatize the nature of orbi-singularities, hence of orbispaces.

In combination with the previous geometric modalities, we thereby obtain
the axiomatic infrastructure for our theory of geometric orbifold cohomology.
This general abstract backdrop we lay out in Part I.
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Using this general cohesive axiomatics, in part II we begin (§5) by
(re-)developing the differential geometry of orbifolds in this language, starting
in the broader generality of “∞-orbifolds”, namely of étale ∞-stacks.
Differential geometry of étale ∞-stacks. We present, in §5.2, a general
theory of higher differential geometry formulated internally to these elastic ∞-
toposes (§4.1). This deals with étale ∞-stacks locally modeled on any group
∞-stack V (“V -folds”, Def. 5.2.1). For the special case V = (Rn,+), this
subsumes ordinary manifolds (Ex. 5.2.4) and ordinary étale Lie groupoids
(Ex. 5.2.5). For V a super-symmetry group (4.72), this produces a the-
ory of super-orbifolds (Ex. 5.2.7), capturing, for instance, those that appear
as target spaces in superstring theory (e.g. [PR04][GIR08]) and M-theory
[HSS18], or those that appear as moduli spaces of super-Riemann surfaces
[Ra87][LBR88][Wi12][CV17].

The different incarnations of geometric orbifolds in the resulting modal
language are summarized by the following diagram:

(X/G)top  − [ X/G  − [ X�G  − [ ≺(X�G)

{
underlying

topological spaces

} {
orbifolds as snglr

dfflgcl spaces

} {
orbifolds as
étale stacks

} {
orbifolds as co-

hesive orbi-spaces

}

{
sheaves

on CrtSp

} {
∞-stacks
on CrtSp

} {
∞-stacks

on SnglrCrtSp

}

SmthGrpd∞
Ex. 4.1.18

SnglrSmthGrpd∞
Ex. 4.2.11

coarser finer

Dtplg
Prp. 3.1.7

τ0
Smth
Prp. 4.2.5

5.1.7

Snglr
Prp. 4.2.5, 5.1.9

OrbSnglr
Prp. 4.2.5,
Def. 5.2.45

Bundles and Gerbes on étale ∞-stacks. With orbifolds, in their in-
carnation as étale stacks, thus embedded into a fully-fledged ∞-topos,
the general theory of (equivariant) ∞-bundles [SS25d][NSS12a][NSS12b]
(see §3.2 below) applies to provide the theory of fiber bundles on
orbifolds (cf. [LGTX04][Se06][BG08]) and of gerbes on orbifolds (cf.
[LU04a][Ca10][BX][TT14]) naturally generalized to higher, to non-abelian and
to twisted gerbes on orbifolds.
Differential cohomology of étale ∞-stacks. Moreover, since the intrinsic
cohomology theory of cohesive ∞-toposes is differential cohomology (Rem.
4.1.20), this realization of étale ∞-stacks within cohesive ∞-toposes immedi-
ately provides their (generalized, nonabelian) differential cohomology theory
(via [FSS23, §9], reviewed in [SS25f], following [SSS12][FSS14][Sc13][BNV13]).
This includes, in particular (as made explicit in [PR19]), the Borel-
equivariant/orbifold Deligne cohomology considered in [KT18] (which, for fi-
nite groups, coincides with [LU03][Gom05]), given, in low degrees, by:
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(i) gerbes with connection, hence including what in string theory is
known as the discrete torsion classification of the B-field on orbifolds
[Va86][VW95][Sha00a][Sha00c][Sha02][Ru03]; and

(ii) 2-gerbes with connection, hence including what in M-theory is known
as the discrete torsion classification of the C-field on orbifolds
[Sha00b][Se01][dB+02, §4.6.2].

Proper equivariant enhancement of geometric homotopy theory. We
enhance all of the above to a theory of properly orbi-singular spaces, formu-
lated internally to “singular-elastic” ∞-toposes (§4.2), where a natural notion
of orbi-singularization ≺ (Prop. 4.2.5) promotes (Def. 5.2.45) any such ∞-
category of étale ∞-groupoids faithfully to its proper orbifold version (Rem.
5.2.47). This detects geometric fixed point spaces (Def. 4.2.24) in the sense of
proper equivariant homotopy theory. We show (Prop. 5.1.2, Lem. 5.1.7) that
the cohesive shape (Def. 4.1.1) of the orbi-singularization of an étale groupoid
is its incarnation as an orbispace in global equivariant homotopy theory, in
the sense of [HG07][Re14][Kö16][Schw17] (Rem. 5.1.1).

The proper 2-category of orbifolds. One model for the axioms of singular-
cohesive homotopy theory is the ∞-topos of singular-smooth ∞-groupoids (es-
tablished as Ex. 4.1.18, 4.2.11 below). In this model, the proper 2-category
(Rem. 5.2.47) of orbifolds X, either Lie theoretically (Ex. 5.1.10) or topologi-
cally (Ex. 5.1.11), is equivalent, via passage to

(i) their purely smooth aspect ⊂X , to the traditional 2-category of étale
stacks (Prop. 5.1.9),

(ii) while their purely singular aspect <X gives the underlying singular coarse
quotient space (Prop. 5.1.6).

Figure 5 – Two opposite aspects of orbifolds.
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Cartan geometry of étale ∞-stacks. In this higher cohesive topos-
theoretic formulation we find all fundamental phenomena of differential geom-
etry naturally generalized to étale ∞-stacks, hence in particular to orbifolds,
as indicated in Table 5 (p. 18).

Orbifold étale cohomology. Based on this, we give a natural general defini-
tion of étale cohomology of V -étale ∞-stacks (Def. 6.2.1) hence in particular
of orbifold étale cohomology, which is sensitive to the above (integrable) G-
structures, and hence to geometry/special holonomy on orbifolds. For exam-
ple, in the case of complex structure, this orbifold étale cohomology subsumes
traditional notions of complex-geometric orbifold cohomology such as orbifold
Dolbeault cohomology [Ba54][Ba56][CR04][Fe03] and orbifold Bott-Chern co-
homology [An12][Ma05]. Abstractly, orbifold étale cohomology is the intrinsic
cohomology (1.20) of integrably G-structured étale ∞-stacks when regarded
in the slice ∞-topos (Prop. 3.1.46) over the G-Haefliger stack (Def. 5.2.32)
via the classifying map of their G-structure (Prop. 5.2.34). As such, orbifold
étale cohomology is the progenitor of tangentially twisted (proper) orbifold
cohomology (Def. 6.2.3, Def. 6.2.5), to which we turn next.

Proper equivariant cohomology. While the proper 2-category of orbifolds
is equivalent to the traditional one of orbifolds as étale stacks, its full em-
bedding into an ambient singular-cohesive ∞-topos (§4.2) provides for more
general coefficient objects, each of which is guaranteed to produce a proper
orbifold Morita-class invariant (Rem. 5.2.47). Our first main Theorem 6.1.9
shows that the intrinsic cohomology (1.20) of orbifolds, regarded in singular-
cohesive homotopy theory (Def. 4.2.3), subsumes all proper G-equivariant co-
homology theories: Bredon cohomology with any coefficient system, as well as
proper equivariant generalized cohomology theories.

Traditional orbifold cohomology. In particular, Prop. 5.1.2 and Theo-
rem 6.1.9 imply, via [Ju20] (Remark 5.1.1), that proper orbifold cohomol-
ogy in singular-cohesive homotopy theory subsumes Chen-Ruan orbifold co-
homology, via (1.5), and Adem-Ruan orbifold K-theory, via (1.6). Hence
it also subsumes Freed-Hopkins-Teleman orbifold K-theory [FHT07] (re-
viewed in [Nu13, §3.2.2]) and Jarvis-Kaufmann-Kimura’s “full orbifold K-
theory” [JKK05][GHHK08] for orbifolds with global quotient presentations
(by [FHT07, Prop. 3.5] and [JKK05, 3], respectively). Moreover, singular-
cohesion provides a natural transformation ⊂X ϵ ⊂

X
// ≺X which restricts

this proper orbifold cohomology to the underlying étale stack, where it re-
duces to traditional Borel orbifold cohomology (1.1) and, in particular, to
Satake cohomology (1.2) (see also, e.g., [ADG11][BNSS18]).
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Table 5 – Differential orbi-geometry in differential cohesive ∞-toposes

§5.2 Cartan geometry
for étale ∞-stacks

Literature for
ordinary orbifolds

(i) Def. 5.2.13 Frame bundles [MM03, p. 42]
(ii) Def. 5.2.23 G-structures [Wo16][Zh06][BZ03]

Def. 5.2.29,
Def. 5.2.30

-locally
-globally

integrable

(ii.a) Ex. 5.2.31 Geometric structures [Ap00, §1.8][Wo16]
- Riemannian structure [Bo92][HM04][Rat06]

[BZ07][He09a]
[He09b][Ak12][Kan13]
[BDP17][Lan18]

- Flat structure [BDP17][Ref06]
[IU12, §8][SS20]

- Complex structure [SW99][FS07]
- Symplectic structure [Ve00][Go01][DE05]

[HM12][CP14][Ch17]
[RC19]

- Lorentzian structure [HS91][Ne02][LMS02a]
[LMS02b][BR07] [ZR12]

- Pseudo-Riemannian structure [Me09][Zh18][BZ19]
- Conformal structure [Ap98][Ap00]
- CR-structure [DM02]
- Hypercomplex structure [BGM98]

(ii.b) Ex. 5.2.31 Special holonomy [Jo00][CT05]
- Kähler structure [Fu83][Je97][Ab01]

[BBFMT16]
- Calabi-Yau structure [Ro91][Jo98][Jo99a]

[Jo99b][Jo00, §6.5.1]
[St10][RZ11][CDR16]

- Quaternionic Kähler [GL88][Jo00, §7.5.2]
- Hyper-Kähler struc. [BD00]
- G2-structure [Jo00, §11][Rei15]
- Spin(7)-structure [Jo00, §13][Ba07]

(iii) Def. 5.2.28 Local isometries [BZ07]
(iv) Def. 5.2.32 Haefliger stacks [Hae71][Hae84]

[Ca19, §2.2, §3][Ca16]).
(v) Def. 5.2.35 Tangential structures [Wee18][Pa20]
(v.a) Ex. 5.2.39 Higher Spin-structures

- Orientation [Dr94]
- Spin structure [Ve96][Ac01]

[BGR07][DLM02]
- Spinc structure [Du96, §14]
- String structure [PW88][LU04a][LU06]
- Fivebrane structure [BL12]

(cf. [SSS09][SSS12])
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Twisted orbifold cohomology. All these cohomology theories generalize
to their twisted versions (e.g., local coefficients for ordinary cohomology, as
in [MP99], or twisted K-theory, as in [AR01]), by passage to slices of the
ambient singular-cohesive ∞-topos (Remark 3.2.21). In particular, slicing of
orbifolds over ≺

Z2 via their orientation bundle promotes them (Ex. 6.1.10) to
orientifolds [DFM11][FSS15, 4.4][SS20].
Revisiting twisted orbifold K-theory. For illustration, we redevelop
twisted orbifold K-theory in this language, using the result of its stacky rep-
resentability from [SS25d, Ex. 4.5.4].
Proper orbifold étale cohomology. Finally, we promote (Def. 6.2.5) orb-
ifold étale cohomology, in its guise as tangentially twisted cohomology, to a
proper orbifold cohomology theory in the above sense (Rem. 5.2.47). Our sec-
ond main theorem 6.2.6 shows that this proper orbifold étale cohomology
unifies:

(i) ( ⊂) étale cohomology (Def. 6.2.1) of smooth V -folds (Def. 5.2.1),

(ii) (♭) proper equivariant cohomology (Def. 6.1.2) of flat orbifolds (Def.
5.2.40), i.e., of their flat frame bundles (Prop. 5.2.41).

Figure 6 – Two opposite aspects of étale cohomology.
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Tangentially twisted orbifold Cohomotopy. We construct a fundamental
class of examples of such proper orbifold étale cohomology theories, which
we call tangentially twisted (Def. 6.2.18). Their coefficients are Tate spheres
(Def. 6.2.9), in the sense of (unstable) motivic homotopy theory (Ex. 6.2.10),
with twisting via an intrinsic Tate J-homomorphism (Def. 6.2.14). Specified to
ordinary orbifolds (Ex. 6.2.19), Theorem 6.2.6 shows that tangentially twisted
orbifold Cohomotopy subsumes:

(i) ( ⊂) tangentially twisted Cohomotopy theory of smooth but curved spaces,
as introduced in [FSS20][FSS21].
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(ii) (♭) RO-graded equivariant Cohomotopy theory of flat orbifolds, as dis-
cussed in [SS20][BSS19].

Figure 7 – Two aspects of tangentially twisted orbifold Cohomo-
topy. Theorem 6.2.6 shows that the natural notion of tangential twist of
Cohomotopy, when generalized to orbifolds reduces near orbi-singularities to
proper equivariant Cohomotopy in the RO-degree of the singularity’s isotropy
representation.
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We conclude in Remark 6.2.20 on the impact of this unification.

Outlook on differential orbifold cohomology. While

(i) generalized differential cohomology on smooth manifolds [HS05] is well-
understood (see [Bu12]) and

(ii) plain global equivariant cohomology has been established [Schw18] and
understood to provide proper orbifold cohomology ([Ju20], see Remark
5.1.1 below),

their combination to (generalized, global) proper equivariant differential co-
homology has remained elusive. Explicit constructions have been explored for
the case of equivariant/orbifold differential K-theory [SV07][BS09] [Or09], but
even these theories do not seem to be well-understood yet [BS12, p. 47]. What
has been missing is a coherent theoretical framework for proper equivariant
differential cohomology: Since

(a) differential cohomology is the intrinsic cohomology (1.20) of cohesive ∞-
toposes (by Remark 4.1.20) and

(b) proper equivariant cohomology is the intrinsic cohomology of ∞-toposes
over a (global) orbit category (by Remark 6.1.4),

proper equivariant differential cohomology should be the intrinsic cohomol-
ogy of ∞-toposes that combine these two properties. This is exactly what
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our notion of singular-cohesive ∞-toposes expresses (Def. 4.2.3), as confirmed
by Theorem 6.1.9. For example, in singular-cohesive ∞-toposes there exists
the (global) proper equivariant version of twisted differential non-abelian co-
homology [FSS23], now given by homotopy fiber products parametrized over
Snglrt (Def. 4.2.1). Hence singular-cohesive ∞-toposes constitute a coherent
framework in which to discuss proper equivariant/orbifold differential coho-
mology in general. We will develop this elsewhere.

We briefly comment on another related approach in the literature:
Proper ∞-categories of general étale ∞-stacks. Another general theory
of étale ∞-stacks has been presented in [Ca20], generalizing an elegant charac-
terization of étale 1-stacks due to [Ca19] by following the discussion of derived
Deligne-Mumford stacks conceived as structured ∞-toposes in [Lu09b]. This
approach proceeds externally via characterizing the sites (recalled below as
Prop. 3.1.41) which present ∞-toposes of étale ∞-stacks; and is thus com-
plementary to the internal perspective proceeding from inside an ambient ∞-
topos which we are presenting here. We briefly indicate the relation between
the two:

◦ The approach in [Ca20] is to pick an ∞-site of PrbSpc (denoted “L” there)
which is equipped with a suitable notion of which of its 1-morphisms qual-
ify as being étale maps (the external version of our notion Def. 4.1.26).
The inclusion i of the wide subcategory on these étale morphisms induces,
by left Kan extension, a pair of adjoint ∞-functors (i! ⊣ i∗) between the
corresponding ∞-stack ∞-toposes, and the étale ∞-stacks are then char-
acterized as those in the essential image of the left adjoint i!. This is
shown on the right of the following diagram:

Shv∞
(
Chrt×Snglrt

) Smth //

oo OrbSinglr
⊥

? _

Prop. 4.2.5

Shv∞
(
Chrt

)
oo i!

i∗

⊤
//
Shv∞

(
Chrtét

)
uuuu

OrbSinglr
(
ÉtStcks∞

)
proper ∞-category
of higher orbifolds
(Remark 5.2.47)

� ?

OO

ÉtaleStacks∞
∞-category

of étale ∞-stacks
[Ca20]

≃
oo

� ?

OO

(1.21)

◦ Following Remark 5.2.47, we may and should enhance this construction
to the proper ∞-category of higher orbifolds Def. 4.2.3, Def. 5.2.45, as
shown on the left in (1.21).

◦ In fact, the archetypical example of PrbSpc considered in [Ca20] is
SmoothManifolds (Def. 3.1.9), in which case the left hand side of (1.21)
is the singular-cohesive ∞-topos of our Ex.s 4.1.18, 4.2.11, containing the
proper (Def. 5.2.45) ∞-category of orbi-Rn-folds in our Ex. 5.2.5.

◦ On the other hand, a general ∞-topos Shv∞(PrbSpc) is not going to
be cohesive (Def. 4.1.1) or even elastic (Def. 4.1.21). This means that
various nice geometric properties, which we derive here, of objects in
the proper ∞-category of higher orbifolds, are not guaranteed to exist
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in the general setup of [Ca20]. Notably the theory of frame bundles on
orbifolds, according to Prop. 5.2.13, and the main theorem on the induced
étale cohomology of orbifolds (Theorem 6.2.6) crucially uses the internal
modal logic of singular-cohesive and singular-elastic ∞-toposes as in §4,
which may not exist, or not exist completely, for any given site of PrbSpc
as in [Ca20].
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We have to assume a basic fluency of the reader in abstract and equivariant
homotopy theory. This section recalls some basics and provides pointers to
the literature.

2.1 Model toposes
We recall some basics of model categories (e.g. [GJ99, 2]) of simplicial
presheaves ([Ja87][Ja96][Ja15]) as presentations of ∞-toposes ([Lu09a, A.2,
A.3]).

Model categories of simplicial presheaves.

Definition 2.1.1 (Model category of simplicial presheaves). Let C be a site.
We write
(i) sPShv(C)loc ∈ HomotopicalCategories (2.1)
for the category of simplicial presheaves on C, regarded as a homotopical
category with weak equivalences the local weak homotopy equivalences of
simplicial sets.
(ii) sPShv(C) inj/

proj ,loc ∈ ModelCategories (2.2)

for the same category regarded as either the corresponding injective or pro-
jective model category.
(iii)

sPShv ℓ // LlwhesPShvloc =: H (2.3)
for the corresponding simplicial localization.

Lemma 2.1.2 (Cofibrancy in projective model structure [Du01, Cor. 9.4]).

23
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Let C be a site. For a simplicial presheaf X• ∈ sPShv(C)proj,loc in the projective
model structure (2.2) to be cofibrant it is sufficient that X• is degreewise
(i) a coproduct of representables, such that
(ii) the degenerate cells split off as a direct summand.
Lemma 2.1.3 (Simplicial presheaf represents its own hocolim [DHI04,
2.1][Sc13, 2.3.21]). Let C be a site and X• ∈ sPShv(C) a simplicial presheaf
(Def. 2.1.1). Then its image under simplicial localization (2.3) is equivalently
the simplicial homotopy colimit over the images of its component presheaves:

ℓ(X•) ≃ lim
−!

(ℓX)• ∈ H .

Topological mapping stacks

Example 2.1.4 (Model category presentation of smooth ∞-groupoids). Let
C = CrtSpc (Def. 3.1.5). Then the simplicial localization (2.3) of sPShv(C)loc
(2.2) is SmthGrpd∞ (Ex. 4.1.18):

LlwhesPShv(CrtSpc)loc ≃ SmthGrpd∞ .

Lemma 2.1.5 (Mapping stack from delooping of discrete group to topological
stack). In SmthGrpd∞ (Ex. 4.1.18) consider
(i) a finite group embedded via (4.90)

G ∈ Grp Disc // Grp
(
SmthGrpd∞

)
, (2.4)

(ii) a topological groupoid, embedded via (4.22)

TopGrpd Cdfflg // SmthGrpd∞

Xtop 7! X ⊂

(2.5)

Then the mapping stack (3.33) formed in SmthGrpd∞ is the degreewise image
under Cdfflg (3.8) of the topological groupoid representing the mapping stack of
topological groupoids (which exists by [No10] since G is finite, hence compact):

Map
(
BG, X ⊂

)
≃ CdfflgMap

(
BG, Xtop

)
. (2.6)

Proof. Since (by Ex. 4.1.18)

SmthGrpd∞ ≃ Shv∞(CrtSpc)
oo L

� � ⊥ // PShv∞(CrtSpc)
it is sufficient to show that we have an equivalence of ∞-presheaves of the
form

Rn � //
PShv∞

(
CrtSpc

)
(Rn ×BG, X ⊂)

≃ PShv∞
(
CrtSpc

)
(Rn , CdfflgMap(BG,Xtop))

(2.7)

By Ex. 2.1.4, we may model this in the global projective model structure on
simplicial presheaves over CrtSpc:

sPShv(CrtSpc) ℓ // LlwhesPShv(CrtSpc)proj ≃ Shv∞(CrtSpc) (2.8)

by the following models (Lemma 2.1.3):



Background 25

(a) A model under ℓ (2.8) of the Cartesian product Rn × BG with the de-
looping BG ≃ lim

−!
G×• (3.81), is given by the simplicial presheaf

Rn ×G×• ∈ sPShv(CrtSpc)proj . (2.9)
(b) A model under ℓ (2.8) for the image (2.5) of a topological groupoid Xtop is
given by its nerve regarded as a simplicial presheaf, componentwise via (4.21)

N•(Xtop) ∈ sPShv(CrtSpc)proj . (2.10)
Moreover:

• The object (2.9) is projectively cofibrant, by Lemma 2.1.2, as is its Carte-
sian product with a k simplex ∆[k].

• The object (2.10) is projectively fibrant (objectwise a Kan complex) by
the groupoid property of Xtop.

Therefore, to get (2.7) it is, in turn, sufficient to exhibit for Rn ∈ CrtSpc a
natural isomorphism of simplicial sets of the form∫

[k]∈∆ PShv
(
Rn ×

(
G×k ×∆(k,•)

)
, Cdfflg(Nk(Xtop))

)
≃ PShv

(
Rn , Cdfflg

(∫
[k]∈∆ Nk(Xtop)(G×k ×∆(k,•))

))
,

(2.11)

where the end
∫

[k]∈∆(−) expresses the limit that computes the morphism of
simplicial sets as a subset of the product of the function spaces of components.
We obtain this as the following composite of natural isomorphisms:∫

[k]∈∆ PShv
(
Rn ×

(
G×k ×∆(k,•)

)
, Cdfflg

(
Nk(Xtop)

))
≃
∫

[k]∈∆ PShv
(
Rn ,

(
Cdfflg(Nk(Xtop))

)(G×k ×∆(k,•))
)

≃
∫

[k]∈∆ PShv
(
Rn , Cdfflg

((
Nk(Xtop)

)(G×k ×∆(k,•))
))

≃ PShv
(
Rn ,

∫
[k]∈∆ Cdfflg

((
Nk(Xtop)

)(G×k ×∆(k,•))
))

≃ PShv
(
Rn , Cdfflg

(∫
[k]∈∆

(
Nk(Xtop)

)(G×k ×∆(k,•))
))

.

Here the first step is the definition of function spaces (−)(−), the second
step uses that Cdfflg, being a right adjoint, preserves products (Prop. 3.1.26).
The third step uses that the Hom-functor preserves limits (hence ends) in its
second argument, while the fourth step uses that Cdfflg, being a right adjoint,
preserves limits (hence ends), again by Prop. 3.1.26.
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2.2 Equivariant homotopy
For reference, we recall some basics of unstable equivariant homotopy theory
(see [May96][Blu17]). We focus here on finite groups, for simplicity and since
this is what we need in the main text (Remark 4.2.19), but all statements in
the following, notably Elmendorf’s theorem (Prop. 2.2.10 below) generalize to
compact Lie groups.

Definition 2.2.1 (Topological G-spaces). Let G ∈ Grpfin be a finite group.
(i) We write

GDTopSpc �
� // GTopSpc ∈ Cat (2.12)

for the categories whose objects
G ↷ X :=

(
X, G×X

ρ
−!X

)
(2.13)

are topological spaces X (as in Def. 3.1.2) or specifically D-topological spaces
(as in Def. 3.1.2), respectively, equipped with continuous left G-actions ρ, and
whose morphisms are the G-equivariant continuous functions:

GTopSpc
(
G ↷ X1, G ↷ X2

)
:=

 X1 continuous

f // X2

∣∣∣∣∣∣∣∣
G×X1

f ��

ρ1 // X1
f ��

G×X2 ρ2
// X2

 .

(2.14)

(ii) For G ↷ X1 a (D-)topological G-space and H
ι

↪!G a subgroup, we write

XH :=
{

x ∈ X | ∀
h∈H⊂G

ρ(h,x) = x
}

(2.15)

for the topological subspace of H-fixed points (which, if X is D-topological,
is itself again D-topological, by Prop. 3.1.4).
(iii) For G ↷X1 and G ↷X2 two (D-)topological G-spaces, the mapping space
(3.5) between their underlying (D-)topological spaces canonically becomes a
G-space via the conjugation action and the corresponding fixed point space
(2.15)

Map(X1,X2)G �
� // Map(X1,X2) (2.16)

is the subspace on the G-equivariant functions (2.14).

Example 2.2.2 (G-cells). For G ∈ Grpfin, H ⊂ G a subgroup and n ∈ N we
have the G-spaces (Def. 2.2.1)(

G/H
)

×Dn ,
(
G/H

)
×Sn−1 ∈ GDTopSpc

being the product spaces of the discrete orbit spaces with the standard topo-
logical unit disk and unit circle, respectively, the latter equipped with the



Background 27

trivial G-action. The boundary inclusions ∂Dn = Sn−1 ιn
↪! Dn induce G-

equivariant maps

ιn,H :
(
G/H

)
×Sn−1 � � (id,ιn) //

(
G/H

)
×Dn (2.17)

for all n ∈ N, H ⊂ G.

Definition 2.2.3 (G-CW-complexes).
(i) A G-CW-complex X is a D-topological G-space (Def. 2.2.1) which is
equipped with the realization as a colimit

X ≃ lim
−!n

Xn ∈ GDTopSpc
over a sequence

X−1 −!X0 −!X1 −!X2 −! · · · ∈ GDTopSpc ,

where X−1 = ∅ and where each Xn!Xn−1 is given by a set of attachments
of G-cells along (2.17), hence by a pushout of the form:

∏
H⊂G
i∈In

G/H ×Sn−1
� _

(ιn,H )n,H

��

//

(po)

Xn−1� _

��∏
H⊂G
i∈In

G/H ×Dn // Xn

(ii) Write
GSets �

� // GCWCmplx �
� // GDTopSpc (2.18)

for the full subcategories on those D-topological G-spaces which admit the
structure of G-CW-complexes.

Definition 2.2.4 (Homotopy theory of D-topological G-spaces). The homo-
topy theory of topological G-spaces is the ∞-category

GGrpd∞ ∈ Cat∞ (2.19)
which has the same objects as GCWCmplx (Def. 2.2.3), and with ∞-groupoids
the topological shapes (Def. 3.1.13) of the mapping spaces (2.16) of G-
equivariant maps:

GGrpd∞
(
G ↷ X1,G ↷ X2

)
:= ShpTop

(
Map

(
X1,X2

)G
)

. (2.20)

Definition 2.2.5 (Shape of G-topological spaces).
(i) We write

ShpGTop : GCWCmplx // GGrpd∞ (2.21)
for the canonical ∞-functor (topologically enriched functor) from the 1-
category of G-CW-complexes (Def. 2.2.3) to the ∞-category of G-∞-groupoids
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(Def. 2.2.4), which is the identity on objects and which on Hom-spaces is
the continuous map given by the identity fuction from the discrete set of G-
equivariant maps (2.14) to the topological space of G-equivariant maps (2.20).
(ii) For any choice of G-CW-approximation functor

GTopSpc
(−)cof // GCWComplex

we get the corresponding shape functor on all of GTopSpc (Def. 2.2.1) and
hence on GDTopSpc, which we denote by the same symbol:

ShpGTop : GTopSpc
(−)cof // GCWCmplx

ShpGtop // GGrpd∞ . (2.22)

Definition 2.2.6 (Proper G-equivariant generalized cohomology of topologi-
cal G-spaces). For G ∈ Grpfin, we say that the proper G-equivariant cohomol-
ogy of a topological G-space (Def. 2.2.1) X ∈ GTopSpc with coefficients in a
(pointed) G-∞-groupoid (Def. 2.2.4), A ∈ GGrpd∞, is

H−n
G (X,A) := πn

(
GGrpd

(
ShpGTop(X) , A

))
,

where on the right we have the nth homotopy group (at the given basepoint)
of the hom-∞-groupoid (2.20) from the G-topological shape of X (2.22) to A.

Elmendorf’s theorem.

Definition 2.2.7 (Orbit of action of a finite group). Let G be a finite group.
If G ↷ S is a set equipped with an action by G, then an orbit of G in S is
a subset of points {g(s)|g ∈ G} ⊂ S obtained from any single point s ∈ S by
acting on it with all elements of G.

Definition 2.2.8 (Orbit category of a finite group). The category of G-orbits
or orbit category of G

GOrb ↪−!GSets ∈ Cat
is the category whose objects correspond to subgroup inclusions H

ι
↪−!G and

whose morphisms are G-equivariant functions, hence morphisms of G-sets
(2.18), between the corresponding coset spaces G/H1 −!G/H2.

Example 2.2.9 (Systems of fixed point spaces). Consider a topological space
equipped with a G-action G ↷ X ∈ GDTopSpc (Def. 2.2.1) and H ⊂ G a
subgroup. Then a G-equivariant function G/H

f
−!X from the corresponding

G-orbit (Def. 2.2.8) is determined by its image f
(
[e]
)

∈ X of the class of the
neutral element, and that image has to be fixed by the action of H ⊂ G of X.
Therefore, the corresponding G-equivariant mapping spaces (2.16)

Map
(
G/H, X

)G ≃ XH :=
{

x ∈ X | ∀
h∈H⊂G

(h(x) = x)
}

⊂ X

are the topological subspaces of H-fixed points inside X (2.15). By functorial-
ity of the mapping space construction, these fixed point spaces are exhibited
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as arranging into a topological presheaf on the G-orbit category (Def. 2.2.8):

X(−) : GOrbop Map(−,X)G

// TopSpc

Proposition 2.2.10 (Elmendorf’s theorem [El83][DwKa84, §1.2, 1.7 & Thm.
3.1], see [Blu17, Thm. 1.3.6 and 1.3.8]). Let G be a finite group. The functor
which sends a G-space G ↷X (Def. 2.2.1) to its system of H-fixed point spaces
(Ex. 2.2.9) constitutes an equivalence of ∞-categories

GGrpd∞
≃ // Shv∞

(
GOrb

)
G ↷ X � // X(−) = Map

(
−,X

)G
.

(2.23)
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We recall basics of higher topos theory in §3.1 and lay out in §3.2 the internal
formulation, in ∞-toposes, of group actions and the classification of fiber
bundles.

3.1 Topos theory
We briefly record basics of ∞-topos theory [TV05][Lu09a][Re10] (review is in
[Re19], exposition with an eye towards differential geometric applications is
in [FSS14]). This is to set up our notation and to highlight some less widely
used aspects that we need further below.

Categories. We make free use of the language and the basic facts of category
theory and homotopy theory (see [GJ99][Rie14][Ri20]) as well as of ∞-category
theory (see [Joy08a][Joy08a][Lu09a][Rie14][Ci19]).
(i) We write Cat∞ for the (“very large”) ∞-category of (large) ∞-categories
[Re98][Be05][Lu09a, Ch. 3], though we only use this for declaring ∞-categories.
Inside Cat∞, there is the sequence of full sub-∞-categories (Def. 3.1.1) of n-
categories (i.e.: (n,1)-categories) as well as of n-groupoids (see Def. 3.1.12) for
all n ∈ N, denoted thus:

Sets �
� // Cat1

� � // Cat2
� � // · · · �

� // Cat∞

Sets �
� // Grpd1

� � //?�
OO

Grpd2
� � //?�

OO

· · · �
� // Grpd∞

?� ⊣
OO
�� Core

(3.1)

(ii) Here Core(C) denotes the maximal ∞-groupoid inside an ∞-category C.
(iii) For C ∈ Cat∞ and for X,Y ∈ C a pair of objects, we write

C(X,Y ) := HomC(X,Y ) ∈ Grpd∞ (3.2)
for the hom-∞-groupoid, i.e. the ∞-groupoid of morphisms between them,
and higher homotopies between these (see [Lu09a, 1.2.2][DS09]). This is well-

33
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defined, up to equivalence of ∞-groupoids, independently of which model for
∞-categories is used, since these are all equivalent to each other [Be06][Be14].
We have no need to specify any particular model for ∞-categories (except for
the construction of examples, in §2.1).

Definition 3.1.1 (Fully faithful functor [Lu09a, 1.2.10]). For C,D ∈ Cat∞
(3.1), a functor F : C // D is called fully faithful, to be denoted

C �
� F // D , (3.3)

if it is an equivalence on all hom-∞-groupoids (3.2):

∀
X,Y ∈C

C(X , Y )
FX,Y

≃
// D
(
F (X) , F (Y )

)
.

In this case we also say that (3.3) exhibits a full sub-∞-category inclusion.

Topology. The category of ∆-generated or D-topological spaces (Remark
3.1.3) is both: a convenient foundation for homotopy theory (Prop. 3.1.4)
as well as pivotal for our key example context (Example 4.1.18):

Definition 3.1.2 (Topological spaces). We write
CWCmplx �

� // DTopSpc �
� // TopSpc ∈ Cat1 (3.4)

for (from right to left):
(i) the category of all topological spaces with continuous functions between
them;
(ii) the full subcategory on those spaces whose topology coincides with the
final topology on the set of continuous functions out of a Euclidean space Rn,
hence whose open subsets coincide with those subsets whose pre-images under
all continuous functions Rn!X are open in Rn, for all n ∈ N;
(iii) the further full subcategory on those that admit the structure of a CW-
cell complex, hence that are homeomorphic to topological spaces which are
obtained, starting with the empty space, by gluing on standard n-disks along
their (n−1)-sphere boundaries, iteratively for n ∈ N.

Remark 3.1.3 (D-topological is ∆-generated).
(i) Since the topological n-simplex ∆n

top is a retract of the Euclidean space Rn,
the condition on X ∈ TopSpc of being D-topological (Def. 3.1.2) is equivalent
to being ∆-generated, in that the open subsets of X are precisely those whose
pre-images under all continuous functions of the form ∆n

top!X are open.
(ii) The concept of ∆-generated spaces is due to [Sm][Dug03]; and indepen-
dently due to [SYH10], where they are called numerically generated.
(iii) We say D-topological to better bring out their conceptual role, in view of
Prop. 3.1.7 below.
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Proposition 3.1.4 (D-topological spaces are convenient). The category of
DTopSpc (Def. 3.1.2) is a convenient category of topological spaces in the
sense of [St67] in that it:

(i) contains all CW-complexes (3.4) [SYH10, Cor. 4.4];

(ii) has all small limits and colimits [SYH10, Prop. 3.4];

(iii) is locally presentable [FR07, Cor. 3.7];

(iv) is Cartesian closed [SYH10, Cor. 4.6]: the mapping space between X,Y ∈
DTopSpc is the reflection (3.8) of the internal mapping space Map (3.33)
of DiffSp [SYH10, Prop. 4.7]:

Map(X,Y ) = Dtplg
(

Map
(
Cdfflg(X), Cdfflg(Y )

))
. (3.5)

Differential topology. D-topological spaces lend themselves to differential
topology via their joint (co-)reflection (Prop. 3.1.7) both into all topological
spaces and into diffeological spaces (Def. 3.1.6):

Definition 3.1.5 (Cartesian spaces). We write
CrtSpc �

� // SmthMfd ∈ Cat1

for the category whose objects are the natural numbers n ∈ N, thought of as
representing the Cartesian spaces Rn, and whose morphisms are the smooth
functions between these. We regard this category as equipped with the cov-
erage (Grothendieck pre-topology) whose covers are the differentially good
open covers (i.e., such that all non-empty finite intersections of patches are
diffeomorphic to a Cartesian space [FSS12, 6.3.9]).

Definition 3.1.6 (Diffeological spaces). (i) The category of diffeological
spaces ([So80][So84][IZ85], see [BH08] [IZ13]) is the full subcategory of sheaves
on CrtSpc (Def. 3.1.5)

DiffSp �
� // Shv(CrtSpc) (3.6)

on those X ∈ Shv(CrtSpc) which are concrete sheaves [Du79b] supported on
their underlying set

Xs := Shv(SmthMfd)(∗,X)
in that the canonical function

X(U) �
� // (Us,Xs)

is an injection, for all U ∈ CrtSpc, with Us denoting their underlying set of U .
(ii) We call

X(U) ≃
Prop. 3.1.38

DiffSp(U,X) ∈ (3.7)

the set of U -plots of the diffeological space X.
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Proposition 3.1.7 (Topological/diffeological adjunction). (i) There is an
adjunction [SYH10, Prop. 3.1]

TopSpc
oo Dtplg

Cdfflg
⊥ // DiffSp (3.8)

between the categories of topological spaces (Def. 3.1.2) and of diffeological
spaces (Def. 3.1.6), where

• the right adjoint Cdfflg sends a topological space to the same underlying set
equipped with the topological diffeology whose plots (3.7) are precisely
the continuous functions;

• the left adjoint Dtplg sends a diffeological space to the same underly-
ing set equipped with the diffeological topology (“D-topology” [IZ13,
2.38][CSW13]), which is the final topology with respect to all plots (3.7),
hence such that a subset is open precisely if its pre-image under all plots
is open.

(ii) The fixed points X ∈ TopSpc of this adjunction are the D-topological spaces
(Remark 3.1.3)

X is D-topological ⇔ Dtplg
(
Cdfflg(X)

) ϵX

≃
// X .

(iii) The adjunction is idempotent [SYH10, Lemma 3.3], hence factors through
the category of D-topological spaces, exhibiting them as a co-reflective subcat-
egory of TopSpc and a reflective subcategory of DiffSp:

TopSpc
oo ? _

Cdfflg
⊥ // DTopSpc

oo Dtplg

� � ⊥ // DiffSp . (3.9)

The following Prop. 3.1.8 is due to [Har13, Thm. 3.3].

Proposition 3.1.8 (Model structure on D-topological spaces).
(i) The standard cell inclusions define a cofibrantly generated model category
structure on DTopSpc (Def. 3.1.2).
(ii) With respect to this model structure and the standard model structure on
TopSpc, the co-reflection (3.8) becomes a Quillen equivalence:

TopSpc
oo ? _

Cdfflg

≃Quillen //
DTopSpc .

Differential geometry.

Definition 3.1.9 (Smooth Manifolds). We write
SmthMfd ∈ Cat (3.10)

for the category of finite-dimensional paracompact smooth manifolds with
smooth functions between them. We regard this as a site with the
Grothendieck topology of open covers.
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Proposition 3.1.10 (Cartesian spaces are dense in the site of manifolds).
With respect to the coverages in Def. 3.1.9 and Def. 3.1.5, the inclusion
CrtSpc i

↪! SmthMfd is a dense sub-site, in that it induces an equivalence of
categories of sheaves

Shv(CrtSpc)
oo i∗

i∗

≃ // Shv(SmthMfd) .

Proposition 3.1.11 (Smooth manifolds inside diffeological spaces). Every
X ∈ SmthMfd (3.10) becomes a diffeological space (Def. 3.1.6) on its underly-
ing set by taking its plots (3.7) of shape U ∈ CrtSpc to be the ordinary smooth
functions:

X(U) := SmthMfd(U,X) .

More generally, every possibly infinite-dimensional Fréchet manifold (e.g.
[KS17, 2.2]) becomes a diffeological space this way. Moreover, this constitutes
fully faithfull embeddings (Def. 3.1.1) into the category of Diffeological spaces
[Lo94, Thm. 3.1.1]:

SmthMfd
finite-dimensional

� � // FréSmthMfd
possibly

infinite-dimensional

� � // DiffSp . (3.11)

Homotopy theory.
Definition 3.1.12 (∞-Groupoids). (i) We write

Grpd∞ ∈ Cat∞ (3.12)
for the ∞-category which is presented by the topologically enriched category
whose objects are the CW-complexes (3.4) and whose hom-spaces are the
mapping spaces (3.5).
(ii) The full sub-∞-category (Def. 3.1.1) on the homotopy n-types is that of
n-groupoids Grpdn

� � // Grpd∞ .

Definition 3.1.13 (Topological shape). (i) We write
ShpTop : CWCmplx // Grpd∞

for the ∞-functor from the 1-category of CW-complexes (3.4) to the ∞-
category of ∞-groupoids (Def. 3.1.12) which, as a topologically enriched func-
tor, is the identity on objects, and is on hom-spaces the continuous map given
by the identity function from the discrete set of continuous maps to the map-
ping space (3.5).
(ii) For any choice of CW-approximation functor

TopSpc
(−)cof // CWCmplx

we get the corresponding functor on all topological spaces (Def. 3.1.2), hence
on D-toplogical spaces (Def. 3.1.2) which we denote by the same symbol:

ShpTop : TopSpc
(−)cof // CWCmplx

ShpTop // Grpd∞ . (3.13)
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Example 3.1.14 (Delooping groupoids). For G ∈ Grpfin, consider the
groupoid with a single object ∗, and with G as its set of morphisms, whose
composition is given by the product in the group:

∗ g2
))∗

g1 55

g2·g1
// ∗

(3.14)

This groupoid is the topological shape (3.1.13) of the Eilenberg-MacLane space
K(G,1) as well as (since G is assumed to be finite) the classifying space BG.
More intrinsically, this groupoid is, equivalently, the homotopy quotient of the
point by the trivial G-action:

∗�G ∈ Grpd1
� � // Grpd∞ .

More generally:
Example 3.1.15 (Action groupoids). For G ∈ Grpfin a finite group and for
X ∈ a set equipped with a G-action

G×X
ρ // X

(g,x) � // g ·x
(3.15)

the corresponding action groupoid has as objects the elements of X and its
morphisms and their composition are given as follows:

g1 ·x g2
++

x

g1 55

g2·g1
// g2 ·g1 ·x

(3.16)

This action groupoid is a model for the homotopy quotient of X by its G-
action

X�G ∈ Grpd1
� � // Grpd∞ .

The following elementary example plays a pivotal role in later construc-
tions (Lem 5.1.7):
Example 3.1.16 (Hom-groupoid into action groupoid). Let G ∈ Grpfin, X ∈
equipped with a G-action (3.15), hence with action groupoid/homotopy quo-
tient X�G ∈ Grpd1 (Example 3.1.15). Let K ∈ Grpfin be any finite group,
with ∗�K ∈ Grpd1 its delooping groupoid (Example 3.1.14). Then the hom-
groupoid (functor groupoid) of morphisms (functors) ∗�K −!X�G is, equiv-
alently, the action groupoid of G acting on the set of pairs consisting of a group
homomorphism ϕ : K!G and a point in X fixed by the image of ϕ:

Grpd1
(

∗�K , X�G
)

≃
( ⊔

ϕ∈Grp(K,G)

Xϕ(K)
)

�G. (3.17)

Here
• ϕ(K) ⊂ G denotes the subgroup of G which is image of the group homo-

morphism ϕ : K!G;

• Xϕ(K) =
{

x ∈ X

∣∣∣∣ ∀
h∈ϕ(K)

h ·x = x

}
denotes the ϕ(K)-fixed-point set in

X;
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• the G-action by which the homotopy quotient is taken is the conjugation
action on ϕ, hence g ·ϕ := Adg ◦ϕ, and the given G-action on x ∈ X.

This follows by direct unwinding of the definition of functors and of natural
transformations between the groupoids (3.14) and (3.16).

Definition 3.1.17 (Simplicial-topological shape). Let
X• : ∆op // TopSpc (3.18)

be a simplicial topological space, for instance the nerve of a topological
groupoid. Then we say that its simplicial-topological shape is the homotopy
colimit (Prop. 3.1.36) of its degreewise topological shape (Def. 3.1.13):

ShpsTop
(
X•
)

:= lim
−!

(
ShpTop(X)

)
• ∈ Grpd∞ . (3.19)

The following Prop. 3.1.18 appears as [Wa18, 4.3,. 4.4]:

Proposition 3.1.18 (Simplicial-topological shape of degreewise cofibrant
spaces is fat geometric realization). If X• is a simplicial topological space
(3.18) which degreewise admits the structure of a retract of a cell complex (for
instance: degreewise a CW-complex (3.4)), then its simplicial topological shape
(3.1.17) is equivalent to its fat geometric realization ∥−∥ [Se74] (see [HG07,
2.3]):

X•
degreewise cofibrant

simplicial topological spaces

∈
(
TopSpccof

)∆op ⇒ ShpsTop
(
X•
)

simplicial
topological shape

≃ ∥X•∥
fat geometric

realization

.

Definition 3.1.19 (Diffeological simplices).
(i) We write

∆
∆•

smth // DiffSp
[n] � //

{
x⃗ ∈ Rn+1 |

∑
i

xi = 1
}

for the diffeological extended simplicies, hence for the simplicial object in dif-
feological spaces (Def. 3.1.6) (in fact in smooth manifolds, under Prop. 3.1.11)
which in degree n is the extended n-simplex in Rn+1, regarded with its sub-
diffeology, and whose face and degeneracy maps are the standard ones (see
[CW14, Def. 4.3][BEBP19, p. 1]).
(ii) The induced nerve/realization construction is a pair of adjoint functors
(Def. 3.1.24)

DiffSp
oo |−|diff

Singdiff

⊥ // SimplicialSets (3.20)

between the categories of simplicial sets and of diffeological spaces (Def. 3.1.6),
where the right adjoint Singdiff sends X ∈ DiffSp to its smooth singular sim-
plicial set Singdiff(X)• := DiffSp

(
∆•

diff ,X
)
.

The following Prop. 3.1.20 is due to [CW14, Prop. 4.14]:
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Proposition 3.1.20 (Diffeological singular simplicial set of continuous Diffe-
ology). For all Xtop ∈ TopSpc there is a weak homotopy equivalence between
the diffeological singular simplicial set (Def. 3.1.19) of its continuous diffeology
(Def. 3.1.7) and its ordinary singular simplicial set:

Sing
(
Xtop

)
≃whe Singdiff

(
Cdfflg(Xtop)

)
.

Equivalently this means, in the terminology to be introduced in a moment, that
the topological shape (3.1.13) of topological spaces is equivalent to the cohesive
shape (Def. 4.1.1) of their incarnation as continuous-diffeological spaces (see
Example 4.1.18 below):

ShpTop
(
Xtop

)
≃ Shp

(
Cdfflg(Xtop)

)
∈ Grpd∞ .

Universal constructions. All diagrams we consider now are homotopy-
coherent, even if we do not notationally indicate the higher cells, unless some
are to be highlighted. Similarly, all universal constructions we consider now
are ∞-categorical, even if this is not further pronounced by the terminology.
In particular, we say “colimit” lim

−!
for “homotopy colimit”, “limit” lim

 −
for “ho-

motopy limit” (see Prop. 3.1.36), “Cartesian square” for “homotopy Cartesian
square”, etc.:

Notation 3.1.21 (Cartesian squares). We say a square in an ∞-category is
Cartesian, to be denoted

X ×B Y
f∗g ��

//

(pb)

Y
g
��

X f // B

(3.21)

if it is an limit cone over the diagram consisting of f and g. We also say this
is the pullback square of g along f .

Example 3.1.22 (Pullback of equivalence is equivalence). Let C ∈ Cat∞.
Then a square in C whose right vertical morphism is an equivalence is Carte-
sian (Notation 3.1.21) precisely if the left vertical morphism is also an equiv-
alence:

A

(pb)

//

��

B
≃
��

C // D

⇔
A

≃
��

C

(3.22)

hence precisely if C // D is equivalent to A // B in C∆1 .

Proposition 3.1.23 (Pasting law [Lu09a, Lemma 4.4.2.1]). In any ∞-
category, consider a diagram of the form

A

��

//
⇓

B

��

//
⇓

C

��
D // E // F

such that the right square is Cartesian (Notation 3.1.21). Then the left square
is Cartesian if and only if the total rectangle is Cartesian.
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Definition 3.1.24 (Adjoint ∞-functors [Lu09a, 5.2.2.7, 5.2.2.8][RV13, 4.4.4]).
Let C,D ∈ Cat∞ (3.1) and L : C oo // D : R two functors between them, back
and forth. This is an adjoint pair with L left adjoint and R right adjoint, to
be denoted (L ⊣ R):

D
oo L

R

⊥ // C (3.23)

if there is a natural equivalence of hom-∞-groupoids (3.2) of the form
D
(
L(−) , −

)
≃ C

(
− , R(−)

)
(3.24)

(This is unique when it exists [Lu09a, Prop. 5.2.1.3, 5.2.6.2]). In this case, one
says:

(i) The adjunction unit is the natural transformation

X
ηX // R ◦L(X) (3.25)

which is the (pre-)image under (3.24) of the identity on R(X).

(ii) The adjunction co-unit is the natural transformation

L◦R(X) ϵX // X (3.26)
which is the image under (3.24) of the identity on L(X).

As in the classical situation of 1-category theory, it follows that:

Proposition 3.1.25 (Triangle identities). Let D
oo L

R
⊥ // C be a pair of adjoint

∞-functors (Def. 3.1.24). Then their adjunction unit η (3.25) and counit ϵ
(3.26) satisfy the following natural equivalences:
(i) for all c ∈ C,

L◦R ◦L(c) ϵL(c)
++

L(c)
L(ηc) 33

L(c) ;

(ii) for all d ∈ D,
R ◦L◦R(d) R(ϵd)

++
R(d)

ηR(d) 33
R(d) .

Proposition 3.1.26 (Right/left adjoints preserve limits/colimits [Lu09a,
5.2.3.5]). Let D

oo L

R
⊥ // C be a pair of adjoint ∞-functors (Def. 3.1.24) and

let I ∈ Cat∞ .

(i) If X• : I // D is a diagram whose limit exists, then this limit is preserved
by the right adjoint R:

R
(
lim
 −

X•
)

≃ lim
 −

RX• (3.27)
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(ii) If X• : I // C is a diagram whose colimit exists, then this colimit is pre-
served by the left adjoint L:

L
(
lim
−!

X•
)

≃ lim
−!

LX• (3.28)

Conversely:

Proposition 3.1.27 (Adjoint ∞-functor theorem [Lu09a, 5.5.2.9]). Let
C1,2 ∈ Cat∞ be presentable (e.g. ∞-toposes, Def. 3.1.30), then an ∞-functor
C1 // C2 is a:

(i) right adjoint (i.e., has a left adjoint, Def. 3.1.24) precisely if it preserves
limits (3.27);
(ii) left adjoint (i.e., has a right adjoint, Def. 3.1.24) precisely if it preserves
colimits (3.28).

Proposition 3.1.28 (Fully faithful adjoints [Lu09a, 5.2.7.4]). For adjoint
∞-functors (Def. 3.1.24) D

oo L

R
⊥ // C ,

(i) L is fully faithful D oo L ? _ C (Def. 3.1.1) iff the adjunction unit η (3.25)
is an equivalence: id η

≃
// R ◦L ;

(ii) R is fully faithful D �
� R // C (Def. 3.1.1) iff the adjunction counit ϵ (3.26)

is an equivalence L◦R
ϵ

≃
// id .

Proposition 3.1.29 (Idempotent Monads and Comonads). For D
oo L

R
⊥ // C

a pair of adjoint ∞-functors (Def. 3.1.24):
(i) If R is fully faithful (Def. 3.1.1) then # := R ◦ L is idempotent, exhibited
by the #-image of the adjunction unit η (3.25):

#(c)
#(ηL(c))

≃
// #◦#(c) . (3.29)

(ii) If L is fully faithful (Def. 3.1.1) then 2 := L ◦ R is idempotent, exhibited
by the 2-image of the adjunction counit η (3.26):

2◦2(d)
2(ϵR(d))

≃
// 2(d) . (3.30)

Proof. Consider case (i), the other case is formally dual. Since R is fully faith-
ful, by assumption, the condition that #(ηL(c)) := R ◦ L(ηL(c)) is an equiv-
alence is equivalent to L(ηL(c)) being an equivalence. But, by the triangle
identity (Prop. 3.1.25), we have that the composite ϵL(L(c)) ◦ L(ηL(c)) is an
equivalence, while by Prop. 3.1.28 the counit ϵ is a natural equivalence. By
cancellation, this implies that L(ηL(c)) is an equivalence.
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∞-Toposes. For our purposes, we take the following characterization to be
the definition of ∞-toposes. This is due to Rezk and Lurie [Lu09a, 6.1.6.8];
we follow the presentation in [NSS12a, Prop. 2.2]:

Definition 3.1.30 (∞-Topos). An ∞-topos H is a presentable ∞-category
with the following properties:

(i) Universal colimits. For all morphisms f : X −!B and all small diagrams
A : I −!H/B , there is an equivalence:

lim
−!

i

f∗Ai ≃ f∗(lim
−!

i

Ai

)
(3.31)

between the pullback (3.21) of the colimit and the colimit over the pull-
backs of its components.

(ii) Univalent universes. For every sufficiently large regular cardinal κ, there
exists a morphism Ôbjectsκ −!Objectsκ in H, such that for every object
X ∈ H, pullback (3.21) along morphisms X −! Objectsκ constitutes an
equivalence

Core
(
H/κX

)
≃ H

(
X,Objectsκ

)
E 7−! ⊢ E

E
(pb)

//

��

Ôbjectsκ

��
X

⊢E
// Objectsκ

(3.32)

between the ∞-groupoid core (3.1) of bundles (Notation 3.1.45) which are
κ-small over X, and the hom-∞-groupoid (3.2) of morphisms from X to
the object classifier Objectsκ.

Example 3.1.31 (Internal mapping space in an ∞-topos). Let H be an ∞-
topos (Def. 3.1.30) and X ∈ H an object. As a special case of universality of
colimits (3.31), we have that the functor X ×(−) of Cartesian product with X
preserves all colimits. Hence, by the adjoint ∞-functor theorem (Prop. 3.1.27),
this functor has a right adjoint, to be denoted Map(X,−), the internal hom-
or internal mapping space- or mapping stack-functor:

H
oo X×(−)

Map(X,−)
internal mapping space

⊥ // H . (3.33)

By adjointness, the probes of the internal mapping space over any U ∈ H are
given by

H
(
U,Map(X,Y )

)
≃ H

(
U ×X , Y

)
. (3.34)

Proposition 3.1.32 (Colimits and equifibered transformations [Lu09a,
6.1.3.9(4)][Re10, 6.5]). Let H be an ∞-topos (Def. 3.1.30), I a small ∞-
category, X•,Y• : I // H two I-shaped diagrams.

(i) If X• f• +3 Y• is a natural transformation which is equifibered [Re10,
p. 9], in that its value on all morphisms i1 ϕ // i2 in Y is a Cartesian
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square (Notation 3.1.21), then the value of lim
−!

f• on all colimit component
morphisms is also Cartesian:

∀
i1

ϕ
!i2

Xi1

fi1 //

Xϕ �� (pb)

Yi1
Yϕ��

Xi2 fi2

// Yi2

⇒ ∀
i

Xi
fi //

qXi ��
(pb)

Yi1
qYi��

lim
−!

X• lim
−!

f•
// lim
−!

Y•
(3.35)

(ii) Let X�
• : I� // H be a cocone under X•, with tip X ∈ H, and

let Y �
• : I� // H denote the colimiting cocone under Y• with tip lim

−!
Y•.

If X�
•

f�
• +3 Y �

• is a natural transformation of cocone diagrams which is
equifibered, then X�

• is a colimiting cocone:

∀
i1

ϕ
!i2

Xi1

fi1 //

Xϕ ��
(pb)

Yi1

Yϕ��
Xi2 fi2

// Yi2

and ∀
i

Xi
fi //

qXi ��
(pb)

Yi1

qYi��
X

lim
−!

f•
// lim
−!

Y•

⇒ X ≃ lim
−!

X• .

(3.36)

Example 3.1.33 (Initial object in ∞-topos is empty object [Re19, p. 16]).
Let H be an ∞-topos (Def. 3.1.30). Applying the implication (3.36) in Prop.
3.1.32 to the colimit over the empty diagram, which is the initial object, shows
that any object with a morphism to the initial object is itself equivalent to
the initial object. Hence if we write

∅ ∈ H s.t. ∀
X∈H

(
H(∅ , X) ≃ ∗

)
(3.37)

for the initial object, this means that

X
∃ // ∅ ⇒ X ≃ ∅ . (3.38)

Proposition 3.1.34 (Tensoring of ∞-toposes over ∞-groupoids). Let H be
an ∞-topos (Def. 3.1.30) with inverse base geometric morphism (Prop. 3.1.43)
denoted ∆ : Grpd∞ −!H . Then, for S ∈ Grpd∞ and X,Y ∈ H, there is a
natural equivalence of ∞-groupoids

H
(
∆(S)×X , Y

)
≃ Grpd∞

(
S , H(X,Y )

)
. (3.39)

Proof. By [Lu09a, Cor. 4.4.4.9] we have, for S ∈ Grpd∞ ↪!Cat∞ and X,Y ∈
H, natural equivalences

lim
−!

S

const∗ ≃ S and

H
(

lim
−!

S

constX , Y
)

≃ Grpd∞
(
S , H(X,Y )

)
.

(3.40)
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This implies the statement in the form (3.39) by using (a) that ∆ preserves all
colimits as well as finite limits (Prop. 3.1.43) and (b) that Cartesian products
may be taken inside colimits, as a special case of (3.31):

H
(
∆(S)×X , Y

)
≃ H

(
∆
(
lim
−!

S

∗
)

×X , Y
)

≃ H
((

lim
−!

S

∆(∗)︸ ︷︷ ︸
≃∗

)
×X , Y

)
≃ H

((
lim
−!

S

(∗×X)︸ ︷︷ ︸
≃X

)
, Y
)

≃ Grpd∞
(
S , H(X,Y )

)
.

The composite equivalence is (3.39).

Sheaves.

Notation 3.1.35 (∞-Presheaves). For C a small ∞-category, we write
PShv∞(C) := Func∞

(
Cop , Grpd∞

)
(3.41)

for the ∞-category of ∞-presheaves on C. More generally, if H is any ∞-topos
(Def. 3.1.30) we also write

PShv∞
(
C,H

)
:= Func∞

(
Cop , H

)
. (3.42)

Proposition 3.1.36 (Limits and colimits in an ∞-topos [Lu09a, Lem.
4.2.4.3]). Let H be an ∞-topos (Def. 3.1.30) and C a small ∞-category. Then
the ∞-functor which sends an object in H to the H-valued presheaf (3.42)
constant on this object has a right- and a left-adjoint (Def. 3.1.24), given by
the limit and colimit construction, respectively:

Func∞
(
C , H

) lim
−! //

oo const
⊥
⊥

lim
 −

//
H (3.43)

Proposition 3.1.37 (∞-Yoneda embedding [Lu09a, Lemma 5.5.2.1]). Let
C be an ∞-category. Then the ∞-functor from C to its ∞-presheaves (3.41)
which assigns representable presheaves

C �
� y // PShv∞(C)

c � // C(−, c)
(3.44)

is fully faithful (Def. 3.1.1).

Proposition 3.1.38 (∞-Yoneda lemma [Lu09a, Lemma 5.5.2.1]). Let C be
an ∞-category. Then for X ∈ PShv∞(C) (3.41) and c ∈ C, there is a natural
equivalence PShv∞

(
y(c),X

)
≃ X(c) ,

where y is the Yoneda embedding (3.44) from Prop. 3.1.37.

Proposition 3.1.39 ((Co-)Limits of presheaves are computed objectwise
[Lu09a, Cor. 5.1.2.3]). Let H be an ∞-topos, let C and D be small ∞-
categories, and let

I : D // PShv∞(C,H)
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be a diagram of H-valued ∞-presheaves over C. Then the limit and colimit
over I exist and are given objectwise over c ∈ C by the limit and colimit of the
components in Grpd∞: (

lim
−!

I
)

: c 7−!
(
lim
−!

Ic

)
,(

lim
 −

I
)

: c 7−!
(
lim
 −

Ic

)
.

Lemma 3.1.40 (Colimit of representable functor is contractible). Let C be
a small ∞-category, and consider an ∞-functor yC : Cop −! Grpd∞ to the
∞-category of ∞-groupoids (3.12), which is representable, hence which is in
the essential image of the ∞-Yoneda embedding (3.44). Then the colimit of
this functor is contractible:

lim
−!

C

(yC) ≃ ∗ . (3.45)

Proof. The terminal ∗ ∈ Grpd∞ is characterized by the fact that for S ∈
Grpd∞ there is a natural equivalence

S ≃ Grpd∞
(
∗ , S

)
.

Hence it is sufficient to see that lim
−!

(yC) satisfies the same property. But we
have the following sequence of natural equivalences:

Grpd∞

(
lim
−!

(yC) , S
)

≃ Func∞
(
Cop
)(

yC , const
)

≃ (constS)(C) ≃ S .

Here the first step is the adjunction (3.43), while the second step is the ∞-
Yoneda lemma (Prop. 3.1.38).

Proposition 3.1.41 (Topos is accessibly lex reflective in presheaves over site
[Lu09a, 6.1.0.6]). Let H be an ∞-topos (Def. 3.1.30).
(i) Then there exists an ∞-site for H, namely a small C ∈ Cat∞ equipped
with a pair of adjoint ∞-functors (Def. 3.1.24) between H and PShv∞(C)
(Notation 3.1.35):

H
oo L

� � ⊥ //
PShv∞

(
C
)

(3.46)

such that (a) the right adjoint is accessible and fully faithful (Def. 3.1.1)
and (b) the left adjoint preserves finite limits (in addition to preserving all
colimits, by Prop. 3.1.26).
(ii) Conversely, any such accessibly embedded lex reflective sub-∞-category of
an ∞-category of ∞-presheaves is an ∞-topos.

Definition 3.1.42 (Sheaf ∞-topos [Lu09a, 6.2]). An ∞-topos H (Def. 3.1.30)
is called an ∞-category of ∞-sheaves or of ∞-stacks, or just a sheaf topos for
short, to be denoted

H ≃ Shv∞
(
C
)

(3.47)
if there exists a site C, namely a small C ∈ Cat∞ with a reflection (Lconst ⊣ Γ)
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(3.46) as in Prop. 3.1.41, such that Lconst exhibits localization at a set{
U �
� // y(c)

covering sieves

}
⊂ ⊔

c∈C
SubObjects

(
y(c)

)
of monomorphisms (Def. 3.1.59) into representable presheaves (3.44).

Proposition 3.1.43 (Base geometric morphism [Lu09a, 6.3.4.1]). Let H be
an ∞-topos (Def. 3.1.30). There is an essentially unique pair of adjoint ∞-
functors (Def. 3.1.24) between H and Grpd∞ (Def. 3.1.12)

H
oo Lconst

⊥
Γ

//
Grpd∞ (3.48)

such that the left adjoint Lconst preserves finite limits (in addition to preserv-
ing all colimits, by Prop. 3.1.26).

Example 3.1.44 (Base geometric morphism via site). Let H be an ∞-topos
(Def. 3.1.30) and C a site (Prop. 3.1.41). Then the composite of pairs of adjoint
∞-functors (Def. 3.1.24)

H
oo L

� � ⊥ //
PShv∞

(
C
) oo const

lim
 −

⊥ //
Grpd∞ (3.49)

of (a) the reflection into presheaves over the site (Prop. 3.1.41) with (b) the
limit-construction on presheaves (Prop. 3.1.36) is such that the composite left
adjoint Lconst preserves finite limits (since L does by Prop. 3.1.41 and const
does by Prop. 3.1.26 with Prop. 3.1.36). Hence, by the essential uniqueness
of Prop. 3.1.43, the composite (3.49) is a factorization of the base geometric
morphism of H.

Bundles.

Notation 3.1.45 (Bundles and slicing.). Let H an ∞-topos (Def. 3.1.30) and
X ∈ H an object. We write:
(i) (X,p) ∈ H/X for objects in the slice ∞-category of H over X, correspond-
ing to morphisms p to X in H (bundles over X):

E
p��

X

(ii) (f,α) ∈ H/X

(
(E1,p1) , (E2,p2)

)
for morphisms in the slice ∞-category,

corresponding to diagrams in H of the form

E1

p1 ''

f // E2

p2ww
X

α
/7 (3.50)
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Proposition 3.1.46 (Slice ∞-topos [Lu09a, Prop. 6.3.5.1 (1)]). Let H be an
∞-topos (Def. 3.1.30) and X ∈ H an object. Then the slice ∞-category H/X

(Notation 3.1.45) is also an ∞-topos.
Example 3.1.47 (Iterated slice ∞-topos). Let H be an ∞-topos (Def. 3.1.30),
X ∈ H and (Y,p) ∈ H/X an object in the slice, hence (Notation 3.1.45) a
morphism Y p // X . Then H/X is itself an ∞-topos, by Prop. 3.1.46, and we
may slice again to obtain the iterated slice ∞-topos(

H/X

)
/(Y,p) ∈ Cat∞ . (3.51)

(i) an object in (3.51) is a diagram in H of this form:
Z

$$
-- Y

puuX

*2

(ii) a morphism in (3.51) is a diagram in H of this form (which is further-
more filled by a 3-morphism, that we notationally suppress, for readability):

Z1

��

--

// Z2

!!

��

Y

X
ww

p

7?

jr

"*
:B

Proposition 3.1.48 (Hom-∞-groupoids in slices [Lu09a, Prop. 5.5.5.12]).
Let H be an ∞-topos (Def. 3.1.30) and B ∈ H an object. Then for
(X1,p1),(X2,p2) ∈ H/B two objects in the slice over B (Prop. 3.1.46) the hom-
∞-groupoid between them is given by the following homotopy fiber-product of
hom-∞-groupoids of H:

H/B

(
(X1,p1) , (X2,p2)

)
≃ {p1} ×

H(X1,B)
H(X1,X2) (3.52)

hence by the ∞-groupoid given by the following Cartesian square (Notation
3.1.21):

H/B

(
(X1,p1) , (X2,p2)

)
��

//

(pb)

H(X1,X2)
p2◦(−)
��

∗
⊢p1

// H(X1,B) .

Proposition 3.1.49 (Base change [Lu09a, HTT 6.3.5]). Let H be an ∞-topos
(Def. 3.1.30). Then for every morphism X

f
! Y in H there is an induced base

change adjoint triple (Def. 3.1.24) between the corresponding slice ∞-toposes
(Prop. 3.1.46):

H/X

f! //

oo f∗
⊥

f∗

⊥ //
H/Y (3.53)
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where, in H, f! is given by postcomposition with f while f∗ is given by pullback
along f .
Example 3.1.50 (Bundle morphisms covering base morphisms). For H an
∞-topos (Def. 3.1.30), the system of all its slice ∞-toposes (Prop. 3.1.46)

Hop
H/(−) // Cat∞

X 7−! H/X

(3.54)

related via contravariant base change (3.53) arranges into the “arrow ∞-topos”
[Lu09a, 2.4.7.12]

Bundles(H) :=
∫

X
H/X ≃ H∆[1] , (3.55)

which, in view of Notation 3.1.45, may be thought of as the ∞-category of
bundles in H, but now with bundle morphisms allowed to cover non-trivial
base morphisms.
Example 3.1.51 (Spectral bundles and tangent ∞-topos). Let H be an ∞-
topos (Def. 3.1.30). Instead of the system (3.54) of its plain slices, consider
the corresponding system of stabilized slices (stabilized under the suspen-
sion/looping adjunction on pointed objects, e.g. [Lu07, 1.4]):

Hop
Stab(H/(−)) // Cat∞

X 7−! Stab
(
H/X

) (3.56)

The resulting total ∞-category

SpectralBundles(H) :=
∫

X
Stab

(
H/X

)
, (3.57)

is that of bundles of spectra in H (parametrized spectrum objects). Remark-
ably, this is itself an ∞-topos [Joy08a, 35.5][Lu17, 6.1.1.11], also called the
tangent ∞-topos TH of H (e.g. [Lu07][BM19]).
Example 3.1.52 (Base change along terminal morphism). Let H be an ∞-
topos (Def. 3.1.30) and X ∈ H any object. With H ≃ H/∗ regarded as its own
slice (Prop. 3.1.46) over the terminal object, base change (Prop. 3.1.49) along
the terminal morphism X ! ∗ is of the form

H/X

dom //

oo X×(−)
⊥

⊥ //
H (3.58)

where (a) the top functor sends a morphism Y ! X to its domain object
Y , and (b) the middle functor is Cartesian product with X. In particular, it
follows that:
(i) The base geometric morphism (Prop. 3.1.24) of the slice ∞-topos H/X

(Prop. 3.1.46) is given by(
∆ ⊣ Γ

)
≃
(
(X ! ∗)∗ ⊣ (X ! ∗)∗

)
(3.59)
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(since (X ! ∗)∗ is a left adjoint that also preserves finite limits, as it is also
a right adjoint, Prop. 3.1.26).
(ii) The forgetful functor dom : H/X !H is a left adjoint (X! ∗)! and hence
preserves all colimits (Prop. 3.1.26).

While dom (3.58) does not preserve all limits, it does preserve fiber prod-
ucts:

Proposition 3.1.53 (Fiber products in slice ∞-toposes). Let H be an
∞-topos (Def. 3.1.30), B ∈ H, H/B the slice ∞-topos (Prop. 3.1.46) and
H/B

dom // X its forgetful functor (3.58) from Example 3.1.52.

(i) Given a cospan (Y,ϕY ) // (X,ϕX) oo (Z,ϕZ) in H/B, the underlying ob-
ject of its fiber product is the fiber product of its underlying objects:

dom
(

(Y,ϕY ) ×
(X,ϕX )

(Z,ϕZ)
)

≃ Y ×
X

Z . (3.60)

(ii) In particular, since (X, idX) is the terminal object in H/X , so that the
plain product in the slice is

(Y,ϕY )× (Z,ϕZ) = (Y,ϕY ) ×
(X,idX )

(Z,ϕZ) ,

we have the that product in H/X is given by the fiber product over X in H:

dom
(

(Y,ϕY )× (Z,ϕZ)
)

≃ Y ×
X

Z .

Proof. Generally, limits in H/X are given by limits in H over the under-
lying co-cone diagram. Specifically: for Y : I // H we have dom

(
lim
 −

Y•
)

≃
lim
 −

(
Y/X

)
• . With this, the claim follows via [Lu09a, Prop. 4.1.1.8] from the

fact that the canonical inclusion of diagram categories{
y // b oo z

} � � //

{
y // b oo z

t
��'' ww

}
is an initial functor (i.e., under (−)op it is a final functor), as one finds by
direct inspection from [Lu09a, Prop. 4.1.3.1].

Proposition 3.1.54 (Terminal right base change of bare ∞-groupoids). In
the base ∞-topos H = Grpd∞ (3.12), the right base change along the terminal
morphism (Example 3.1.52) of an object X ∈ Grpd∞ is given by the hom-∞-
groupoid out of X, regarded as the terminal object in the slice:

(X ! ∗)∗ ≃ H/X

(
X,−

)
:
(
Grpd∞

)
/X

// Grpd∞ .

Proof. We have the following chain of natural equivalences:
Grpd∞

(
A,(Grpd∞)/X(X,B)

)
≃ (Grpd∞)/X

(
∆(A)×X X,B

)
≃ (Grpd∞)/X

(
∆(A),B

)
≃ (Grpd∞)/X

(
(X ! ∗)∗(A),B

)
.

(3.61)
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Here the first step observes that the slice (Grpd∞)/X is itself an ∞-topos by
Prop. 3.1.46, so that the tensoring equivalence of Prop. 3.1.34 applies. The
second step uses the fact that X is regarded as the terminal object in its own
slice, so that forming Cartesian product with it is equivalently the identity
operation. The last step observes that for the slice ∞-topos ∆ ≃ (X ! ∗)∗

(3.59) by Example 3.1.52. In summary, the total equivalence of (3.61) is the
hom-equivalence that characterizes H/X(X,−) as a right adjoint to (X !
∗)∗.

Proposition 3.1.55 (Base change along effective epi is conservative [NSS12a,
3.15] ). Let H be an ∞-topos (Def. 3.1.30). For Y // // X an effective epi-
morphism (Def. 3.1.63) in H, the induced base change (Prop. 3.1.49)

H/X
i∗
// H/Y

is a conservative ∞-functor, meaning that a morphism f ∈ H/X is an equiv-
alence if its base change i∗(f) in H/Y is an equivalence.

Proposition 3.1.56 (Colimits of classifying maps are classifying maps of
colimits). Let H be an ∞-topos (Def. 3.1.30), I a small ∞-category, X• :
I ! H a diagram and (⊢ E)• : X• ! constObjectsκ

a transformation to the
diagram constant on the object classifier (3.32), thus classifying a diagram
E• : I!H of bundles over X•. Then the colimit of (⊢ E)• formed in the slice
H/Objectsκ

(Prop. 3.1.46) is the colimit of X• equipped with the classifying
map for the colimit of E•:

lim
−!

(⊢ E)• ≃ ⊢
(
lim
−!

E•
)

.

Proof. Since underlying the colimit lim
−!

(⊢ E)• in the slice ∞-topos H/Objectsκ

is the colimit lim
−!

X• in H (by Example 3.1.52) we are dealing with a situation
as shown in the diagram on the right (where a simplicial diagram shape is
shown just for definiteness of illustration). We need to demonstrate that the
front square in this diagram is Cartesian. Observe that

(a) the vertical squares over each ⊢ Ei are Cartesian by assumption, whence

(b) also the solid vertical squares over each Xi
// Xj are Cartesian, by the

pasting law (Prop. 3.1.23).
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��

CC

��

CC

��E1

��

""

��

BB

��
E0

��

++

��

Ôbjectsκ

��

lim
−!

E•

��

22

X1

⊢E1

""

��

CC

��
X0

⊢E0 ,,

��

Objectsκ

lim
−!

X•
lim
−!

(⊢E•)

22

This means that the assumption of Prop. 3.1.32 is satisfied for the left part of
the diagram (regarded as a transformation of diagrams from top to bottom)
implying that the dashed square is Cartesian.

This implies, together with (a), that the front square is Cartesian, again
by the pasting law (Prop. 3.1.23).

n-Truncation.

Definition 3.1.57 (n-truncated objects [Lu09a, Def. 5.5.6.1]). Let n ∈
{−2,−1,0,1,2, · · ·}.
(i) An ∞-groupoid is called n-truncated for n ≥ 0 if all its homotopy groups
of degree > n are trivial. It is called (−1)-truncated if it is either empty or
contractible, and (-2)-truncated if it is (non-empty and) contractible.
(ii) Let C be an ∞-category. Then an object X ∈ C is n-truncated if for all
objects U ∈ C the hom-∞-groupoid C(U,X) is n-truncated, in the above sense.

Definition 3.1.58 (n-truncated morphisms [Lu09a, Def. 5.5.6.8]). Let n ∈
{−2,−1,0,1,2, · · ·}.
(i) A morphism of ∞-groupoids is called n-truncated if all its homotopy fibers
are n-truncated ∞-groupoids according to Def. 3.1.57.

(ii) Let C be an ∞-category. A morphism X
f
−! Y in C is called n-

truncated if for all objects U ∈ C the induced morphism of hom-∞-groupoids
C(U,X) C(U,f) // C(U,Y ) is n-truncated in the above sense.
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Definition 3.1.59 (Monomorphisms). A (-1)-truncated morphism (Def.
3.1.58) is also called a monomorphism, to be denoted

X �
� // Y . (3.62)

Proposition 3.1.60 (Monomorphisms are preserved by pushout [Re19, p.
21]). Let H be an ∞-topos (Def. 3.1.30). Then the class of monomorphisms
in H (Def. 3.1.59) is closed under (i) pullback and (ii) composition.
Definition 3.1.61 (Poset of subobjects). Let H be an ∞-topos and X ∈ H
any object. Then the poset of subobjects of X is the sub-∞-category (Def.
3.1.62) of (−1)-truncated objects of the slice over X:

SubObjects(X) �
� // H/X

(3.63)

whose objects are equivalently the monomorphisms (Def. 3.1.59) U ↪!X.
Proposition 3.1.62 (n-Trucation modality [Lu09a, 5.5.6.18]). If H is an ∞-
topos (Def. 3.1.30), for all n ∈ {−1,0,1,2, · · ·}, its full sub-∞-category (Def.
3.1.1) of n-truncated objects (Def. 3.1.57) is reflective, in that the inclusion
functor has a left adjoint (Def. 3.1.24):

H
τn

⊥
//

oo
in

? _ H≤n

∞-topos sub-∞-category
of n-truncated objects

(3.64)

We write for the induced n-truncation modality (1.18):(
τττn := in ◦ τn

“n-truncated”

)
: H−!H . (3.65)

Definition 3.1.63 (Effective epimorphisms [Lu09a, Cor. 6.2.3.5]). Let H
be an ∞-topos. A morphism in H is called an effective epimorphism, to be
denoted

Y
f // // Z (3.66)

if, when regarded as an object of the slice over X (Prop. 3.1.46), its (−1)-
truncation (Prop. 3.1.62) is the terminal object

τ(−1)(f) ≃ ∗ ∈ H/X .

We write EffEpi(H) ⊂ H(0!1) ∈ Cat∞ (3.67)
for the full sub-∞-category (Def. 3.1.1) of the arrow-category of H on those
that are effective epimorphisms.
Definition 3.1.64 (n-Connected morphisms [Lu09a, Prop. 6.5.1.12]). Let
H be an ∞-topos (Def. 3.1.30) and n ∈ {−1,0,1,2 · · ·}. Then a morphism

X
f // Y in H is called n-connected if, regarded as an object in the slice

over X (Prop. 3.1.46), its n-truncation (Def. 3.1.62) is the terminal object:

Y
f // X is n-truncated ⇔ τn(f) ≃ ∗ ∈ H/X .

Hence the (−1)-connected morphisms are equivalently the effective epimor-
phisms (Def. 3.1.63).
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Lemma 3.1.65 (Effective epimorphisms are preserved by pullback [Lu09a,
6.2.3.15]). Let H be an ∞-topos (Def. 3.1.30). Then the class of effective
epimorphisms in H (Def. 3.1.63) is closed under (i) pullback and (ii) compo-
sition.

n-Image factorization.

Proposition 3.1.66 (Connected/truncated factorization system [Lu09a,
Ex. 5.2.8.16][Re10, Prop. 5.8]). Let H be an ∞-topos. Then, for all n ∈
{−1,0,1,2, · · ·}, the pair of classes of n-connected/n-truncated morphisms
(Def. 3.1.64, Def. 3.1.58) forms an orthogonal factorization system:
(i) every morphism f in H factors essentially uniquely as

X
n-connected ))

f // Y

imn(f)
n-truncated

55 (3.68)

(ii) every commuting square as follows has an essentially unique dashed lift:
X //

n-connected ��

A

n-truncated��
Y

66

// B
(3.69)

Example 3.1.67 (Epi/mono factorization). For n = −1, the con-
nected/truncated factorization system (Prop. 3.1.66) has as left class the effec-
tive epimorphisms (Def. 3.1.63) and as right class the monomorphisms (Def.
3.1.59). Hence, with the notation from (3.66) and (3.62):
(i) the (-1)-image factorization (3.68) reads:

X
** **

f // Y

im−1(f)
' �

44 (3.70)

(ii) the lifting property (3.69) for n = −1 reads:
X //

����

A� _

��
Y

77

// B
(3.71)

Groupoids and Stacks.

Definition 3.1.68 (Groupoids internal to an ∞-topos [Lu09a, 6.1.2.7]). Let
H be an ∞-topos (Def. 3.1.30).
(i) A groupoid in H is a simplicial diagram

X• : ∆op // H (3.72)
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which satisfies the groupoidal Segal condition: For all n ∈ N and for all parti-
tions of the set of n+1 elements by two subsets that share a unique element,
the corresponding image under X• is a Cartesian square (Notation 3.1.21):

{0,1, · · · ,n}

S1
' �

44

S2
7 W

jj

∗
jj 44(po) X•7−!

Xn
tt **

(pb)X|S1|−1
**

X|S2|−1
tt

X0
(3.73)

(ii) We write
Grpd(H) �

� // H(∆op) ∈ Cat∞ (3.74)
for the full sub-∞-category of that of simplicial diagrams in H on those that
are groupoids.

Example 3.1.69 (Nerves). Let H be an ∞-topos (Def. 3.1.30) and

X
f // X a morphism in H. Its nerve is the simplicial diagram of its iter-

ated homotopy fiber products:
Nerve•(f) : ∆op // H

[n] 7−! X ×X X ×X · · ·×X X︸ ︷︷ ︸
n factors

(3.75)

with face maps the projections and degeneracy maps the diagonals. This is
evidently a groupoid object according to Def. 3.1.68:

Nerve•(f) ∈ Grpd(H) .

Proposition 3.1.70 (Groupoids equivalent to stacks with atlases [Lu09a,
6.2.3.5]). Let H be an ∞-topos (Def. 3.1.30). Then the ∞-functor sending
X• ∈ Grpd(H) (Def. 3.1.68) to the X0-component of its colimiting cocone

(i) lands in effective epimorphisms (3.67) and

(ii) constitutes an equivalence of ∞-categories whose inverse is given by the
construction of nerves (Example 3.1.69):

Grpd(H) ≃ // EffEpi(H)
X• 7−!

(
X0↠ lim

−!
X•
)

Nerve•(a)  −[
(
X

a
↠ X

)
(3.76)
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��

OO

��

OO

�� ��

OO

��

OO

��
X0 ×X X0 ≃

pr1
��

OO

∆ pr2
��

X1

s

��

OO

e t

��

“groupoid”

X0

a
����

X0

����
“atlas”

X ≃ lim
−!

X• “stack”

(3.77)

Remark 3.1.71 (Internal groupoids with prescribed properties). Often one
considers X• ∈ Grpd(H) (Def. 3.1.68) whose simplicial component diagram
(3.72) is inside a chosen sub-∞-category of H. Key examples are étale
groupoids (Def. 4.1.35 below) and V -étale groupoids (Remark 5.2.2 below).

Remark 3.1.72 (Morita morphisms of groupoids). A morphism between
stacks X := lim

−!
X• underlying groupoids X• (according to Prop. 3.1.70) with-

out (i.e., disregarding) the corresponding atlas is also known as a Morita
morphism (in particular, a Morita equivalence if it is an equivalence), or a
Hilsum-Skandalis morphism [HS87][Pr89], or a groupoid bibundle [Bl07][Nu13,
Prop. 2.2.34] between the corresponding groupoids:

Grpd(H) ≃ // EffEpi(H) codom // H

groupoid X• 7−! (X0↠ X ) 7−! X “stack”

f morphism of underlying stacks =
“Morita morphism” of groupoids��

groupoid Y• 7−! (Y0↠ Y) 7−! Y “stack”

Hence whether or not there is a conceptual distinction between “geometric
groupoids” and “stacks” depends on whether morphisms of groupoids are
taken to be their plain morphisms or their Morita morphisms. In practice,
one is typically interested in the latter case. Indeed, the groupoid atlas of
a stack, whose preservation restricts Morita morphisms to plain morphisms
of groupoids, by Prop. 3.1.70, is, in practice, typically required to exist with
a certain property, but not required to be preserved by morphisms (this is
so notably for V -étale groupoids, Remark 5.2.2 below). In particular, the
SmthGrpd∞ of Example 4.1.18 and the JetsOfSmoothGroupoids∞ of Exam-
ple 4.1.24 below are ∞-groupoids with Morita morphisms understood, hence
could also be called (jets of ) smooth ∞-stacks.

Proposition 3.1.73 (Equifibered morphisms of groupoids). Let H be an
∞-topos (Def. 3.1.30) and X•,Y• ∈ Grpd(H) (Def. 3.1.68). Then, under
the equivalence (3.76) between groupoids and their stacks with atlases (Prop.
3.1.70), we have that equifibered morphisms of groupoids correspond to Carte-
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sian squares between their atlases:

X•
f• +3 Y• such that ∀

[n1] ϕ
![n2]

Xn1

fn1 //

Xϕ ��
(pb)

Yn1

Yϕ��
Xn2 fn2

// Yn2

⇔
X0

aX ����

f0 //

(pb)

Y0
aY����

X
lim
−!

f•
// Y

Proof. From right to left this follows by the pasting law (Prop. 3.1.23), while
from left to right this is Prop. 3.1.32.

3.2 Galois theory
We discuss here the internal formulation in ∞-toposes of the theory of
groups, group actions, and fiber bundles, following [NSS12a][SSS12] (see
[FSS14] for exposition). Externally, these concepts are known as grouplike
A∞-algebras or equivalently: grouplike E1-algebras (here: in ∞-stacks) and
as their A∞-modules etc., and are traditionally presented by simplicial tech-
niques [May72][Lu17]. But internally the theory becomes finitary and elemen-
tary, with all concepts emerging naturally from pastings of a few Cartesian
squares. Accordingly, much of the following constructions may readily be ex-
pressed fully formally in homotopy type theory [BvDR18] (see p. 10). Thus,
the following elegant characterizations of

◦ groups (Prop. 3.2.1),

◦ group actions (Prop. 3.2.6),

◦ principal bundles (Prop. 3.2.15),

◦ fiber bundles (Prop. 3.2.19),

in an ∞-topos H may be taken to be the definition of these notions for all
purposes of internal constructions.

Groups. The following characterization of group ∞-stacks (Prop. 3.2.1) is
the time-honored May recognition theorem [May72] generalized from Grpd∞
to general ∞-toposes [Lu09a, 7.2.2.11][Lu17, 6.2.6.15]:
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Proposition 3.2.1 (A∞-Group recognition theorem [NSS12a, Thm. 2.19]).
Let H be an ∞-topos (Def. 3.1.30). Then the operation of sending an ∞-group
G to the homotopy quotient of its action on a point constitutes an equivalence
of ∞-categories:

Grp
(
H
) oo Ω

B
≃ // H

∗/
≥1

G � // ∗�G

(3.78)

between the ∞-category of ∞-group objects and the ∞-category of pointed and
connected objects in H. The inverse equivalence is given by forming the loop
space object

G ≃ ΩBG

��

//
(pb)

∗
��

∗ // BG

(3.79)

Example 3.2.2 (Point in delooping is an effective epi). For G ∈ Grp(H), the
morphism that exhibits its delooping as a pointed object (Prop. 3.2.1)

∗ // // BG , (3.80)
is an effective epimorphism (Def. 3.1.62). Thus, Prop. 3.1.70 says here that
(i) groups in H are, equivalently, the groupoids in H (Def. 3.1.68) that admit
an atlas by the point and,
(ii) with (3.79), we have

BG ≃ lim
−!

G×• ∈ H . (3.81)

Example 3.2.3 (Neutral element). Let H be an ∞-topos. Given a group
G ∈ Grp(H) in the form of a pointed connected object ∗! BG, according
to Prop. 3.2.1, its neutral element ∗ e

−! G is the diagonal morphism into
the defining homotopy fiber product (3.79), hence the canonical morphism
induced by the universal property of the homotopy fiber product from the
equivalence with itself of the point inclusion into BG (3.80).

∗
e��

G
ss ++(pb)∗

++
∗

ssBG

Example 3.2.4 (Group division/shear map). Let H be an ∞-topos. Given
a group G ∈ Grp(H) in the form of a pointed connected object ∗ −! BG,
according to Prop. 3.2.1, the group division operation

G×G
(−)·(−)−1

// G
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is exhibited by the universal morphism shown dashed in the following diagram:

G×G

�� ��

(−)·(−)−1
// G

�� ��
G

��

// ∗

��
∗ // BG

G×G

�� ��

(−)·(−)−1

,, G

�� ��
G

  
,,

G

~~
,,∗

��

∗

��
∗

,, BG

�� qy
�

(3.82)
On the left, we are showing this as part of a morphism of Čech nerve aug-
mented simplicial diagrams. On the right, the situation is shown in more
detail: Here the right and the two bottom squares are all the looping relation
(3.79), while the left square exhibits the plain product of G with itself. With
this, the universal property of the right square implies the essentially unique
dashed morphism making the total diagram homotopy-commute. Notice:
(i) The two top squares are also Cartesian: This follows from the pasting law
(Prop. 3.1.23) using, for the top front square, that the left and right and the
bottom rear squares are Cartesian; and similarly for the top rear square.
(ii) The total homotopy filling the top and the right faces in (3.82) is, by
commutativity, equivalent to the total homotopy filling the left and the bottom
faces. But, in performing the composition this way, the direction of one of the
two bottom homotopies gets reversed. This is why this construction gives the
division map (−) · (−)−1 (shear map) instead of the plain group product.

Proposition 3.2.5 (Mayer-Vietoris sequence [Sc13, Prop. 3.6.142]). Let H be
an ∞-topos (Def. 3.1.30), G ∈ Grp(H) (Prop. 3.2.1) and (X,f),(Y,g) ∈ H/G

two objects in the slice (Prop. 3.1.46) over the underlying object of G. Then
their homotopy fiber product

X ×
G

Y

prX ��

prY //

(pb)

Y

g
��

X
f

// G

is equivalently exhibited by the following Mayer-Vietoris homotopy fiber se-
quence

X ×G Y

(prX ,prY )
�� (pb)

// ∗

��
X ×Y

(f,g) //

f ·g−1

44G×G
(−)·(−)−1

// G,

(3.83)

where the morphism on the bottom right is the group division map (3.82).

Group actions.
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Proposition 3.2.6 (Group actions [NSS12a, 4.1]). Let H an ∞-topos and
G ∈ Grp(H) (Prop. 3.2.1).
(i) An action (X,ρ) of G is an object X ∈ H and homotopy fiber sequence in
H of the form

X
fib(ρ) // X�G

ρ��
BG,

(3.84)

where BG is the delooping of G (3.2.1).
(ii) The object X�G appearing in (3.84) is, equivalently, the homotopy quo-
tient of the action of G on V :

X�G ≃ lim
−!

(
··· X ×G×G

//oo //oo // X ×G
//oo // X

)
. (3.85)

(iii) Hence the ∞-category of G-actions is, equivalently, the slice ∞-topos
(Prop. 3.1.46) of H over BG:

GAct(H) ≃ H/BG ∈ Cat∞ . (3.86)

We record the following immediate but important aspect of this charac-
terization:

Lemma 3.2.7 (Homotopy quotient maps are effective epimorphisms). Let
H be an ∞-topos, G ∈ Grp(H) (Prop. 3.2.1), and (X,ρ) ∈ GAct(H) (Prop.
3.2.6). Then the quotient morphism from X to its homotopy quotient (3.85)
is an effective epimorphism (Def. 3.1.63):

X
fib(ρ) // // X�G .

Proof. By (3.84) in Prop. 3.2.6, the quotient map sits in a homotopy pullback
square of the form

X

��

fib(ρ) //

(pb)

X�G
ρ��

∗ // BG

The bottom morphism is an effective epimorphism (Example 3.2.2). Since
these are preserved by pullback (Lemma 3.1.65), the claim follows.

Example 3.2.8 (Left multiplication action). Let H be an ∞-topos (Def.
3.1.30) and G ∈ Grp(H) (Prop. 3.2.1). The defining looping relation (3.79)
exhibits, by comparison with (3.84), an action of G on itself:

G
fib(ρℓ) // ∗

ρℓ��
BG

This is the left multiplication action with G�G ≃ ∗ .

Example 3.2.9 (Adjoint action). Let H be an ∞-topos (Def. 3.1.30) and G ∈
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Grp(H) (Prop. 3.2.1). Then the free loop space object LBG of the delooping
BG (3.78), defined by the Cartesian square

LBG //

ρad
��

(pb)

BG

∆
��

BG
∆

// BG×BG

sits in a homotopy fiber sequence of the form

G
fib(ρad) // LBG

ρad��
BG.

By comparison with (3.84), this exhibits an action of G on itself. This is the
adjoint action with G�adG ≃ LBG.

Definition 3.2.10 (Equivariant maps). By the functoriality/universality of
the homotopy fiber construction in (3.84) and using the equivalence (3.86),
we have the ∞-functor that assigns the underlying objects of the G-actions in
Def. 3.2.6:

GAct(H) ≃ H/BG

fib // H . (3.87)

With two G-actions (Xi,ρi) given, we say that a morphism X1 ! X2 ∈ H
between their underlying objects is equivariant if it lifts through this functor,
hence if it is the image of a morphism (X1,ρ1)! (X2,ρ2) ∈ GAct(H).

Example 3.2.11 (Group division is equivariant under diagonal left and ad-
joint action). Let H be an ∞-topos (Def. 3.1.30) and G ∈ Grp(H) (Prop.
3.2.1). Then the group division operation (Example 3.2.4) is equivariant (Def.
3.2.10) with respect to the diagonal left multiplication action ρℓ (Exam-
ple 3.2.8) on its domain and the adjoint action ρad (Example 3.2.9) on its
codomain:

(G,ρℓ)× (G,ρℓ)
(−)·(−)−1

// (G,ρad) ∈ GAct(H) . (3.88)

Proof. Observe the following pasting of Cartesian squares:

G×G
(−)·(−)−1

//

(−)−1·(−)◦σ
��

G //

��

∗

��
G

��

// LBG //

��

BG

∆
��

∗ // BG
∆ // BG×BG

The middle horizontal composite, regarded as a morphism in the slice over
BG and hence as a morphism of G-actions (3.84), gives (3.88).

Proposition 3.2.12 (Restricted and induced group actions). Let H be an
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∞-topos. Then, for ϕ : H ! G a morphism in Grp(H) (Prop. 3.2.1), there
is a triple of adjoint ∞-functors (Def. 3.1.24) between the corresponding ∞-
categories of group actions (Prop. 3.2.6)

HAct(H)

“left-induced”
Bϕ! //

oo Bϕ∗⊥

⊥
Bϕ∗

“right-induced”

//
GAct(H) (3.89)

such that Bϕ∗ preserves the object being acted on (“restricted action”).

Proof. By (3.86) in Prop. 3.2.6, an adjoint triple (Def. 3.1.24) of the form
(3.89) is given by base change (Prop. 3.1.49) of homotopy quotients (3.85)
along the delooped morphism Bϕ (Prop. 3.2.1). This means that Bϕ∗ is given
by sending the homotopy fiber sequence (3.84) corresponding to a G-action
to the following homotopy pullback (Prop. 3.2.1):

X
fib(ϕ∗ρ)

//

fib(ϕ)

,,
X�H

(pb)ϕ∗ρ

��

// X�G

ρ

��
BH

Bϕ
// BG

(3.90)

That this preserves the object X being acted on, as indicated, follows by the
pasting law (Prop. 3.1.23).

Definition 3.2.13 (Automorphism group). Let H be an ∞-topos and F ∈ H
an object. Then the automorphism group Aut(F ) ∈ Grp(H) of F is the looping
(Prop. 3.2.1) of the (-1)-image (3.68) of the classifying map (3.32) of F :

∗ (-1)-conn. // //

⊢F

33BAut(F ) �
� (-1)-trunc. // Objectsκ . (3.91)

The canonical action of this group (Prop. 3.2.6) on V is exhibited, via (3.84),
by the left square of the following pasting composite of Cartesian squares:

F

��

fib(ρAut) //

(pb)

F �Aut(F ) //

ρAut
��

(pb)

Ôbjectsκ

��
∗

⊢F

44
// // BAut(F ) �

� / Objectsκ ,

(3.92)

where we use the pasting law (Prop. 3.1.23) to identify F as the homotopy
fiber of ρAut.
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Proposition 3.2.14 (Automorphism group is universal). Let H be an ∞-
topos, G ∈ Grp(H) (Prop. 3.2.1), and (X,ρ) ∈ GAct(H) (Def. 3.2.6). Then
there is a group homomorphism from G to the automorphism group (Def.
3.2.13)

G
iρ // Aut(X)

such that the action ρ is the restricted action (Prop. 3.2.12) along iρ of the
canonical automorphism action (3.92), i.e., such that there is a Cartesian
square of this form:

X�G //

(pb)ρ

��

X�Aut(X)

ρAut
��

BG
Biρ

// BAut(X)

Proof. Let κ be a regular cardinal such that X is κ-small, and consider the
following solid diagram of classifying maps (3.32) for ρ, ρAut and for X:

X //

%%

��

X�Aut(X)

))

��

X�G

��

//

66

Ôbjectsκ

��

∗
(-1)-connected

&&

// BAut(X)� v
(-1)-truncated))

BG

Biρ

66

⊢ρ
// Objectsκ

Here the bottom square homotopy-commutes by the essential uniqueness of
the classifying map ⊢ X (3.32). Hence the dashed lift exists essentially uniquely
(3.69), by the connected/truncated factorization system (Prop. 3.1.66).

Principal bundles.

Proposition 3.2.15 (Principal bundles [NSS12a, Thm. 3.17]). Let H be an
∞-topos, X ∈ H, and G ∈ Grp(H) (Prop. 3.2.1). Then G-principal ∞-bundles
P ! X over X are, equivalently, given by classifying maps ⊢ P : X ! BG.
Forming their homotopy fibers

P

fib(⊢P )
��

X
⊢P
// BG

constitutes an equivalence of ∞-groupoids:

GBundlesX(H) oo fib
≃ H(X,BG) .

P 7−! ⊢ P
(3.93)

Remark 3.2.16 (Principal base spaces are homotopy quotients). Comparison
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of the abstract characterization of (i) group actions (Prop. 3.2.6) and (ii)
principal bundles (Prop. 3.2.15), reveals that these are about one and the
same abstract concept, just viewed from two different perspectives: In an ∞-
topos, every G-principal bundle is a G-action whose homotopy quotient is the
given base space; and, conversely, every G-action is that of a principal bundle
over its homotopy quotient:

principal
G-bundle P

↷

G

��

G-action

base
space X ≃ P �G homotopy

quotient

Notice (see [NSS12a, 3.1] for exposition) that it is the higher geometry inside
an ∞-topos that makes this work.
Definition 3.2.17 (Atiyah groupoid). Let H be an ∞-topos (Def. 3.1.30),
X ∈ H, G ∈ Grp(H) (Prop. 3.2.1), and P ∈ GBundlesX (Prop. 3.2.15). Then
the Atiyah groupoid of P is the groupoid At•(P ) ∈ Grpd(H) (Def. 3.1.68)
whose corresponding stack with atlas (via Prop. 4.1.36) is the (-1)-image pro-
jection (Example 3.1.67) of the bundle’s classifying map ⊢ P (3.93):

X // //

⊢P

44At(P ) �
� // BG . (3.94)

Fiber bundles.
Definition 3.2.18 (Fiber bundle). Let H be an ∞-topos (Def. 3.1.30).
(i) morphism Y

p
−!X in H is a fiber bundle with typical fiber F ∈ H if there

exists an effective epimorphism U
i // // X (Def. 3.1.63) and a Cartesian

square (Notation 3.1.21) of the form
U ×F

��

//

(pb)

Y
p
��

U
i

// // X

(ii) We write
FFiberBundlesX(H) ⊂ Core

(
H/X

)
∈ Grpd∞

for the full ∞-groupoid of the core (3.1) of the slice H/X over X (Prop. 3.1.46)
on the F -fiber bundles.
Proposition 3.2.19 (Classification of fiber bundles [NSS12a, Prop. 4.10]).
Let H be an ∞-topos (Def. 3.1.30) and X,F ∈ H. Then fiber bundles over X
(Def. 3.2.18) with typical fiber F are equivalent to morphisms X −!BAut(F )
from X to the delooping (Prop. 3.2.1) of the automorphism group (Def. 3.2.13)
of F :

FFiberBundlesX(H) ≃ // H
(
X , BAut(F )

)
E 7−! ⊢ E

(3.95)
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Proof. Let κ be a regular cardinal such that F is κ-small. Then, by assump-
tion, we have the following solid diagram of classifying maps (3.32):

U ×F

��

pr2 //

))

F �Aut(F )

��

**
E

��

// Ôbjectsκ

��

U //
(-1)-connected

)) ))

BAut(F ) � y
(-1)-truncated++

X //
⊢E 44

Objectsκ

Now the (-1)-connected/(-1)-truncated factorization system (Prop. 3.1.66) im-
plies that the dashed morphism exists essentially uniquely (3.69).

It just remains to see that this assignment is independent of the choice of U :
For U ′ // //X any other effective epimorphism with (⊢ E)′ the associated clas-
sifying map as above, observe that the fiber product U ×X U ′ // //X is again
an effective epimorphism, since the class of effective epimorphisms is closed
under pullbacks as well as under composition (Lemma 3.1.65). Therefore ⊢ E
and (⊢ E)′ are jointly lifts in a diagram as above but with U ×X U ′ in the
top left. Hence, by the essential uniqueness of lifts in the connected/truncated
orthogonal factorization system, they are equivalent, (⊢ E) ≃ (⊢ E)′, in an
essentially unique way.

Notation 3.2.20 (Associated bundles). We say that
(i) the morphism ⊢ E in (3.95) is the classifying map of E and
(ii) that E is associated to the Aut(F )-principal bundle which is classified by
⊢ E according to Prop. 3.2.15.

Remark 3.2.21 (Twisted cohomology in slice ∞-toposes). Prop. 3.2.19 im-
plies (together with the universal property of the pullback) that sections σ of
A-fiber bundles E over some X are, equivalently, lifts c of the classifying map
c := ⊢ E (3.95) through ρAut (3.92):

A�Aut(A)

ρAut
��

X
τ := ⊢E

classifying map

//

lift of
classifying map

c
66

BAut(A)

≃

associated bundle
E

p

��

//

(pb)

A�Aut(A)

ρAut

��
X

section
σ

??

X τ
// BAut(A)

(3.96)

(i) If A is regarded here as a coefficient object for A-cohomology (1.20), then
such a section σ is a locally A-valued cocycle, which is “twisted” over X ac-
cording to the classifying map τ . Hence such a σ is a cocycle in (non-abelian)
τ -twisted cohomology [NSS12a, 4.2]. But the left hand side of (3.96) is, equiv-
alently, a morphism (3.50) in the slice ∞-topos (Prop. 3.1.46) H/BAut(A).
It follows that twisted cohomology is the intrinsic cohomology (1.20) of slice
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∞-toposes:
τ-twisted

cohomology

Hτ
(
X , A

)
:= π0 H/BAut(A)

(
(X,τ) , (A�Aut(A),ρAut)

)

≃



X

τ
!!

cocycle
c // A�Aut(A)

ρAutyy
BAut(A)

px

/
∼

(3.97)

(ii) By the universality of Aut(A) (Prop. 3.2.14), this holds for slicing over
any pointed connected object BG (3.78).
(iii) If the base object is not connected, the intrinsic cohomology of its slice
may be thought of as a mixture of twisted and parametrized cohomology. We
encounter an example of this in Def. 6.2.1 below.

Remark 3.2.22 (Twisted cohomology as global sections). The ∞-groupoid
of sections of the associated bundle E := τ∗(A�G) p // X in (3.96), is equiv-
alently its image ΓX(E) under the base geometric morphism (Prop. 3.1.43)

H/X

oo ∆X

ΓX

⊥ // Grpd∞

of the slice ∞-topos HX (Prop. 3.1.46), in that (by Prop. 3.1.34) ΓX(E) ≃
HX

(
idX , p

)
. Hence the τ -twisted cohomology (3.97) of X is equivalently the

set of connected components of the ∞-groupoid of global sections:
Hτ
(
X; A

)
≃ π0 ΓX

(
τ∗(A�G)

)
. (3.98)

Remark 3.2.23 (Twisted abelian cohomology in tangent ∞-toposes). Let H
be an ∞-topos (Def. 3.1.30).
(i) Notice that the intrinsic cohomology (1.20) of Bundles(H) (Example
3.1.50) is still twisted cohomology as in Remark 3.2.21, just up to a change in
perspective: now the twisting τ is encoded not in the domain object, but in
the cocycles on these (a morphism of the form idX

// ρAut in Bundles(H) is
still manifestly given by the diagrams in (3.96)).
(ii) Therefore, similarly, the intrinsic cohomology (1.20) in the tangent ∞-
topos SpectralBundles(H) (Example 3.1.51) is twisted cohomology with lo-
cal coefficients being spectra [Sc13, 4.1][ABGHR14][GS19a][GS19b], hence is
twisted abelian cohomology.
(iii) In the case that H = Grpd∞, the base tangent ∞-topos

TGrpd∞ = SpectralBundles
(
Grpd∞

)
(3.99)

is the topic of traditional parametrized stable homotopy theory [Jam95][MSi06][ABGHR14,
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2][BM19] and its intrinsic cohomology theory (1.20) is traditional twisted gen-
eralized cohomology [Do05][ABG10].

Fixed points and fixed loci.

Definition 3.2.24 (Fixed points and fixed loci). Let H be an ∞-topos, G ∈
Grp(H) (Prop. 3.2.1) and (X,ρ) ∈ GAct(H) (Prop. 3.2.6).

(i) A fixed point of (X,ρ) is an element ∗ x // X induced from a section
x�G of ρ in (3.84), as shown on the right (where we are using the pasting law,
Prop. 3.1.23, and Example 3.1.22 to identify the top square as Cartesian).

∗ //

x
��

(pb)

BG

x�G
��

X fib(ρ) //

��
(pb)

X�G

ρ
��

∗ // BG,

(3.100)

(ii) The G-fixed locus of (X,ρ) is the object
XG := B(G! ∗)∗

(
(X,ρ)

)
∈ 1Action(H) ≃ H , (3.101)

that is right induced (Prop. 3.2.12) along the unique morphism to the trivial
group.

Example 3.2.25 (Global points of fixed loci are homotopy fixed points).
The global points of a homotopy-fixed locus XG (3.101) are indeed, equiva-
lently, the fixed points (3.100). By the adjunction (3.89), we have the hom-
equivalence (3.24)(

∗ // XG = B(G! 1)∗(X,ρ)
)
↔

(
B(G! 1)∗(∗) // (X,ρ)

)
and, by Prop. 3.2.6, the latter morphisms are equivalent to homotopy-
commuting diagrams of the form

BG

B(G!1)∗(∗)
≃
&&

x�G // X�G

ρww
BG

This is just the type of diagram characterizing homotopy fixed points. as seen
vertically on the right in (3.100).

Example 3.2.26 (Fixed loci in ∞-groupoids). Consider H := Grpd∞, G ∈
Grp(Grpd∞) and (X,ρ) ∈ GAct

(
Grpd∞

)
. Then the G-fixed locus (Def. 3.2.24)

is given (due to Prop. 3.1.54) by
XG ≃ H/

∗�G

(
∗�G, X�G

)
∈ Grpd∞ .

Definition 3.2.27 (Pointed-automorphism group). Let H be an ∞-topos
and

(
X

↙
∗ )

∈ H∗/ ↪−!H∆[1] a pointed object in H, equivalently regarded as
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an object in the ∞-topos H∆[1] of ∞-functors from ∆[1] := {0 −! 1} to H.
Noticing the evaluation functors (3.43)

H∆[1] H

ev1
⊥

⊥
ev0

const (3.102)

and that these preserve all ∞-limits and ∞-colimits (by Prop. 3.1.39), hence
all group objects and their deloopings (by (3.84) in Prop. 3.2.6) we say that the
pointed-automorphism group of X is the image under ev0 of its automorphism
group, according to Def. 3.2.13, formed in the arrow ∞-topos H∆[1]:

Aut∗(X) := ev0
(

Aut
(
X

↙
∗ ))

∈ Grp(H) . (3.103)

This pointed-automorphism groups comes with a canonical pointed action on
X as follows: From the defining factorization (3.91)

const(∗) BAut
(
X

↙
∗ )

Objectsκ

(where now Objectsκ denotes the κ-small object classifier (3.32) of H∆[1]),
and using again that the evaluation functors (3.102) preserves ∞-limits, hence
in particular homotopy pullbacks, it follows that the front and rear faces of
the following diagram are Cartesian (Nota. 3.1.21)

∗ Bev0
(

Aut
(
X

↙
∗ ))

ev0
(

Ôbjectsκ

)

X X�ev1
(

Aut
(
X

↙
∗ ))

ev1
(

Ôbjectsκ

)

∗ Bev0
(

Aut
(
X

↙
∗ ))

ev0
(

Objectsκ

)

∗ Bev1
(

Aut
(
X

↙
∗ ))

ev1
(

Objectsκ

)
,

so that pullback along the bottom diagonal morphisms shows that the pointed
automorphism ∞-group (3.103) sits in a diagram in H of the following form:

∗ ∗�Aut∗(X)

X X �Aut∗(X)

∗ BAut∗(X)

∗ BAut∗(X)

ρAut

(3.104)
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Here the cartesian front face exhibits the action of the pointed-automorphism
group of X on X and the Cartesian rear face exhibits its trivial action on
the base point. With this and noticing that also the bottom face is Cartesian
(by Example 3.1.22) the pasting law (Prop. 3.1.23) implies that also the top
square is Cartesian, exhibiting the given base point as a homotopy fixed point
(Def. 3.2.24) of the pointed-automorphism action.

Definition 3.2.28 (Group-automorphism group). Let H be an ∞-topos and
G ∈ Grp(H) (Prop. 3.2.1). Then the group of group-automorphisms of G is
the group of pointed-automorphisms (Def. 3.2.27) of its delooping BG (3.78):

AutGrp(G) := Aut∗(BG) ∈ Grp(H) . (3.105)

Proposition 3.2.29 (Canonical action of group-automorphism group). Let
H be an ∞-topos and G ∈ Grp(H) (Prop. 3.2.1). The group-automorphism
group of G (Def. 3.2.28) has a canonical action (Prop. 3.2.6)

(G,ρAutGrp) ∈ AutGrp(G)Act(H)
on the underlying object G ∈ H, which is such that

(i) The neutral element ∗ e // G (Example 3.2.3) is a fixed point of the
action (Def. 3.2.24).

(ii) The homotopy quotient G � AutGrp(G) carries the structure of a group
object (3.78) in the slice (3.86)

G�AutGrp(G) ∈ Grp
(
H/BAutGrp

)
,

whose delooping (3.78) is the homotopy quotient of the defining action
(3.105) on the delooping BG of G:

B
(
G�AutGrp(G)

)
≃ (BG)�AutGrp(G) . (3.106)

Proof. First consider item (ii): Write G�AutGrp(G) for the homotopy fiber
product in the following pullback square

G�AutGrp(G) //

��
(pb)

∗�AutGrp(G)

��
∗�AutGrp(G) // (BG)�AutGrp(G) .

(3.107)

Since this is the looping (3.79) in the slice (Prop. 3.1.46):
G�AutGrp(G) = Ω

(
(BG)�AutGrp(G)

)
∈ H/BAutGrp(G) ,

the looping/delooping equivalence (3.78) implies the claim (3.106) as soon as
we show (in view of Prop. 3.2.6) that the homotopy fiber of the left morphism
in (3.107) is indeed G, in that it makes the total solid rear rectangle of the
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following diagram be Cartesian:
∗ //

e

��

∗�AutGrp(G)

(id, id)
��

G

!!

//

��

G�AutGrp(G)
**

��

∗ //

��

∗�AutGrp(G)

��

∗
!!

//

��

∗�AutGrp(G)
**

BG //

��

(BG)�AutGrp(G)

ρ∗

��

∗

!!

// BAutGrp(G)

∗ // BAutGrp(G) .

(3.108)

Here:

• the bottom part is the diagram (3.104) (for X = BG) which exhibits the
pointed-automorphism action on BG;

• the top front square is Cartesian and exhibits the base point being a
homotopy-fixed point, as in (3.104);

• the top left square is Cartesian and exhibits the looping/delooping relation
(3.79);

• the top right square is (3.107) and hence Cartesian by definition.

Hence the pasting law (Prop. 3.1.23) implies that also the solid top rear
square is Cartesian.

Finally to see item (i): Observe that there is the dashed morphism shown
in the top right of (3.108), this being the diagonal morphism induced from
the Cartesian property of the top right square, by the above. This means, by
construction, that the total vertical morphism on the right is an equivalence.
Now define the dashed top square to be a pullback square. Then, by the pasting
law (Prop. 3.1.23), the pullback object in the top left of the dashed square is
equivalently the pullback of the total rear diagram, hence the pullback of an
equivalence to a point, hence is itself equivalent to the point, as shown. Since
the point is terminal, the top left dashed morphism is thus a cone over the
Cartesian square on the top left. By the universal property of the homotopy
fiber product, this means that the top left dashed morphism must be the
neutral element (Example 3.2.3). The top dashed square hence exhibits this
as a homotopy fixed point.
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Proposition 3.2.30 (Group division is equivariant under group-automor-
phisms). Let H be an ∞-topos and G ∈ Grp(H) (Prop. 3.2.1). Then the
group division morphism G×G (−)·(−)−1 // G (Example 3.2.4) is equivari-
ant (Def. 3.2.10) with respect to the canonical group-automorphism action
(Prop. 3.2.29) of the group-automorphism group AutGrp(G) (Def. 3.2.28) act-
ing on all three copies of G:

(G,ρAutGrp)× (G,ρAutGrp)
(−)·(−)−1

// (G,ρAutGrp) ∈ AutGrp(G)Act(H) .

Proof. By (3.82) the group division morphism is a universal morphism induced
from pasting of copies of the looping square (3.79). Thus the claim follows by
Prop. 3.2.29.





4
Singular geometry

CONTENTS
4.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Differential Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1.2 Differential Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.3 Super Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Here we establish axiomatic foundations of a geometric homotopy theory of
orbifolds, unifying:

(i) §4.1 – the cohesive geometric homotopy theory due to [SSS12][Sc19], which
reflects the geometric aspects of orbifolds;

(ii) §4.2 – the cohesive global-equivariant homotopy theory due to [Re14],
understood as reflecting the singular aspects of orbifolds, as in Figure D.

This is to provide, in §5 below, a general abstract theory of geometric aspects
of orbi-singular spaces and of étale ∞-stacks.

4.1 Geometry

4.1.1 Differential Topology
We present a formulation of differential topology internal to ∞-toposes which
we call cohesive [Sc13]. In ∞-categorical generalization of [La94][La07], this
involves an abstract shape operation S that relates higher geometric spaces to
their bare underlying homotopy type.

Definition 4.1.1 (Cohesive ∞-topos). (i) An ∞-topos H (Def. 3.1.30) is
called cohesive if its base geometric morphism (Prop. 3.1.43), to be denoted
Pnts : H // Grpd∞ , is part of an adjoint quadruple of ∞-functors (Def.

73
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3.1.24)

H

×“shape” Shp
⊥

//

oo“discrete” Disc
⊥

? _

“points” Pnts
⊥

//

oo“chaotic” Chtc ? _
B

cohesive
∞-topos

discrete
sub-topos

(4.1)

such that (a) Disc and Chtc are fully faithful (Def. 3.1.1), and (b) such that
Shp preserves finite products.
(ii) We write (

S := Disc◦Shp
)

“shape”
⊥(

♭ := Disc◦Pnts
)

“discrete”
⊥(

♯ := Chtc◦Pnts
)

“continuous”

: H−!H (4.2)

for the induced adjoint triple (Def. 3.1.24) of modalities (1.18) (cohesive modal-
ities).

The following direct consequence may serve to illustrate how these axioms
are put to work:

Proposition 4.1.2 (Composite cohesive modalities). The cohesive modalities
(Def. 4.1.1) satisfy:

S ◦ ♭ ≃ ♭ and ♭◦ ♯ ≃ ♭ .

Proof. That Disc and Chtc in (4.1) are fully faithful means, equivalently
(Prop. 3.1.28), that the co-unit morphisms (3.26)

Shp◦Disc ≃ // id , Pnts◦Chtc ≃ // id
are natural equivalences. Hence the image under Disc ◦ (−) ◦ Pnts of the first
of these is a natural equivalence of the form

S ◦ ♭ = Disc◦Shp◦Disc◦Pnts ≃ // Disc◦Pnts = ♭ .

while the image of the second is of the form

♭◦ ♯ = Disc◦Pnts◦Chtc◦Pnts ≃ // Disc◦Pnts = ♭ .

Lemma 4.1.3 (Only the empty object has empty shape). Let H be a cohesive
∞-topos (Def. 4.1.1). Then X ∈ H is empty, i.e., equivalent to the initial object
∅ (3.37), precisely if its shape (4.2) is empty:

X ≃ ∅ ⇔ SX ≃ ∅ .

Proof. In one direction, assume that X ≃ ∅. Noticing that ∅ is the initial
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colimit and that colimits are preserved by S, this being a left adjoint (Prop.
3.1.26), it follows that S(∅) ≃ ∅.

In the other direction, assume that the shape of X is empty. Then the
shape unit (3.25) is a morphism of the form

X
η

S
X // SX ≃ ∅

and thus X ≃ ∅ follows as in (3.38), by universality of colimits (Example
3.1.33).

Cohesive ∞-group actions. The condition that Shp preserves finite prod-
ucts implies the following properties.

Proposition 4.1.4 (Shape preserves groups, actions and their homotopy quo-
tients). Let H be a cohesive ∞-topos (Def. 4.1.1), G ∈ Grp

(
H
)

(3.78) and and
(X,ρ) ∈ GActions(H) (Prop. 3.2.6).
(i) Then the shape SX (4.2) of X is equipped with an induced SG-action, such
that the shape of the homotopy quotient (3.85) is the homotopy quotient of the
shapes. The analogous statement holds for ♭ (4.2):

S
(
X�G

)
≃
(
SX
)
�
(
SG
)

and ♭
(
X�G

)
≃
(
♭X
)
�
(
♭G
)

.

(ii) In particular, both S and ♭ preserve group objects and their deloopings
(Prop. 3.2.1):

SBG ≃ B SG and ♭BG ≃ B♭G.

Proof. The homotopy quotient of X by G is, equivalently, a colimit over a
simplicial diagram of finite Cartesian products of copies of X and G (3.85).
Hence the statement follows for every ∞-functor that commutes with simpli-
cial colimits and with finite products. But, since S is a left adjoint, it commutes
with all colimits (Prop. 3.1.26) and also with finite products, by assumption
on Shp and since Disc is a right adjoint. Similarly, ♭ is both left and right
adjoint, and hence preserves all colimits and all limits (again Prop. 3.1.26).
That preservation of homotopy quotients implies preservation of ∞-groups
follows by the delooping theorem (Prop. 3.2.1).

Lemma 4.1.5 (Cohesive shape preserves some homotopy fiber products).
In a cohesive ∞-topos H (Def. 4.1.1), the shape functor Shp (4.1) pre-
serves homotopy fiber products over cohesively discrete objects. That is, for
B ∈ B �

� Disc // H and X,Y ∈ H/B, we have a natural equivalence
Shp

(
X ×

B
Y
)

≃ Shp(X)×
B

Shp(Y ) .

Proof. This is proven in [Sc13, Thm. 3.8.19] under the assumption that H
admits an ∞-cohesive site of definition. This assumption was shown to be
unnecessary in [BP22, Lemma 3.10].

Lemma 4.1.6 (Shape of ηS-induced action). Let H be a cohesive ∞-topos
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(Def. 4.1.1), G ∈ Grp(H) (Prop. 3.2.1) and (X,ρ) ∈ GActions(H) (Prop.
3.2.6).
(i) The left-induced action (Prop. 3.2.12)

(X̃, ρ̃) := B
(
ηS

G

)
! (X,ρ) ∈ (SG)Actions(H)

along the shape unit morphism (3.25) G η
S
G
// SG acts on an object whose

shape (4.2) is that of X:
SX̃ ≃ SX ,

whence (
SX , Sρ

)
∈
(
SG
)
Actions(H) . (4.3)

(ii) Similarly, the restricted-induced action (Prop. 3.2.12)
(X̃, ρ̃) := B

(
Sϵ♭
)∗ ◦B

(
ηS

G

)
! (X,ρ) ∈ (♭G)Actions(H)

along the pair of group homomorphisms (using Prop. 4.1.4)
G η

S
G
// SG oo Sϵ♭

G ♭G

acts on an object whose shape (4.2) is that of X:
SX̃ ≃ SX .

Proof. By Prop. 3.2.6 and Prop. 3.2.12, the object X̃ sits in a diagram of
Cartesian squares (Notation 3.1.21) as shown on the left in the following (the
full square in case (i), the pasting decomposition for case (ii)):

X̃

��

//

(pb)

X̃�♭G

��

//

(pb)

X�G

ρ
��

SX̃

��

(pb)

//
(
SX̃
)
�
(
♭G
)

//

��

(pb)

(
SX
)
�
(
SG
)

Sρ

��

BG

BηS

G��

S
7−!

∗ // B♭G
B Sϵ♭

G

// B SG ∗ // B♭G
B Sϵ♭

G

// B SG

(4.4)
But, since the objects in the bottom row B SG ≃ SBG and B♭G ≃ ♭BG
(equivalences by Prop. 4.1.4) are both cohesively discrete, Lemma 4.1.5 says
that the image of these squares under shape are still Cartesian. This is shown
on the right in (4.4), where we have identified the shape of the various objects
by using Prop. 4.1.4 and idempotency of the modality (Prop. 3.1.29). With
this, the pasting law (Prop. 3.1.23) implies that the outer right square in (4.4)
is itself Cartesian, hence that SX̃ is the homotopy fiber of Sρ. This implies the
claim, by Prop. 3.2.6.

Proposition 4.1.7 (Automorphisms along shape-unit). Let H be a cohesive
∞-topos (Def. 4.1.1), G ∈ Grp(H) (Prop. 3.2.1) and (X,ρ) ∈ GActions(H)
(Prop. 3.2.6). There is a canonical homomorphism

Aut(X)
Aut
(

η
S
X

)
// Aut(SX) (4.5)
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from the automorphism group (Def. 3.2.13) of X to that of the shape (4.2) of
X, which is such that the shape unit ηS

X (3.25) is equivariant (Def. 3.2.10) with
respect to the canonical automorphism action (3.92) on X and the restriction
(Prop. 3.2.12) along this morphism (4.1.7) of the canonical automorphism
action on SX:

(X,ρAut(X))
η

S
X // Aut(ηS

X)∗(SX,ρAut(SX)
)

∈ Aut(X)Actions(H) .

Proof. Take the morphism (4.1.7) to be the composite

Aut(X) Aut
(

η
S
X

)
//

ηS

Aut(X)
**

Aut
(
SX
)

S
(
Aut(X)

) Ω ⊢ SρAut

44

where (a) the left morphism is the shape unit (3.25), using Prop. 4.1.4, while
(b) the right morphism is that which exhibits, via Prop. 3.2.14, the SAut(X)-
action SρAut (4.3) on SX from Lemma 4.1.6. Then consider the following dia-
gram of homotopy fiber sequences:

SX // (SX)�Aut
(
SX
)

ρAut(S(X))

��

SX // (SX)�
(
SAut(X)

)
SρAut(X)

��

44

(pb)

X //
ηS

X

99

X�Aut(X)

ρAut(X)

��

ηS
X�Aut(X)

44

BAut
(
SX
)

BSAut(X)
⊢ SρAut

44

BAut(X)
ηS

BAut(X)

44

Aut
(
ηS

X

)

==

Here (i) the fiber squence in the middle is that from the right of (4.4), (ii)
the right part is the defining pullback from Prop. 3.2.14, while (iii) the left
part exists by the naturality of ηS. By the commutativity of the total front
square it factors through the coresponding pullback square, thus implying the
claim.

Concrete cohesive objects.

Definition 4.1.8 (Concrete objects). Let H be a cohesive ∞-topos (Def.
4.1.1).
(i) For X ∈ H0 ↪!H 0-truncated (Def. 3.1.57), we say that X is a concrete
object or concrete cohesive space if the unit η♯

X (3.25) of the ♯-modality (4.2)
is (-1)-truncated (Def. 3.1.58), hence a monomorphism. By the 0-image fac-
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torization (3.68),

X
(-1)-conn. // //

η
♯
X

unit morphism of ♯-modality

33
image factorization

♯1X � � (-1)-trunc. // ♯X

this means equivalently that X is equivalent to its 0-image under the ♯-unit
(3.25):

X ∈ H0 : X is concrete ⇔ X �
� η

♯
X // ♯X ⇔ ♯1X ≃ X .

(4.6)
(ii) We write

H0,♯1 ↪−!H0 ↪−!H (4.7)
for the full subcategory of the 0-truncated objects on those which are concrete.
(iii) Moreover, for n ∈ N we define, recursively, full sub-∞-categories of con-
crete (n+1)-truncated objects (Def. 3.1.57)

Hn+1,♯1 ↪−!Hn+1 ↪−!H (4.8)
by declaring that X ∈ Hn+1 is concrete if:

• it admits a concrete atlas, namely an effective epimorphism out of a con-
crete 0-truncated object (4.6),

• such that the homotopy fiber product of the atlas with itself (which is an
n-truncated object) is a concrete:

X ∈ Hn+1 : X is concrete

⇔ ∃
X0∈H0,♯1

: X0
(−1)-trunc. // // X and X0 ×

X
X0 ∈ Hn,♯1 .

(4.9)

Cohesive charts.

Definition 4.1.9 (Charts). Let H be a cohesive ∞-topos (Def. 4.1.1). We say
that an ∞-category of cohesive charts for H is an ∞-site Chrt for H (Prop.
3.1.41)

H
oo L

� � ⊥ //
PShv∞(Chrt)

all of whose objects (under the ∞-Yoneda embedding y, Prop. 3.1.37) have
contractible shape (4.2):

Chrt �
� y // H

Shp // Grpd∞
U � // U � // Shp(U) ≃ ∗

⇔ Chrt �
� y // H

S // H
U � // U � // S(U) ≃ ∗

(4.10)
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Lemma 4.1.10 (Charts are cohesively connected). Let H be a cohesive ∞-
topos (Def. 4.1.1) with a site of Chrt (Def. 4.1.9). Then, for U ∈ Chrt and{

Xi ∈ H
}

i∈I
an indexed set of objects of H, we have that every morphism

from U into the coproduct of the Xi factors through one of the Xi:

U
f // ⊔

i∈I
Xi ⇔ ∃

i0∈I
U

f

33
// Xi0

qXi0 // ⊔
i∈I

Xi .

Proof. Consider the pullbacks Ui

qUi // U along f of the canonical inclusions
of the Xi into their coproduct, given by these Cartesian squares (Notation
3.1.21):

Ui

qUi ��

//

(pb)

Xi

qXi��
U

f
// ⊔
i∈I

Xi

(4.11)

By Prop. 3.1.32, this is such that
U ≃

⊔
i∈I

Ui . (4.12)

The image of (4.12) under shape (4.2) is

∗ ≃ SU ≃
⊔
i∈I

SUi ∈ Grpd∞
� � Disc // H ,

where on the left we used the defining property (4.10) of charts and on the right
we used that the shape operation, being a left adjoint, preserves coproducts
(Prop. 3.1.26). But, since ∗ ∈ Grpd∞ is connected, this implies that there is
i0 ∈ I with

SUi ≃
{

∅ | i ̸= i0
∗ | i = i0

From this, Lemma 4.1.3 implies that Ui ≃ ∅ for i ̸= i0 and, with (4.12), this
implies

Ui0 ≃

qUi0 // U .

Using this in (4.11) gives the desired factorization.

Lemma 4.1.11 (Quotient by cohesively discrete ∞-group). Let H be a co-
hesive ∞-topos (Def. 4.1.1) which admits a site of Chrt (Def. 4.1.9). Then,
for

G ∈ Grp(Grpd∞) �
� Disc // Grp(H) (4.13)

a cohesively discrete ∞-group (3.78) and U ∈ Chrt, we have an equivalence
H(U,∗�G) ≃ ∗�G ∈ Grpd∞ . (4.14)

Proof. Since Disc is both a left and a right adjoint, it preserves (Prop.
3.1.26) the homotopy quotient that corresponds to the effective epimorphism
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∗ // // ∗�G (Prop. 3.1.70) so that

∗�G ∈ Grpd∞
� � Disc // H

is a cohesively discrete object. With this, we have the following sequence of
natural equivalences:
H
(
U, ∗�G

)
≃ H

(
U, Disc(∗�G)

)
≃ Grpd∞

(
Shp(U), ∗�G

)
≃ Grpd∞

(
∗, ∗�G

)
≃ ∗�G,

where the second step is the hom-equivalence (3.24) of the Shp ⊣ Disc-
adjunction and the third step is the condition that the chart U has contractible
shape.

Lemma 4.1.12 (Homming Charts into quotients by discrete groups). Let H
be a cohesive ∞-topos (Def. 4.1.1) which admits Chrt (Def. 4.1.9). Then, for
X ∈ H an object equipped with an ∞-action (Prop. 3.84) by a geometrically
discrete ∞-group G (4.13), the homotopy quotient X�G (3.85) is given as
an ∞-sheaf on Chrt, by assigning to U ∈ Chrt the homotopy quotient of the
∞-groupoid of U -shapes plots of X:

X�G : U 7−! H(U,X)�G .

Proof. Consider the image of the homotopy fiber sequence that characterizes
the given ∞-action (Prop. 3.2.6) under homming the chart U into it:

X
fib(p) // X�G

p

��
∗�G

H(U,−)
7−!

H(U,X)
fib(H(U,p)) // H(U,X)�G ≃ H

(
U,X�G

)
H(U,p)
��

∗�G ≃ H(U,∗�G)

(4.15)

Since the hom-functor H(U,−) preserves limits, the result is again a homotopy
fiber sequence, as shown on the right of (4.15). Moreover, by the assumption
that G is geometrically discrete and that U is geometrically contractible, we
have the equivalence (4.15) shown on the bottom right. This means that the
fiber sequence on the right of (4.15) exhibits H(U,X�G) as the homotopy
quotient H(U,X)�G of an ∞-action by G on H(U,X).

Lemma 4.1.13 (Fixed locus in 0-truncated objects for discrete groups). Let
H be a cohesive ∞-topos (Def. 4.1.1) with a site of Chrt (Def. 4.1.9). Let
G ∈ Grp(H) (Prop. 3.2.1) be discrete G ≃ ♭G and 0-truncated, G ≃ τ0G, and
let (X,ρ) ∈ GActions(H) (Prop. 3.2.6) with X ≃ τ0X also 0-truncated. Then
the G-fixed locus XG ∈ H (Def. 3.2.24) is itself 0-truncated and such that, for
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U ∈ Chrt, we have a natural equivalence

H
(
U,XG

)
≃ H(U,X)G :=

{
ϕ ∈ H(U,X) | ∀

g∈G
g ·ϕ = ϕ

}
(4.16)

between (a) the hom-set from U to XG and (b) the naive set of fixed points in
the hom-set from U to X, with respect to the restriction (Prop. 3.2.12) along
K ↪!G of the induced G-action (4.15) on the latter.

Proof. We claim that we have the following sequence of natural equivalences:
H(U,XG) = H

(
U,B(G! ∗)∗

(
(X,ρ)

))
≃ H/BG

(
B(G! ∗)∗

(
U
)
,X�G

)
≃ H/BG

(
(∗�G)×U , X�G

)
≃ H

(
(∗�G)×U , X�G

)
×

H
(
(∗�G)×U , ∗�G

) {pr1
}

≃ Grpd
(

∗�G, H
(
U , X�G

))
×

Grpd
(

∗�G, H
(
U , ∗�G

))
{

p̃r1
}

≃ Grpd
(

∗�G, H
(
U , X

)
�G
)

×
Grpd

(
∗�G, ∗�G

) {id
}

≃ H(U,X)G .

(4.17)

Here the first three lines are the definition of fixed loci (3.101) and the hom-
equivalences (3.24) of the resulting adjunction (3.58). The fourth line is the
characterization (3.52) of hom-∞-groupoids in slices (Prop. 3.1.48), the fifth
line uses the tensoring (3.39) of H over Grpd∞ (Prop. 3.1.34), and the sixth
line follows by Prop. 4.1.12.

To see the last step in (4.17), use the explicit presentation of the groupoid
H(U,X)�G as an action groupoid, by Example 3.1.15. This way the projection
map in the fiber product in the sixth line in (4.17) is presented by a Kan
fibration, whence this homotopy fiber product may be computed equivalently
as a 1-categorical fiber product of sets of objects and of sets of morphisms,
separately. Moreover, since {id} has no non-trivial morphisms and since the
projection functor itself is faithful, there are in fact no non-trivial morphisms
in this fiber product, which is hence just the set whose elements are precisely
those functors of action groupoids which are equal to the identity on labels in
G:

Grpd
(

∗�G, H
(
U , X

)
�G
)

×
Grpd

(
∗�G, ∗�G

){id
}

≃



∗�G // H(U,X)�G

∗ 7−!

g∈G
��

ϕ

g
��

∗ 7−! g ·ϕ


≃ H(U,X)G.
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Lemma 4.1.14 (n-Truncated morphisms via n-truncated homotopy fibers).
Let H be an ∞-topos which is cohesive (Def. 4.1.1). Let G be a finite group
in H (4.90). Then, for every n ∈ {−2,−1,0,1, · · ·} and for any morphism in
H to its delooping groupoid (Example 3.1.14) X p

−! ∗�G, the following are
equivalent
(i) p is an n-truncated morphism (Def. 3.1.58);
(ii) the homotopy fiber of p (over the canonical point of ∗�G) is an n-truncated
object (Def. 3.1.57).

Proof. Let U ∈ Chrt and consider homming it into the homotopy fiber se-
quence in question:

X
(pb)

��

// X
p
��

∗ // ∗�G
⇒

H(U,X)
(pb)

��

// H(U,X )
H(U,p)
��

∗ // H(U,∗�G) ≃ ∗�G

Since the hom-functor H(U,−) preserves limits, the square on the right is
again a homotopy pullback. Since U is a chart and G is discrete, we have the
equivalence (4.14) shown on the bottom right. Since ∗�G has an essentially
unique point, the square on the right exhibits the essentially unique homotopy
fiber of the morphism H(U,p). Since the charts U are generators of H (ob-
jects of an ∞-site of definition), the morphism p is n-truncated (Def. 3.1.58)
precisely if for each chart U the homotopy fiber of H(U,p) is n-truncated. But
the square on the right shows that this homotopy fiber is H(U,X), and hence
this means, equivalently, that X is an n-truncated object (according to Def.
3.1.57).

Examples of cohesive ∞-toposes. We indicate some examples of cohesive
∞-toposes (Def. 4.1.1), following [Sc13]. For more details of the constructions
see spring[SS25d].

Example 4.1.15 (Discrete cohesion). The base ∞-topos Grpd∞ is trivially
a cohesive ∞-topos (Def. 4.1.1) with all operations being identities:

Grpd∞

× id
⊥

//

oo id
⊥

? _

id
⊥

//

oo id ? _

Grpd∞ (4.18)

For emphasis we also call this the ∞-topos of geometrically discrete ∞-
groupoids.

Definition 4.1.16 (Site for homotopical cohesion). A small ∞-site (3.47) is
an ∞-site for homotopical cohesion if
(i) its Grothendieck topology is trivial and
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(ii) the underlying ∞-category has finite products, i.e., has a terminal object
and binary Cartesian products.

Example 4.1.17 (Homotopical cohesion). The ∞-topos of ∞-sheaves (Def.
3.1.42) over an ∞-site C for homotopical cohesion (Def. 4.1.16) is cohesive
(Def. 4.1.1):

H := Shv∞(C)

× lim
−!

⊥

//

oo const
⊥

? _

lim
 −

⊥

//

oo Chtc ? _

Grpd∞ (4.19)

(i) The operation Pnts ≃ lim
 −

forms the limit of ∞-presheaves regarded as
∞-functors on Cop (by Prop. 3.1.36); but since C is assumed to have a terminal
object, this is equivalently just the evaluation on that object:

Pnts(X) ≃ X(∗) ≃ H(∗,X) ,

where on the right we used the ∞-Yoneda lemma (Prop. 3.1.38). This makes
manifest how Pnts(X) is the “underlying ∞-groupoid of points of X”.
(ii) The operation Shp ≃ lim

−!
is the colimit of ∞-presheaves regarded as ∞-

functors (by Prop. 3.1.36). Since the colimit of any representable functor is
the point (Lemma 3.1.40)

C
const∗

22
� � y // Shv∞(C) Shp // Grpd∞ ,

this means that C serves itself as a category of Chrt in this case (Def. 4.1.9).

Example 4.1.18 (Smooth cohesion). The ∞-sheaf ∞-topos (Def. 3.1.42)
over the site of SmthMfd (Def. 3.1.9, see [FSS12, App.]), which we call the
∞-topos of smooth ∞-groupoids

SmthGrpd∞ := Shv∞(SmthMfd) ,

is cohesive (Def. 4.1.1): The adjoint quadruple (4.1) arises as in Example
4.1.17, which here happens to descend from ∞-presheaves to ∞-sheaves.
In this case we have:
(i) A category of Chrt (Def. 4.1.9) is given (Prop. 3.1.10) by CrtSpc (Def.
3.1.5)

CrtSpc �
� y // Shv∞(CrtSpc) ≃ // SmthGrpd∞

S(y(Rn)) ≃ ∗
(4.20)

(ii) The concrete 0-truncated objects (Def. 4.1.8) are equivalently the diffe-
ological spaces (Def. 3.1.6), including the D-topological spaces1 (Def. 3.1.2)
as well as smooth and possibly infinite-dimensional Fréchet manifolds (Prop.

1These are the ∆-generated spaces of [Sm][Dug03]; see Remark 3.1.3.
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3.1.11) as further full subcategories (3.8):

TopSpc Cdfflg// DTopSpc � y
++ DiffSp �

�

concrete
0-truncated

objects // SmthGrpd∞
FréMfd

% � 22 (4.21)

(iii) The concrete 1-truncated objects (Def. 4.1.8) form the (2,1)-category
of diffeological groupoids with Morita/Hilsum-Skandalis morphisms (Remark
3.1.72) between them, which includes, by (4.21), the (2,1)-categories of
D-topological groupoids and of (possibly infinite-dimensional Fréchet-)Lie
groupoids:

TopGrpd Cdfflg // DTopGrpd � y
++
DiffGrpd �

�

concrete
1-truncated

objcts // SmthGrpd∞

FréLieGrpd
% � 33 (4.22)

(iv) (Smooth Oka principle [SS25d, Thm. 3.3.53]) The cohesive shape (4.2)
is given equivalently [BEBP19][Pav20][Bunk20, §3] by the smooth ∞-path ∞-
groupoid:

SX ≃ lim
−!

Map
(
∆•

smth,X
)

∈ SmthGrpd∞ ,

hence Shp(X) ≃ lim
−!

X(∆•
smth) ∈ Grpd∞

(4.23)

where ∆•
smth is the simplicial smooth manifold of extended simplices (Def.

3.1.19) and Map(−,−) denotes the internal hom (3.33) in SmthGrpd∞.
(v) The cohesive shape (4.2) of (a) any topological space and (b) any finite-
dimensional smooth manifold regarded, respectively, as smooth ∞-groupoids
via (4.21) is equivalently (by (4.23) with Prop. 3.1.20, and by [Sc13, 4.3.29],
respectively) its standard topological homotopy type ShpTop (3.1.13):

(a) TopSpc

ShpTop

⇓ ≃
55

Cdfflg // DiffSp �
� // SmthGrpd∞

Shp // Grpd∞ (4.24)

(b) SmthMfd

ShpTop◦Dtplg

⇓ ≃
55

� � // DiffSp �
� // SmthGrpd∞

Shp // Grpd∞ (4.25)

(vi) The cohesive shape (4.2) of a topological groupoid, when regarded, via
its coreflection (3.8), as a D-topological groupoid and hence as a smooth ∞-
groupoid (4.22) is equivalently (by (4.24), and since S is left adjoint and hence
preserves homotopy colimits, Prop. 3.1.26) its simplicial-topological shape
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(Def. 3.1.17):

TopGrpd

ShpsTop

⇓ ≃
44

Cdfflg // DiffGrpd �
� // SmthGrpd∞

Shp // Grpd∞ (4.26)

Example 4.1.19 (Spectral cohesion). Let H be a cohesive ∞-topos (Def.
4.1.1). Then its tangent ∞-topos TH = SpectralBundles(H) (Example 3.1.51)
is cohesive [Sc13, 4.1.9] over the base tangent ∞-topos (3.99):

TH

× T Shp
⊥

//

oo T Disc
⊥

? _

T Pnts
⊥

//

oo T Chtc ? _
TGrpd∞ (4.27)

Remark 4.1.20 (Differential cohomology in cohesive ∞-toposes). The intrin-
sic cohomology theory (1.20) of a cohesive ∞-topos (Def. 4.1.1) is differential
cohomology [Sc13].
(i) In the case when H := SmthGrpd∞ (Example 4.1.18), this is a non-abelian
differential cohomology theory generalizing the theory of Cartan-Ehresmann
connections on smooth fiber bundles to ∞-connections on smooth ∞-bundles
[SSS12][FSS12][NSS12a].
(ii) In the case when H := TSmthGrpd∞ is the cohesive tangent ∞-topos
(Example 4.1.19) to that of smooth ∞-groupoids (Example 4.1.18), the in-
trinsic cohomology furthermore subsumes abelian Hopkins-Singer differential
cohomology theories and variants [BNV13], as well as the twisted versions of
these (Remark 3.2.23), such as twisted differential KU-theory [GS19a] and
twisted differential KO-theory [GS19b].

4.1.2 Differential Geometry
We present a formulation of differential geometry internal to ∞-toposes which
we call elastic [Sc13][Sc18], adjoining to the plain shape operation S of §4.1.1
a de Rham shape operation ℑ, in generalization of [Si96][ST97].

Definition 4.1.21 (Elastic ∞-topos).
(i) An elastic ∞-topos over B = Grpd∞ is an ∞-topos H (Def. 3.1.30) whose
base geometric morphism (Prop. 3.1.43), to be denoted Pnts : H // Grpd∞ ,

is equipped with a factorization as follows, having adjoints (Def. 3.1.24) as
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shown:

Shp :

Pnts :

H

oo“reduced” Rdcd
⊥

? _

“infnt shape” Shpinf
⊥

//

oo“infnt discrete” Discinf
⊥

? _

“infnt points” Pntsinf //

oo Chtc ? _
−−−

⊥

Hℜ

× Shpℜ
⊥

//

oo Discℜ
⊥

? _

Pntsℜ //
B : Disc

elastic
∞-topos

reduced
sub-topos

discrete
sub-topos

(4.28)
(ii) Hence an elastic ∞-topos H is, in particular, a cohesive ∞-topos over B,
according to Def. 4.1.1, and so is its sub-∞-topos Hℜ of reduced objects.
(iii) We write (

ℜ := Rdcd◦Shpinf
)

“reduced”
⊥(

ℑ := Discinf ◦Shpinf
)

“étale”
⊥(

L := Discinf ◦Pntsinf
)

“locally constant”

: H−!H (4.29)

for the further induced modalities (1.18) (elastic modalities), accompanying
the cohesive modalities of (4.2).

Examples of elastic ∞-toposes. We indicate some examples of elastic ∞-
toposes (Def. 4.1.21), following [Sc13][Sc18].

Definition 4.1.22 (Jets of Cartesian spaces). Let k ∈ N.
(i) We write

kJetCrtSp �
� C∞(−) // CAlgop

R
Rn ×DW

� // C∞(Rn)⊗R (R⊕W )
(4.30)

for the full subcategory of that of commutative R-algebras on those which
are tensor products of (a) the algebra of real-valued smooth functions on a
Cartesian space Rn, with (b) a finite-dimensional real algebra with a maximal
ideal W that is nilpotent of order k +1, in that W k+1 = 0.
(ii) We write

∞JetCrtSp :=
⋃

k∈N
kJetCrtSp �

� C∞(−) // CAlgop
R

R×DW
� // C∞(Rn

)
⊗R W

(4.31)

for the analogous full subcategory where each W is (finite dimensional and)
nilpotent of some finite order.
(iii) We regard these categories as equipped with the coverage (Grothendieck
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pre-topology) whose covers are the families of morphisms of the form{
Rn ×D

fi×id // Rn ×D
}

i∈I

such that
{
Rn fi // Rn

}
i∈I is a cover in CrtSpc (Def. 3.1.5).

Lemma 4.1.23 (Coreflections of jets of Cartesian spaces). Regarding the
category kJetCrtSp from Def. 4.1.22:
(i) For k = 0, this is equivalently the category of plain Cartesian spaces of
Def. 3.1.5: 0JetCrtSp ≃ CrtSpc .

(ii) For any k ∈N, the evident full inclusion of kJetCrtSp into (k+1)JetCrtSp
is co-reflective

∞JetCrtSp
oo Rdcd∞ ? _

Shpinf,∞

⊥ // · · ·
oo Rdcd2 ? _

Shpinf,2

⊥ // 2JetCrtSp
oo Rdcd1 ? _

Shpinf,1

⊥ // 1JetCrtSp
oo Rdcd ? _

Shpinf

⊥ // CrtSp (4.32)

with
C∞ (Shpinf,k

(
Rn ×DW

))
≃ C∞(Rn)⊗R (R⊕W )/W k+1. (4.33)

Proof. Statement (i) follows as a special case of the general fact, sometimes
known as Milnor’s exercise (since the key idea is hinted at in [MSt74, Prob.
1-C]), that passage to their real algebras of smooth functions embeds smooth
manifolds fully faithfully into the opposite or real algebras (a general proof is
in [KMS93, 35.10], see also [Gr05]; for general perspective see [Nes03, 6]) :

SmthMfd �
� C∞(−) // CAlgop

R .

Statement (ii) follows readily from the definition, using the fact that algebra
homomorphisms preserve order of nilpotency.

Example 4.1.24 (Jets of smooth ∞-groupoids). For k ∈ N⊔ {∞}, the ∞-
sheaf ∞-topos (Def. 3.1.42) over the site of k-jets of Cartesian spaces (Def.
4.1.22)

kJetSmthGrpd∞ := Shv∞(kJetCrtSp)
is elastic (Def. 4.1.21), with (Rdcd ⊣ Shpinf) in (4.28) given by Kan extension
of the co-reflections of sites from Lemma 4.1.23:

kJetSmthGrpd∞

oo Rdcd
⊥

? _

Shpinf
⊥

//

oo Discinf
⊥

? _

Pntsinf //

oo Chtc ? _

SmthGrpd∞

× Shpℜ
⊥

//

oo Discℜ
⊥

? _

Pntsℜ //
Grpd∞

(i) Here for k = 1 we will, for short, abbreviate
JetSmthGrpd∞ := 1JetSmthGrpd∞ . (4.34)
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(ii) For the case k = ∞, the underlying 1-topos is the “Cahiers topos”
[Du79a][Ko86][KS17].
(iii) For any k, we have:

(a) The full sub-∞-topos of reduced objects (4.28) is (by Lemma 4.1.23) that
of smooth ∞-groupoids from Example 4.1.18

kJetSmthGrpd∞ oo
Discinf ? _ SmthGrpd∞ (4.35)

(b) the 0-truncated concrete objects (Def. 4.1.8) are still equivalently the
diffeological spaces (Def. 3.1.6) as was the case in (4.21)

DTopSpc � {
-- DiffSp �

�

0-truncated
concrete
objects // kJetSmthGrpd∞

FréMfd
# � 11 (4.36)

and, more generally, the 1-truncated concrete objects are still the diffe-
ological groupoids, as was the case in (4.22):

DTopGrpd � {
-- DiffGrpd �

�

1-truncated
concrete
objects // kJetSmthGrpd∞

FréLieGrpd
# � 11 (4.37)

(c) A category of charts (Def. 4.1.9) for JetSmthGrpd∞ is given by
kJetCrtSp (Def. 4.1.22) itself.

Étale geometry.

Definition 4.1.25 (Étale-over-X modality). Let H be an elastic ∞-topos
(Def. 4.1.21) and X ∈ H an object. We say that the étale-over-X modality on
the slice ∞-topos over X (Def. 3.1.46) is the ∞-functor

H/X
ℑX // H/X

Y

f
��

Y ×ℑX ℑY

(ηℑ
X)∗(ℑf)
��

7−!

X X

X ηℑ
X

''

f

**

))
X ×ℑX ℑY

��

//

(pb)

ℑX

ℑf
��

Y ηℑ
Y

// ℑY

which sends any morphism f into X to the pullback of its image under the
plain étale modality ℑ (4.29) along its unit morphism (3.25), hence to the left
vertical morphism in the Cartesian square shown on the right.

Definition 4.1.26 (Local diffeomorphism). Let H be an elastic ∞-topos
(Def. 4.1.21). We say that a morphism Y

f
!X in H is a local diffeomorphism

if it is étale-over-X (Def. 4.1.25)
ℑX(f) ≃ X ,
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hence (see Prop. 4.1.32 for this implication) if the naturality square of the
unit (3.25) of the ℑ-modality (4.29) is a Cartesian square:

Y
f ét
�� ⇔

Y
(pb)f

��

ηℑ
Y // ℑY

ℑf
��

X X
ηℑ

X

// ℑX

(4.38)

Lemma 4.1.27 (Closure of class of local diffeomorphisms). Let H be an
elastic ∞-topos (Def. 4.1.21). The class of local diffeomorphisms in H (Def.
4.1.26)
(i) satisfies left-cancellation: given a pair of composable morphisms f,g where
g is a local diffeomorphism, then f is so precisely if the composite g ◦f is:

Z

g◦f ##

f // Y
ét

g{{
X

⇒
(

f is local diffeo ⇔ g ◦f is local diffeo
)

.

(4.39)
(ii) is closed under pullbacks: if in a Cartesian square the right vertical mor-
phism is a local diffeomorphism, then so is the left morphism

Y ′ ×X Y

(pb)

//

g∗f

��

Y

ét f

��
Y ′

g
// X

⇒ g∗f is a local diffeo.

Proof. This is a routine argument: (i) For two composable morphisms, con-
sider the pasting of their ηℑ-naturality squares

Z
f ��

ηℑ
Z //

(pb)

ℑZ
ℑf��

Y
g
��

ηℑ
Y

//

(pb)

ℑY
ℑg��

X
ηℑ

X

// ℑX

By the functoriality of ℑ, the total rectangle is the ηℑ-naturality square of
g ◦ f . But, by the pasting law (Prop. 3.1.23) and the assumption that the
bottom square is Cartesian, the total rectangle is Cartesian precisely if so is
the top square.
(ii) For two morphisms with the same codomain, consider the pasting of their
pullback square with the ηℑ-naturality square of one of them, as shown on
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the left here:

Y ′ ×X Y

g∗f

��

f∗g //

(pb)

Y

f

��

ηℑ
//

(pb)

ℑY

ℑf

��
Y ′

g
// X

ηℑ
X

// ℑX

≃

Y ×X Y ′

g∗f

��

ηℑ
(Y ×X Y ′) // ℑ(Y ×X Y ′)

ℑ(f∗f) //

ℑ(g∗f)
��

(pb)

ℑY ′

ℑg

��
Y ′

ηℑ
Y ′

// ℑY ′
ℑ(f ′)

// ℑX

By the naturality of ηℑ, this pasting diagram on the left is equivalent to that
shown on the right. Moreover, if f is a local diffeomorphisms, it follows that
three of the squares are pullbacks (the rightmost one by using that ℑ is right
adjoint and thus preserves pullbacks, Prop. 3.1.26), as shown. With that, the
pasting law (Prop. 3.1.23) implies, first, that the total rectangle on the left is
a pullback, hence also that on the left, and then that the remaining square on
the right is a pullback. This means that g∗f is a local diffeomorphism.

Definition 4.1.28 (Local neighborhood). Let H be an elastic ∞-topos (Def.
4.1.21). For Y

f
−!X a morphism in H, we say that the corresponding local

neighborhood of Y in X is the purely étale aspect of f , hence is the object
N

f
X ∈ H/X given by ℑ/X(f) ≃ (ηℑ

X)∗(ℑf), hence given by the following ho-
motopy pullback square:

N
f
X

(pb)

//

ℑ/X (f)
��

ℑX

ℑf
��

Y
ηℑ

X

// ℑY

Definition 4.1.29 (Tangent bundle). Let H be an elastic ∞-topos (Def.
4.1.21). Then for X ∈ H any object, we say that its infinitesimal tangent
bundle is

TX := X ×
ℑX

X ∈ H/X ,

hence the left morphism in this Cartesian square:
TX //

(ηℑ
X )∗(ηℑ

X )!(idX ) �� (pb)

X

ηℑ
X��

X
ηℑ

X

// ℑX

(4.40)

Example 4.1.30 (Local neighborhood of a point). Let H be an elastic ∞-
topos (Def. 4.1.21). For X ∈ H any object and ∗ x

−!X any point, the homo-
topy fiber of the tangent bundle (Def. 4.1.29) over x is equivalent to the local
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neighborhood of x (Def. 4.1.28):
TxX ≃ NxX . (4.41)

This follows immediately from the definitions, by the pasting law (Prop.
3.1.23):

NxX ≃ TxX

(pb)
��

// TX

(pb)

//

��

X

ηℑ
X��

∗ x
// X

ηℑ
X

// ℑX

Proposition 4.1.31 (Pullback along local diffeomorphisms preserves tangent
bundles). In an elastic ∞-topos (Def. 4.1.21), pullback along a local diffeo-

morphism Y
f

ét
// X (Def. 4.1.26) preserves tangent bundles (Def. 4.1.29)

in that

f∗(TX) ≃ TY via:
TY

(pb)��

T f // TX

��
Y

f

ét // X

Proof. Consider the pasting of the defining Cartesian squares, shown on the
left here:

f∗TX

(pb)��

// TX

��

//

(pb)

X

ηℑ
X��

Y
f

ét // X
ηℑ

X

// ℑX

≃

TY

��

//

(pb)

Y

ηℑ
X��

f //

(pb)

X

ηℑ
X��

Y
ηℑ

X

// ℑY
ℑf

// ℑX

By the pasting law (Prop. 3.1.23), the total rectangle on the left is itself
Cartesian. Moreover, the bottom composite morphism on the left is equivalent
to the bottom composite morphism on the right, by the naturality of ηℑ

X .
Therefore, using again the pasting law (Prop. 3.1.23) the total rectangle on
the left is equivalent to the pasting of the two consecutive Cartesian squares
shown on the right. These identify, in the top row, the middle object Y by
(4.38) and thus the left object TY by (4.40).

Étale toposes.

Definition 4.1.32 (Étale topos). Let H be an elastic ∞-topos (Def. 4.1.21)
and X ∈ H. Then we say that the étale ∞-topos of X, to be denoted ÉtX , is
the full sub-∞-category (Def. 3.1.1) of the slice ∞-topos over X (Prop. 3.1.46)
on those morphisms that are local diffeomorphisms (Def. 4.1.26):

ÉtX :=
(
H/X

)
ℑX

� � // H/X . (4.42)
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Proposition 4.1.33 (Reflections of étale toposes). Let H be an elastic ∞-
topos (Def. 4.1.21) and X ∈ H an object. Then the étale topos ÉtX from Def.
4.1.32:
(i) is indeed an ∞-topos (Def. 3.1.30);
(ii) its defining full inclusion (4.42) has both a left- and a right-adjoint (Def.
3.1.24):

ÉtX

oo EtlX
⊥� �
iX

//

oo
LcllCnstntX

⊥
H/X (4.43)

(iii) whose induced adjoint modality (1.18)(
ℑX := iX ◦ ÉtlX

“étale over X”

)
⊥(

LX := iX ◦LcllCnstntX
“locally constant over X”

) : H/X −!H/X
(4.44)

is on the left that of Def. 4.1.25:

ÉtlX :
Y

p

��
X

7−!

(ηℑ
X)∗(ℑY )

(ηℑ
X )∗(ℑp)

��
X

i.e.:
(ηℑ

X)∗(ℑY )

(ηℑ
X )∗(ℑp)

��

(ℑp)∗(ηℑ
X )
//

(pb)

ℑY

ℑp

��
X

ηℑ
X

// ℑX .

(4.45)

Proof. First to see that (4.45) is well-defined as a functor to ÉtX (this pro-
ceeds as in [CHM85, 3.3][CJKP97, 3][CRi20, 7.3]): We need to check that
(ηℑ

X)∗(ℑp) is a local diffeomorphism (Def. 4.1.26). For this, it is sufficient to
have equivalences

ℑ
(
(ηℑ

X)∗(ℑp)
)

≃ ℑp, (4.46)
and (ℑp)∗(ηℑ

X) ≃ ηℑ
X (4.47)

because then the Cartesian square on the right of (4.45) exhibits this property.
But (4.46) follows by applying ℑ to the square on the right of (4.45), by

idempotency (Prop. 3.1.29) and since equivalences are preserved by pullback
(Example 3.1.22). With this, (4.47) follows from the naturality of the ℑ-unit,
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by the universal factorization shown dashed in the following diagram:

(ηℑ
X)∗(ℑY )

≃
))

ηℑ
(ηℑ

X
)∗(ℑY )

**

(ηℑ
X )∗(ℑp)

))

(ηℑ
X)∗(ℑY )

(ηℑ
X )∗(ℑp)
��

(ℑp)∗(ηℑ
X ) //

(pb)

ℑY

ℑp

��
X

ηℑ
X

// ℑX .

(4.48)

Notice that, similarly, there is a natural transformation

Y

p ((

η
EtlX
Y // EtlX(Y )

étuu
X

(4.49)

induced as the universal factorization shown dashed in the following diagram:

Y ≃
((

ηℑ
Y

))

p

''

(ηℑ
X)∗(ℑY )

(ηℑ
X )∗(ℑp)
��

(ℑp)∗(ηℑ
X ) //

(pb)

ℑY

ℑp

��
X

ηℑ
X

// ℑX

(4.50)

and notice that this in an ℑ-equivalence:
ℑ
(
ηEtlX

Y1

)
is an equivalence . (4.51)

Condition (4.51) follows by applying ℑ to the whole left part of the diagram
on the right of (4.52), using idempotency (Prop. 3.1.29) and that equivalences
are preserved by pullback (Example 3.1.22).

Second, to see that (4.45) defines a left adjoint to the inclusion: We need to
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check the corresponding hom-equivalence (3.24), shown on the left here:

ÉtlX(Y1)

ÉtlX(p) ��

f̃ // Y2

ét
��

B

⇔

Y1

p
��

f // Y2

ét
��

B

≃

ℑY1

��

ℑf // ℑY2

��

Y1

p

!!

ηℑ
Y1

//

η
EtlX
Y1

// (ηℑ
X)∗(ℑX)

ηℑ
(ηℑ

X
)∗(ℑX)

;;

EtlX (p)

��

f̃ // Y2

ét

zz

ηℑ
Y2

66

ℑX

X
ηℑ

X

44

(4.52)

On the bottom of (4.52) we show an induced factorization: The square sub-
diagram on the right of (4.52) is Cartesian by the assumption that we are hom-
ming into a local diffeomorphism, while the square in the middle is Cartesian
by (4.48). Thus, given f , the morphism f̃ is induced by the universal prop-
erty of the right Cartesian square. Conversely, given f̃ , precomposition with
the ηEtlX

Y1
(4.50) gives a morphism f . To see that this correspondence is an

equivalence, we just need to observe that ℑ(f̃) ≃ ℑf . This follows by (4.51).

Thus we have established the existence of the left adjoint ÉtlX . With this,
to see the right adjoint LcllCnstX as well as the fact that Ét is an ∞-topos, it

is now sufficient to show that ÉtX
� � iX // H/X preserves colimits: Because, by

the reflection ÉtlX this implies, first, that ÉtX is a presentable ∞-category,
in fact an ∞-topos (by Prop. 3.1.41, since it is then an accessibly embedded
reflective subcategory of the slice H/X , which is an ∞-topos by Prop. 3.1.46);
and thus, second, the existence of the right adjoint by the adjoint ∞-functor
theorem (Prop. 3.1.27).

So to see that iX preserves colimits, consider any small I ∈ Cat∞ and a
diagram

Y• : I // ÉtX
� � iX // H/X . (4.53)

Since iX is fully faithful by construction, it is sufficient to show that the colimit
of this diagram formed in H/X is itself in the image of iX . This colimit, in turn,
is computed in H (by Example 3.1.52) with its morphism q to X universally
induced, and this we need to show to be a local diffeomorphism (Def. 4.1.26).
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Hence we need to show that the following square on the left is Cartesian:

lim
−!

Y•

q

��

ηℑ
lim
−!

Y•
//

(pb)

ℑ
(
lim
−!

Y•
)

ℑq
��

X
ηℑ

X

// ℑX

⇔

lim
−!

Y•

q

��

(ηℑ
Y• )

//

(pb)

lim
−!

(
ℑY•

)
ℑq
��

X
ηℑ

X

// ℑX

⇔ ∀
i∈I

Yi

qi

��

ηℑ
Yi //

(pb)

ℑYi

ℑqi

��
X

ηℑ
X

// ℑX

But, since ℑ is a left adjoint and hence preserves colimits (Prop. 3.1.26), this is
equivalent to the square on in middle being Cartesian. Finally, by universality
of colimits (3.31) in the ∞-topos H, this is equivalent to all the squares on
the right being Cartesian. This is the case, by the assumption (4.53).

Remark 4.1.34 (Local and global ∞-section functors.). Let H be an elastic
∞-topos (Def. 4.1.21) and X ∈ H. Then we may think of the étale ∞-topos
ÉtX (Def. 4.1.32, Prop. 4.1.33) as the internal construction of the ∞-topos of
∞-sheaves over X. Under this interpretation:
i) the ∞-functor LcllCnst (4.43) has the interpretation of sending any ∞-
bundle E // X (Notation 3.1.45) to its ∞-sheaf of local sections E :=
LcllCnstX(E);
ii) the direct image of the base geometric morphism (3.48) has the interpre-
tation of sending any ∞-sheaf to its ∞-groupoid of global sections:

∞-bundles
over X

H/X

oo iX ? _

(−) :=LcllCnstntX

form ∞-sheaf of local sections

⊥ //

ΓX

33

∞-sheaves
on X

ÉtX

oo ∆X

ΓX

form ∞-groupoid of global sections

⊥ // Grpd∞ (4.54)

Notice that the global sections of the ∞-sheaf of local sections of an ∞-bundle
E is the global sections of that ∞-bundle (as in Remark 3.2.21):

ΓX

(
E
)

≃ ΓX(E)



96 Geometric Orbifold Cohomology

(by the essential uniqueness of the base geometric morphism (Prop. 3.1.43)
and the fact that the base geometric morphism on ∞-bundles forms global
sections, Remark 3.2.22).

Étale groupoids.

Definition 4.1.35 (Étale groupoid). Let H be an elastic ∞-topos (Def.
4.1.21).
(i) We say that X• ∈ Grpd(H) (Def. 3.1.68) is an étale groupoid if all its face
maps are local diffeomorphisms (Def. 4.1.26):

X• is étale groupoid ⇔ ∀
n∈N

0≤i≤n

Xn+1
di

ét
// Xn .

(ii) We write ÉtGrpd(H) �
� // Grpd(H) ∈ Cat∞ (4.55)

for the full sub-∞-category of that of all groupoids (3.74) on those that are
étale groupoids.

As a variant of Prop. 3.1.70 we have:

Proposition 4.1.36 (Étale groupoids are equivalent to stacks with étale at-
lases). Let H be an elastic ∞-topos (Def. 4.1.21) and X• ∈ Grpd(H) (Def.
3.1.68). Then the following conditions are equivalent:
(i) The groupoid X• is an étale groupoid (Def. 4.1.35).

(ii) The associated atlas X0
a // // X (via Prop. 3.1.70) is a local diffeomor-

phism (Def. 4.1.26).

��

OO

��

OO

�� ��

OO

��

OO

��
X ×X X ≃

ét
��

OO
ét ét
��

X1

s
��

OO
e t
��

“étale groupoid”

X0

a ét
����

X0

����
“étale atlas”

X ≃ lim
−!

X• “étale stack”

(4.56)

Proof. By definition of local diffeomorphisms, we need to demonstrate the
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logical equivalence shown on the left:

∀
n1

ϕ
!n2

Xn1

ηℑ
Xn1 //

Xϕ ��
(pb)

ℑXn1

ℑXϕ��
Xn2

ηℑ
Xn2

// ℑXn2

⇔

X0
ηℑ

X0 //

a
��

(pb)

ℑX0

ℑa
��

lim
−!

X•
ηℑ

lim
−!

X•

// ℑlim
−!

X•

⇔

X0
ηℑ

X0 //

a
��

(pb)

ℑX0

ℑa
��

lim
−!

X•
lim
−!

ηℑ
X•

// lim
−!

ℑX•

(4.57)

But since ℑ preserves all limits and colimits (being a left and a right adjoint,
Prop. 3.1.26), we have (a) also the logical equivalence shown on the right
of (4.57); and (b) that ℑX• is itself a groupoid with atlas ℑa, and that
X• ηℑ

X•
// ℑX• is a morphism in Grpd(H) (3.74). By (a), it is now sufficient

to prove the composite logical equivalence in (4.57). By (b), this follows with
Prop. 3.1.73.

Proposition 4.1.37 (Tangent stacks). Let H be an elastic ∞-topos (Def.
4.1.21) and X• ∈ ÉtaleGroupoids(H) (Def. 4.1.35) with étale atlas X

ét // X
(via Prop. 4.1.36). Then:
(i) the system of tangent bundles TX• (Def. 4.1.29) is itself an étale groupoid
(Def. 4.1.35), the tangent groupoid;

(ii) its atlas (under Prop. 4.1.36) is the differential TX0
T a // TX of the

given atlas, hence the tangent stack is:
TX ≃ lim

−!
TX• (4.58)

Proof.
(i) That TX• is itself a groupoid (Def. 3.1.68) follows because both the tangent
bundle construction T (−) (4.40) as well as the groupoid Segal conditions (3.73)
are pullback constructions, hence limits, which commute over each other. To
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see that TX• is an étale groupoid, consider the following diagram:
tt 44
tt 44
tt

tt 44
tt 44
ttT

(
X0 ×X X0

)

��

//
tt 44
tt

X0 ×X X0

��

tt 44
ttTX0 //

��

uu
X0

��

vv
lim
−!

TX• //

��

X

��

tt 44
tt 44
tt

tt 44
tt 44
ttX0 ×X X0 //

tt 44
tt

ℑ
(
X0 ×X X0

)
tt 44
ttX0 //

tt
ℑX0

uu
X // ℑX

(4.59)
Here the simplicial sub-diagram in the top right consists of local diffeomor-
phism by the assumption that X• is étale. But this implies that all the hori-
zontal squares in the top of (4.59) are Cartesian, by Prop 4.1.31, hence that
also all morphisms of the simplicial sub-diagram in the top left are local dif-
feomorphisms, by Lemma 4.1.27.
(ii) To see (4.58) we need to show that the front square in (4.59) is Cartesian.
Observe:

(a) All horizontal squares in (4.59) are Cartesian: the top ones by the above
argument for (i), the bottom ones by the assumption that X• is étale.

(b) All solid vertical squares in (4.59) are also Cartesian, by definition (4.40)
of tangent bundles.

(c) The object X in the bottom front left of (4.59) is not just the colimit of
the simplicial sub-diagram in the bottom left, but in fact of the full left
sub-diagram (because of the colimit of the top left sub-diagram in the
front top left). Similarly, the object ℑX is in fact the colimit over the full
right sub-diagram in (4.59) (using that ℑ preserves colimits, being a left
adjoint, Prop. 3.1.26).

Now (a) and (b) verify the assumption of Prop. 3.1.32 applied to the diagram
(4.59), regarded as a natural transformation from its left part to its right part;
and with (c), the conclusion of Prop. 3.1.32 says that the front square in (4.59)
is Cartesian.

Lemma 4.1.38 (Degreewise local diffeomorphisms of étale groupoids). Let
H be an elastic ∞-topos (Def. 4.1.21) and X•,Y• ∈ ÉtaleGroupoids(H) (Def.
4.1.35). If a morphism X• f• // Y• is such that for all n ∈N, the component
Xn fn // Yn is a local diffeomorphism (Def. 4.1.26), then induced morphism

on stacks X lim
−!

f• // Y is also a local diffeomorphism (Def. 4.1.36).
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Proof. Consider the following diagram:

��
OO
��
OO
�� ��

OO
��
OO
��

X1

��

OO

��

//
ηℑ

X1 '' ��
OO
��
OO
��

Y1

��

OO

��

ηℑ
Y1 '' ��

OO
��
OO
��

ℑX1

��

OO

��

// ℑY1

��

OO

��
X0 //

��

ηℑ
X0 ''

Y0

��

ηℑ
Y0 ''

ℑX0

��

// ℑY0

��
X //

ηℑ
X ((

Y
ηℑ

Y ''
ℑX // ℑY

Observe that:

(a) all solid ηℑ-naturality squares in this diagram are Cartesian, by the as-
sumption that the rear part of the diagram is a degreewise local diffeo-
morphism of étale groupoids.

(b) Y is not just the colimit of the partial diagram Y• in the rear right, but in
fact is also the colimit of the full non-dashed rear part of the diagram (using
that X is the colimit of the rear left part). Similarly, ℑY is the colimit of
the non-dashed front part of the diagram (using that ℑ preserves limits
and colimits, being a left and a right adjoint, Prop. 3.1.26).

Hence if we regard the diagram as a natural transformation from its rear to
its front part, then Prop. 3.1.32 applies and says that also the bottom dashed
square is Cartesian, and hence that X ! Y is a local diffeomorphism.

Definition 4.1.39 (Étalification of groupoids). Let H be an elastic ∞-topos
(Def. 4.1.21) and X• ∈ Grpd(H) (Def. 3.1.68). Notice that, by Prop. 3.1.70
for all n ∈ N we have for all 0 ≤ i ≤ n that all face maps Xn+1 di

// Xn are
in fact equivalent to each other, being related by an automorphism of Xn+1
given by permutation of fiber product factors (3.75)

X• ≃

X2 ≃
""

X1 ≃
""

X2 ≃
""

X0 oo d0
uu

d1

X1 oo d0
tt

d1��

d2

X2 oo
vv��

(4.60)
(and similarly for the degeneracy maps). Therefore, we may regard X• as a
diagram in the slice HX0 . and apply LX0 (4.44) to this diagram (4.60) to
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obtain

X ét
• ≃

LX0X2
≃
%%

LX0X1
≃
%%

LX0X2
≃
%%

X0 oo ét
xx ét

LX0X1 oo ét
tt ét��

ét

LX0X2 oo
yy��

(4.61)
Observe that:

(a) the simplicial diagram (4.61) is again a groupoid, since the right adjoint
functor LX0 preserves the characterizing fiber products (3.73) (by Prop.
3.1.26);

(b) this groupoid is étale (Def. 4.1.35), since the morphisms of the form
LX0Xn−!X0 in (4.61) are local diffeomorphisms by construction, whence
all other morphisms LX0Xn1 −! LX0Xn2 are local diffeomorphisms by
the left-cancellation property (4.39).

Hence we say that:

(i) The simplicial diagram (4.61) is the étalification of the groupoid X•.
X ét

• ∈ ÉtGrpd(H) . (4.62)

(ii) If the corresponding atlas of X• (via Prop. 3.1.70) is denoted X0 // // X ,
then we write

X0
ét // // X ét (4.63)

for the corresponding étale atlas (via Prop. 4.1.36) of the étalified groupoid
(4.62).

4.1.3 Super Geometry
We present a formulation of super-geometry internal to ∞-toposes which we
call solid [Sc13][Sc18].

Super-geometry.

Definition 4.1.40 (Solid ∞-topos).
(i) An ∞-topos H (Def. 3.1.30) over B = Grpd∞ is a solid ∞-topos if its base
geometric morphism (Prop. 3.1.24), to be called Pnts : H // B , is equipped
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with a factorization as follows, with adjoints (Def. 3.1.24) as shown:

Shp :

Γ :

H

×“even” Evn
⊥

//

oo“bosonic” Bsnc
⊥

? _

“super shape” Shpsup
⊥

//

oo“super discrete” Discsup ? _

Pntsinf
⊥ //

oo Chtc
⊥

? _

H⇝

oo Rdcd
⊥

? _

Shpinf
⊥

//

oo Discinf ? _

−−−
Hℜ

× Shpℜ
⊥

//

oo Discℜ
⊥

? _

Pntsℜ //
B : Disc

solid
∞-topos

bosonic
sub-topos

reduced
sub-topos

discrete
sub-topos

(4.64)
(ii) In particular, a solid ∞-topos is also an elastic ∞-topos (Def. 4.1.21), as
is its sub-∞-topos H⇝ of bosonic objects.
(iii) We write (

⇒ := Bsn ◦Evn
)

“even”
⊥(

⇝ := Bsn ◦Shpsup
)

“bosonic”
⊥(

Rh := Discsup ◦Shpsup
)

“rheonomic”

: H−!H (4.65)

for the further induced modalities (1.18) (solid modalities) accompanying the
elastic modalities (4.29) and the cohesive modalities (4.2).

Examples of solid ∞-toposes. We indicate an example of a solid ∞-topos
(Def. 4.1.40). In generalization of Def. 4.1.22 we have the following:

Definition 4.1.41 (∞-Jets of super Cartesian spaces).
(i) Write

∞JetSuperCrtSp �
� C∞(−) // CommutativeSuperAlgebrasop

R

Rn|q ×DW
� // C∞(Rn

)
⊗R ∧•

R
(
Rq
)

⊗R (R⊕W)
(4.66)

for (as in [KS97][KS00]) the full subcategory of the opposite of super-
commutative super-algebras over the real numbers on those which are tensor
products of

(a) algebras C∞(Rn) of smooth functions on a Cartesian space Rn, for d ∈ N;

(b) Grassmann algebras ∧•
RRq on q ∈ N generators in odd degree;

(c) finite dimensional R⊕ W ∈ CAlg with a single nilpotent maximal ideal
W .



102 Geometric Orbifold Cohomology

(ii) We regard this as a site via the the coverage (i.e., a Grothendieck pre-
topology) whose covers are of the form{

Rn ×R0|q︸ ︷︷ ︸
Rn|q

×D
fi×id×id // Rn ×R0|q ×D

}
i∈I

such that
{
Rn fi // Rn

}
i∈I

is a cover in CrtSpc (Def. 3.1.5).

Lemma 4.1.42 (Reflections of super-commutative algebras into commu-
tative algebras). The canonical inclusion of ∞JetCrtSp (Def. 4.1.22) into
∞JetSuperCrtSp (Def. 4.1.41) has a left and a right adjoint (Def. 3.1.24)

∞JetSuperCrtSp
Evn //

oo Bsnc
⊥
⊥

? _

Shpsup //
∞JetCrtSp (4.67)

where:
(i) The left adjoint Evn in (4.67) is given in terms of super-algebras of smooth
functions (4.66) by passage to the sub-algebra of even-graded elements:

C∞
(

Evn
(
Rn|q ×D

))
≃ C∞(Rn|q ×D

)
even

≃ C∞(Rn ×D
)

⊗R C∞(R0|q)
even .

(4.68)

(ii) The right adjoint Shpsup in (4.67) is given in terms of super-algebras
of smooth functions (4.66) by passage to the quotient algebra by the ideal of
odd-graded elements:

C∞
(

Shpsup
(
Rn|q ×D

))
≃ C∞(Rn|q ×D

)
/C∞(Rn|q ×D

)
odd

≃ C∞(Rn ×D
)

⊗R C∞(R0|q)/C∞(R0|q)
odd︸ ︷︷ ︸

≃R

≃ C∞(Rn ×D
)

(4.69)
and hence directly by

Shpsup
(
Rn|q ×D

)
≃ Rn ×D . (4.70)

Proof. By regarding the situation under the defining embedding as being in
CommutativeSuperAlgebrasR (Def. 4.1.41), it is equivalent to the statement
that the canonical inclusion of commutative algebras into super-commutative
super-algebras has a right and a left adjoint given by passage to the even
sub-algebra and to the quotient by the odd ideal, respectively:

CommutativeSuperAlgebrasR

A 7! A/Aodd //

oo ⊥
⊥

? _

A 7! Aeven //
CAlgR .

This follows readily by inspection from the fact that homomorphisms of super-
algebras preserve super-degree, by definition. One place where this adjoint
triple has been made explicit before is [CR12, below Example 3.18].
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Example 4.1.43 (Jets of super-geometric ∞-groupoids). The ∞-category of
∞-sheaves (Def. 3.1.42)

∞JetSuperGrpd∞ := Shv∞
(
∞JetSuperCrtSp

)
over the site from Def. 4.1.41 is a solid ∞-topos (Def. 4.1.40).
(i) Its bosonic (4.65) sub-∞-topos is that of ∞JetSmthGrpd (Example 4.1.24)
and its reduced (4.28) sub-∞-topos that of SmthGrpd∞ (Example 4.1.18):

∞JetSuperGrpd∞

Evn //

oo Bsnc
⊥

? _

Shpsup
⊥ //

oo Discsup
⊥

? _∞JetSmthGrpd∞ oo
Discinf ? _ SmthGrpd∞ oo

Disc ? _ Gropoids∞

...
?�
OO

2JetSmthGrpd∞
?�

OO

JetSmthGrpd∞
?�
OO

ss

u U

where the adjoint triple
(
Evn ⊣ Bsnc ⊣ Shpsup

)
arises by left Kan extension

from that of Lemma 4.1.42.
(ii) The full inclusion of SmthMfd, inherited from (4.21), extends to a full
inclusion of super-manifolds (as in [CCF11, 4.6][HKST11, 2]):

SmthMfd �
� Discsup // SuperManifolds �

� // ∞JetSuperGrpd∞
(4.71)

(iii) Accordingly, super-Lie groups (e.g. [Ya93][CCF11, 7]) embed faithfully
into all group objects (Prop. 3.2.1):

Grp
(
SmthMfd

)
Lie groups

� �Discsup// Grp
(
SuperManifolds

)
super Lie groups

� � // Grp
(
∞JetSuperGrpd∞

)
(4.72)

(iv) In particular, for d ∈ N and N ∈ Spin(d,1)RepresentationsR, the corre-
sponding supersymmetry groups, i.e., the super-Poincaré group and its under-
lying translational super-Minkowski group (e.g. [Fr99, §3]) are group objects

Rd,1|N
super-Minkowski
super Lie group

� � // Iso
(
Rd,1|N)

super-Poincaré
super Lie group

// // Spin(d,1) ∈ Grp
(
∞JetSuperGrpd

)
. (4.73)

Remark 4.1.44 (Superspace cohomology theory in solid ∞-toposes). The in-
trinsic cohomology (1.20) in the solid ∞-topos of ∞JetSuperGrpd∞ (Example
4.1.43)
(i) includes the super-rational cohomology of super-Minkowski spacetimes
(4.73) that governs the fundamental (κ-symmetric) super p-brane sigma-
models of string/M-theory [FSS15a][FSS17][FSS18], review in [FSS19].
(ii) Its enhancement to twisted super-rational cohomology of super-Minkowski
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spacetimes (4.73), which happens (by Remark 3.2.23) in the intrinsic cohomol-
ogy of the tangent ∞-topos T

(
∞JetSuperGrpd∞

)
(Example 3.1.51), encodes

the double dimensional reduction from fundamental M-branes to D-branes
[BSS18].
(iii) Its enhancement to proper equivariant super-rational cohomology of
super-Minkowski spacetimes (4.73), which happens (by Remark 6.1.4 and
Theorem 6.1.9 below) in the intrinsic cohomology of the singular-solid ∞-
topos Snglr∞JetSuperGrpd∞ (Example 4.2 below), encodes also the black
(solitonic) super p-branes [HSS18].

Lemma 4.1.45 (In super-geometric groupoids étale implies bosonic).

In the solid ∞-topos of ∞JetSuperGrpd (Ex. 4.1.41) we have a natural equiv-
alence

⇝ ◦ℑ ≃ ℑ (4.74)
saying that ℑ-modal objects (4.29) are bosonic (4.65).

Proof. Observe that on ∞JetSuperCrtSp
y

↪−! ∞JetSuperGrpd∞ (Def.
4.1.41), we have a natural equivalence

ℜ◦⇒ ≃ ℜ (4.75)
saying that the reduction (4.29) of the even aspect (4.65) of the space is
equivalently the reduced aspect.

To see this, consider Rn|q ×DW ∈ ∞JetSuperCrtSp and use, by Example
4.1.43 with Lemma 4.1.42, the operation ℜ◦⇒ is given in terms of the defining
super-algebras of functions (4.1.41) by passage to the reduced algebra of the
even subalgebra

C∞
(

ℜ◦⇒
(
Rn|q ×DW

))
≃
((

C∞(Rn
)

⊗R
(

∧•
RRq

)
⊗R (R⊕W )

)
even

)
red

≃
(

C∞(Rn
)

⊗R
(

∧•
RRq

)
even︸ ︷︷ ︸

≃R⊕∧2Rq⊕∧4Rq⊕···

⊗R (R⊕W )
)

red

≃
(

C∞(Rn)⊗R
(
R⊕ (W ⊕∧2Rq ⊕∧4Rq ⊕·· ·)

))
red

≃ C∞(Rn)⊗R
(
R⊕ (W ⊕∧2Rq ⊕∧4Rq ⊕·· ·)

)
red︸ ︷︷ ︸

≃R

≃ C∞(Rn) .

Here in the last step we used that every non-unit element in the Grassmann
algebra is nilpotent. But, by (4.69) and (4.33), we also have

C∞(ℜ(Rn|q ×DW )
)

≃ C∞(Shpinf ◦Shpsup(Rn|q ×DW )
)

≃ C∞(Shpinf(Rn ×DW )
)

≃ C∞(Rn
)

,

where in the first step we used the elastic structure (4.64) ℜ := Bsnc ◦
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Rdcd ◦ Shpinf ◦ Shpsup leaving the two full embeddings on the left notation-
ally implicit. Since all these equivalences are natural, this implies (4.75).
With this, we have the following sequence of natural equivalences for gen-
eral X ∈ H := ∞JetSuperGrpd∞:

H
(
Rn|q ×D ,⇝ ◦ℑ(X)

)
≃ H

(
ℜ◦⇒

(
Rn|q ×D

)
, X
)

≃ H
(

ℜ
(
Rn|q ×D

)
, X
)

≃ H
(
Rn|q ×D , ℑX

)
,

where the first and the last steps are the defining hom-equivalences (3.24)
while the middle step is (4.75). Thus the statement (4.74) follows, by the
∞-Yoneda lemma (Prop. 3.1.38).

4.2 Singularities
Given a cohesive ∞-topos H ⊂ as in §4.1.1, we construct here a new ∞-topos H
(Def. 4.2.3 below), to be called singular-cohesive, with the following properties:

(i) H contains ((4.88) below) for each finite group G, an object ≺

G ∈ H, to be
thought of as the generic G-orbi-singularity (Figure D).

(ii) H carries (Prop. 4.2.5 below) an adjoint triple of modalities (1.18) to be
read as follows

<

“singular”

⊥

⊂

“smooth”

⊥

≺

“orbi-singular”

: H−!H ,

with H ⊂ being the full sub-∞-category of smooth objects in H,

(iii) such that (Prop. 4.2.17 below):

<

(

≺

G
)

≃ ∗ “The purely singular aspect of an orbi-singularity is
the quotient of a point, hence a point.”

⊂

(

≺

G
)

≃ ∗�G “The purely smooth aspect of an orbi-singularity is
the homotopy quotient of a point.”

≺

(

≺

G
)

≃ ≺

G “An orbi-singularity is purely orbi-singular.”
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Essentially this list of conditions might completely characterize H to be as
in Def. 4.2.3 below. Here we leave a fully axiomatic characterization of singu-
lar cohesion as an open problem and are content with making the following
definitions:

Singular cohesive geometry.

Definition 4.2.1 (The 2-site of singularities).
(i) We write Snglrt := Grpd≤1,cn,fin

� � // Grpd∞ (4.76)
for the full sub-∞-category of ∞-groupoids on the connected 1-truncated ob-
jects whose π1 is finite.
(ii) A skeleton of this (2,1)-category has, of course, as objects the delooping
groupoids (Example 3.1.14) ∗�G that are presented by a single object and a
finite group G of automorphisms of that object.
(iii) When regarded as objects of Snglrt in (4.76), we will denote these by
“ ≺” attached to the symbol for the group:

≺

G

_
��

∈ Snglrt� _
��

∗�G ∈ Grpd∞

(4.77)

(iv) The hom-∞-groupoids between these singularities are, equivalently, the
action groupoids (Example 3.1.15) whose objects are group homomorphisms
and whose morphisms are conjugation actions on these:

Snglrt
(

≺

G1, ≺

G2
)

:= Grpd∞
(

∗�G1,∗�G2
)

≃ Grp(G1,G2)�conjG2
(4.78)

(v) We regard Snglrt as an ∞-site with trivial Grothendieck topology, so that
∞-sheaves on Snglrt are ∞-presheaves (3.42).

Remark 4.2.2 (The global orbit category). The category Snglrt in Def. 4.2.1
is sometimes known in the literature as the “global orbit category” (though
at other times this term is used for its wide but non-full subcategory on the
faithful morphisms). It has elsewhere been denoted: “Orb case 1⃝” (in [HG07,
4.1]), “Glob” (in [Re14, 2.2]), “Orb” (in [Kö16, 2.1][Ju20, 3.2]) and (up to
equivalence) “Ogl” (in [Schw17][Kö16, 2.2]). The terminology in Def. 4.2.1 is
meant to be more suggestive of the role this category plays in the theory,
from the perspective of cohesive homotopy theory. In fact, the (global) orbit
category is often taken to contain not just all finite groups, but all compact
Lie groups, with the hom-spaces then being the geometric realization of the
topological mapping groupoids. We restrict to discrete groups (hence finite
if compact) for reasons explained in Remark 4.2.19 below. This restriction is
also amplified in [DHLPS19].
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Definition 4.2.3 (Singular-cohesive ∞-topos). Consider a cohesive ∞-topos
(Def. 4.1.1), now to be denoted with “ ⊂”-subscripts

H ⊂

× Shp
⊥

//

oo Dsc
⊥

? _

Pnts
⊥

//

oo Chtc ? _
B ⊂ := Grpd∞ (4.79)

and assumed to have a site of Chrt (Def. 4.1.9). The corresponding singular-
cohesive ∞-topos is that of H ⊂-valued ∞-sheaves (3.42) over the site of Snglrt
(Def. 4.2.1):

H :=Shv∞
(
Snglrt, H ⊂

) oo NnOrbSnglr

Smth
⊥ //OO

Disc Pnts⊣

��

H ⊂OO

Disc Pnts⊣

��
B := Shv∞

(
Snglrt, B ⊂

) oo NnOrbSnglr
? _

Smth
⊥ // B ⊂ ,

(4.80)

where horizontally we are showing the base geometric morphisms (Prop.
3.1.43) of sheaves over the site Snglrt, while vertically we are showing the base
geometric morphism (4.1) of H ⊂ over B ⊂ extended objectwise over Snglrt, by
functoriality.

Lemma 4.2.4 (Singularities is 2-site for homotopical cohesion). The 2-site
Snglrt (Def. 4.2.1) is an ∞-site for homotopical cohesion, in the sense of Def.
4.1.16.

Proof. It is immediately checked that

(i) the terminal object is given by the trivial group:
∗ ≃ ≺

1 (4.81)

(ii) Cartesian product is direct product of groups:

≺

G1× ≺

G2 ≃ ≺

G1×G2 .

Proposition 4.2.5 (Singular cohesion). A singular-cohesive ∞-topos (Def.
4.2.3)

H Pnts
++

Smth
rrH ⊂

Pnts ++
B

SmthssB ⊂

is itself cohesive (Def. 4.1.1) in two ways:
(i) over the singular-base ∞-topos B by the cohesion of H ⊂!B ⊂ (4.1) applied
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object-wise over all Snglrt

H

×“shape” Shp
⊥

//

oo“discrete” Disc
⊥

? _

“points” Pnts
⊥

//

oo“chaotic” Chtc ? _
B ; (4.82)

(ii) over the non-singular cohesive base ∞-topos H ⊂ (Def. 4.1.1) in that the
global section geometric morphism H Smth

−! H ⊂ of (4.80) is part of a cohesive
adjoint quadruple, to be denoted

H

×“singular” Snglr
⊥

//

oo“not orbi-singular” NnOrbSnglr
⊥

? _

“smooth” Smth
⊥

//

oo“orbi-singular” OrbSnglr ? _
H ⊂ . (4.83)

Proof. The first statement is immediate. The second statement follows via
Lemma 4.2.4 by Example 4.1.17.

Notation 4.2.6 (Singular-elastic/solid ∞-topos). Let H be a singular-
cohesive ∞-topos (Def. 4.2.3) with underlying smooth cohesive ∞-topos
H ⊂ ↪!H. Then
(i) if H ⊂ is in fact an elastic ∞-topos (Def. 4.1.21), we say that H is a
singular-elastic ∞-topos;
(ii) if H ⊂ is in fact a solid ∞-topos (Def. 4.1.40), we say that H is a singular-
solid ∞-topos.

Definition 4.2.7 (Singular-cohesive modalities). Given a singular cohesive
∞-topos (Def. 4.2.3), with its singular cohesion from Prop. 4.2.5, we write(

< := NnOrbSnglr◦Snglr
)

“singular”

⊥(

⊂ := NnOrbSnglr◦Smth
)

“smooth”
⊥(

≺ := OrbSnglr◦Smth
)

“orbi-singular”

: H−!H (4.84)

for the adjoint triple of modalities H!H induced (1.18) via (4.83); accom-
panying the cohesive modalities (4.2) induced via (4.82).

This above terminology reflects the difference (see Figure D) between a
plain singularity < (singular but not orbi-singular) as opposed to its enhance-
ment to an actual orbifold singularity ≺. We record the following elementary
but important consequence:
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Proposition 4.2.8 (Smooth orbi-singular is smooth). The singularity modal-
ities (Def. 4.2.7) satisfy:

< ◦ ⊂ ≃ ⊂ and ⊂ ◦ ≺ ≃ ⊂ .

Proof. As in Prop. 4.1.2.

Lemma 4.2.9 (Objectwise application of singularity modalities). The
singular-modalities in (4.83) are computed objectwise over Chrt, as in Ex-
ample 4.1.17, followed by ∞-sheafification LChrt (3.46):

Shv∞
(
Snglrt×Chrt

)
Snglr

))

ii

NnOrbSnglr

� � // PShv∞
(
Snglrt×Chrt

)
lim
−!

Snglrt
//

oo ⊥
constSnglrt

? _
PShv∞

(
Chrt

) LChrt //

oo ⊥
? _
Shv∞

(
Chrt

)

Proof. By essential uniqueness of adjoints (3.24).

Examples of singular-cohesive ∞-toposes.

Example 4.2.10 (Singular ∞-groupoids). For H ⊂ := Grpd∞ the base ∞-
topos of plain ∞-groupoids (3.12), the singular-cohesive ∞-topos from Def.
4.2.3 SingularGroupoids∞ := Shv∞

(
Snglrt, Grpd∞

)
is that of traditional unstable global homotopy theory [Schw18, §1s], as dis-
cussed in this form in [Re14, §4.1] (here with evaluation on all finite groups
instead of all compact Lie groups).

Example 4.2.11 (Singular-smooth ∞-groupoids).
(i) We call the singular-cohesive ∞-topos (Def. 4.2.3) over those of smooth
∞-groupoids (Example 4.1.18) the ∞-topos of singular-smooth ∞-groupoids:

SnglrSmthGrpd∞ := Shv∞
(
Snglrt, SmthGrpd∞

)
≃ Shv∞

(
CrtSpc×Snglrt

)
.

(4.85)

(ii) We call the singular-elastic ∞-topos (Def. 4.2.6) over JetSmthGrpd∞
(Example 4.1.24)

SingularJetSmthGrpd∞ := Shv∞
(
Snglrt, JetSmthGrpd∞

)
≃ Shv∞

(
JetCrtSp×Snglrt

)
.

(4.86)

(iii) We call the singular-solid ∞-topos (Def. 4.2.6) over ∞JetSuperGrpd∞
(Example 4.1.43)

Snglr∞JetSuperGrpd∞ := Shv∞
(
Snglrt, ∞JetSuperGrpd∞

)
≃ Shv∞

(
∞JetSuperCrtSp×Snglrt

)
.

(4.87)

For the second lines of (4.85), (4.85), and (4.87), see Lemma 4.2.15.
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Basic properties of singular cohesion.

Definition 4.2.12 (Orbi-singularities). Let H be singular-cohesive ∞-topos
(Def. 4.2.3).
(i) We regard the objects ≺

G ∈ Snglrt (4.77) as objects of H under the ∞-
Yoneda-embedding (Prop. 3.1.37) and the inclusion (4.80) of discrete objects:

≺

G ∈ Snglrt �
� y // Shv∞

(
Snglrt,B ⊂

) � � Disc // Shv∞
(
Snglrt,H ⊂

)
= H .

(4.88)
(ii) More generally, for

G ∈ Grp(Grpd∞) Grp(Disc) // Grp(H ⊂)

any discrete ∞-group (4.82), we also write

≺

G := ≺(BG) ∈ H (4.89)
for the orbi-singularization (4.83) of its delooping (3.78).

Lemma 4.2.16 shows that the two notations in Def. 4.2.12 are consistent
with each other.

Remark 4.2.13 (Finite groups in singular cohesion). Given a singular-
cohesive ∞-topos (Def. 4.2.3), the images of a finite group G under the fol-
lowing sequence of inclusions are naturally all denoted by the same symbol:

Grpfin � � // Grp(Set) �
� // Grp(Grpd∞) �

� Grp(Disc) // Grp
(
H ⊂

) � � Grp(NnOrbSnglr) // Grp
(
H
)

G
� // G � // G � // G � // G

(4.90)
With this understood, we also have identifications as follows (where now the
ambient ∞-categories are implicit from the context):

∗�G ≃ Disc(∗�G) and ≺

G ≃ Disc
(

≺

G
)

(4.91)
where on the right we are recalling the definition (4.88).

Similarly:

Remark 4.2.14 (Smooth charts in singular cohesion). Consider a singular-
cohesive ∞-topos (Def. 4.2.3) with an ∞-site Chrt of charts (Def. 4.1.9). Then
images of the charts U ∈ Chrt under the ∞-Yoneda embedding (Prop. 3.1.37),
and further under NnOrbSnglr (4.80), are naturally denoted by the same
symbol:

S
y // H ⊂

NnOrbSnglr // H
U � // U � // U

(4.92)

Lemma 4.2.15 (∞-Yoneda on product site). Consider a singular-cohesive
∞-topos H (Def. 4.2.3) with an ∞-site Chrt of cohesive charts (Def. 4.1.9)
for H ⊂.
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(i) Then a site (Def. 3.1.42) for the full singular-cohesive H is the Cartesian
product site SingularCharts := Chrt×Snglrt (4.93)
in that

H ≃ Shv∞
(
Chrt×Snglrt

)
. (4.94)

(ii) Under the ∞-Yoneda embedding (Prop. 3.1.37) objects in the product site
map to the Cartesian product of their prolonged Yoneda embeddings (in the
sense of Remark 4.2.13 and Remark 4.2.14):

Chrt×Snglrt y // H(
U, ≺

G
) � // U × ≺

G ,

where on the right we are using the abbreviated notation from (4.88) and
(4.92).

Proof. On the one hand, we have a natural equivalence

H
(

y
(
U1, ≺

G1
)

, y
(
U2, ≺

G2
))

≃ Chrt(U1,U2)×Snglrt
(

∗�G1 , ∗�G2
)

(4.95)

by fully-faithfulness of the ∞-Yoneda embedding (Prop. 3.1.37) and by the
definition of product sites. On the other hand, we have a sequence of natural
equivalences

H
(

y
(
U1, ≺

G1
)

, U2 × ≺

G2
)

≃ H
(

y
(
U1, ≺

G1
)
, NnOrbSnglr(U2)×Disc

(

≺

G2
))

≃ H
(

y
(
U1, ≺

G1
)
, NnOrbSnglr(U2)

)
×H

(
y
(
U1, ≺

G1
)
, Disc

(
≺

G2
))

≃ H ⊂

(
Snglr

(
y
(
U1, ≺

G1
))

, U2
)

×B
(

S
(
y
(
U1, ≺

G1
))

, ≺

G2
)

≃ H ⊂

(
U1,U2

)
×B

(

≺

G1, ≺

G2
)

≃ Chrt
(
U1,U2

)
×Snglrt

(

≺

G1, ≺

G2
)
.

(4.96)

Here the first step is by definition, the second step is the universal property of
the Cartesian product, and the third step is the hom-equivalence (3.24) of the
adjunctions Snglr ⊣ NnOrbSnglr and S ⊣ Disc, respectively. In the fourth step,
we use (4.10) and (4.98), respectively. The last step is the fully-faithfulness
of the ∞-Yoneda embedding (Prop. 3.1.37). Since both (4.95) and (4.96) are
natural in

(
U ′,(∗�G) ≺

)
, and since their right hand sides coincide, it follows

by the ∞-Yoneda embedding (Prop. 3.1.37) that also the representatives of
the left hand sides coincide: y

(
U2, ≺

G2
)

≃ U2 × ≺

G2.

Lemma 4.2.16 (Images and pre-images of orbi-singularities). Let H be a
singular-cohesive ∞-topos (Def. 4.2.3). Then the images and pre-images of
the generic singularities ≺

G (4.88) under the functors (4.83) exhibiting the
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singular cohesion are as follows (see Figure D):

≺

G,
Snglr
vv

�

Smth ((

hh OrbSnglr

�

∗�G ∈ H

∗ = ∗/G ∗�G
+ NnOrbSnglr

55

∈ H ⊂

(4.97)

Proof. By the singular cohesion established in the proof of Prop. 4.2.5 we have
that:

(i) the functor Snglr ≃ lim
−!

is the colimit functor (Prop. 3.1.36),

(ii) the functor Smth ≃ Snglrt
(

≺

1,−
)

is the hom-functor (3.2) out of the ter-
minal object (4.81).

Using this, we deduce the claim:

(i) Since colimits of representable ∞-functors are equivalent to the point
(Lemma 3.1.40) we have

Snglr
(

≺

G
)

≃ ∗ ≃ ∗/G. (4.98)

(ii) Observing that (4.78) reduces to Snglrt
(

≺

1, ≺

G
)

≃ ∗�G we have

Smth
(

≺

G
)

≃ ∗�G.

(iii) With this and by the various adjunctions we have, for U ∈ H ⊂ any ge-
ometically contractible generator (4.10) and K ∈ Grpfin any finite group,
the following sequence of natural equivalences:

H
(

U × ≺

K,OrbSnglr(∗�G)
)

≃ H ⊂

(
Smth

(
U × ≺

K
)︸ ︷︷ ︸

≃ U ×Smth
(

≺

K
)

,∗�G
)

≃ H ⊂

(
U × (∗�K), ∗�G︸︷︷︸

≃Disc(∗�G)

)
≃ Grpd∞

(
Shp(U)︸ ︷︷ ︸

≃∗

× (∗�K),∗�G
)

≃ Snglrt
(

≺

K, ≺

G
)

≃ B
(

Shp(U)︸ ︷︷ ︸
≃∗

× ≺

K, ≺

G
)

≃ B
(

Shp
(
U × ≺

K), ≺

G
)

≃ H
(

U × ≺

K,Disc
(

≺

G
))

≃ H
(

U × ≺

K, ≺

G
)

,



Singular geometry 113

where in several steps we recognized geometric discreteness, by (4.91) in
Remark 4.2.13.

But, by Lemma 4.2.15, this chain of natural equivalences in total is a natural
equivalence of the form

H
(

y
(
U, ≺

K
)
,OrbSnglr

(
∗�G

))
≃ H

(
y
(
U, ≺

K
)
, ≺

G
)

.

From this, the ∞-Yoneda embedding (Prop. 3.1.37) implies that OrbSnglr
(

∗
�G
)

≃ ≺

G .

It is useful to re-express this in terms of the modalities:

Proposition 4.2.17 (Orbi-singularities are orbi-singular). Let H be a
singular-cohesive ∞-topos (Def. 4.2.3) and consider a finite group G ∈ Grpfin

(4.90). Then the images of the generic orbi-singularity ≺

G ∈ H (4.88) under
the modalities (4.84) are (see Figure D):

<

(

≺

G
)

≃ ∗ , ⊂

(
≺

G
)

≃ ∗�G, ≺

(

≺

G
)

≃ ≺

G . (4.99)

Proof. This follows directly with Lemma 4.2.16 and the definition (4.84). For
example:

≺

(

≺

G
)

≃ OrbSnglr◦

≃∗�G︷ ︸︸ ︷
Smth

(
≺

G
)︸ ︷︷ ︸

≃ ≺

G

In the same vein, we also have the following immediate but important
property:

Proposition 4.2.18 (Orbi-singularities are geometrically discrete). Let H be
a singular-cohesive ∞-topos (Def. 4.2.3) and consider a finite group G ∈ Grpfin

(4.90).
(i) Then the basic orbi-singularity ≺

G ∈ H (4.88) is geometrically discrete (4.2)
and thus also pure shape:

♭ ≺

G ≃ ≺

G , S ≺

G ≃ ≺

G . (4.100)
(ii) The same is true for Smth(∗�G) ≺ ≃ ∗�G:

♭(∗�G) ≃ ∗�G , S(∗�G) ≃ ∗�G . (4.101)

Proof. Both statements follow immediately from the definitions and the fact
that G is finite and hence geometrically discrete (4.90).

Remark 4.2.19 (Need for discrete/finite groups in Snglrt). It is to make
Lemma 4.2.16 and hence Prop. 4.2.17 true that Def. 4.2.1 requires the global
orbit category Snglrt to consist of finite groups, instead of more general com-
pact Lie groups (Remark 4.2.2): If Snglrt were to contain non-discrete compact
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Lie groups G, then the same argument as in Lemma 4.2.16 would give in (4.99)
the following more general formula:

⊂ ≺

G ≃ ∗�♭G

(where on the right we think of the Lie group G as being cohesive via (4.21)).
Since the condition G ≃ ♭G characterizes discrete groups, this would break
Prop. 5.1.2 below, in that then the shape of the orbi-singularization of a
topological groupoid would take non-traditional values on non-discrete groups
in the global orbit category.

The following lemma further illustrates the nature of orbi-singular cohe-
sion:

Lemma 4.2.20 (Smooth 0-truncated objects are orbi-singular). Let H be a
singular-cohesive ∞-topos (Def. 4.2.3). Then if X ∈ H ⊂,0 is smooth (4.84)
and 0-truncated (Def. 3.1.57), it is also orbi-singular (4.84):

τ0(X) ≃ X and ⊂(X) ≃ X ⇒ ≺(X) ≃ X . (4.102)

Proof. Since X is smooth, there exists X ⊂ ∈ H ⊂ such that X ≃ Smth(X ⊂) .
Observe that X being 0-truncated implies that X ⊂ is 0-truncated, (by using
in Def. 3.1.57 the hom-equivalence (3.24) of the right adjoint Smth).

Now let S be any site (3.46) for H ⊂. Then, for U ∈ S ↪!H ⊂ and G ∈ Grpfin,
we have the following sequence of natural equivalences, using the various ad-
joint functors, their idempotency and respect for products:

( ≺X)
(
Smth(U)× ≺

G
)

≃ ( ≺Smth(X ⊂))
(
Smth(U)× ≺

G
)

≃ H
(
Smth(U)× ≺

G, ≺Smth(X ⊂)
)

≃ H
(
Smth(U)× ⊂( ≺

G),Smth(X ⊂)
)

≃ H
(
Smth(U × (∗�G)),Smth(X ⊂)

)
≃ H ⊂

(
U × (∗�G),X ⊂

)
≃ Grpd∞

(
∗�G, H ⊂

(
U, X ⊂

))
≃ Grpd∞

(
∗, H ⊂

(
U, X ⊂

))
≃ H ⊂

(
U, X ⊂

)
≃ H

(
Smth(U), Smth(X ⊂)

)
≃ H

(
Smth(U)× ≺

G,Smth(X ⊂)
)

≃ H
(
Smth(U)× ≺

G,X
)

≃ X
(
Smth(U)× ≺

G
)
.

Here the first and the last step use the ∞-Yoneda embedding (Prop. 3.1.37),
while the middle step uses the fact that X ⊂ is 0-truncated, hence that
H ⊂(U,X ⊂) is 0-truncated (i.e. a set), to find that there is in fact no de-
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pendency on G. Hence the claim follows by the ∞-Yoneda embedding (Prop.
3.1.37), in view of Lemma 4.2.15.

Remark 4.2.21 (Degenerate case of orbi-singular). The natural language
statement of Lemma 4.2.20 shows that the modality ≺ “orbi-singular” (4.83)
really means: “All singularities that are present are orbi-singularities.”, which
becomes a trivially satisfied condition when there are no singularities, such as
for smooth and 0-truncated objects.

Interplay between geometric and singular cohesion.

Lemma 4.2.22 (Smooth commutes with shape). In a singular-cohesive ∞-
topos (Def. 4.2.3) the smooth-modality (4.84) commutes with all three cohesive
modalities (4.2) (as per Prop. 4.2.5):

⊂ ◦ S ≃ S ◦ ⊂ , ⊂ ◦ ♭ ≃ ♭◦ ⊂ , ⊂ ◦ ♯ ≃ ♯◦ ⊂ .

Proof. Under the defining identification H ≃ Shv∞
(
Snglrt,H ⊂

)
, let X ∈ H be

any object regarded as a H ⊂-valued ∞-presheaf on Snglrt:
X : ≺

K 7−! X ( ≺

K) ∈ H ⊂ .

Observe then (by Example 4.1.17 via Lemma 4.2.4) that ⊂ turns such a
presheaf into the constant presheaf on its value at the terminal object ≺

1:(

⊂X
)

: ≺

K 7−! X ( ≺

1) .

On the other hand, the geometric modalities operate objectwise over Snglrt
(Remark 4.2.9): (

SX
)

: ≺

K 7−! S
(
X ( ≺

K)
)

.

With this, we have the following sequence of natural equivalences for X ∈ H
and ≺

K ∈ Snglrt: (

⊂SX
)
( ≺

K) ≃
(
SX
)
( ≺

1)
≃ S
(
X ( ≺

1)
)

≃ S
(
( ⊂X )( ≺

K)
)

≃
(
S ⊂X

)
( ≺

K) .

Hence the claim follows by the ∞-Yoneda embedding (Prop. 3.1.37). The
argument for ♭ and ♯ is analogous.

Remark 4.2.23 (Dichotomy between naive and proper orbifold cohomology
via singular-cohesion). In contrast to Lemma 4.2.22, the orbi-singular modal-
ity ≺ (4.84) does not commute with the cohesive shape modality S (4.2), in
general. This phenomenon is the very source of the proper equivariant struc-
ture seen in singular-cohesive ∞-toposes, reflected in the following dichotomy
between geometric- and homotopy fixed points of an orbi-space and in the
distinction between proper- and Borel-equivariant cohomology:
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≺ ◦ S S ◦ ≺

Def. 4.2.24
(i)

Homotopy
fixed-points

Geometric
fixed-points

Def. 4.2.24
(ii)

Def. 6.1.1 Borel-equivariant
cohomology

Proper equivariant
cohomology Def. 6.1.2

Def. 6.2.3 Tangentially twisted
cohomology

Tangentially twisted
proper orbifold cohomology Def. 6.2.5

Definition 4.2.24 (Geometric- and homotopy-fixed points). Let H be a
singular-cohesive ∞-topos (Def. 4.2.3), G ∈ Grp(H) (Prop. 3.2.1) being dis-
crete G ≃ ♭G and 0-truncated G ≃ τ0G, and (X,ρ) ∈ GActions(H) (Prop.
3.2.6) with smooth X ≃ ⊂X, hence

X ∈ H ⊂
� � NnOrbSinglr // H .

For any subgroup K ⊂ G, the ∞-groupoid of ≺

K -points in the slice (Prop.
3.1.46) over ≺

G (4.89)...
(i) ...of the orbi-singularization (4.83) of the shape (4.82) of X �G is the
homotopy fixed point space of X

HmtpFxdPntSpcK(X) := H/

≺

G

(
≺

K, ≺ S(X�G)
)

. (4.103)

(ii) ...of the shape (4.82) of the orbi-singularization (4.83) of X�G is the
geometric fixed point space of X

GmtrcFxdPntSpcK(X) := H/

≺

G

(

≺

K, S ≺ (X�G)
)

. (4.104)

On the right we are using Prop. 4.2.17 and Prop. 4.2.18 to see that both
expressions indeed live in the slice over ≺

G.

Proposition 4.2.25 (Homotopy-fixed point spaces are fixed loci in shapes).
The homotopy-fixed point spaces (4.103) of the G-space X in Def. 4.2.24 are,
equivalently, the fixed-loci (Def. 3.2.24) of the shape Shp(X) ∈ Grpd∞ (4.1)
of X :

HmtpFxdPntSpcsK(X) ≃
(
Shp(X)

)K ∈ Grpd∞ (4.105)
with respect to the induced G ≃ SG-action (using Prop. 4.1.4, discreteness of
G and cohesion in the form of Prop. 4.1.2).
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Proof. We claim a sequence of natural equivalences as follows:

HmtpFxdPntSpcK(X)

≡ H/
≺

G

(
≺

K, ≺ S(X�G)
)

≃ H/
≺

G

(
≺

K, ≺ (SX)�G
)

≃ H/
OrbSnglr(∗�G)

(
OrbSinglr

(
∗�K

)
, OrbSnglr

(
(SX)�G

))
≃
(
H ⊂

)/
∗�G

(
∗�K, (SX)�G

)
≃
(
Grpd∞

)/
∗�G

(
∗�K, Shp(X)�G

)
≃
(
Grpd∞

)/
∗�K

(
∗�K, Shp(X)�K

)
≃
(
Shp(X))K .

(4.106)

Here the first step is the definition (4.103), and the second step uses Prop.
4.1.4, discreteness of G and cohesion in the form of Prop. 4.1.2. In the third
step we observe with ≺

K ≃ ≺(∗�K) (Lemma 4.2.16) and ≺ := OrbSinglr ◦
Smth (4.84) that all objects and morphisms are in the image of OrbSnglr, and
in the fourth step we use that this functor is fully faithful, by Prop. 4.2.5. In
the fifth step, we similarly observe that all objects and morphisms are, in fact,
furthermore in the image of Disc (by assumption on G and by definition of
S := Disc ◦ Shp (4.2)), which is fully faithful by the axioms of cohesion (4.1).
The sixth step observes the universal factorization through the pullback

∗�K

''

// Shp(X)�G

uu
∗�G

≃

∗�K // Shp(X)�K
**uu

(pb)∗�K

))

Shp(X)�G

tt∗�G

The pullback, in turn, is the homotopy quotient of the restricted action, as
shown, by Prop. 3.2.12. With this, the last step follows by Example 3.2.26.
In summary, the composite of the sequence of equivalences (4.106) gives the
statement (4.105).

Example 4.2.26 (Geometric fixed points generally differ from homotopy fixed
points). As in Example 4.2.11, let H := SnglrSmthGrpd∞. For n ∈ N, n ≥ 1,
consider the Cartesian space Rn ∈ SmthMfd ↪−!H, via (4.21), and regard it
as equipped with the additive translation action of Zn induced from the left
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action of the additive group (Rn,+) on itself, under the canonical inclusion
(Zn,+) ↪! (Rn,+): (Rn,ρℓ) ∈ ZnActions(Hs) . (4.107)
So the quotient of this action Rn�Zn ≃ Rn/Zn ≃ Tn ∈ SmthMfd ↪−!H is
the standard n-torus. We then have for the two notions of fixed-point spaces
from Def. 4.2.24:
(i) The Homotopy-fixed point space (4.103) of the action (4.107) is equivalently
the point (by Prop. 4.2.25 and (4.20)):

HmtpFxdPntSpcZ
n

(Rn) ≃
(

SRn︸︷︷︸
≃∗

)Zn

≃ ∗

(ii) The geometric fixed point space (4.104) of the action (4.107) is empty

GmtrcFxdPntSpcZ
n

(Rn) ≃
(
Rn
)Zn

≃ ∅ .

This follows by Lemma 5.1.7, using that no element of the set underlying Rn

is fixed by the action of Zn.
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Within an ambient context of singular-cohesive homotopy theory (§4), we now
formulate the two geometric aspects of orbifolds:

- §5.1 – as cohesive spaces with orbi-singularities,
- §5.2 – as cohesive spaces locally equivalent to a given model space.

In the end, we combine both aspects to form the proper ∞-categories of orb-
ifolds: this is Def. 5.2.45 below.

5.1 Orbispaces
We observe (Prop. 5.1.2) that the shape of the orbi-singularization of a topo-
logical groupoid, regarded in singular-smooth homotopy theory (Ex. 4.2.11),
is the corresponding orbispace in global equivariant homotopy theory.

Remark 5.1.1 (Orbispaces in topology and in global equivariant homotopy
theory).

(i) Orbispaces in topology. The term orbispace was originally introduced
[Hae90] to mean the topological version of orbifolds, i.e., Satake’s original con-
cept [Sa56] but disregarding any differentiable structure. From the perspective
of étale groupoids/stacks, this means to consider topological groupoids/stacks
instead of Lie groupoids/differentiable stacks. So this usage of the term “or-
bispace” serves to complete the following table:

Smooth manifold Topological manifold
orbifold orbispace (geometric sense)

Lie groupoid topological groupoid
differentiable stack topological stack

121
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In this sense, orbispaces have been discussed, e.g., in [Hae84][Hae91,
§5][Ch01][He01].
(ii) Orbispaces in global equivariant homotopy theory. In [HG07] it
was suggested to change perspective and to instead regard these topologi-
cal groupoids Xtop via the systems of homotopy types of all their geometric
fixed point spaces, by the following formula [HG07, 4.2] (beware the differing
conventions, as per Remark 4.2.2):

G 7−!

homotopy type of (fat) geometric realization of∥∥∥Map
(
BG, Xtop

)
topological

mapping groupoid

∥∥∥ orbispace
(equivariant homotopical sense)

(5.1)
This is a global-equivariant version of how topological G-spaces are incarnated
in G-equivariant homotopy theory via Elmendorf’s theorem (recalled as Prop.
2.2.10), and has served to motivate the development of global equivariant
homotopy theory [Schw18].

In the course of this development, homotopy theorists adopted the term
“orbispace” to refer not to the topological groupoid Xtop (as [Hae90] originally
did) but rather to the global equivariant homotopy type that is represented via
(5.1). Usage of the term orbispace in this sense of global homotopy theory is,
after [HG07], in [Re14][Kö16][Schw17][Lu19, 3][Ju20]. In [Ju20, 3.15] formula
5.1 is used (following suggestions in [Schw17, Introd.][Schw18, p. ix-x]) to
define (abelian, non-geometric) cohomology of orbifolds with coefficients in
global equivariant spectra.

Our Prop. 5.1.2 below shows that these two different meanings of the term
“orbispace” in the literature are disentangled as well as unified by the notion
of singular cohesion (Def. 4.2.3), in that orbispaces in the sense (ii) are the
shape S (4.1) of the orbi-singularization ≺ (4.84) of the topological groupoids
in (i):

TopGrpd
S ◦ ≺ // Orbispaces

Xtop //
(

≺

G 7!
∥∥Map

(
BG,Xtop

)∥∥) (5.2)

Hence Prop. 5.1.2 below means that, before passing to their pure shape,
we may think of the orbi-singularizations of objects in singular-cohesive ∞-
toposes as cohesive orbispaces, lifting the concept of plain orbispaces in the
sense (ii) from plain homotopy theory to geometric (differential, étale) homo-
topy theory, hence back to sense (i) and beyond.

The crucial fact underlying the phenomenon (5.2), both in Prop. 5.1.2 and
in Lemma 5.1.7 below, is that the probe of an orbi-singular object ≺X ⊂ by
a generic orbi-singularity ≺

K (4.77) is, by adjunction (4.84), equivalently the
probe of the underlying smooth object by the smooth aspect of ≺

K , hence is,
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by (4.99) in Prop. 4.2.17, the geometric G-fixed locus in X ⊂ :
≺

G // ≺X ⊂

(4.84)

⇔ ⊂ ≺

G // X ⊂

(4.99)

⇔ ∗�G // X ⊂ .

(5.3)
Equivalently, since ≺

G ≃ ≺(∗�G) (Lemma 4.2.16) the composite corespon-
dence (5.3) is fully-faithfulness of ≺.

Ex.: Topological groupoids as cohesive orbispaces.

Proposition 5.1.2 (Shape of orbi-singularized topological groupoid is orbis-
pace). Let H := SnglrSmthGrpd∞ (Ex. 4.2.11), and let

TopGrpd Cdfflg // SmthGrpd∞
NnOrbSnglr // H

Xtop
� // X ⊂

be a topological groupoid, regarded via the embeddings (4.22) and (4.83). If
X ⊂ is such that both its space of objects and of morphisms are retracts of cell
complexes (for instance: both are CW-complexes (3.4)) then the shape (4.82)
of its orbi-singularization (4.84) is, as an ∞-presheaf (4.80) of ∞-groupoids
on Snglrt (4.2.1) (i.e., on the global orbit category, Remark 4.2.2)

S ≺X ⊂ ∈ Sh∞
(
Snglrt

) � � Disc // H

given by the assignment (5.3)
S ≺X ⊂ : ≺

G 7−!
∥∥Map

(
BG,Xtop

)∥∥ , (5.4)
where on the right we have the fat geometric realization of the topological
functor groupoid [Se74] (see [HG07, 2.3]), with BG ≃ ∗�G (Ex. 3.1.14)
regarded as a finite topological groupoid.

Proof. Recall from (4.20) in Ex. 4.1.18 that Chrt := CrtSpc (Def. 3.1.5) is a site
of cohesive charts (Def. 4.1.9) for SmthGrpd∞. We claim that for Rn ∈ CrtSpc
and ≺

G ∈ Snglrt (Def. 4.2.1), hence Rn × ≺

G ∈ CrtSpc×Snglrt (Lemma 4.2.15),
we have the following sequence of natural equivalences:

H
(
Rn × ≺

G, ≺X ⊂

)
= H

(
Rn × ≺

G, OrbSnglr
(
X ⊂

))
≃ H ⊂

(
Smth

(
Rn × ≺

G
)︸ ︷︷ ︸

≃Rn×BG

, X ⊂

)
≃ H ⊂

(
Rn , Map

(
BG, X ⊂

))
≃ H ⊂

(
Rn , CdfflgMap

(
BG, Xtop

))
.

(5.5)

Here the first step is (5.8), the second is the hom-equivalence (3.24) of the
adjunction Smth ⊣ OrbSnglr (4.83) and using under the brace that Smth
preserves products (by Prop. 3.1.26), that Rn is already smooth, and that
Smth

(

≺

G
)

≃ (∗�G) by (4.97). The third step is Lemma 2.1.5.
Since also the composite of all these natural equivalences is thus natural,
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the ∞-Yoneda lemma (Prop. 3.1.38) implies that

≺X ⊂ : ≺

K 7−! CdfflgMap
(
BG, X ⊂

)
.

Now, since S acts objectwise over ≺

K (4.82), we find from this that

S ≺X ⊂ : ≺

K 7−! SCdfflgMap
(
BG, Xtop

)
≃ ShpsTop

(
Map

(
BG, Xtop

))
≃

∥∥Map
(
BG, Xtop

)∥∥ .

Here the first step is (4.26) and the last step follow by Prop. 3.1.18.

Cohesive G-orbispaces. We now discuss in more detail the analogue of
Prop. 5.1.2 in (a) the special case of global quotient stacks X ⊂ ≃ X�G by a
discrete group G, but (b) in the full generality of X being any 0-truncated
cohesive space (not necessarily a topological space, but for instance a smooth
manifold or diffeological space (4.21) or even a non-concrete object).

Remark 5.1.3 (Good orbifolds and good cohesive orbispaces). The tradi-
tional orbifolds that arise as global quotients X ⊂ ≃ X�G of a smooth manifold
X by the action of a discrete group G are called good orbifolds (e.g. [Ka08,
6]). Therefore, the cohesive G-orbispaces discussed now (Def. 5.1.4) could be
called (after forgetting their slicing over ≺

G) the good cohesive orbispaces.

Definition 5.1.4 (Cohesive G-orbispace). Let H be a singular-cohesive ∞-
topos (Def. 4.2.3) and G ∈ Grp(H) (Prop. 3.2.1) discrete G ≃ ♭G. We say that
a cohesive G-orbispace is an object

X
p��

≺

G
∈ H/

≺

G

in the slice over the G-orbi-singularity (4.89) that is:
(a) orbi-singular: ≺(p) ≃ p (Def. 4.2.7) ,

(b) 0-truncated: (τ0)/ ≺

G(p) ≃ p (Def. 3.1.57) . (5.6)

Definition 5.1.5 (Universal covering space of a G-orbi-singular space). Given
a Cohesive G-orbispace X ∈ H/ ≺

G (Def. 5.1.4), we say that its universal cov-
ering space X ∈ H the homotopy fiber of the defining morphism to ≺

G over its
essentially unique point:

X
fib(p) // X

p��

≺

G

(5.7)
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Proposition 5.1.6 (Properties of universal covering spaces). Let H be a
singular-cohesive ∞-topos (Def. 4.2.3). Given a G-orbi-singular space X ∈
H/ ≺

G (Def. 5.1.4), its universal covering space X (Def. 5.1.5)

(i) is:
(a) 0-truncated: τ0(X) ≃ X (Def. 3.1.57) ,

(b) smooth: ⊂(X) ≃ X (Def. 4.1.1) ,

(ii) and is equipped with a G-action (Prop. 3.2.6) such that X is the orbi-
singularization (4.84) of the corresponding homotopy quotient:

X ≃ ≺

(
X�G

)
. (5.8)

Proof. (i) That X is (a) 0-truncated follows from the condition that p is 0-
truncated and using Lemma 4.1.14. To see that X is (b) smooth, observe that
by the defining assumption (5.6) that p is orbi-singular, it is the image under
OrbSnglr (4.83) of a morphism p ⊂ in H ⊂ :

X
fib(p) // X

p��

≺

G

≃ OrbSnglr


X ⊂

fib(p

⊂

)
// X ⊂

p

⊂��
∗�G

 . (5.9)

We claim that in fact X ≃ NnOrbSinglr(X ⊂), whence X ≃ ⊂(X): First,
since OrbSnglr is a right adjoint it preserves homotopy fibers (Prop. 3.1.26),
fib(p) ≃ OrbSnglr

(
fib(p ⊂)

)
, hence we have X ≃ OrbSnglr(X ⊂). It follows, in

particular, that X ⊂ is 0-truncated, since X ≃ OrbSnglr(X ⊂) is 0-truncated by
part (a), and using that OrbSnglr is fully faithful. From this it follows that
OrbSnglr(X ⊂) ≃ NnOrbSinglr(X ⊂), by Lemma 4.2.20. Together this gives the
claim (b).

With this, part (ii) now follows by comparison with (3.84).

Shape of Cohesive G-orbispaces. We derive the following formula (5.10) in
Prop. 6.1.6 which generalizes the embedding of G-spaces into global equivari-
ant homotopy theory, discussed in [Re14, p. 7][Lu19, 3.2.17], from topological
G-spaces to general cohesive G-spaces. Below in §6.1 this serves to prove that
the intrinsic cohomology of good cohesive orbispaces subsumes proper equiv-
ariant cohomology (Theorem 6.1.9).

Lemma 5.1.7 (Shape of Cohesive G-orbispaces). Let H be a singular-cohesive
∞-topos (Def. 4.2.3). (3.12), G ∈ Grp

(
H
)

(Prop. 3.2.1) be a 0-truncated G ≃
τ0G and discrete G ≃ ♭G and let X ∈ H be smooth X ≃ ⊂X and 0-truncated
X ≃ τ0X and equipped with a G-action (X,ρ) ∈ GActions(H) (Prop. 3.2.6).
(i) Then the orbi-singularization (4.83) of the corresponding homotopy quo-
tient (3.84)

X := ≺

(
X�G

)
∈ H := Shv∞

(
Snglrt, H ⊂

)
,

when regarded as an H ⊂-valued ∞-presheaf on Snglrt (4.80), assigns to a
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singularity ≺

K (4.88) the disjoint union of fixed loci Xϕ(K) (Def. 3.2.24) of the
smooth covering space X (Def. 5.1.5) for all group homomorphisms ϕ : K!G
homotopy-quotiented (3.85) by the residual G-action (Prop. 5.1.6):

X : ≺

K 7−!

( ⊔
ϕ∈Grp(K,G)

Xϕ(K)
)

�G. (5.10)

(ii) Moreover, its shape (4.82)

Shp
(

≺
(
X�G

))
∈ SingularGroupoids := Shv∞

(
Snglrt

)
assigns to a singularity ≺

K (4.88) the cohesive shape (4.1) of these disjoint
unions of fixed loci (Def. 3.2.24) of the smooth covering space X (Def. 5.1.5)
homotopy-quotiented by its G-action (Prop. 5.1.6):

Shp
(
X
)

: ≺

K 7−! Shp
( ⊔

ϕ∈Grp(K,G)

Xϕ(K)
)

�G. (5.11)

Proof. We claim that for U ∈ Chrt (Def. 4.1.9) and ≺

K ∈ Snglrt (Def. 4.2.1),
hence U × ≺

K ∈ Chrt×Snglrt (Lemma 4.2.15), we have the following sequence
of natural equivalences:

H
(
U × ≺

K, X
)

= H
(
U × ≺

K, OrbSnglr
(
X�G

))
≃ H ⊂

(
Smth

(
U × ≺

K
)︸ ︷︷ ︸

≃U×(∗�K)

, X�G
)

≃ Grpd∞
(
(∗�K), H ⊂

(
U,X�G

))
≃ Grpd1

(
(∗�K), H ⊂

(
U,X

)
�G
)

≃
( ⊔

ϕ∈Grp(K,G)

H ⊂

(
U,X

)ϕ(K))
�G

≃
( ⊔

ϕ∈Grp(K,G)

H ⊂

(
U,Xϕ(K)))

�G

≃
(

H ⊂

(
U,

⊔
ϕ∈Grp(K,G)

Xϕ(K)
))

�G

≃ H ⊂

(
U,

( ⊔
ϕ∈Grp(K,G)

Xϕ(K)
)

�G

)
.

(5.12)

Here the first step is (5.8), the second is the adjunction Smth ⊣ OrbSnglr (4.83)
and using under the brace that Smth preserves products (by Prop. 3.1.26),
that U is already smooth by assumption, and that Smth

(

≺

K
)

≃ (∗�K) by
(4.97). The third step is the tensoring of H over ∞-groupoids (Prop. 3.1.34)
(using the geometric discreteness (∗�K) ≃ Disc(∗�K) by Remark 4.2.13) The
fourth step uses the geometric contractibility of U and the discreteness of G to
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identify H ⊂(U,X�G) ≃ H ⊂(U,X)�G (Lemma 4.1.12). The fifth is the general
observation of Ex. 3.1.16 about hom-groupoids between quotient groupoids
of sets. The sixth step uses Prop. 4.1.13 to find that the fixed points in the
set of maps are the maps into the fixed point locus. After this key step, we
just re-organize term: The seventh step uses the connectedness of U (Lemma
4.1.10) to find that a coproduct of homs out of U is a hom into the coproduct.
Finally, the eighth step uses again Lemma 4.1.12.

(i) The composite equivalence (5.5) implies the first claim (5.10) by the ∞-
Yoneda embedding (Prop. 3.1.37), using Lemma 4.2.15.

(ii) From this, the second claim (5.11) follows, using that Shp acts objectwise
over Snglrt (4.82), and preserves homotopy quotients by discrete groups
(Prop. 4.1.4).

Remark 5.1.8 (Relevance of 0-truncated orbi-singular spaces).
(i) The crucial assumption that makes the proof of Lemma 5.1.7 work is,
(a) that G is discrete and (b) that X is 0-truncated. This is what yields 1-
groupoidal homs in the middle step of (5.5) and thus the form of the expression
in the next step, as on the right hand side of (3.17).
(ii) Without the assumption of X being 0-truncated over ∗�G, the proof of
Lemma 5.1.7 would proceed verbatim up to that middle step, but then would
break as the nontrivial morphisms present in X would then mix with those of
the action by G.
(iii) Lemma 5.1.7 shows that this subltety is closely related to the cohesive
nature of the problem: We either have a space which is 0-truncated but carries
cohesive (i.e. geometric) structure, or we turn it into its cohesive shape which
is un-truncated but geometrically discrete.

Singular quotient of Cohesive G-orbispaces.

Proposition 5.1.9 (Singular quotient of G-orbi-singular space). Let H be
a singular-cohesive ∞-topos (Def. 4.2.3), G ∈ Grp(H) being discrete G ≃ ♭G
and 0-truncated G ≃ τ0G. For X be a G-orbi-singular space (Def. 5.1.4) with
universal covering space X ∈ H ⊂,0 ↪!H equipped with its induced G-action
(Def. 5.1.5, Prop. 5.1.6). Then the singularization (4.83) of X is the plain
G-quotient of X

Snglr
(
X
)

≃ X/G ∈ H ⊂,0 ↪−!H ⊂

(i.e., the quotient of the G-action formed in the 1-topos H ⊂,0 of 0-truncated
objects).

Proof. For U ∈ Chrt, write
H ⊂

(
U,X

)
�G ≃

⊔
c

(
∗�Hc

)
∈ Grpd1 (5.13)
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for the essentially unique decomposition of the groupoid on the left into its
connected components

c ∈ π0
(

H ⊂

(
U,X

)
�G
)

≃ H ⊂

(
U,X

)
/G, (5.14)

each of which is equivalent to the delooping groupoid (Ex. 3.1.14) of its fun-
damental group

Hc := π1
(

H ⊂

(
U,X

)
�G, c

)
∈ Grp .

Now, by Lemma 5.1.7 and re-instantiating the last few manipulations in (5.5),
we have that over each U ∈ Chrt the incarnation of the G-orbi-singular space
X as an ∞-presheaf on Snglrt is given by:

X (U) : ≺

K 7−! Grpd1

(
∗�K , H ⊂

(
U,X

)
�G
)

≃ Grpd1

(
∗�K ,

⊔
c

(
∗�Hc

))
≃
⊔
c

Grpd1

(
∗�K , ∗�Hc

)
≃
⊔
c

Snglrt
(

≺
K , ≺

Hc

)
.

(5.15)

Here the first step is (5.13), the second step uses that the delooping groupoids
∗�K are connected and the last step observes the definition of Snglrt (Def.
4.2.1). By the ∞-Yoneda embedding (Prop. 3.1.37) over the site of Snglrt
(4.76) this means that

X (U) ≃
⊔
c

≺

Hc ∈ Shv∞
(
Snglrt

)
. (5.16)

With this, we find that Snglr(X ) ∈ PreSheaves∞(Chrt) is given by
Snglr

(
X
)

: U 7−! Snglr
(
X (U)

)
≃ Snglr

(⊔
c ≺

Hc

)
≃
⊔
c

Snglr
(

≺

Hc

)
≃
⊔
c

∗

≃ π0
(

H ⊂

(
U,X

)
�G
)

≃ H ⊂

(
U,X

)
/G .

Here the first line is the object-wise application of Snglr (Remark 4.2.9), while
the next line is (5.16). From there we use that Snglr, being a left adjoint,
preserves coproducts (Prop. 3.1.26) and then that it takes the elementary
singularies to points, by Lemma 4.2.16. Finally, we identify (5.14). But this
resulting assignment is just that of X/G ∈ PreSheaves(Chrt):
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X/G : U 7−! H(U,X)/G

and hence the claim follows.

Examples of Cohesive G-orbispaces. We make explicit two classes of ex-
amples of cohesive G-orbispaces (Def. 5.1.4): Fréchet-smooth orbispaces and
topological orbispaces.

Example 5.1.10 (Fréchet smooth G-orbispaces). Consider
X ∈ FréchetManifolds �

� // SmthGrpd∞

a (possibly infinite-dimensional Fréchet-)smooth manifold regarded as a 0-
truncated concrete smooth ∞-groupoid (4.21). Given a G ∈ Grp(H) (4.90)
being discrete G ≃ ♭G, a smooth action ρ of G on X is equivalently a homotopy
fiber sequence in SmthGrpd∞ of this form (Prop. 3.2.6):

X
fib(ρ) // X�G

ρ��
∗�G

.

Here the homotopy quotient (3.84)
X�G ∈ LieGroupoids �

� // SmthGrpd∞

is the corresponding (possibly infinite-dimensional Fréchet-)Lie groupoid,
regarded as a smooth ∞-groupoid via the embedding (4.22). Its orbi-
singularization (4.83) is a G-orbi-singular space, in the sense of Def. 5.1.4,
in the ∞-topos SnglrSmthGrpd∞ (4.85):

X
��

≺

G
:= OrbSnglr


X�G

��
∗�G

 . (5.17)

This orbi-singular smooth groupoid (5.17) what we suggest is the proper in-
carnation of the quotient orbifold that is presented by the smooth manifold
X with its G-action. Notice that (see Figure G):

(i) its purely smooth aspect is the Lie groupoid

⊂

(
X
)

≃ X�G ∈ LieGroupoids �
� // SnglrSmthGrpd∞ ,

(by Prop. 5.1.6) which is the incarnation of this orbifold, according to
[MP97][PS10]

(ii) its purely singular aspect is the diffeological space

<

(
X
)

≃ X/G ∈ DiffeologicalSpaces �
� // SingularSmoothGroupoid∞

(by Prop. 5.1.9) which is the incarnation of this orbifold, according to
[IKZ10].

However, it is only the full orbi-singular object X which is structured enough to
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have proper (Bredon-)equivariant cohomology. This is the content of Theorem
6.1.9 below.

Example 5.1.11 (Topological G-orbispaces). For G a finite group, let
G ↷ Xtop be a topological G-space (Def 2.2.1) with Borel construction

Xtop // X ×
G

EG

��
BG

Via its continuous diffeology (3.8), this is equivalently a 0-truncated (and
concrete) object in H ⊂ := SmthGrpd∞ (Ex. 4.1.18)

X := Cdfflg(Xtop) ∈ H ⊂,0

equipped with a smooth G-action (Prop. 3.2.6)
X // X�G

��
∗�G.

The orbi-singularization (4.83) of the corresponding homotopy quotient is a
G-orbi-singular space (Def. 5.1.4)

X

��

≺

G

:= OrbSnglr


Cdfflg(Xtop)�G

��
∗�G

 .

Proposition 5.1.12 (Shape of good orbifolds). Consider a finite-dimensional
smooth G-orbifold, as in Ex. 5.1.10 (a good orbifold, Remark 5.1.3)

X := OrbSnglr
(
X�G

)
.

Then its cohesive shape (4.83) Shp
(
X
)

∈ Shv∞
(
Snglrt

)
is, over any singular-

ity ≺

K (4.77), the topological shape (3.1.13) of the G-Borel construction on the
disjoint union of all K-fixed subspaces X

ϕ(K)
top ⊂ Xtop (2.15) in the underlying

(3.8) D-topological G-space (Def. 2.2.1):

Shp
(
X
)

: ≺

K 7−! ShpTop

(( ⊔
ϕ∈Grp(K,G)

(Dtplg(X))ϕ(K)
)

×
G

EG

)
. (5.18)

Proof. With Lemma 5.1.7, the task is reduced to showing that, for ϕ(K) ⊂ G
any specified subgroup, we have an equivalence

Shp
(
Xϕ(K)) ≃ ShpTop

(
(Dtplg(X))ϕ(K)) ∈ Grpd∞

between the cohesive shape (4.1) of the orbi-singular homotopy quotient of X
by G and the ordinary topological shape (3.1.13) of the D-topological space
underlying X. But this is (4.25) in Ex. 4.1.18, given by [Sc13, 4.3.29].

Proposition 5.1.13 (Shape of topological G-orbi spaces). Consider the topo-
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logical G-orbi-singular space, as in Ex. 5.1.11,
X := OrbSnglr

(
Cdfflg(Xtop)�G

)
.

Then its cohesive shape (4.83) Shp
(
X
)

∈ Shv∞
(
Snglrt

)
is, over any singu-

larity ≺
K (4.77), the topological space (3.1.13) of the G-Borel construction on

the disjoint union of all K-fixed subspaces X
ϕ(K)
top ⊂ Xtop (2.15):

Shp
(
X
)

: ≺
K 7−! ShpTop

(( ⊔
ϕ∈Grp(K,G)

X
ϕ(K)
top

)
×
G

EG

)
. (5.19)

Proof. With Lemma 5.1.7, the task is reduced to showing that, for ϕ(K) ⊂ G
any specified subgroup, we have an equivalence

Shp
(
Cdfflg(Xtop)ϕ(K)) ≃ ShpTop

(
X

ϕ(K)
top

)
∈ Grpd∞

between the cohesive shape (4.1) of the orbi-singular homotopy quotient by
G of the continuous-diffeological space and the ordinary topological shape
(3.1.13) But this is item (4.24) in Ex. 4.1.18, given by combining the result
(4.23) of [BEBP19][Bunk20, §3] with Prop. 3.1.20 from [CW14].

5.2 Orbifolds
We introduce a general theory of orbi-singular spaces, whose underlying
smooth cohesive groupoid is locally diffeomorphic to a fixed local model space
V . Since, for V = Rn ∈ JetSmthGrpd∞, these are ordinary n-folds (i.e., or-
dinary n-dimensional manifolds for any n, see Ex. 5.2.4), or, more generally,
étale ∞-groupoids with atlases by n-folds (Ex. 5.2.5), including ordinary orb-
ifolds, we generally speak of V -folds, with a hat tip to [Sa56]. Externally these
are V -étale ∞-stacks (Remark 5.2.2) but their theory internal to the ambi-
ent elastic ∞-topos (such as the construction of their frame bundles in Prop.
5.2.13) is elegant and finitary and lends itself to full formalization in homotopy
type theory [Ch24] (see p. 10). The proper incarnation (see Remark 5.2.47) of
these V -folds as orbifolds is via their orbi-singularization (Def. 5.2.45, Remark
5.2.47).
V -folds and V -étale groupoids.

Definition 5.2.1 (V -folds). Let H be an elastic ∞-topos H (Def. 4.1.21).
(i) Given V ∈ Grp(H) (Prop. 3.2.1), we say that an object X ∈ H is a V -fold
if there exists a correspondence between V and X

Uét

uu
ét
)) ))

V X

(5.20)

such that



132 Geometric Orbifold Cohomology

(a) both morphisms are local diffeomorphisms (Def. 4.1.26) and

(b) the right one is, in addition, an effective epimorphism (Def. 3.1.63), then
called a V -atlas of X (3.77).

(ii) We write
V Folds(H) ⊂ H (5.21)

for the full sub-∞-category of V -folds in H and we write
V Folds(H)ét ⊂ H (5.22)

for its wide subcategory on those morphisms which are local diffeomorphisms
(Def. 4.1.26).

Remark 5.2.2 (V -folds and V -étale groupoids). By Prop. 4.1.36, a V -fold
(Def. 5.2.1) is a stack (3.77) whose choice of V -atlas (5.20) realizes it as an
étale groupoid (Def. 4.1.35) with space of objects locally diffeomorphic over
V :

��

OO

��

OO

�� ��

OO

��

OO

��
U ×X U ≃

pr1
��

OO

∆ pr2
��

U1

s

��

OO

e t

��

“V -étale groupoid”

V oo
ét

U

a ét

����

U0

����
“V -atlas”

X ≃ lim
−!

U• “V -fold”

(5.23)

Example 5.2.3 (V is a V -fold). Let H be an elastic ∞-topos H (Def. 4.1.21)
and V ∈ Grp(H) (Prop. 3.2.1). Then the underlying object V ∈ H itself is a
V -fold (Def. 5.2.1): A V -atlas (5.20) is given by the identity morphisms

Vid
étuu

id
ét )) ))

V V .

(5.24)

Example 5.2.4 (Smooth manifolds are Rn-folds). For k ∈ N with k ≥ 1, let
H = kJetSmthGrpd∞ (Ex. 4.1.24). Then, for every n ∈ N, the object

V := Rn ∈ CrtSpc �
� // kJetSmthGrpd∞ (5.25)

canonically carries the structure of a group object (Rn,+) ∈ Grp(H), via ad-
dition in Rn regarded as a vector space. Now every smooth manifold

X ∈ SmthMfd �
� // kJetSmthGrpd∞

of dimension n is a V -fold, hence an Rn-fold in the sense of Def. 5.2.1: For
any choice of atlas in the traditional sense of manifold theory, namely an open
cover {

Uj
ϕi // X

}
j∈J
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by local diffeomorphisms ϕi from open subsets of Cartesian space

Uj
� � ιj // Rn ,

a V -atlas (5.20) is obtained by setting:
⊔

j∈J
Uj

ét

(ιj)j∈J

uu ét

(ϕj)j∈J

(( ((Rn X

(5.26)

Example 5.2.5 (Differentiable étale stacks are Rn-folds [Sc13, Prop. 4.5.56]).
Let H = JetSmthGrpd∞ (Ex. 4.1.24) and take V = (Rn,+) as in Ex. 5.2.4.
Then a diffeological groupoid X ∈ H (4.36) is a V -fold (Def. 5.2.1) for V = Rn

(5.25) if it is an n-dimensional differentiable étale stack in that:

(i) it admits an atlas (effective epimorphism) X0 // // X from a smooth
n-manifold X0 (via (4.21) and (4.35))

(ii) its source and target morphisms with respect to this atlas are local diffeo-
morphisms.

Generally, a smooth ∞-groupoid presented by a Kan simplicial smooth
manifold is an Rn-fold in the sense of Def. 5.2.1 if it presents an étale ∞-
groupoid in that all its simplicial face maps are local diffeomorphisms.

Examples 5.2.6 (Super-manifolds are Rn|q-folds). Let H = ∞JetSuperGrpd∞
(Ex. ??). Then, for every n,q ∈ N, the super-Cartesian space (Def. 4.1.41)

V := Rn|q ∈ ∞JetSuperCrtSp �
� // ∞JetSuperGrpd∞ (5.27)

carries the structure of a group object, whose bosonic aspect (4.64) is (5.25).
The corresponding V -folds (Def. 5.2.1) are the (n|q)-dimensional supermani-
folds (4.71).

Example 5.2.7 (General super étale ∞-stacks). Let H = ∞JetSuperGrpd∞
(Ex. ??). Then for any V ∈ Grp(H) the corresponding V -étale ∞-stacks (Re-
mark 5.2.2) realize a flavor of super étale ∞-stacks, locally modeled on V .
Lemma 4.1.45 implies that, generally, the bosonic part

⇝
X of a super étale

∞-stack is a bosonic étale ∞-stack locally modeled on the bosonic part
⇝
V of

V :
V Folds(H) ⇝ //

⇝
V Folds(H)

supergeometric
étale ∞-stack X 7−!

⇝
X underlying bosonic

étale ∞-stack

Quotients of V -folds.

Proposition 5.2.8 (Orbifolding of a V -fold is a V -fold). Let H be an elastic
∞-topos H (Def. 4.1.21), V,G ∈ Grp(H) (Prop. 3.2.1) with G ≃ ♭G discrete,
and (X,ρ) ∈ GActions(H) (Prop. 3.2.6). Then if X is a V -fold (Def. 5.2.1)
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so is its homotopy quotient X�G (3.85). Specifically, if U
ét // // X is a V -

atlas for X (5.20), then a V -atlas for V �G is given by composition with the
homotopy fiber inclusion map fib(ρ) (3.84):

U
ét

vv
ét
(( ((

V X
fib(ρ) // X�G .

(5.28)

Proof. We need to show that the composite morphism on the right of (5.28)
is (a) an effective epimorphism and (b) a local diffeomorphism. Since both
of these classes of morphisms are closed under composition (Lemma 3.1.65
and Lemma 4.1.27), it is sufficient to show that fib(ρ) itself has these two
properties.

For (a) observe that, by definition of homotopy fibers (3.84), we have a
Cartesian square

X

��

fib(ρ) //

(pb)

X�G

ρ
��

∗ // // BG
(5.29)

Here the bottom morphism is an effective epimorphism (Ex. 3.2.2). Since these
are preserved by homotopy pullback, also fib(ρ) is an effective epimorphism.

For (b) consider the image of this square (5.29) under ℑ. Since ℑ is both a
right and a left adjoint it preserves Cartesian squares and homotopy quotients
(by Prop. 3.1.26), while it preserves discrete objects by elasticity (4.28) and
idempotency (Prop. 3.1.28, Prop. 3.1.29). Therefore

ℑX

��

ℑfib(ρ) ≃ fib(ℑρ) //

(pb)

(
ℑX

)
�G

ℑρ
��

∗ // // BG

(5.30)

is Cartesian. Consider finally the pasting composite of this second square
(5.30) with the naturality square of ηℑ on fib(ρ):

X

ηℑ
X
��

fib(ρ) // X�G

ηℑ
X�G ��

ρ

xx

ℑX

��

//

(pb)

(
ℑX

)
�G

ℑρ
��

∗ // BG

(5.31)

Here the composite morphism on the right is equivalent to ρ, as shown, by the
naturality of ηℑ and using that the object BG, being discrete, is ℑ-modal.
Therefore, the total outer rectangle of (5.31) is Cartesian by (5.29). Moreover,
the bottom square of (5.31) is Cartesian by (5.30). Therefore the pasting law
(Prop. 3.1.23) implies that the top square of (5.31) is Cartesian. But this
means (4.38) that fib(ρ) is a local diffeomorphism.
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Proposition 5.2.9 (Induced G-action on the tangent bundle). Let H be an
elastic ∞-topos H (Def. 4.1.21), V,G ∈ Grp(H) (Prop. 3.2.1), with G ≃ ♭G
discrete, (X,ρ) ∈ GActions(H) (Prop. 3.2.6) and X ∈ V Folds(X) (Def. 5.2.1).
Then the tangent bundle TX (Def. 4.1.29) carries an essentially unique G-
action Tρ such that:
(i) the defining projection TX !X is G-equivariant (Def. 3.2.10);
(ii) the homotopy quotient of TX is the tangent bundle of the orbifolded V -fold
X�G (Prop. 5.2.8):

(TX)�G ≃ T (X�G) ∈ H/
X�G

. (5.32)

Proof. Consider the following diagram:
TX

**

��

// X

��

fib(ρ)

**
T (X�G) //

��

T ρ

��

X�G

ηℑ
X �G ≃ ηℑ

X�G

��

X

��

fib(ρ) **

ηℑ
X // ℑX ℑfib(ρ)

**
X�G

ρ

��

ηℑ
X�G

// (ℑX)�G

∗
** BG

(5.33)

Here the bottom left square is that characterizing the G-action on X, by
(3.84); while the bottom and right squares are both the naturality square of
ηℑ on the morphism fib(ρ) (where we use that ℑ commutes with taking the
homotopy quotient by the discrete group G). Now observe that:

(a) The bottom and right squares are pullback squares since fib(ρ) is a local
diffeomorphism (Def. 4.1.26) by Prop. 5.2.8.

(b) The front and back squares are pullback squares by the definition of tan-
gent bundles (Def. 4.1.29).

In particular, the solid part of the diagram is homotopy-commutative, so that,
by the universal property of the front pullback square, the dashed morphism
exists, essentially uniquely, such as to make the top and the top left square
homotopy-commutative. Further observe, by repeatedly applying the pasting
law (Prop. 3.1.23), that:

(c) The top left square is a homotopy pullback since the back, right and front
squares are pullbacks by (a) and (b).

(d) The total left rectangle is a pullback, since the top one is so, by (c), and
the bottom one is so, by the action property (3.84).
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Thus, again by the action property (3.84), the total left rectangle exhibits a
G-action on TX whose homotopy quotient is as claimed (5.32), and its factor-
ization into two pullback squares as shown exhibits the projection TX!X as
a homomorphism of G-actions, hence as being G-equivariant (Def. 3.2.10).

Proposition 5.2.10 (Induced G-action on local neighborhood of fixed point).
Let H be an elastic ∞-topos H (Def. 4.1.21), V,G ∈ Grp(H) (Prop. 3.2.1),
with G ≃ ♭G discrete, (X,ρ) ∈ GActions(H) (Prop. 3.2.6) with X ∈ V Folds(X)
(Def. 5.2.1) and ∗ x // X a homotopy fixed point (Def. 3.2.24). Then the
induced G-action Tρ on the tangent bundle TX, from Prop. 5.2.9, restricts to
a G-action Txρ on the local neighborhood TxX (Ex. 4.1.30) of the homotopy
fixed point x.

Proof. Consider the following diagram:
TxX //

��

**

TX

**

��

(TxX)�G //

Txρ

��

(TX)�G

��
T ρ

��

∗ x //

**

X

��

fib(ρ)

**
BG

x�G
// X�G

ρ

��
∗

** BG

(5.34)

Here the squares on the right are from (5.33) and are thus both homtopy
Cartesian. The rear square is the homotopy pullback square defining the tan-
gent fiber, and we define the front square to be a homotopy pullback, giving
us the object denoted (TxX)�G. We need to show that this object really is
the homotopy quotient of the restricted action. But the bottom horizontal
square homotopy-commutes, exhibiting the homotopy fixed point by (3.100),
so that, by applying the pasting law (Prop. 3.1.23) to the top vertical squares,
it follows that also the top left square is Cartesian. This already identifies
(TxX)�G as the homotopy quotient of some G-action on TxX, by Prop.
3.2.6. To see that this is indeed the restricted action, observe that the front
triangle commutes, again by (3.100), so that the total diagram exhibits the
fiber inclusion TxX! TX as being a homomorphism G-actions Txρ! Tρ (by
Prop. 3.2.6).

Frame bundles.

Definition 5.2.11 (Structure group of V -folds). Let H be an elastic ∞-topos
(Def. 4.1.21) and V ∈ Grp(H) (Prop. 3.2.1), to be regarded as the local model
space of V -folds (Def. 5.2.1). Then:
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(i) We say that the automorphism group (Def. 3.2.13) of the local neighbor-
hood (Ex. 4.1.30) of the neutral element ∗ e // V (Ex. 3.2.3)

Aut(TeV ) ∈ Grp(TeV ) (5.35)
is the structure group of V -folds.
(ii) We write (TeV, ρAut) ∈ Aut(TeV )Actions(H)
for its canonical action (3.92).

Example 5.2.12 (Ordinary general linear group). Let H = JetSmthGrpd∞
(Ex. 4.1.24) and let

V := (Rn,+) ∈ Grp(SmthMfd) �
� // Grp(H)

via the full inclusion (4.36), with Rn regarded as a group under addition of
tuples of real numbers. Then the structure group of Rn-folds, according to
Def. 5.2.11, is the traditional general linear group, regarded as a Lie group:

Aut(T0Rn) ≃ GL(n) .

Proposition 5.2.13 (Frame bundle). Let H be an elastic ∞-topos H (Def.
4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and X ∈ H a V -fold (Def. 5.2.1). Then the
tangent bundle of X (Def. 4.1.29) is a fiber bundle (Def. 3.2.18) with typical
fiber the local neighborhood TeV (Def. 4.1.28) of the neutral element ∗ e

−! V ,
hence is the associated bundle of an Aut(TeV )-principal (5.35) bundle (Prop.
3.2.15), to be called the frame bundle of X:

tangent bundle

TX //

��
(pb)

(
TeV

)
�Aut

(
TeV

)
��

X
⊢ Frm(X)

// BAut(TeV )

frame bundle

Frm(X)

��

//

(pb)

∗

��
X

⊢ Frm(X)
// BAut(TeV ) .

structure
group

(5.36)

Proof. By Prop. 4.1.31 the tangent bundles over any V -atlas (5.20) for X form
two Cartesian squares as follows:

TU
uu )) ))

�� (pb)
V ×TeV ≃ TV

(pb)

��

TX

��
U

étuu ét )) ))
V X

(5.37)
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Moreover, by Prop. 5.2.19 the tangent bundle of V is trivial, as shown on the
left. Since Cartesian products are preserved by homotopy pullback, the left
square implies that also TU ≃ U × TeV is trivial. But with this the existence
of the right square is the defining characterization for TX to be a TeV -fiber
bundle.

Remark 5.2.14 (Frame bundles are well-defined). The frame bundle (Def.
5.2.13) of a V -fold (Def. 5.2.1) is independent, up to a contractible space of
equivalences, of the choice of V -atlas (5.20) in the construction (5.37): This
follows as a special case of the essential independence of classifying maps of
fiber bundles from the choice of trivializing cover, as in Prop. 3.2.19, using
that not only the class of effective epimorphisms but also that of local diffeo-
morphisms is closed under pullback and composition (Lemma 4.1.27).

Proposition 5.2.15 (V -fold is Aut(TeV )-quotient of its frame bundle). Let
H be an elastic ∞-topos H (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and
X ∈ V Folds(H) (Def. 5.2.1). Then X is equivalent to the homotopy quotient
(3.85) of its own frame bundle (Prop. 5.2.13) by Aut(TeV ):

X ≃ Frm(X)�Aut(TeV ) .

Proof. This is immediate from the equivalence between principal bundles and
homotopy qotient projections (Remark 3.2.16) applied to the frame bundle
(5.36).

Example 5.2.16 (Frame bundles on smooth manifolds). Let H =
JetSmthGrpd∞ (Ex. 4.1.24) and X ∈ SmthMfd ↪!H a smooth manifold (4.36)
regarded as an Rn-fold according to Ex. 5.2.4.
(i) Then its frame bundle, according to Prop. 5.2.13, is the GL(n)-principal
bundle on X which is the frame bundle in the traditional sense of differential
geometry.
(ii) For the same manifold but regarded in H = kJetSmthGrpd∞ with k ≥ 1
we instead get the corresponding jet version of the frame bundle (see e.g.
[KMS93, 12.12]).

Framed V -folds.

Definition 5.2.17 (Framing). Let H be an elastic ∞-topos H (Def. 4.1.21).
A framing of an objext X ∈ H is a trivialization of its tangent bundle Def.
4.1.29, hence an equivalence

TX ≃ X ×TxX ∈ H/X

for ∗ x // X any point.

Remark 5.2.18 (Framing on a V -fold). If X is a V -fold (Def. 5.2.1) then a
framing on V in the sense of Def. 5.2.17 is equivalent, by Prop. 5.2.13, to a
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trivialization of the frame bundle, hence to a trivialization of its classifying
map (5.36):

TX

!!

fr
≃

// X ×TeV

zz
X

⇔

∗
++

X

66

⊢ Frm(X)

66
BAut(TeV ) .

LT
≃ ⊢ fr

(5.38)

Proposition 5.2.19 (Groups carry canonical framings by left-translation).
In an elastic ∞-topos H (Def. 4.1.21) every group object V ∈ Grp(H) (Prop.
3.2.1) carries a canonical framing (Def. 5.2.17), which we call the framing by
left translation:

TV
frℓ

≃
// V ×TeV ∈ H/V . (5.39)

Proof. Since ℑ preserves group structure (as in Prop. 4.1.4), the defining ho-
motopy fiber product of the tangent bundle of V (4.40) sits in a Mayer-Vietoris
sequence (Prop. 3.2.5) as shown in the first square of the following:

TV //

��
(pb)

∗

⊢e

��
V ×V

(ηℑ
V ,ηℑ

V )=ηℑ
V ×V

// ℑV ×ℑV
(−)·(−)−1

// ℑV

≃

TV

(pb)

��

// TeV

��

//

(pb)

∗

⊢e

��
V ×V

(−)·(−)−1
// V

ηℑ
V

// ℑV

(5.40)

Using that ℑ preserves products (by Prop. 3.1.26) and using the naturality of
its unit transformation ηℑ (3.25), this Cartesian square on top is equivalent
to the total rectangle shown at the bottom. By the pasting law (Prop. 3.1.23),
this is the pasting of two Cartesian squares, the right one of which exhibits
the local neighborhood TeV (Def. 4.1.28) as shown. To see what the Cartesian
property of the left square on the right says, consider pasting to it the top
square appearing in the diagram (3.82) which exhibits the group division
(−) · (−)−1 in Ex. 3.2.4:

TV //

(pb)��

TeV

��
V ×V
pr1 ��

(−)·(−)−1 //

(pb)

V

��
V // ∗

(5.41)

Since both squares are Cartesian, the pasting law (Prop. 3.1.23) says that the
total rectangle is Cartesian. This is the equivalence (5.39).



140 Geometric Orbifold Cohomology

Proposition 5.2.20 (Canonical framing on group is equivariant under group
automorphisms). Consider an elastic ∞-topos H (Def. 4.1.21), V,G ∈ Grp(H)
(Prop. 3.2.1). with 0-truncated V ≃ τ0V and (V,ρG) ∈ GActions(H) (Prop.
3.2.6) acting by group-automorphisms (Prop. 3.2.29) hence by restriction ρG =
Bi∗ρAutGrp (Prop. 3.2.12) along a group homomorphism G i // Aute(V ) ,
to the group-automorphism group AutGrp(V ) (Def. 3.2.28). Then the canoni-
cal framing frℓ on V from Prop. 5.2.19 is G-equivariant (Def. 3.2.10), in that
it lifts to a morphism of G-actions (Prop. 3.2.6) of the form

(TV,Tρ)
frℓ // (V,ρ)× (TeV,Teρ) ∈ GActions(H) ,

where Tρ is the induced action on TV from Prop. 5.2.9, and Teρ is the induced
action on TeV from Prop. 5.2.10 (which exists since group-automorphisms of
V are in particular pointed automorphisms of V (Def. 3.2.27).

Proof. Consider the following diagram:
TV // //

��

(TV )�G
ϕ3

**

ϕ2

��

��

TV

&&

��

ϕ1 // (V �G) ×
∗�G

(
(TeV )�G

)
**

��

TeV� _

��

// (TeV )�G� _

��

V ×V

(−)·(−)−1

&&pr1

��

// (V �G) ×
∗�G

(V �G)

**

��

V //

��

V �G

��

V

((

fib(ρ) // V �G

++∗ // ∗�G

(5.42)
Here

• the bottom square is the Cartesian square (3.84) which exhibits the action
on V ,

• the middle horizontal square is the Cartesian square which exhibits the
equivariance under group-automorphisms of the group division operatoin
(Prop. 3.2.30),

• the total left rectangle is the Cartesian square from (5.41) which exhibits
the canonical framing,

• the total front face is the pasting of

– on the bottom: the Cartesian square (3.84) which exhibits the action
on V ,
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– on the top: the Cartesian square which is the pasting of the top and
the top-right squares in (5.34) equibiting the action on TeV

and hence is itself Cartesian,
• the bottom and the total right squares are the defining Cartesian squares

of the fiber products, and hence, by the pasting law, also their pasting to
the total right square is Cartesian,

• the total vertical rear square, with the dashed morphism ϕ1 on top, is the
one thus induced from the universal property of the fiber product, and is
itself Cartesian, by the pasting law (Prop. 3.1.23), (using, by the above
items, that the left, right and front squares are Cartesian and that the
diagram of squares commutes)

• the slanted square in the rear is the pasting of the Cartesian square on the
left of (5.33), that exhibits the induced G-action on TV , with the diagonal
square on fib(ρ).

Now observe that inside this big diagram (5.42) we find the following solid
homotopy-commutative sub-diagram

TV

����

// (TeV )�G� _

��
(TV )�G //

ϕ2
66

V �G.

Here the left morphism is an effective epimorphism (by Lemma 3.2.7) and
the right morphism is (-1)-truncated by the assumption that V is 0-truncated
(Lemma xyz). Therefore, the connected/truncated factorization system (Prop.
3.1.66) implies an essentially unique lift ϕ2, as shown. This, in turn, implies
the morphism ϕ3 in (5.42), again by the universal property of the homotopy
fiber product.

Now, since both the slanted as well as the vertical total rear squares are
Cartesian, the diagram (5.42) shows that the contravariant base change (Prop.
3.1.49) of ϕ3 along fib(ρ) is an equivalence. But since fib(ρ) is an effective
epimorphism (Lemma 3.1.55) , base change along it is conservative (Prop.
3.1.55), and hence it follows that ϕ3 itself is already an equivalence.

With that identification, the total cube in (5.42) exhibits the G-
equivariance of the framing.

Proposition 5.2.21 (Orbifolding of framed V -folds). Let H be an elastic ∞-
topos H (Def. 4.1.21), V,G ∈ Grp(H) (Prop. 3.2.1) with G ≃ ♭G discrete, and
(X,ρX),(TeV,ρTeV ) ∈ GActions(H) (Prop. 3.2.6) for X a V -fold (Def. 5.2.1)
equipped with a framing fr (Def. 5.2.17). Then the following are equivalent:

(i) The framing is G-equivariant (Def. 3.2.10) with respect to the induced
action on TX (from Prop. 5.2.9) and the product action ρX × ρTeV on
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X ×TeV , hence lifts to a morphism

(TX,ρT X) fr
≃

// (X,ρX)× (TeV,ρTeV )

∈ GActions(H)
(5.43)

(ii) The classifying map (5.36) of the frame bundle (Def. 5.2.13) of the orb-
ifolded V -fold X�G (Prop. 5.2.8) factors through BG as

X�G

⊢ Frm(X�G)

((

ρX

// BG
⊢ρTeV

// BAut(TeV )
��

(5.44)

Proof. Consider the following diagram:
TX

��

fr
!!

// T (X�G)

��

fr�G

((

// (TeV )�Aut(TeV )

  

X ×TeV

��

// X�G ×
BG

(TeV )�G

��

// (TeV )�G //

ρTeV

��

(TeV )�Aut
(
TeV

)
��

X fib(ρX ) //

--

⊢ Frm(X)

55
X�G ρX //

⊢ Frm(X�G)

++
BG

⊢ρTeV

// BAut
(
TeV

)
∗

<<

⊢ frdl

⊢ fr�G��

Note that here:

(a) The total outer part of the diagram exhibits the given framing fr via its
classifying homotopy ⊢ fr, according to Remark 5.2.18.

(b) The front squares in the middle and on the right are the pullback squares
that defines the diagonal G-action and the classification of the ρTeV -action
respectively. Hence also their pasting composite is a pullback, by the past-
ing law (Prop. 3.1.23).

(i) First to see that G-equivariance of fr implies the factorization (5.44): By
the characterization of G-actions (3.84) G-equivariance of fr means, equiva-
lently, that fr is the morphism on homotopy fibers over BG induced from an
equivalence fr�G on homotopy quotients. But, by (b) and Prop. 5.2.9, such
an equivalence is classified by a homotopy of the form (5.44).
(ii) Now to see that, conversely, the existence of a homotopy “ ⊢ fr�G ” of
the form (5.44) implies the existence of a G-equivariant framing fr (quotation
marks now since we yet have to show that the two are related in this way). For
this, we have to show that the morphism on homotopy fibers induced by fr�G
is a framing fr. But, by the nature of the G-action on TX from Prop. 5.2.9,
the nature of the diagonal G-action exhibited by the middle front square, and
using the pasting law (Prop. 3.1.23), this means to show that the left front
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and rear squares are homotopy pullbacks. For the front left square this follows
by the factorization of ρX ◦ fib(ρX) through the point, using (a), (b) and
the pasting law (Prop. 3.1.23). For the rear left square, this follows by Prop.
4.1.31, since fib(ρ) is a local diffeomorphism by Prop. 5.2.8.

G-Structures.

Definition 5.2.22 (G-Structure coefficients). Let H be an elastic ∞-topos
(Def. 4.1.21) and V ∈ Grp(H) (Prop. 3.2.1). Then a coefficient for G-structure

(G,ϕ) ∈ Grp(H)/Aut(TeV )

is a group G equipped with a homomorphism of groups G ϕ // Aut(TeV ) to
the structure group (Def. 5.2.11) of V -folds. Under delooping (3.78) this is
equivalently a morphism in H of the form BG Bϕ // BAut(TeV ) .

Definition 5.2.23 (G-structures on V -folds). Let H be an elastic ∞-topos
(Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1), (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def.
5.2.22) and X ∈ V Folds(H) (Def. 5.2.1).
(i) We say that

• a (G,ϕ)-structure on X (often just G-structure if ϕ is understood),

• or (G,ϕ)-structure on its frame bundle (Def. 5.2.13),

• or reduction of the structure group (5.2.11) along ϕ

is a lift (τ,g) of the frame bundle classifying map (5.36) through Bϕ:

BG

Bϕ
��

V -fold X
⊢ Frm(X)

//

G-structure

τ

44

BAut(TeV ) structure group
of frame bundle

BJ
g

(5.45)

(ii) We say that the G-frame bundle GFrm(X) of a V -fold X equipped with
such a (G,ϕ)-structure is the G-principal bundle which is classified (via Prop.
3.2.15): by τ , hence the object in the following diagram:

GFrm(X,τ)
��

//

(pb)

∗

��

Frm(X)

��

//

(pb)

∗

��
X τ

//

⊢ Frm(X)

44
BG

Bϕ
// BAut(TeV )

(5.46)

(iii) We write
(G,ϕ)StructuresX(H) := H/BAut(TeV )

(
⊢ Frm(X) , Bϕ

)
∈ Grpd∞ (5.47)

for the ∞-groupoid of (G,ϕ)-structures on the V -fold X.



144 Geometric Orbifold Cohomology

In direct generalization of Prop. 5.2.15 we have:
Proposition 5.2.24 (G-structured V -fold is G-quotient of its G-frame bun-
dle). Let H be an elastic ∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1),
(G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def. 5.2.22), X ∈ V Folds(H) (Def. 5.2.1) and
(τ,g) ∈ (G,ϕ)StructuresX(H) (Def. 5.2.23). Then:
(i) X is equivalently the homotopy quotient (3.85) of its G-frame bundle (5.46)
by G:

X ≃ GFrm(X,τ)�G.

(ii) the classifying map of the G-frame bundle on X exhibits the action of G
on GFrm(X,τ) according to (3.84).
Proof. This is immediate from the equivalence between principal bundles and
homotopy quotient projections (Remark 3.2.16) applied to the G-frame bundle
(5.46):

GFrm(X,τ)
fib(ρ)≃fib(τ)

��
GFrm(X,τ)�G

ρG

55≃ X
τ // BG

Example 5.2.25 (G-structure induced from framing). Let H be an elastic
∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and X ∈ V Folds(H) (Def.
5.2.1). Then a framing on X (Def. 5.2.17) induces a (G,ϕ)-structure (Def.
5.2.23) for any (G,ϕ) ∈ Grp(H)/Aut(TeV ), given by the pasting

∗ //

%%

BG

Bϕ

��
X

==

⊢ Frm(X)
// BAut(TeV )

HP
⊢fr

.6
(5.48)

of the homotopy ⊢ fr (5.38) which classifies the framing (Remark 5.2.18) with
the homotopy that exhibits the group homomorphism ϕ as a morphism of
pointed objects (Prop. 3.2.1).
Example 5.2.26 (Canonical G-structure). Let H be an elastic ∞-topos H
(Def. 4.1.21), and V ∈ Grp(H) (Prop. 3.2.1). Then V itself, regarded as a
V -fold by Ex. 5.2.3, carries a (G,ϕ)-structure (Def. 5.2.23) for any (G,ϕ) ∈
Grp(H)/Aut(TeV ), induced via Ex. 5.2.25 from its canonical framing frℓ (5.39)
via left-translation (Prop. 5.2.19). We call this the canonical (G,ϕ)-structure
on V :

BG

Bϕ

��
V

τV

66

// BAut(TeV )
gV

=E :=
∗ //

$$

BG

Bϕ

��
V

@@

⊢ Frm(V )
// BAut(TeV )

HP
⊢frℓ

/7

(5.49)
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Local isometries.

Lemma 5.2.27 (G-structures pull back along local diffeomorphisms). Let H
be an elastic ∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and (G,ϕ) ∈
Grp(H)/Aut(TeV ) (Prop. 3.2.1, Def. 3.2.13, Ex. 4.1.30). Then pre-composition
constitutes a contravariant ∞-functor (“pullback of (G,ϕ)-structures”)(

V Folds(H)ét
)op // Grpd∞

X1
fét ��

7−! (G,ϕ)StructuresX1(H)
OO
f∗

∈ τ ◦fOO

_
X2 7−! (G,ϕ)StructuresX2(H) ∈ τ

(5.50)

from the ∞-category (5.22) of V -folds and local diffeomorphisms, which as-
signs to any V -fold its ∞-groupoid (5.47) of (G,ϕ)-structres (Def. 5.2.23).

Proof. We need to show that for (τ,g) a (G,ϕ)-structure on X2, the composite
BG

Bϕ��
X1

f

ét // X2

τ
33

⊢ Frm(X2)
// BAut(TeV )

g
08

(5.51)

is a (G,ϕ)-structure on X1. For this we need to exhibit a natural equivalence(
⊢ Frm(X2)

)
◦f1 ≃ ⊢ Frm(X1)

so that

X1
f
ét //

⊢ Frm(X1) ))

X2

⊢ Frm(X2)
��

τ // BG

Bϕuu
BAut(TeV )

≃
/7

g
.6

But this exists by Prop. 4.1.31.

Definition 5.2.28 (Local isometries between G-structured V -folds). Let H
be an elastic ∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and (G,ϕ) ∈
Grp(H)/Aut(TeV ) (Prop. 3.2.1, Def. 3.2.13, Ex. 4.1.30).
(i) For X1,X2 ∈ V Folds (Def. 5.2.1) and (τi,gi) ∈ (G,ϕ)StructuresXi

(H)
(5.47), we say a local isometry, to be denoted(

X1,(τ1,g1)
)

met

(f,σ) //
(
X2,(τ2,g2)

)
is a pair

X1
f

ét
// X2 , f∗(τ2,g2) ≃

σ // (τ1,g1) , (5.52)

consisting of a local diffeomorphism (Def. 4.1.26) and an equivalence of (G,ϕ)-
structures (5.47) between that on its domain V -fold and the pullback (5.50)
of the (G,ϕ)-structure on its codomain V -fold.
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(ii) Equivalently, by (5.50), a local isometry (5.52) is a morphism between
(G,ϕ)-structured V -folds regarded as objects in the iterated slice ∞-topos
(Ex. 3.1.47)

(a) over BAut(TeV ) via their classifying maps of their frame bundles (5.36)
(b) over

(
BG,Bϕ

)
via their (G,ϕ)-structure (5.45)

of this form:

X1

##

⊢ Frm(X
1 )

τ1 ..

f
ét // X2

τ2

%%

��

BG

BAut(TeV )
uu Bϕ

g1

3;

σ
jr

g2
'/

7?

∈
(
H/BAut(TeV )

)
/(BG,Bϕ)

((
X1,(τ1,g1)

)
,
(
X2,(τ2,g2)

))
.

(5.53)

(iii) Hence we write
(G,ϕ)StrctrdV Folds(H) −!

(
H/BAut(TeV )

)
/BG

∈ Cat∞ (5.54)

for the sub-∞-category of this iterated slice on 1-morphisms of the form (5.53).

Integrability of G-structures.

Definition 5.2.29 (Integrable G-structure). Let H be an elastic ∞-topos
(Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1), (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def.
5.2.22).
(i) Given (X,(τX ,gX)) ∈ (G,ϕ)StrctrdV Folds(H) (Def. 5.2.28), we say that
(τ,g) is an integrable (G,ϕ)-structure on the V -fold X if there exists a cor-
respondence of local isometries (5.52) between V equipped with its canonical
(G,ϕ)-structure (τV ,gV ) (Def. 5.2.26) to (X,(τX ,gX)):(

U,(τU ,gU )
)

met
rr

met ,, ,,(
V,(τV ,gV )

) (
X,(τX ,gX)

) (5.55)

such that the right left is, in addition, an effective epimorphism (Def. 3.1.63),
then called a (V,(τV ,gV ))-atlas of (X,(τX ,gX)) (3.77). (Underlying this, for-
getting the (G,ϕ)-structures, is a V -atlas (5.20).)
(ii) We write

Intgrbl(G,ϕ)StrctrdV Folds(H) �
� // (G,ϕ)StrctrdV Folds(H) ∈ Cat∞

(5.56)
for the full sub-∞-category of that of (G,ϕ)-structured V -folds (5.54) on those
that are integrable.

Definition 5.2.30 (Locally integrable G-structure). Let H be an elastic ∞-
topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1), (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def.
5.2.22), X ∈ V Folds(H) (Def. 5.2.1) and (τ,g) ∈ (G,ϕ)StructuresX(H) (Def.
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5.2.23). We say that (τ,g) is a locally integrable (G,ϕ)-structure if, for each
point ∗ x // X, there is a local diffeomorphism ϕx of the local neighborhood
(Def. 4.1.28) of ∗ e // V onto a local neighborhood of x such that the re-
striction of (τ,g) along ϕ is equivalent to the canonical (G,ϕ)-structure (Def.
5.2.26) on TeV :

∀
∗ x // X

∃
TeV

ϕx

ét
// X

∗
x

@@

e

aa

: ϕ∗
x(τ,g) ≃ (τTeV ,gTeV ) .

Another way to say this: We have a correspondence of local isometries as in
(5.55), but with the right leg required to be an effective epimorphism only
under ♭.

Example 5.2.31 (G-Structures on smooth manifolds and orbifolds).

(i) Let H = JetSmthGrpd∞ (Ex. 4.1.24) G ∈ LieGroups ↪−!Grp
(
H
)

(see
(4.36)) and X ∈
SmthMfd ↪−!H regarded as an Rn-fold according to Ex. 5.2.4. In this case,
the structure group of X (Def. 5.2.11) is the ordinary general linear group
GLR(n) (Ex. 5.2.12). Therefore, a G-structure on X in the sense of Def. 5.2.23
is (by Ex. 5.2.16) a G-structure in the traditional sense of differential geometry
[St64, VII][Kob72][Mol77]; and it is integrable according to Def. 5.2.29 if it
is “flat” in the traditional sense of [Gu65] and locally integrable according
to Def. 5.2.30 precisely if it is “uniformly 1-flat” in the traditional sense of
[Gu65], namely if it is torsion-free (review in [Lot01]). Examples are shown in
Table 6 on p. 148.
(ii) For k > 1 and H = kJetSmthGrpd∞ (Def. 4.1.24) the local integrability
condition of Def. 5.2.30 is of the form of the “uniformly k-flatness”-condition
of [Gu65]. But beware that, according to Def. 5.2.23 but in contrast to [Gu65],
in this case the G-structure itself is not on the plain frame bundle but on the
order-k jet frame bundle (by Ex. 5.2.16).
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Table 6 – Examples of G-structures (cf. Ex. 5.2.31).

G
ϕ // GLR(n) (G,ϕ)-structure Locally

integrable Integrable see

SpR(n) �
� // GLR(n) almost

symplectic symplectic symplectic

[St64, VII.2]
GLC(n/2) �

� // GLR(n) almost
complex complex complex

O(n) �
� // GLR(n) Riemannian torsion-free

Riemannian
flat

Riemannian

O(n − 1,1) �
� // GLR(n) Lorentzian torsion-free

Lorentzian
flat

Lorentzian [LPZ13]

O(n) ×R �
� // GLR(n) CO(n)-structure conformal flat

conformal [AG98]

CR( n
2 − 1) �

� // GLR(n) CR(n)-structure Cauchy-Riemann flat
Cauchy-Riemann [DT06]

GLH(n/4) �
� // GLR(n) GLH( n

4 )-structure hypercomplex flat
hypercomplex [Jo95]

U(n/2) �
� // GLR(n) hermitian

almost complex Kähler Kähler [Mor07, 11.1]

SU(n/2) �
� // GLR(n) SU(n)-structure Calabi-Yau Calabi-Yau [Pri15, 1.3]

Sp( n
4 )·Sp(1) �

� // GLR(n) almost unimodular
quaternionic

quaternionic
Kähler

flat quaternionic
Kähler [AM93a]

[AM93b]
Sp(n/4) �

� // GLR(n) almost
Hyperkähler Hyperähler flat

Hyperkähler

G2
� � // GLR(7) G2-structure torsion-free

G2-structure
flat/interable
G2-structure [Br05]

Spin(7) �
� // GLR(8) Spin(7)-structure torsion-free

Spin(7)-structure
flat

Spin(7)-structure
[Br87]

[Jo01]



Orbifold geometry 149

Haefliger groupoids.

Definition 5.2.32 (Haefliger groupoid). Let H be an elastic ∞-topos (Def.
4.1.21) and V ∈ Grp(H) (Prop. 3.2.1).
(i) With no further structure,

(a) The V -Haefliger groupoid is the étale groupoid (Def. 4.1.35)

Haef•(V ) ∈ ÉtaleGroupoids(H)

which is the étalification (Def. 4.1.39) of the Atiyah groupoid (Def. 3.2.17)
of the frame bundle (Def. 5.2.11) of V regarded as a V -fold (Ex. 5.2.3):

Haef•(V ) := Atét
•
(
Frm(V )

)
. (5.57)

(b) The V -Haefliger stack of V is the corresponding V -fold (according to Re-
mark 5.2.2):

Haef(V ) := Atét
(
Frm(V )

)
∈ V Folds . (5.58)

(ii) Given, in addition, (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def. 5.2.22), with
GFrm(V ) ! V denoting the G-frame bundle (5.46) corresponding to the
canonical (G,ϕ)-structure on V (Def. 5.2.26), we say

(a) the
(
V,(G,ϕ)

)
-Haefliger groupoid is the étale groupoid (Def. 4.1.35)

Haef•
(
V,(G,ϕ)

)
∈ ÉtaleGroupoids(H)

which is the étalification (Def. 4.1.39) of the Atiyah groupoid (Def. 3.2.17)
of the G-frame bundle (5.46):

Haef•
(
V,(G,ϕ)

)
:= Atét

•
(
GFrm(V )

)
. (5.59)

(b) The
(
V,(G,ϕ)

)
-Haefliger stack of V is the corresponding V -fold (according

to Remark 5.2.2):

Haef
(
V,(G,ϕ)

)
:= Atét

(
GFrm(V )

)
∈ V Folds . (5.60)

Proposition 5.2.33 (Haefliger stack represents V -fold structure). Let H be
an elastic ∞-topos (Def. 4.1.21) V ∈ Grp(H) (Prop. 3.2.1) and X ∈ H. Then
the following are equivalent:

(i) X is a V -fold (Def. 5.2.1);
(ii) X admits a local diffeomorphism to the V -Haefliger stack (Def.

5.2.32).

Proof. First consider the implication (i) ⇒ (ii): Assuming X is a V -fold,
consider a V -atlas (5.20) V oo

ét
U

ét // // X . By Prop. 4.1.31 (and as in the
proof of Prop. 5.2.13) the pullbacks of the frame bundles of V and of X along
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this V -atlas to U coincide there, which means that we have a homotopy-
commutative square of their classifying maps (5.36) as shown on the bottom
left of the following diagram:

��

OO

��

OO

�� ��

OO

��

OO

��
U ×X U

ét

��

OO

ét ét

��

// At1
(
Frm(V )

)
��

OO

��
U

ét
����

ét // V

⊢ Frm(V )
����

X
⊢ Frm(X)

// BAut(TeV )

⇔

��

OO

��

OO

�� ��

OO

��

OO

��
U ×X U

ét

��

OO

ét ét

��

ét // Atét
1
(
Frm(V )

)
ét

��

OO
ét ét

��
U

ét
����

ét // V

ét
����

X // Haef(V )

(5.61)

By passing to nerves (Ex. 3.1.69) of the vertical morphisms, this induces a
morphism of groupoids as shown on the top left. But U• is an étale groupoid
(by Prop. 4.1.36), and U −! V is a local diffeomorphism by definition of V -
atlases, so that the top left part of the left diagram in (5.61) is in the étale
slice over V (Def. 4.1.32). Therefore, the adjunction (4.43) of Prop. 4.1.33
implies that the top part of the diagram on the left of (5.61) factors through
the étalification (Def. 4.1.39) as shown in the top part on the right. With
this we get the dashed morphism on the right by passing to colimits over the
vertical simplicial diagrams (as in Prop. 4.1.36).

It only remains to see that the dashed morphism on the right is itself a local
diffeomorphism. For this observe that al the horizontal morphisms are local
diffeomorphisms, using the assumptions and then left-cancellability (Lemma
4.1.27). Therefore the statement follows with Lemma 4.1.38.

For the converse implication (ii) ⇒ (i): Given a local diffeomorphism as
shown dashed on the right of (5.61), we need to produce a V -atlas for X. So
now define the bottom square on the right of (5.61) to be the pullback of the
étale atlas of the Haefliger stack along the griven morphism. This does make
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the top left span of the square a V -atlas by the fact that the classes of local
diffeomorphisms and of effective epimorphisms are both closed under pullback
(by Lemma 3.1.65 and Lemma 4.1.27).

Proposition 5.2.34 (G-Structured Haefliger stack represents integrable
G-structure). Let H be an elastic ∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop.
3.2.1), (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def. 5.2.22). The

(
V,(G,ϕ)

)
-Haefliger

groupoid (Def. 5.2.32), carries a canonical integrable (G,ϕ)-structure (Def.
5.2.29) (τH,gH) ∈ (G,ϕ)StructuresHHaef(V )(H) (5.62)
such that the operation of pullback of (5.50) along local diffeomorphism
(Lemma 5.2.27) constitutes a natural bijection

π0 Intgrbl(G,ϕ)StrcV Folds(H) ≃ π0 ÉtHaef(V,(G,ϕ))(
X,(τ,g)

)
7−!

(
X

⊢(τ,g)
−−−−!Haef

(
V,(G,ϕ)

)) (5.63)

between the sets of equivalence classes of:
( i) integrably (G,ϕ)-structured V -folds (Def. 5.2.29),
(ii) local diffeomorphisms into the

(
V,(G,ϕ)

)
-Haefliger stack, hence objects in

its étale topos (Def. 4.1.32).

Proof. We proceed as in the proof of Prop. 5.2.33, but lifting the diagram
there from H to the iterated slice

(
H/BAut(TeV )

)
/BG

(5.53).

(i) First consider an integrably G-structured V -fold
(
X,(τ,g)

)
. We describe

the construction of a local diffeomorphism into the Haefliger stack from this:
Pick any

(
V,(τV ,gV )

)
-atlas

(
V,(τV ,gV )

)
oomet (

U,(τU ,gU )
) met// //

(
X,(τX ,gX)

)
(5.55). By Def. 5.2.23, this is equivalently a choice of equivalence between
the pullbacks to U of the G-structures on V and on X. Regarded in
the iterated slice (5.53), this equivalently means that we have a square in
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H/BAut(TeV )

)
/BG

(5.53), as shown inthe following:

��

OO

��

OO

�� ��

OO

��

OO

��
U ×X U

ét

��

OO
ét ét

��

// At1
(
GFrm(V )

)
��

OO

��
U

ét

����

ét // V

τV

����

⊢ Frm(V )


X τX //

⊢ Frm(X) 00

BG
##

BAut(TeV )
gX

2:

gV
t|

⇔

��

OO

��

OO

�� ��

OO

��

OO

��
U ×X U

ét

��

OO
ét ét

��

ét // Atét
1
(
GFrm(V )

)
ét

��

OO
ét ét

��
U

ét

����

ét // V

ét

����

⊢ Frm(V )

��

τV

��
X

⊢(τX ,gX ) //

⊢ Frm(X) 00

τX

--

Haef
(
V,(G,ϕ)

)
τH ((

⊢ Frm(H)
,,

BG Bϕ

&&
BAut(TeV )

gX

9A

gX~�

(5.64)

Now we proceed as follows:
(a) Observing (with Prop. 3.1.53) that fiber products in the iterated slice
are actually given by the plain fiber products in H equipped with canonical
morphisms to the slicing objects, we find that passing to nerves (Ex. 3.1.69)
of the vertical morphisms on the left of (5.64) yields a morphism from the
étale groupoid induced by the given V -cover of X to the Atiyah groupoid of
GFrm(X) (Def. 3.2.17) – just as in (5.61), but now equipped with coherent
maps to Bϕ.
(b) Therefore, we obtain the factorization through the

(
V,(G,ϕ)

)
-Haefliger
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groupoid (the étalification of the Atiyah groupoid of the G-frame bundle shown
on the top right of (5.64)) just as in (5.61), but now, in addition, coherently
equipped with maps to Bϕ.
(c) After this étalification we may identify these maps: Since those on V
remain unchanged by étalification over V , these still give the canonical (G,ϕ)-
structure (τV ,gV ), as shown on the far right of (5.64). But since now the
vertical simplicial morphisms are all local diffeomorphisms, pullback along
which preserves (G,ϕ)-structure (by Lemma 5.2.27) and in particular preserves
tangent- and frame bundles (by Prop. 4.1.31) it follows that all stages of the(
V,(G,ϕ)

)
-Haefliger groupoid in the top right are now equipped with the

classifying map of their frame bundles.
(d) Since colimits in the slice are given by colimits in the underlying topos
(by Ex. 3.1.52), the colimit over the simplicial sub-diagram on the far right of
(5.64) still yields the

(
V,(τ,g)

)
-Haefliger stack (5.60), as shown, now equipped

with canonical maps to Bϕ.
(e) We claim that the induced map from the Haefliger stack to BAut(TeV ),
denoted ⊢ Frm(H) in (5.64), is indeed the classifying map of the frame bundle
of the Haefliger stack:

⊢ Frm(H) ≃ ⊢ Frm
(

Haef
(
V,(G,ϕ)

))
. (5.65)

This follows because:

• by (c) above, the component maps of the colimiting map classify the frame
bundles of the stages of the simplicial nerve;

• therefore, the colimiting map classifies the colimit of the frame bundles of
the simplicial nerve, by Prop. 3.1.56,

• but the colimit of the tangent bundles of the étale cover is the tangent
bundle of the corresponding étale stack, by Prop. 4.1.37.

(f) In particular, this implies that the induced homotopy which fills the bot-
tom right part of (5.64):

⊢ Frm
(
H
) gH +3 Bϕ◦ τH , (5.66)

canonically given by the colimit construction in the iterated slice, constitutes
a (G,ϕ)-structure on the

(
V,(G,ϕ))

)
-Haefliger stack.

(g) In conclusion, the dashed morphism on the right of (5.64) exists and is a
local diffeomorphism, as in the proof of Prop. 5.2.33; but, by construction in
the iterated slice, it is now exhibited as a local isometry to the Haefliger stack
equipped with the induced (G,ϕ)-structure (5.66).
(ii) The converse construction is now immediate: Given a local diffeomorphism
of the form shown dashed on the right of (5.64), pulling back the étale atlas
of the Haefliger stack along it yields a V -atlas for X (just as in the proof of
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this converse step in Prop. 5.2.33) and pulling (via Lemma 5.2.27) the (G,ϕ)-
structure (5.66) around the resulting Cartesian square makes this a

(
V,(G,ϕ)

)
-

atlas that exhibits X as equipped with an integrable (G,ϕ)-structure. This
construction is clearly injective on equivalence classes, by ∞-functoriality of
the pullback construction (5.50) of (G,ϕ)-structures; and it is surjective on
equivalence classes by item (i) above. Hence this is a bijection on equivalence
classes, as claimed.

Tangential structures. Closely akin to G-structures (Def. 5.2.23) are tan-
gential structures (Def. 5.2.35 below) where not the structure group itself is
lifted, but only its shape:
Definition 5.2.35 (Tangential structure). Let H be an elastic ∞-topos (Def.
4.1.21), V ∈ Grp(H) (Prop. 3.2.1), (G,ϕ) ∈ Grp(H)/SAut(TeV )

(Def. 5.2.22) and
X ∈ V Folds(H) (Def. 5.2.1).
(i) We say that a tangential (G,τ)-structure on X is a lift (τ,g) through Bϕ of
the composite of the frame bundle classifying map (5.36) with the shape-unit
(3.25):

BG

Bϕ
��

V -fold X
⊢Frm(X)

//

tangential
structure

τ

22

BAut(TeV )
ηS
// BSAut(TeV )

shape of
structure group
of frame bundle

9A

g
(5.67)

(ii) We write
Tangential(G,ϕ)StructuresX(H) := H/BSAut(TeV )

(
ηS◦ ⊢ Frm(X) , Bϕ

)
(5.68)

for the ∞-groupoid of (G,ϕ)-tangential structures on the V -fold X.
Example 5.2.36 (Tangential structures on smooth manifolds). Let H =
JetSmthGrpd∞ (Ex. 4.1.24) G ∈ LieGroups ↪−!Grp

(
H
)

(see (4.36)) and
X ∈ SmthMfd ↪−!H regarded as an Rn-fold according to Ex. 5.2.4. In this
case, the structure group of X (Def. 5.2.11) is the ordinary general linear group
GLR(n) (Ex. 5.2.12). Hence here tangential structure in the general sense of
Def. 5.2.35 is tangential structure in the traditional sense of differential topol-
ogy (popularized under this name in [GMTW06, 5], originally introduced as
“(B,f)-structure” [La63][St68, II], review in [Ko96, 1.4]).
Example 5.2.37 (Cohesive refinement of tangential structure). Every (G,ϕ)-
structure (Def. 5.2.23) induces tangential (SG, Sϕ)-structure (Def. 5.2.35) by
composition with the naturality square of ηS on Bϕ:

BG

Bϕ

��

ηS

BG // BSG

BSϕ
��

V -fold X
⊢Frm(X)

//

(G,ϕ)-structure

τ

66

BAut(TeV )
η

S
BAut(TeV )

// BSAut(TeV )
shape of

structure group
of frame bundle

GO
g

(5.69)
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Conversely, realizing a tangent structure as obtained from a G-structure this
way means to find a geometric (differential) refinement.

Example 5.2.38 (Orientation structure). Let H = JetSmthGrpd∞ (Ex.
4.1.24) and X ∈ H an Rn-fold (Def. 5.2.1) hence an ordinary manifold (Ex.
5.2.4) or, more generally, an ordinary étale Lie groupoid (Ex. 5.2.5). With the
general linear and the (special) orthogonal group regarded as smooth groups
via (4.36)

SO(n) iSO // O(n) iO // GL(n) ∈ Grp(SmthMfd) // Grp(H) (5.70)
we have:

(i) an O(n)-structure (Def. 5.2.23) on X is equivalently a Riemannian struc-
ture (Ex. 5.2.31);

(ii) but a tangential SO(n)-structure (Def. 5.67) is equivalently no structure,

since SO(n)
SiO

≃
// SGL(n) is an equivalence of underlying shapes (since

O(n) is the maximal compact subgroup of GL(n)),

(iii) while a tangential SSO(n)-structure (Def. 5.67) is an orientation of X.

(iv) A differential refinement, in the sense of Ex. 5.2.37, of such an orientation
structure is an oriented Riemannian structure (via its induced volume
form).

Example 5.2.39 (Higher Spin structure [SSS09][SSS12]). Let H =
JetSmthGrpd∞ (Ex. 4.1.24) and X ∈ H an Rn-fold (Def. 5.2.1) hence an or-
dinary manifold (Ex. 5.2.4) or, more generally, an ordinary étale Lie groupoid
(Ex. 5.2.5). The sequence of groups (5.70) in Ex. 5.2.38 is, under shape, the
beginning of the Whitehead tower of SO(n) ≃ SGL(n). The tangential struc-
tures (Def. 5.2.35, Ex. 5.2.36) corresponding to the stages in this tower are
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the Spin structure and its higher analogues:

��
BSFivebrane(n)

��
BSString(n)

��
BSSpin(n)

��
BSSO(n)

��
X

⊢Frm(X) ++

Riemannian
structure

//

Orientation
structure

11
Spin

structure

33
String

structure

55

Fivebrane
structure

66

BO(n) η
S
BO(n)

//

��

BSO(n)
≃
��

BGL(n) η
S
BGL(n)

// BSGL(n)

(5.71)

Flat V -folds.

Definition 5.2.40 (Flat V -folds). Let H be an elastic ∞-topos (Def. 4.1.21),
V ∈ Grp(H) (Prop. 3.2.1) and X ∈ V Folds(H) (Def. 5.2.1). We say that X
is flat if the classifying map (5.36) of its frame bundle (Prop. 5.2.13) factors
through the ♭-counit (3.26), hence if it carries (G,ϕ)-structure (Def. 5.2.23)
for (G,ϕ) = (♭Aut(TeV ), ϵ♭

Aut(TeV )):

♭BAut(TeV )

ϵ♭
BAut(TeV )
��

X
⊢Frm(X)

//

τ

55

BAut(TeV )

7?

(5.72)

By the universal property of ϵ♭ and since ♭ commutes with B, this means
equivalently that X carries G-structure for any discrete group G ≃ ♭♭G.

Proposition 5.2.41 (Flat frame bundles are V -folds). Let H be an elastic
∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and X ∈ V Folds(H) (Def.
5.2.1). If X is flat (Def. 5.2.40), then
(i) its flat frame bundle (♭Aut(TeV ))Frm(X) (5.46) is itself a V -fold (Def.
5.2.1) and
(ii) the bundle morphism is a local diffeomorphism (Def. 4.1.26):
(♭Aut(TeV ))Frm(X) ét // X .

Proof. First consider (ii): We need to show that the left square in the following
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pasting diagram is Cartesian:

(♭Aut(TeV ))Frm(X)
ηℑ

(♭Aut(TeV ))Frm(X)

//

p
��

ℑ
(
(♭Aut(TeV ))Frm(X)

)
//

ℑp
��

(pb)

ℑ∗

��
X

ηℑ
X

// ℑX
ℑτ

// ℑ♭Aut(TeV )

Here the right square is Cartesian, by definition (5.46) and since ℑ, being a
right adjoint, preserves Cartesian squares (by Prop. 3.1.26). Hence, by the
pasting law (Prop. 3.1.23) it is sufficient to show that the total rectangle is
Cartesian. But, by the naturality of ηℑ, the total rectangle is equivalent to
that of the following pasting diagram:

(♭Aut(TeV ))Frm(X)

��

//

(pb)

∗

��

ηℑ
∗ //

(pb)

ℑ∗

��
X τ

// ♭BAut(TeV )
ηℑ

♭BAut(TeV )

// ℑ♭BAut(TeV )

Here the left square is Cartesian by the definition (5.46), while the right square
is Cartesian since its two horizontal morphisms are equivalences, by elasticity.
Hence the total rectangle is Cartesian by the pasting law (Prop. 3.1.23).

Regarding (i): We need to exhibit a V -atlas (5.20) for the flat frame bundle.
So let V oo

ét
U

ét // // X be a V -atlas for X, and consider the following
pullback diagram:

U ×
X

(♭Aut(TeV ))Frm(X)

ét

����

ét // //

(pb)

(♭Aut(TeV ))Frm(X)

ét
����

U

ét

��

ét
// // X

V

Observe that all four morphisms in the square are effective epimorphisms (Def.
3.1.63) and local diffeomorphisms (Def. 4.1.26): The bottom one by definition,
the right one by (ii) and hence the other two since both classes of morphisms
are closed under pullback (Lemma 3.1.65 and Lemma 4.1.27). Finally, since
the class of local diffeomorphisms is also closed under composition (Lemma
4.1.27), the total vertical morphisms is a local diffeomorphism, and hence the
total outer diagram is a V -atlas of the flat frame bundle.

Proposition 5.2.42 (♭G-frame bundles are V -folds). Let H be an elastic ∞-
topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) X ∈ V Folds(H) (Def. 5.2.1),
(G,ϕ) ∈ Grp(H)/Aut(TeV ) (Prop. 3.2.1, Def. 3.2.13, Ex. 4.1.30) with G ≃ ♭G
discrete, and (τ,g) ∈ (G,ϕ)StructuresX(H). Then the corresponding G-frame
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bundle (5.46) is itself a V -fold:
G ≃ ♭G ⇔ GFrm(X) ∈ V Folds(H) .

Proof. The proof proceeds verbatim as that for Prop. 5.2.41, just with the
structure group restricted along ♭G! ♭Aut(TeV ).

In summary, we have found the general abstract version of the local model
spaces of orbifolds:

Proposition 5.2.43 (Local orbifold model spaces). Let H be an elastic ∞-
topos (Def. 4.1.21), G,V ∈ Grp(H) (Prop. 3.2.1), with G ≃ ♭G discrete, and
(V,ρ) ∈ GActions(H) (Prop. 3.2.6) a restriction (Prop. 3.2.12) of the action
(V,ρAut) by group-automorphisms (Prop. 3.2.29). Then the homotopy quotient
(3.85)

V �G ∈ H
of V regarded with its canonical framing (Prop. 5.2.19)

(i) is a flat V -fold (Def. 5.2.40);

(ii) with G-structure (Def. 5.2.23)

(iii) whose G-frame bundle (5.46) is G-equivariantly (Def. 3.2.10) equivalent
to V itself:

GFrm
(
V �G

)
≃ V .

Proof. First observe that V �G is a V -fold, by Prop. 5.2.8 applied to Ex. 5.2.3.
That this is flat (i) is implied by (ii), since G is assumed to be discrete. For
(ii) and (iii) observe that the canonical framing on V is G-equivariant, by
Prop. 5.2.20, so that Prop. 5.2.21 implies G-structure on V �G classified by
the action morphism ρ itself. But this means that its homotopy fiber, hence
the corresponding G-frame bundle (Def. 5.46) is V itself, by (3.84) (and in
accord with Prop. 5.2.42).

Example 5.2.44 (Ordinary orbifold singularities). Let H := JetSmthGrpd∞
(Ex. 4.1.24) and V := (Rn,+) as in Ex. 5.2.4. Then a group automorphism of V
is a linear isomorphism, hence AutGrp(Rn,+) ≃ GL(n). Therefore, in this case
the assumptions of Prop. 5.2.43 hold precisely for V a linear representation of
the discrete group G, and thus we recover the traditional local orbifold models
V �G from [Sa56] (in their incarnation as étale groupoids).

Orbi-V -folds. Finally, we may now easily promote V -folds to orbifolds
proper, and hence promote the ∞-category of étale stacks to a ∞-category of
higher proper orbifolds:

Definition 5.2.45 (Orbi-V -folds). Let H be a singular-elastic ∞-topos (Def.
4.2.6) and V ∈ Grp(H ⊂). We say that an orbi-V -fold is an object X ∈ H which
is the orbi-singularization (Def. 4.2.7) of a V -fold (Def. 5.2.1, hence of an étale
∞-stack modeled on V , cf. Exp. 5.2.5).
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(i) We write V Orbfld(H) ⊂ H for the full sub-∞-category on orbi-V -folds:
X ∈ V Orbfld(H) ⇔ ⊂X ∈ V Folds(H) .

This means, equivalently, that the orbi-V -folds in H are the orbi-
singularizations (4.83) of the V -folds in H ⊂ :

V Folds(H ⊂)
oo Smth

OrbSnglr
≃

//
V Orbfld(H)

Smth(X ) oo �

:=
X:=

X � // OrbSnglr(X)

(5.73)

(ii) Similarly, given, in addition, (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def. 5.2.22), we
write (G,ϕ)StrctrdV Orbfld(H) ⊂ H for the full sub-∞-category on (G,ϕ)-
structured orbi-V -folds (Def. 5.2.28):

(G,ϕ)StrctrdV Folds(H ⊂)
oo Smth

OrbSnglr
≃

//
(G,ϕ)StrctrdV Orbfld(H)

(Smth(X ),(τ,g)) oo �

:=

(X ,(τ,g)):=

(X,(τ,g)) � // (OrbSnglr(X),(τ,g))

(5.74)

Remark 5.2.46 (Coefficients for orbifold cohomology). The point of Def.
5.2.45 is that, by regarding a V -fold in the elastic ∞-topos H ⊂ equivalently
as an orbi-V -fold in the larger singular-elastic ∞-topos H, a larger class of
coefficients for intrinsic cohomology theories (1.20) becomes available, notably
coefficients of the form S ≺(A�G) (see Lemma 5.1.7 below). This is what gives
rise, in §6, to proper orbifold cohomology (Def. 6.2.5 below) in contrast to the
coarser cohomology of underlying étale groupoids (Def. 6.2.1 below).

Remark 5.2.47 (The proper ∞-category of higher orbifolds). While (5.73)
is an equivalence of abstract ∞-categories,
(i) it is not an equivalence of sub-∞-categories of the ambient singular-elastic
∞-topos H:

∞-category of
of étale groupoids

V Folds(H ⊂)s�

Smth %%

̸≃

proper
∞-category
of orbifolds

V Orbfld(H)
kK

OrbSnglryy

∈ (Cat∞)/H

H
(ii) To bring out this distinction, also in view of Remark 5.2.46, we call
V Orbfld(H) (Def. 5.2.45) the proper ∞-category of orbifolds, in contrast to
the ∞-category V Folds(H ⊂) (5.21) of étale ∞-groupoids.
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(iii) It is a happy coincidence that proper is also the technical adjective chosen
in [DHLPS19] for equivariant homotopy theories presented by ∞-presheaves
over categories of orbits with compact – hence finite if discrete – isotropy
groups: In this terminology the singular-cohesive ∞-topos H is, according to
Def. 4.2.3, indeed a proper global equivariant homotopy theory.

Example 5.2.48 (Subcategories of smooth and of flat orbifolds). Let H
be an elastic ∞-topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1) and (G,ϕ) ∈
Grp(H)/Aut(TeV ) (Prop. 3.2.1, Def. 3.2.13, Ex. 4.1.30). We have fully faithful
inclusions into the ∞-category of (G,ϕ)-structured orbi-V -folds (Def. 5.2.45)

(G,ϕ)StrctrdV Orbfld(H)

(G,ϕ)StrctrdV Folds(H0)
- 

i ⊂sm
ooth

orbifo
lds ;;

(♭G,ϕ◦ ϵ♭)StrctrdV Orbfld(H)
3 S

i♭

flat orbifolds

ee
(5.75)

of
(i) smooth (G,ϕ)-structured V -folds, via Lemma 4.2.20;
(ii) flat (♭G,ϕ◦ ϵ♭)-structured V -folds (Def. 5.2.40).
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With an internal higher topos-theoretic characterization of orbifolds in hand
(from §5), we immediately obtain an induced notion of (differential, geometric,
étale) orbifold cohomology, namely as the intrinsic cohomology (1.20) of the
ambient singular-cohesive ∞-topos. Here we discuss how this new intrinsic
notion of orbifold cohomology
- subsumes proper equivariant cohomology theory (§6.1)
- and unifies it with tangentially twisted cohomology (§6.2).

The main result here is a general construction of orbifold étale cohomology
which we show to naturally unify

(i) tangentially twisted cohomology of smooth but curved spaces with
(ii) RO-graded proper equivariant cohomology of flat but singular spaces.
As fundamental examples, we present a new model of twisted orbifold K-

theory (following [SS25d, Ex. 4.5.4]) as well as tangentially twisted orbifold
Cohomotopy.

6.1 Proper equivariant cohomology
Proper equivariant cohomology.

Definition 6.1.1 (Borel equivariant cohomology). Let H ⊂ be a cohe-
sive ∞-topos (Def. 4.1.1) G ∈ Grp(H ⊂) (Prop. 3.2.1) and (X,τ),(A,ρ) ∈
GActions(H ⊂) (Prop. 3.2.6). Then the Borel equivariant cohomology of X
with coefficients in A is the intrinsic cohomology (1.20) in the slice H/BG

(Prop. 3.1.46) of the homotopy quotient (3.85) of X with coefficients in the

161
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shape (4.2) of the homotopy quotient of A:
Borel equivariant

cohomology

HBorel(X,A) := π0 H/BG

(
(X�G) , (A�G)

)

=


(X�G)

cocycle
c //

τ   

(A�G)

ρ
��

BG

y�

/
∼

(6.1)

Definition 6.1.2 (Proper equivariant cohomology). Let H be a singular-
cohesive ∞-topos (Def. 4.2.3), G ∈ Grp(H♭) (Prop. 3.2.1) a discrete ∞-group,
and (X,τ),(A,ρ) ∈ GActions(H) (Prop. 3.2.6). Then we say that the proper
equivariant cohomology of X with coefficients in A is the intrinsic cohomology
(1.20) in the slice H/ ≺BG

(Prop. 3.1.46) of the orbi-singularization (4.84) of
the homotopy quotient (3.85) of X with coefficients in the shape (4.2) of the
orbi-singularization of the homotopy quotient of A:

proper equivariant
cohomology

HG(X,A) := π0 H/ ≺BG

(

≺(X�G) , S ≺(A�G)
)

=



≺(X�G)
cocycle

c //

≺(τ) !!

S ≺(A�G)

(
ηS

≺BG

)−1 ◦ S ≺(ρ)}}

≺BG

w�

/
∼

(6.2)

Recovering traditional G-equivariant cohomology. We discuss how, in
the case of a finite group G, traditional G-equivariant cohomology (see §2.2)
is a special case of proper equivariant cohomology (Def. 6.1.2). We take the
key observation from [Re14] (Prop. 6.1.6 below).

Definition 6.1.3 (G-equivariant cohesive ∞-topos [SS25d, Def. 3.3.64]). Let
H ⊂ be a cohesive ∞-topos (Def. 4.1.1) and G ∈ Grpfin a finite group (4.90).
We write

GH ⊂ := Shv∞
(
GOrb, H ⊂

)
= Func∞

(
GOrbop, H ⊂

)
(6.3)

for the ∞-topos of H ⊂-valued ∞-sheaves on the G-orbit category (Def. 2.2.8),
to be called the corresponding G-equivariant cohesive ∞-topos.

Remark 6.1.4 (Proper equivariant cohomology theory in singular
∞-toposes). In the case H ⊂ ≃ Grpd∞ (3.12), Def. 6.1.3 reduces to the ∞-
category GGrpd∞ (Def. 2.2.4) of traditional G-equivariant homotopy theory
(recalled in §2.2). The intrinsic cohomology (1.20) of the ∞-topos GGrpd∞
– or of its tangent ∞-topos T

(
GGrpd∞

)
(Ex. 3.1.51) in the twisted abelian

case (Remark 3.2.23) – is proper equivariant cohomology (following terminol-
ogy in [DHLPS19]), including G-Bredon cohomology [Br67a][Br67b] (review in
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[Blu17, §1.4][tD79, §7]), G-equivariant K-theory [Se68][AS69] (which is proper
equivariant by [AS04, A3.2][FHT07, A.5][DL98]), G-equivariant Cohomotopy
theory [Se71][tD79, §8][SS20][BSS19], etc.

Hence, by Remark 4.1.20, to the extent that the objects of the cohesive
∞-topos H ⊂ in Def. 6.1.3 are ∞-groupoids equipped with further geometric
or differential-geometric structure, the intrinsic cohomology theory (1.20) in
GH ⊂ (6.3) is an enhancement of plain G-equivariant cohomology to a flavor
of proper G-equivariant differential cohomology theory (by Remark 4.1.20).

Proposition 6.1.5 (Cohesive Elmendorf theorem). Consider a cohesive ∞-
topos H ⊂ (Def. 4.1.1) with an ∞-site Chrt of charts (Def. 4.1.9). Then for
G ∈ Grpfin a finite group, we have an equivalence of ∞-categories

GH ⊂ ≃ Shv∞
(
Chrt,GGrpd∞

)
, (6.4)

where GGrpd∞ is the ∞-category of D-topological G-spaces (Def. 2.2.4).

Proof. Consider the following sequence of ∞-functors:
GH ⊂ := Shv∞

(
GOrb,H ⊂

)
= Shv∞

(
GOrb,Shv∞(Chrt)

)
≃
! Shv∞

(
GOrb×Chrt

)
≃
! Shv∞

(
Chrt,Shv∞(GOrb)

)
≃
! Shv∞

(
Chrt,GGrpd

)
.

That the first and second of these ∞-functors are equivalences follows by
the product/hom-adjunction for ∞-functors. With that, the last equivalence
follows, objectwise, by Elmendorf’s theorem (Prop. 2.2.10).

Proposition 6.1.6 (G-equivariant homotopy theory embeds into G-singular
cohesion). Let H be a singular-cohesive ∞-topos (Def. 4.2.3) over Grpd∞
(3.12) and let G ∈ Grpfin be a finite group (4.90).
(i) Then there is a full sub-∞-category inclusion

GH ⊂

� � ∆G

≃
// H/ ≺

G (6.5)

of the G-equivariant non-singular cohesive ∞-topos (Def. 6.1.3) into the slice
of H (Prop. 3.1.46) over the generic G-orbi singularity (4.88).
(ii) This is such that, when pre-composed with the cohesive Elmendorf equiv-
alence (Prop. 6.1.5), a cohesive sheaf (on Chrt) of GGrpd (2.19) presented
(2.22) by D-topological G-spaces XU (Def. 2.2.1) is sent to the presheaf on
Snglrt that is given as follows:

Shv∞
(
Chrt, GGrpd∞

)
≃ GH ⊂

∑

≺

G

∆G // Shv∞
(
Chrt×Snglrt

)
(
U 7! ShpGTop

(
XU

)) � //
((

U, ≺

K
)
7! ShpTop

(( ⊔
ϕ∈Grp(K,G)

X
ϕ(K)
U

)
×
G

EG

))
(6.6)
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where on the right we have the topological shape (3.1.13) of the Borel con-
struction by the residual G-action on the fixed point subspaces X

ϕ(K)
U ⊂ XU

(2.15).
Proof. For H ⊂ ≃ Grpd∞ this is [Re14, Prop. 3.5.1]; our expression
ShpTop

(
X

ϕ(K)
U ×

G
EG

)
is, up to convention of notation, the expression for

BFun(H,G ↷ XU ) that is spelled out in [Re14, p. 7][Lu19, 3.2.17] (using that
our G is discrete). The generalization here follows immediately by applying
this equivalence objectwise in the ∞-site Chrt.

The following is our key class of examples:
Example 6.1.7 (Cohesive shape of G-orbi-singular space is G-homotopy
type). In the cohesive ∞-topos H ⊂ := SmthGrpd∞ (Ex. 4.1.18) consider a
0-truncated object X ∈ H ⊂,0 equipped with a G-action (Def. 3.84) of a dis-
crete group G, and with corresponding Cohesive G-orbispace (Prop. 5.1.6)

X := OrbSnglr(X�G)
in H := SnglrSmthGrpd∞ (Ex. 4.2.11), which is either of:
(i) a smooth G-orbifold (Ex. 5.1.10):

X ∈ SmoothManifolds �
� // DiffeologicalSpaces �

� // H ⊂

(ii) a topological G-orbi space (Ex. 5.1.11):

X ∈ TopSpc Cdfflg // DTopSpc �
� // H ⊂

Then the cohesive shape (4.83) of the G-orbi-singular space X ∈ H is equiva-
lent, under the identification of Prop. 6.1.6, to the G-topological shape (2.22)
of the underlying topological G-space of X:
(i) By Prop. 5.1.12, comparing (5.18) with (6.6) we have:

GSmoothManifolds

form
G-topological

shape
ShpGTop (Dtplg(−))

��

form Fréchet-smooth orbifold
OrbSnglr((−)�G)

// SnglrSmthGrpd∞/ ≺

G

Shp form
cohesive shape

��
GGrpd∞

� �

include G-equivariant homotopy theory

∆G // SingularGroupoids∞/ ≺

G

(6.7)

(ii) By Prop. 5.1.13, comparing (5.19) with (6.6) we have:

GTopSpc

form
G-topological shape ShpGTop

��

form topological G-orbi space

OrbSnglr(Cdfflg(−)�G)
// SnglrSmthGrpd∞/ ≺

G

Shp form
cohesive shape

��
GGrpd∞

� �

include G-equivariant homotopy theory

∆G // SingularGroupoids∞/ ≺

G

(6.8)



Orbifold cohomology 165

Lemma 6.1.8 (∆G commutes with Disc). The construction ∆G from Prop.
6.1.6 commutes with embedding of discrete cohesive structure (4.82):

Shv∞
(
Snglrt,Grpd∞

)
/ ≺

G
Disc
,,

GGrpd
Disc ,,

∆G 33

Shv∞
(
Snglrt, H ⊂

)
/ ≺

G

GH ⊂

∆G

11

Theorem 6.1.9 (Cohomology of good orbispaces is proper equivariant co-
homology). Consider the singular-cohesive ∞-topos H := SnglrSmthGrpd∞
(Ex. 4.2.11) and let G ∈ Grpfin be a discrete group (4.90). Then the intrinsic
cohomology (1.20)
(i) of a G-orbi-singular space X ∈ H/ ≺

G (Def. 5.1.4) which is either

(a) a topological G-orbi-space (Ex. 5.1.11) with universal covering space
(Def. 5.1.5) XGtop ∈ GTopSpc (2.12);

(b) a Fréchet-smooth G-orbifold (Ex. 5.1.10) with universal covering space
(Def. 5.1.5) X ∈ FréchetManifolds and underlying G-topological space
XGtop := Dtplg(X) (3.8);

(ii) with coefficients in a cohesively discrete G-∞-groupoid A (2.19) (hence
the G-topological shape (2.22) of some topological G-space AGtop) regarded as
a geometrically discrete orbi-singular ∞-groupoid A via (6.5):

GTopSpc
ShpGTop // GGrpd∞

Disc // GH ⊂

∆G // H/ ≺

G

Atop // A � // A

equals the proper G-equivariant cohomology (Def. 2.2.6) of XGtop with coeffi-
cients in A:

H/ ≺

G

(
X , A

)
≃ GGrpd∞

(
ShpGTop(XGtop), A

)
hence: πnH/ ≺

G

(
X , A

)
≃ H−n

G (XGtop,A)
intrinsic

equivariant differential cohomology
in ∞-topos of

singular smooth ∞-groupoids

proper
G-equivariant cohomology

Proof.
(i) By Ex. 5.1.11 the topological G-orbi space X is given by

X ≃ OrbSnglr
(
Cdfflg(X)�G

)
.
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With this, we compute as follows:

H/ ≺
G

(
X ,A

)
= H/ ≺

G

(
OrbSnglr

(
Cdfflg(Xtop)�G

)
,∆GDisc(A)

)
≃ H/ ≺

G

(
OrbSnglr

(
Cdfflg(Xtop)�G

)
,Disc(∆GA)

)
≃ (Grpd∞)/ ≺

G

(
Shp

(
OrbSnglr(Cdfflg(Xtop)�G)

)
,∆GA

)
≃ (Grpd∞)/ ≺

G

(
∆GX,∆GA

)
≃ GGrpd

(
ShpGTop(Xtop),A

)
.

(6.9)

Here the first step, after unwinding the definitions, is Lemma 6.1.8, the second
step is the Shp ⊣ Disc-adjunction (4.82), the third step is Prop. 5.1.13, and
the last step is Prop. 6.1.6.
(ii) By Ex. 5.1.10 the Fréchet-smooth G-orbifold X is given by

X ≃ OrbSnglr
(
X�G

)
.

With this, we compute just as in (6.9) only that now in the third step we use
Prop. 5.1.12.

Example 6.1.10 (Orientifold cohomology). Take the singular elastic ∞-
topos H = SnglrJetSmthGrpd∞ (Ex. 4.2.11) and V = (Rn,+) ∈ H ⊂ (5.25).
Then a X ⊂ ∈ V Flds(H ⊂) (Def. 5.2.1) is an ordinary n-dimensional orbifold or,
more generally, an n-dimensional étale ∞-stack (by Ex. 5.2.5) with structure
group (Def. 5.2.11) the ordinary general linear group Aut(TeV ) ≃ GL(n) (by
Ex. 5.2.12). Hence, the composition of the delooping (3.78) of the ordinary
determinant group homomorphism GL(n) det

−! Z2 with the classifying map
⊢ Frm(X ⊂) (5.36) of the frame bundle of X (Def. 5.2.13) realizes X ⊂ as an
object in the slice ∞-topos (Prop. 3.1.46) over BZ2. Consequently, it realizes
its orbi-singularization X := ≺X ⊂ ∈ H (4.2.7) as an object in the slice over ≺

Z2

(4.77):
X ⊂

Bdet◦ ⊢ Frm(X ⊂)
��

BZ2

∈
(
H ⊂

)
/BZ2

⇔

X

≺

(
Bdet◦ ⊢ Frm(X ⊂)

)
��

≺

Z2

∈
(
H ⊂

)/

≺

Z2 .

(6.10)

This is the incarnation of the orbifold as an orbi-orientifold [DFM11][FSS15,
4.4][SS20]. In particular, if the covering space (Def. 5.1.5)

X := fib
(
Bdet◦ ⊢ Frm(X ⊂)

)
happens to be an Rn-fold (Ex. 5.2.4), we have just a plain orientifold (without
further orbifolding) and then the intrinsic cohomology (1.20) of X regarded in
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the slice over ≺Z2(6.10) is, by Theorem 6.1.9 the proper Z2-equivariant coho-
mology of X, such as, for instance, Real K-theory [At66] (see [Mas11] for the
perspective in proper equivariant cohomology) or Z2-Equivariant Cohomotopy
[tD79, 8.4][SS20].

6.2 Proper orbifold cohomology
We introduce general étale cohomology of étale ∞-stacks (Def. 6.2.1), which
is sensitive to geometric G-structure and to tangential structure (Def. 6.2.3).
Promoting this to the proper incarnation of orbifolds (Remark 5.2.47), we fi-
nally obtain tangentially twisted proper orbifold cohomology (Def. 6.2.5) which
we prove unifies tangentially twisted topological cohomology away from orb-
ifold singularities with proper equivariant cohomology at the singularities
(Thm. 6.2.6 below, cf. Fig. 7 on p. 20).

As a fundamental class of examples, we construct tangentially-twisted
proper orbifold Cohomotopy theories (Def. 6.2.18) and observe, as an appli-
cation, that these subsume the relevant cohomology theories for the physics
of fractional quantum anomalous Hall systems and of M-theory, according to
“Hypothesis H” (Remark 6.2.20).

Cohomology of V -étale ∞-stacks.

Definition 6.2.1 (Étale cohomology). Let H be an elastic ∞-topos (Def.
4.1.21), V ∈ Grp(H) (Prop. 3.2.1), (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def. 5.2.22),
and X ∈ Intgrbl(G,ϕ)StrctrdV Flds(H) (Def. 5.2.29). The étale cohomology of(
X,(τ,g)

)
is its intrinsic cohomology (1.20) when regarded (via Prop. 5.2.33)

Intgrbl(G,ϕ)StrctrdV Flds(H) //
((

H/BAut(TeV )
)

/(BG,Bϕ)

)/(
Haef

(
V,(G,ϕ)

)
,(τH,gH)

)
(
X,(τ,g)

)
7−!

((
X,(τ,g)

) ⊢(τ,g)
−−−−!

met
Haef

(
V,(G,ϕ)

))
in the iterated slice of (5.53) over the

(
V,(G,ϕ)

)
-Haefliger stack (Def. 5.2.32)

equipped with its canonical (G,ϕ)-structure (τH,gH) (Prop. 5.2.33), hence is
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G-structure-twisted cohomology (Remark 3.2.21):

étale cohomology

H(τ,g)(X,A
)

:=((
H/BAut(TeV )

)
/(BG,Bϕ)

)/(
Haef

(
V,(G,ϕ)

)
,(τH,gH)

) ((X,(τ,g)
)

,
(
A,p

))

=


X

cocycle
c //

⊢(τ,g) ##

A

p
{{

Haef(V,(G,ϕ))

s{


(6.11)

Remark 6.2.2 (Étale cohomology is geometric). As the notation in Def. 6.2.1
indicates, étale cohomology is a “geometric cohomology theory” in that it does
depend (in general) on the G-structure g on the V -fold X (for instance its
complex- or symplectic- or Riemannian- or Lorentzian structure structure, by
Ex. 5.2.31).

Next we focus attention on the special case where the cohomology theories
are not sensitive to the metric part g of a G-structure (τ,g), but just to its
tangential structure τ .

Definition 6.2.3 (Tangentially twisted cohomology). Let H be an elastic ∞-
topos (Def. 4.1.21), V ∈ Grp(H) (Prop. 3.2.1), (G,ϕ) ∈ Grp(H)/Aut(TeV ) (Def.
5.2.22), (A,ρ) ∈ GActions(H) and X ∈ (G,ϕ)StrctrdV Flds(H) (5.54). Then,
for A ∈ H/BSG

, the tangentially twisted cohomology of V with coefficients in
A is (see Remark 3.2.21)

tangentially twisted
cohomology

H Sτ
(
X,A

)
:= H/SAut(TeV )

(
(X,ηS ◦ τ),(A�G,ρ)

)

=


X

cocycle
c //

ηS◦τ ��

(SA)�(SG)

Sρ{{
BSG

y�


(6.12)

Remark 6.2.4 (Need for G-Structure vs. tangential structure).
(i) The notion of tangentially twisted cohomology in Definition 6.2.3 makes
sense more generally for V -folds equipped only with tangential structure (Def.
5.2.35) instead of full G-structure (Def. 5.2.23) (hence only with a reduction
of the shape of their structure group, instead of the actual structure group
(Def. 5.2.11)) and it only needs A to be equipped with a SG-action.
(ii) We state the definition in the more restrictive form above just in order to
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bring out the following promotion of this notion to its proper orbifold version
(Remark 5.2.47), in Def. 6.2.5 below. The process of orbi-singularization is in
fact sensitive to the full G-structure, and not just to its tangential shape. More
precisely, it is sensitive to the geometric fixed point spaces of the G-structure
and not just to its homotopy fixed point spaces (as per Remark 4.2.23 Ex.
4.2.26).

Tangentially twisted proper orbifold cohomology. We now promote
tangentially twisted cohomology of V -folds (Def. 6.2.3) to a proper orbifold
cohomology theory in the sense of Def. 5.2.45.

Definition 6.2.5 (Tangentially twisted proper orbifold cohomology). Let

◦ H be a singular-elastic ∞-topos (Def. 4.2.6).

◦ V ∈ Grp(H ⊂) (Prop. 3.2.1).

◦ (G,ϕ) ∈ Grp(H ⊂)/Aut(TeV ) (Prop. 3.2.1, Def. 3.2.13, Ex. 4.1.30).

◦ X ⊂ ∈ V Flds(H ⊂) (Def. 5.2.1).

◦ (τ,g) ∈ (G,ϕ)StructuresX ⊂

(H ⊂) (Def. 5.2.23).

◦ (A,ρ) ∈ GActions(H ⊂).

and set A := ≺(A�G) and X := ≺X ⊂.
The tangentially twisted proper orbifold cohomology of X with coefficients in
SA is (see Rem. 3.2.21)

H S ≺τ
(
X, A

)
:= π0 H/S ≺BG

(
(X ,ηS ◦ ≺(τ)), (SA, S ≺ρ)

)

=


X

cocycle
c //

ηS◦ ≺(τ) ��

S ≺

(
A�G

)
S ≺(ρ){{

S ≺BG

/
∼

Theorem 6.2.6 (Tangentially twisted orbifold cohomology at and away from
singularities). Consider the tangentially twisted orbifold cohomology of Def.
6.2.5 restricted to (1) smooth and (2) flat orbifolds, according to Ex. 5.2.48.
Then (cf. Fig. 7 on p. 20):
(i) The tangentially twisted orbifold cohomology of flat orbifolds for 0-
truncated coefficients A is naturally equivalent to the proper equivariant coho-
mology (Def. 6.1.2) of the total space of their ♭G-frame bundle (5.46):

tangentially twisted
orbifold cohomology

H S ≺τ
(
i♭X
flat

orbifold

,A
)

≃

proper
equivariant cohomology

H♭G

(
(♭G)Frm(X ⊂)
♭G-frame bundle

, A
)
.



170 Geometric Orbifold Cohomology

(ii) The tangentially twisted orbifold cohomology of smooth (non-orbi-
singular) orbifolds is equivalently the tangentially twisted cohomology (Def.
6.2.1) of the underlying V -folds:

tangentially twisted
orbifold cohomology

H S ≺τ
(
i ⊂X

smooth
orbifold

,A
)

≃

tangentially twisted
V -fold cohomology

H Sτ
(
X ⊂

0-truncated
V -fold

, A
)
.

Proof. The case (i) means that the classifying map of the G-structure in
question factors as follows, where we use Prop. 5.2.24 to identify the leftmost
morphism ρ as exhibiting the action (3.84) of ♭G on (♭G)Frm(X):

(♭G)Frm(X)�♭G
ρ //

⊢τ

22

⊢Frm(X)

44
B♭G

ϵ♭
BG // BG // BAut(TeV ) .

Now we observe:

(a) with Def. 4.2.3 that S acts objectwise over Snglrt,

(b) with Prop. 3.1.39 that the pullback of presheaves over Snglrt is computed
objectwise,

(c) and with Lemma 5.1.7 that ≺(A�G) is objectwise over Snglrt a homotopy
quotient by G,

so that Lemma 4.1.6 applies objectwise over Snglrt to give the pullback square
shown on the right here:

S ≺

(
A�♭G

)
(pb)��

// S ≺

(
A�G

)
��

≺

(
(♭G)Frm(X)�(♭G)

)
33

≺ρ //

ηS◦ ≺τ

33≺B♭G // S ≺BG.

By the universal property of the pullback, this means that every cocycle
factors naturally as shown by the dashed morphism. But by Def. 6.1.2 this
dashed morphism is equivalently a cocycle in proper equivariant cohomology,
as claimed.

The case (ii) means (using Lemma 4.2.20) that the orbi-singular space X
is in fact smooth

X ≃ ⊂X ≃ NnOrbSnglr
(
X ⊂

)
.

Therefore, we have the following natural equivalences of spaces of dashed
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morphisms:
S ≺

(
A�G

)
��

⊂X ≃ X

AA

// S ≺BG

⇔

⊂S ≺

(
A�G

)
��

⊂X

>>

// ⊂S ≺BG

⇔

S
(
A�G

)
��

X ⊂

BB

// SBG

∈ ∈
H/

S ≺BG

(
X , S ≺

(
A�G

))
≃ H/

SBG

(
X ⊂ , S

(
A�G

))
.

(6.13)

Here the first equivalence is by the adjunction NnOrbSnglr ⊣ Smth and the
fully faithfulness of NnOrbSnglr (4.82). The second step uses ⊂ ◦ S ≃ S ◦ ⊂

(Lemma 4.2.22) and ⊂ ◦ ≺ ≃ ⊂ (Remark 4.2.8) But on the right of (6.13) we
see the tangentially twisted cohomology of X ⊂, as claimed.

J-Twisted orbifold Cohomotopy theory. We discuss now the example of
tangentially twisted proper orbifold cohomology (Def. 6.2.5) where the coef-
ficients are (shapes of) spheres, specifically of Tate V -spheres (Def. 6.2.9), In
this case the tangential twist is the J-homomorphism (Def. 6.2.14) whence we
speak of J-twisted Cohomotopy theory (Def. 6.2.18).

Definition 6.2.7 (Complement of neutral element). Let H be an ∞-
topos (Def. 3.1.30) and V ∈ Grp(H) (Prop. 3.2.1). Let (V,ρAutGrp) ∈
AutGrp(V )Actions(H) denote the group-automorphism action on V (Prop.
3.2.29).
(i) Consider those subobjects (Def. 3.1.61) of the homotopy quotient V �
AutGrp (3.107) whose pullback along the morphism

∗�AutGrp(V )
e�AutGrp(V ) // V �AutGrp(V ) ,

which exhibits the neutral element as a fixed point of the group-automorphism
action (Prop. 3.2.29), is empty. These are the subobjects forming the poset in
the top left of the following Cartesian square (of ∞-categories):

SubObjectse/

(
V �AutGrp(V )

)
(pb)

//
� _

��

∗ � _
∅
��

SubObjects
(
V �AutGrp(V )

)
(e�AutGrp(V ))∗

// SubObjects(∗)

(6.14)

(ii) Consider next the union of these subobjects, hence the colimit over the
left vertical functor in (6.14), which we denote as follows:(

V \{e}
)
�AutGrp(V ) :=

lim
−!

(
SubObjectse/

(
V �AutGrp(V )

)
↪−! SubObjects

(
V �AutGrp(V )

))
.

(6.15)
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(iii) We call the homotopy fiber V \{e} of the canonical morphism from this
object (6.15) to BAutGrp(G) the complement of the neutral element of V

V \{e}
fib
(
ρAutGrp \{e}

)
// (V \{e})�AutGrp(V )

ρAutGrp \{e}

xx

� _

��
V �AutGrp(V )

ρAutGrp ��
BAutGrp(V )

(6.16)

(iv) We regard the complement of the neutral element as equipped with the
AutGrp(V )-action which is exhibited by the homotopy fiber sequence (6.16)
(by Prop. 6.16):(

V \{e} , ρAutGrp \{E}
)
) ∈ AutGrp(V )Actions(H) .

Proposition 6.2.8 (Basic properties of complement of neutral element). Let
H be an ∞-topos (Def. 3.1.30) and V ∈ Grp(H) (Prop. 3.2.1). Then the com-
plement V \{e} of the neutral element (Def. 6.2.7)
(i) is a subobject (Def. 3.1.61) of V

V \{e} �
� // V (6.17)

(ii) which is disjoint from the neutral element:

∅ //

��
(pb)

V \{e}� _
��

∗ e
// V

Proof. For (i) we use the pasting law (Prop. 3.1.23) and the homotopy
fiber characterization of the group-automorphism action (3.108) to decom-
pose (6.16) as the pasting of two Cartesian squares, as follows:

V \{e} //
� _

��
(pb)

(V \{e})�AutGrp(V )

ρAutGrp \{e}

xx

� _

��
V //

��

(pb)

V �AutGrp(V )
ρAutGrp

��
∗ // BAutGrp(V )

Since monomorphisms are preserved by pullback (by Prop. 3.1.66), this shows
the first claim from the construction (6.15).

For (ii) we paste to the middle horizontal morphism in this diagram the
square (3.100) which exhibits the neutral element as a fixed point of the group-
automorphims action (Prop. 3.2.29) and then we pull back the right vertical
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morphism along the boundary of that square, as shown in the following:
∅

��

((
// ∅ ≃ lim

−!i
∅

��

,,
V \{e} //
� _

��

(V \{e})�AutGrp(V ) := lim
−!

i

Ui� _

��
∗

e ((

// ∗�AutGrp(V )
e�AutGrp(V )

,,
V // V �AutGrp(V )

Here the right square is Cartesian since colimits in an ∞-topos are preserved
by pullback (3.31) and using the definition (6.14), as indicated in the top
right. Similarly the rear square is Cartesian, since pullback preserves the initial
object (this being the empty colimit, Ex. 3.1.33). With this, and since the front
square is Cartesian by (i), the pasting law (Prop. 3.1.23) implies that also the
left square is Cartesian, which was to be shown.

Definition 6.2.9 (Tate V -sphere). Let H be an ∞-topos (Def. 3.1.30) and
V ∈ Grp(H) (Prop. 3.2.1). Then we say that the Tate V -sphere is the homo-
topy cofiber

SV := V/(V \{e})
of the inclusion (6.17) of the complement of the neutral element into V (Def.
6.2.7), hence the object in this homotopy pushout square:

V \{e} �
� //

��
(po)

V

��
∗ // SV

(6.18)

Example 6.2.10 (Tate sphere in unstable motivic homotopy theory). For
H := Shv∞

(
SchemesNis

)
and V := A1 the Tate V -sphere of Def. 6.2.9 is the

Tate sphere in the traditional sense of (unstable) motivic homotopy theory,
see [VRO07, 2.22].

Example 6.2.11 (Tate spheres with shape of ordinary spheres). Let H =
JetsOfSmoothGroupoids∞ (Def. 4.1.24) and V := (Rn,+) as in Ex. 5.2.4. Then
AutGrp(Rn,+) = GL(n) (as in Ex. 5.2.12) and the complement of the neutral
element (Def. 6.2.7) is the ordinary complement Rn \{0}, whose shape is that
or the ordinary n−1-sphere:

S
(
Rn \{0}

)
≃ SSn−1. (6.19)

Hence the Tate Rn-sphere (Def. 6.2.9) is the homotopy pushout shown on the
left here:

Rn \{e}

��

� � //

(pb)

Rn

��
∗ // S(Rn)

S
7−!

SSn−1

��

� � //

(pb)

∗

��
∗ // SS(Rn)

Since the shape modality (4.2) is left adjoint it preserves homotopy pushouts
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(Prop. 3.1.26), so that the shape of the Tate Rn-sphere is that of the ordinary
n-sphere:

SSRn
≃ SSn. (6.20)

In contrast, the Tate Rn-sphere itself is the “germ of a smooth sphere”.

Proposition 6.2.12 (Canonical action on Tate V -sphere). Let H be an ∞-
topos (Def. 3.1.30) and V ∈ Grp(H) (Prop. 3.2.1). The Tate V -sphere (Def.
6.2.9) inherits a canonical action (Prop. 3.2.6) of the group-automorphism
group AutGrp(V ) (Def. 3.2.28), associated (via Prop. 3.2.14) to a group ho-
momorphism

AutGrp(V ) // Aut(SV ) (6.21)
whose homotopy quotient (3.85) is given by the following homotopy pushout

(V \{e})�AutGrp(V ) �
� //

�� (po)

V �AutGrp(V )

��
∗�AutGrp(V ) // SV �AutGrp(V )

(6.22)

of the defining morphisms in (6.16).

Proof. Since the forgetful ∞-functor H/BAutGrp(V ) −! H preserbes colim-
its (Ex. 3.1.52), the diagram (6.18) extends to a diagram over BAutGrp(V ).
Pulling this back along the point inclusion (3.80) and using that colimits in
an ∞-topos are preserved by pullback (3.31), we find that the homotopy fiber
of SV �AutGrp(V )!BAutGrp(V ) is given by the defining homotopy pushout
(6.18) of the Tate V -sphere.

Definition 6.2.13 (Linear group). Let H be an elastic ∞-topos (Def. 4.1.21)
and V ∈ Grp(H) (Prop. 3.2.1).
(i) We say that V is a linear group if it is equipped with an equivalence

Aut(TeV ) ≃
exp // AutGrp(V ) ∈ Grp(H) (6.23)

between (a) the plain automorphism group of the local neighborhood of the
neutral element (Def. 5.2.11) and (b) the group-automorphism group of V
(Def. 3.2.28)
(ii) We write LinGrp(H) ∈ Cat∞

for the ∞-category of linear groups in H.

Definition 6.2.14 (Tate J-homomorphism). Let H be an elastic ∞-topos
(Def. 4.1.21) and V ∈ LinGrp(H) (Prop. 6.2.13).
(i) The Tate J-homomorphism is the composite

JV : Aut(TeV ) ≃
exp // AutGrp(V ) // Aut(SV ) (6.24)

of (a) the defining equivalence (6.23) with (b) the homomorphism (6.21)
which reflects the canonical AutGrp(V )-action on the Tate V -sphere (Def.
6.2.12).
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(ii) The corresponding Aut(TeV )-actions on SV and on S(SV ), by restriction
along (6.24) and (6.26) of the canonical automorphism actions (Prop. 3.2.14),
we denote, respectively, by

(SV ,ρJ) ∈ Aut(TeV )Actions(H) . (6.25)
(iii) The actual J-homomorphism is the shape of the further composite with
the homomorphism Aut(ηS

SV ) from Prop. 4.1.7:

JV : SAut(TeV ) ≃
Sexp //

SJV

55
SAutGrp(V ) // SAut(SV )

SAut
(
ηS

Aut(SV )
)
// SAut

(
SSV

)
.

(6.26)

Example 6.2.15 (Ordinary J-homomorphism). Let H = SnglrJetSmthGrpd∞
(Ex. 4.2.11) and V := (Rn,+) as in Ex. 5.2.4. This is a linear group in the
sense of Def. 6.2.13, with Aut(T0Rn) ≃ GL(n) (Ex. 5.2.12). Via Ex. 6.2.11 the
induced action on the shape of the Tate Rn-sphere (Def. 6.2.14) is the classical
J-homomorphism (going back to [Wh42], reviewed in [Rav86, p. 4]):

J : SO(n) ≃ SGL(n) // Aut
(
SSn
)

(6.27)

being the image under topological shape (Def. 3.1.13) of the defining action
of GL(n) on Rn and hence on its one-point compactification Sn.

Definition 6.2.16 (Representation spheres). Let H be a singular-elastic ∞-
topos (Def. 4.2.6), V Grp(H ⊂) (Prop. 3.2.1), and (G,ϕ) ∈ Grp(H ⊂)/Aut(TeV )
(Prop. 3.2.1, Def. 3.2.13, Ex. 4.1.30). Then we say that the representation
sphere SVϕ of the G-action ϕ on V (via Prop. 3.2.14) is the shape (Def. 4.1.1)
of the orbi-singularization (Def. 4.2.7) of the homotopy quotient (3.85) of the
Tate V -sphere (Def. 6.2.9) by the restricted action (Prop. 3.2.12) along ϕ of
the action ρJ (6.25) induced by the J-homomorphism (Def. 6.2.14):

SVϕ := S ≺

(
SV �

ϕ
G
)

∈ H/ ≺G
.

Example 6.2.17 (Ordinary representation spheres).
Let H = SnglrJetSmthGrpd∞ (Ex. 4.2.10) and V := (Rn,+) as in Ex. 5.2.4,
whence Aut(TeV ) ≃ GL(n) (Ex. 5.2.12). For

G � � ϕ // GL(n) ⊂ Aut(TeV ) .

a finite subgroup, hence a linear G-representation, we have that the repre-
sentation sphere SRn

ϕ according to Def. 6.2.16 is the ordinary representation
sphere, as an object in G-equivariant homotopy theory.

Definition 6.2.18 (J-twisted proper orbifold Cohomotopy theory). Let H
be a singular-elastic ∞-topos (Def. 4.2.6) V ∈ Grp(H) (Prop. 3.2.1), W ∈
LinGrp(H) (Def. 6.2.13) and ϕ : Aut(TeW ) // Aut(TEV ) . Then J-twisted
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proper orbifold Cohomotopy is the tangentially twisted proper orbifold coho-
motopy (Def. 6.2.5) with coefficients

(A,ρ) := (SV ,ρJ)
the Tate W -sphere (Def. 6.2.9) with its Tate J-homomorphism action (Def.
6.2.14):

J-twisted
orbifold Cohomotopy

πS ≺τ (−) :=

tangentially twisted orbifold cohomology

H S ≺τ
(
−,(S

V ,ρJ)
Tate V -sphere with

J-homomorphism action

)
.

Hence for a structured orbifold (Def. 5.2.45)(
X ,(τ,g)

)
∈
(
Aut(TeW ),ϕ

)
StrctrdV Orbfld(H) ,

we have:

J-twisted
orbifold Cohomotopy

πS ≺τ (X ) =



orbifold

X
cocycle

c //

ηS◦ ≺(τ)
tangential

twist   

S ≺

( orbi-singularized
Tate W -sphere

SW�Aut(TeW )
)

S ≺

(
ρJ
)

twisting via
orbi-singularized
J-homomorphism

xx
S ≺BAut(TeW )

w�

/
∼

Example 6.2.19 (J-Twisted orbifold Cohomotopy of ordinary orbifolds).
Let H = SnglrJetSmthGrpd∞ (Ex. 4.2.10) and V := (Rn,+), W := (Rp,+) as
in Ex. 5.2.4, with p ≤ n, and ϕ : (Rp,+) ↪! (Rn,+) be the canonical inclusion.
Then the corresponding J-twisted proper orbifold Cohomotopy theory πS ≺τ

(Def. 6.2.18) is defined on ordinary n-dimensional orbifolds (by Ex. 5.2.5) with
GL(p)-structure (by Ex. 5.2.12) and it unifies the following two special cases
(by Theorem 6.2.6, see the second diagram on p. 20)):
(i) On smooth orbifolds, i.e., on ordinary manifolds (Ex. 5.2.4) it reduces to
non-abelian cohomology with coefficients the shape of the ordinary p-sphere
(by Ex. 6.2.11) and tangentially twisted via the traditional J-homomorphism
(by Ex. 6.2.15). This is the J-twisted Cohomotopy theory considered in
[FSS20][FSS21] [BSS19].
(ii) On flat orbifolds, such as the vicinity of ordinary orbifold singularities
Rp�G for finite subgroups G

ϕ
↪! GL(p) (by Ex. 5.2.44), hence for linear G-

representations ϕ, it reduces to proper equivariant cohomology in RO-degree
ϕ and with coefficients the representation sphere SRn

ϕ (by Ex. 6.2.17). This
is the tangentially RO-graded equivariant Cohomotopy theory considered in
[SS20][BSS19].

By way of outlook, we highlight the following:

Remark 6.2.20 (Orbifold cohomology in M-theory and Hypothesis H). Tra-
ditional discussion of orbifold cohomology has been strongly motivated by its
application to perturbative string theory (e.g. [AMR02][ARZ06][ALR07][BU09]
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[DFM11]). However, perturbative string theory is famously in need of a non-
perturbative completion (“M-theory”, see [HSS18, 2][FSS19] for review and
pointers) whose mathematical formulation has remained an open problem.
Therefore, it is to be expected that the historically rich interaction between
orbifold cohomology theory and string theory is just the tip of an iceberg,
whose full scope is a cohomology theory of M-theoretic orbifolds.

Elsewhere we have put forward a precise hypothesis as to the global com-
pletion of 11D supergravity towards M-theory, via flux quantization [SS25a]
of the theory’s C-field. This Hypothesis H says that:
(i) far from singularities, M-theory flux is quantized in twisted Cohomotopy
theory [FSS20][FSS21][BSS19][FSS22];
(ii) at singularities, M-theory is quantized in RO-graded equivariant Coho-
motopy theory [HSS18][SS20][BSS19].
(See these references for various consistency checks of this hypothesis.)

The impact of Theorem 6.2.6, in its specialization to Ex. 6.2.19, is to show
that these two cases are indeed two aspects of a single unified cohomology
theory: J-twisted proper orbifold Cohomotopy theory.
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sis, 1985, [math.huji.ac.il/∼piz/documents/TheseEtatPI.pdf]

[IZ13] P. Iglesias-Zemmour, Diffeology, Amer. Math. Soc., Providence, RI,
2013, [ISBN:978-0-8218-9131-5].

[IKZ10] P. Iglesias-Zemmour, Y. Karshon, and M. Zadka, Orbifolds
as diffeologies, Trans. Amer. Math. Soc. 362 (2010), 2811-2831,
[arXiv:math/0501093].



192 Bibliography

[Jam95] I. M. James, Introduction to fibrewise homotopy theory, in I. M. James
(ed.), Handbook of Algebraic Topology, Oxford University Press, 1995,
[doi:10.1016/B978-0-444-81779-2.X5000-7].

[Ja87] J. F. Jardine, Simplicial presheaves, J. Pure Applied Algeb. 47 (1987),
35-87, [core.ac.uk/download/pdf/82485559.pdf]

[Ja96] J. F. Jardine, Boolean localization, in practice, Documenta Math. 1
(1996), 245-275, [documenta:vol-01/13].

[Ja01] J. F. Jardine, Stacks and the homotopy theory of simpli-
cial sheaves, Homology Homotopy Appl. 3 (2001), 361-384,
[euclid:euclid.hha/1139840259].

[Ja15] J. F. Jardine, Local homotopy theory, Springer, 2015,
[doi:10.1007/978-1-4939-2300-7].

[JKK05] T. J. Jarvis, R. Kaufmann, and T. Kimura, Stringy K-
theory and the Chern character, Invent. Math. 168 (2007), 23-81,
[arXiv:math/0502280].

[Je97] T. D. Jeffres, Singular Set of Some Kähler Orbifolds, Trans. Amer.
Math. Soc. 349 (1997), 1961-1971, [jstor:2155355].

[JY11] L. Ji and S.-T. Yau, Transformation Groups and Moduli Spaces of
Curves, International Press of Boston, 2011, [ISBN:9781571462237].

[Jo99] C. K. Johnson, Crystallographic Topology 2: Overview and Work in
Progress, in: Trends in Mathematical Physics, AMS/International Press
(1999) [amsip-13]

[JBD96] C. K. Johnson, M. N. Burnett and W. D. Dunbar, Crystallographic
Topology and Its Applications, in: Crystallographic Computing 7 – Pro-
ceedings of the Macromolecular Crystallography Computing School (1996)
[www.iucr.org/ data/assets/pdf file/0010/9001/cj.pdf]

[Joh02] P. Johnstone Sketches of an Elephant – A Topos Theory Compendium,
Oxford University Press, 2002, vol. 1 [ISBN:9780198534259], vol. 2
[ISBN:9780198515982].

[Joy08a] A. Joyal, Notes on quasi-categories, 2008,
[ncatlab.org/nlab/files/JoyalNotesOnQuasiCategories.pdf]

[Joy08a] A. Joyal, Notes on Logoi, 2008,
[ncatlab.org/nlab/files/JoyalOnLogoi2008.pdf]

[Jo95] D. Joyce, Manifolds with many complex structures, Quarter. J. Math.
46 (1995), 169-184, [doi:10.1093/qmath/46.2.169].



Bibliography 193

[Jo98] D. Joyce, On the topology of desingularizations of Calabi-Yau orbifolds,
[arXiv:math/9806146].

[Jo99a] D. Joyce, Deforming Calabi-Yau orbifolds, Asian J. Math. 3 (1999),
853-868, [doi:10.4310/AJM.1999.v3.n4.a7].

[Jo99b] D. Joyce, A new construction of compact 8-manifolds with
holonomy Spin(7), J. Differential Geom. 53 (1999), 89-130,
[euclid:jdg/1214425448].

[Jo00] D. Joyce, Compact Manifolds with Special Holonomy, Oxford Univer-
sity Press, Oxford, 2000, [ISBN-10:0198506015].

[Jo01] D. Joyce, Compact Riemannian manifolds with excep-
tional holonomy, Surv. Differential Geom. 6 (2001), 39-65,
[doi:10.4310/SDG.2001.v6.n1.a3].

[Jo12] D. Joyce, D-manifolds and d-orbifolds: a theory of derived differential
geometry, Oxford University Press (to appear), [arXiv:1208.4948].

[Ju20] B. Juran, Orbifolds, Orbispaces and Global Homotopy Theory,
[arXiv:2006.12374].
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