Obstruction theory for parameterized higher WZW terms Urs Schreiber (Prague) June 11, 2015 Talk at AMS-EMS-SPM meeting 2015 in Porto http://ncatlab.org/schreiber/show/Obstruction+theory+for+parameterized+higher+WZW+terms FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA funded by UID/MAT/00297/2013 #### Motivation **Classical fact:** Obstruction to globalizing a form $\omega \in \Omega^{p+2}_{cl}(\mathbb{R}^n)$ over an *n*-manifold is existence of $\operatorname{Stab}_{\mathrm{GL}(n)}(\omega)$ -structure. Example: $\omega \in \Omega^3(\mathbb{R}^7)$ the associative 3-form $\Rightarrow G_2$ -structure. Questions: What happens as... - 1.) ...forms are prequantized to Deligne cocycles L? - **2.)** ...base is allowed to be a higher étale stack? - **A)** What are the obstructions to existence of a globalization? - **B)** What is group stack of symmetries of any given globalization? #### **Application:** All Green-Schwarz-type super p-brane sigma-models are controlled by L_{WZW}^{p+2} globalized over a super-spacetime; for the D-branes and for the M5-brane the base is a higher stack modeled on the homotopy fiber of \mathbf{L}_{WZW}^{F1} , \mathbf{L}_{WZW}^{M2} , respectively. - **A)** Obstruction to global existence: classical anomalies (was completely open) - **B)** Symmetries of given globalization: BPS charge extended superisometries (was only known rationally) ### Blueprint: ordinary geometric prequantization Consider $$\omega:=dp_i\wedge dq^i\in\Omega^2_{\mathrm{cl}}(\mathbb{R}^{2n})$$ and $\mathbf{L}:=p_i\wedge dq^i$, then: - **1.** definite globalization (X, ω^X) : - **2.** definite globalization $(X; \mathbf{L}^X)$: - **3.** symmetry group of (X, ω^X) : - **4.** symmetry group of (X, \mathbf{L}^X) : alm. symplectic structure; prequantum line bundle; symplectomorphism group; quantomorphism group. Since **L** has automorphisms, where ω does not, quantomorphisms form (central) extension: $$\bigoplus_{\pi_0(X)} (\mathbb{R}/\Gamma)^{\subset} \longrightarrow \operatorname{QuantMorph}(X, \mathbf{L}^X) \longrightarrow \operatorname{HamSympl}(X, \omega^X)$$ On the Lie algebra level this is the Poisson bracket extension: $$0 \to H^0(X) \longrightarrow \mathfrak{pois}(X, \omega^X) \longrightarrow \operatorname{HamVect}(X, \omega^X) \to 0$$. For (X, ω^X) a symplectic vector space, this is the Heisenberg extension. ### Higher differential geometry Lift classical theory from the category ${\rm SmoothMfd}$ to the homotopy theory ${\bf H}$ of simplicial sheaves over smooth manifolds ("smooth ∞ -groupoids", "higher smooth stacks"). **Theorem** (classical+<u>Lurie'12</u>): A_{∞} -group stacks are equivalently loopings of pointed connected higher stacks: $$\operatorname{Grp}(\mathbf{H}) \xrightarrow{\stackrel{\Omega}{\longleftarrow}} \mathbf{H}_{\geq 1}^{*/}$$ **Theorem** [dcct]: **H** is cohesive, the derived global section coreflection $\flat := \operatorname{Lconst} \circ \Gamma$ produces moduli stacks of flat G-principal connections for any A_{∞} -group stack G. The double homotopy fiber of the \flat -counit is the higher #### Higher prequantization The Dold-Kan correspondence $DK : Ch_{\bullet \geq 0} \xrightarrow{\simeq} Ab^{\Delta^{op}} \to Set^{\Delta^{op}}$ includes traditional sheaf hypercohomology into \mathbf{H} . Write: $$egin{aligned} \mathbf{B}^{p+1}(\mathbb{R}/\Gamma) &:= \mathrm{DK}((\underline{\mathbb{R}}/\Gamma)[p+1]); \ label{eq:dr} eta_{\mathrm{dR}} \mathbf{B}^{p+2}\mathbb{R} &:= \mathrm{DK}(\mathbf{\Omega}^1 \overset{d}{ ightarrow} \cdots \overset{d}{ ightarrow} \mathbf{\Omega}_{\mathrm{cl}}^{p+2}) \end{aligned}$$ **Proposition** [dcct]: Homotopy pullback of MC-form $\theta_{\mathbf{B}^{p+1}(\mathbb{R}/\Gamma)}$ along the global differential form inclusion is given by the Deligne complex: $$\mathsf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}} \simeq \mathrm{DK}[\Gamma \hookrightarrow \Omega^0 \stackrel{d}{\to} \Omega^1 \stackrel{d}{\to} \cdots \stackrel{d}{\to} \Omega^{p+1}]$$ **Fact**: $X \stackrel{\mathsf{L}}{\to} \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}}$ has holonomy over closed mfd. Σ : $$[\Sigma,X] \xrightarrow{\text{[Σ,$L]}} [\Sigma,B^{p+1}(\mathbb{R}/\Gamma)_{\text{conn}}] \xrightarrow{\text{fiber}} B^{p+1-\dim(\Sigma)}(\mathbb{R}/\Gamma)_{\text{conn}}$$ #### Infinitesimal symmetries **Theorem** [FRS13b]: For $X \in \operatorname{SmthMfd}$, infinitesimal symmetries of (X, \mathbf{L}) form L_{∞} -algebra extension of vector fields by the abelian L_{∞} -algebra on the de Rham complex, classified by the L_{∞} -cocycle given by $\iota_{(-)}\omega$: there is a homotopy fiber sequence $$\Omega^{ullet}[p] \longrightarrow \mathfrak{poiss}(X, \mathbf{L})$$ $$\downarrow \qquad \qquad \downarrow$$ $$\operatorname{HamVect}(X, \omega) \xrightarrow{\iota_{(-)}\omega} \Omega^{ullet}[p+1]$$ **Corollary.** Under 0-truncation τ_0 (chain homology) this becomes a central extension of Lie algebras $$0 \longrightarrow H^p_{\mathrm{dR}}(X) \longrightarrow \tau_0 \mathfrak{poiss}(X, \mathbf{L}) \longrightarrow \mathrm{HamVect}(X, \omega) \to 0$$. Regarding **L** as a WZW term, then $\tau_0 \mathfrak{poiss}(X, \mathbf{L})$ is the Dickey bracket on Noether currents¹ for target space symmetries of the sigma-model with WZW term **L** (compare AGIT'89). ¹With Igor Khavkine. #### Finite symmetries #### **Definition:** - 1.) conc : $[X, \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}}] \longrightarrow (\mathbf{B}^{p}(\mathbb{R}/\Gamma))\mathbf{Conn}(X)$ projection on moduli of vertical differential forms; - 2.) $QuantMorph(X, L) := Stab_{Aut(X)}(conc(L))$ homotopy stabilizer group; - 3.) HamSympl(X, L) := $\operatorname{im}_1(\operatorname{QuantMorph}(X, L) \to \operatorname{Aut}(X))$ 1-image of quantomorphisms in automorphisms; - 4.) $\mathbf{Heis}_{G}(X, \mathbf{L}) := \rho^* \mathbf{QuantMorph}(X, \mathbf{L})$ its pullback along any G-action $\rho : G \to \mathbf{Aut}(X)$. **Theorem** [FRS13a]: There is a homotopy fiber sequence: $$(\mathsf{B}^{p-1}(\mathbb{R}/\Gamma))\mathsf{FlatConn}(X) o \mathsf{QuantMorph}(X,\mathsf{L})$$ $$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \mathsf{HamSympl}(X,\mathsf{L}) \overset{\mathsf{KS}}{\longrightarrow} \mathsf{B}((\mathsf{B}^{p-1}(\mathbb{R}/\Gamma))\mathsf{FlatConn}(X))$$ **Example:** For p = 0 this reduces to the traditional Heisenberg-Kostant-Souriau quantomorphism group extension. ## Obstruction theory, part I #### **Theorem** [dcct]: Let G be an A_{∞} -group stack and $L: G \longrightarrow \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}}$ with $G \hookrightarrow \mathbf{HamSympl}(X, \mathbf{L})$. Then the obstruction to a definite parameterization of ${\bf L}$ over the fibers of a ${\it G}$ -principal ∞ -bundle ${\it P} \to {\it X}$ [NSS12a] is equivalently: - 1.) a lift of the structure group through $\overline{\operatorname{Heis}_G(X,\mathbf{L})} \to G$; - 2.) a trivialization of KS(P). **Example** [FRS13a]: For $G = \mathrm{Spin}$ and $\mathbf{L}_{\mathrm{WZW}}^{\langle -, [-,-] \rangle}$ the traditional WZW term, then $\label{eq:heis} \begin{aligned} &\text{Heis}_{\mathrm{Spin}}(\mathrm{Spin},\textbf{L}_{\mathrm{WZW}}^{\langle-,[-,-]\rangle}) \simeq \mathrm{String} \\ &\text{is the smooth String-2-group, and hence a definite} \\ &\text{parameterization here is precisely a smooth String-structure.} \\ &\text{This gives the geometric interpretation of the cancellation of the Green-Schwarz anomaly due to Distler-Sharpe'07} \;. \end{aligned}$ #### Higher WZW terms For \mathfrak{g} an L_{∞} -algebra and $\mu_{p+2} \in \mathrm{CE}^{p+2}(\mathfrak{g})$ an L_{∞} -cocycle, write $\mathbf{B}G \in \mathbf{H}$ for the (p+2)-coskeleton of the simplicial sheaf of flat \mathfrak{g} -valued forms on simplices, parameterized by manifolds U: $$\textbf{\textit{B}}\textit{\textit{G}}: \big(\textit{\textit{U}} \in \operatorname{SmoothMfd}\big) \mapsto \operatorname{cosk}_{p+2}\big(\Omega_{\underset{\operatorname{vert}}{\operatorname{flat}}}\big(\textit{\textit{U}} \times \Delta_{\operatorname{smth}}^{\bullet}, \mathfrak{g}\big)\big)$$ **Theorem** [FSS10]: μ Lie integrates to $\mathbf{c}: \mathbf{B}G \longrightarrow \mathbf{B}^{p+2}(\mathbb{R}/\Gamma)$ pullback of the MC form on G to globally defined forms. Theorem [dcct]: Ω c underlies a unique prequantization $\mathbf{L}_{\mathrm{WZW}}^{\mu}: \tilde{G} \longrightarrow \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}}$ of $\mu(\theta_{\tilde{G}}) \in \Omega^{p+2}(\tilde{G})$. This is the higher WZW term of μ . ## Higher étale stacks (higher orbifolds) Let now **H** be simplicial sheaves over *formal* manifolds. **Theorem** [dcct]: This is differentially cohesive, reduction \Re of infinitesimals has a right adjoint \Im ("de Rham stack functor"). **Definition.** A morphism is infinitesimally étale -et if its \Im -unit is a homotopy pullback square. **Definition.** For V an A_{∞} -group stack, a V-étale stack is an $X \in \mathbf{H}$ such that there exists a V-cover: $V \leftarrow \mathrm{et} - U - \mathrm{et} \twoheadrightarrow X$. **Definition.** The *infinitesimal disk bundle* is: $$T_{\inf}X \xrightarrow{\text{ev}} X$$ $$\downarrow^{p} \text{ (pb)} \qquad \downarrow$$ $$X \xrightarrow{} \Im X$$ **Theorem** [dcct]: 1.) The infinitesimal disk bundle of V trivializes via left translation, with typical fiber the infinitesimal disk \mathbb{D}_e^V ; 2.) the infinitesimal disk bundle of any V-étale stack is locally trivial and associated to a $\mathrm{GL}(V) := \operatorname{Aut}(\mathbb{D}_e^V)$ -principal ∞ -bundle: the *frame bundle* $\mathrm{Fr}(X) \to X$. ## Obstruction theory, part II **Definition**: Given $\mathbf{L}: V \longrightarrow \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}}$, a definite globalization over a V-étale stack X is $\mathbf{L}^X: X \to \mathbf{B}^{p+1}(\mathbb{R}/\Gamma)_{\mathrm{conn}}$ such that its restriction to infinitesimal disks along $T_{\inf}X \stackrel{\mathrm{ev}}{\to} X$ is a parameterization (as above) definite on $\mathbf{L}|_{\mathbb{D}^V_x}$. **Corollary** [dcct]: An obstruction to definite globalization is $\mathbf{Heis}_{\mathrm{GL}(V)}(\overline{\mathbb{D}_e^V}, \mathbf{L}|_{\overline{\mathbb{D}_e^V}})$ -structure, hence trivialization of the **KS**-class of the frame bundle. **Example**: For X an \mathbb{R}^{2n} -manifold and $\mathbf{L}=p^i\wedge dq^i$, and for second order infinitesimals, then $\mathbf{Heis}_{\mathrm{GL}(V)}(\mathbf{L}|_{\mathbb{D}_e^V})\simeq \mathrm{Mp}^c(2n)$ is the Metaplectic^c group. **Example** $[\operatorname{dcct}]^2$: For V super-Minkowski spacetime and \mathbf{L} the κ -WZW term for the GS super-string, then $\operatorname{Heis}_{\operatorname{Aut}_{\operatorname{grp}}(\mathbb{D}_e^V)}(\mathbf{L}|_{\mathbb{D}_e^V})$ is a $\mathbf{B}(\mathbb{R}/\Gamma)$ -extension of the Lorentzian Spin group $\operatorname{Spin}(d-1,1)$. ²With John Huerta. ## Higher supergeometry Let now **H** be simplicial sheaves over formal supermanifolds. ## **Theorem** $[dcct]^3$: \exists Progression of adjoint (co-)localizations: \rightarrow satisfying $\stackrel{\leadsto}{\Im} \simeq \Im$. ### $\textbf{Proposition} \ \underline{[dcct]} :$ For X a V-étale stack, then $\overset{\leadsto}{X}$ is $\overset{\leadsto}{V}$ -étale stack. | | id | \dashv | id | |---------|-----------------------------|----------|-----------------------------------| | | V | | V | | even | \Rightarrow | \dashv | ~ → | | | \perp | | \perp | | bosonic | \leadsto | \dashv | $\mathrm{loc}_{\mathbb{R}^{0 1}}$ | | | V | | V | | reduced | \Re | \dashv | \Im | | | \perp | | \perp | | étale | \Im | \dashv | & | | | V | | V | | shape | $\mathrm{loc}_{\mathbb{R}}$ | \dashv | b | | | \perp | | \perp | | flat | b | \dashv | # | | | V | | V | | | Ø | \dashv | * | | | | | | ³With Dave Carchedi. #### Application: GS-WZW terms for super *p*-branes Fact Azcárraga-Townsend'89+[FSS13]: The iterative super- L_{∞} $b^p\mathbb{R}$ -extensions of the superpoint come from the WZW cocycles μ of all the Green-Schwarz-type super-p-branes sigma-models: #### M5-brane on M2-brane extended superspacetime I Regard super-Minkowski spacetime $\mathbb{R}^{d-1,1|N}$ as a super Lie algebra. Write $$\mu_{p+2} := \overline{\psi} \Gamma^{\mathsf{a}_1 \cdots \mathsf{a}_p} \wedge \psi \wedge \mathsf{e}_{\mathsf{a}_1} \wedge \cdots \mathsf{e}_{\mathsf{a}_p} \ \in \mathrm{CE}(\mathbb{R}^{d-1,1|N}) \,.$$ **Proposition** D'Auria-Fré 89: The elements $\mu_4, \mu_7 \in \mathrm{CE}(\mathbb{R}^{10,1|32})$ satisfy $d\mu_4 = 0$, $d\mu_7 = \mu_4 \wedge \mu_4$. **Proposition** [FSS13]: The M2-brane extended super Minkowski spacetime with $CE(\hat{\mathbb{R}}^{10,1|32}):=CE((\mathbb{R}^{10,1|32})\otimes\langle h_3\rangle,dh_3=-\mu_4)$ is the L_{∞} -homotopy fiber of μ_4 and we have $$\hat{\mathbb{R}}^{10,1|32} \xrightarrow{h_3 \wedge \mu_4 + \frac{1}{15}\mu_7} b^6 \mathbb{R}$$ $$\downarrow \qquad \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad$$ matching the proposal in BLNPST'97. #### M5-brane on M2-brane extended superspacetime II **Theorem** [dcct]: For a definite globalization of consecutive WZW terms such as $$\widetilde{\hat{X}} \xrightarrow{\mathsf{L}_{\mathrm{WZW}}^{\mathrm{M5}}} \to \mathsf{B}^{6} U(1)_{\mathrm{conn}}$$ $$\downarrow^{\mathsf{L}_{\mathrm{WZW}}^{\mathrm{M2}}} \to \mathsf{B}^{3} U(1)_{\mathrm{conn}}$$ $$\hat{X}$$ is a $\mathbf{B}^2(\mathbb{R}/\Gamma)_{\text{conn}}$ -bundle over X . Hence a map $\Sigma o \widetilde{\hat{X}}$ is a pair consisting of - 1. a sigma-model field $\phi: \Sigma \to X$; - 2. a ϕ -twisted degree-3 Deligne cocycle (twisted 2-gerbe with connection) on Σ . This is the "tensor multiplet" field content of the M5-brane globalized to a twisted 2-gerbe connection. #### M5-brane on M2-brane extended superspacetime III **Proposition** above results+ $\underline{\text{Candiello-Lechner'93}}$: First order integrable definite globalization of \mathbf{L}_{WZW}^{M2} implies super-Lorentzian structure with vanishing supertorsion, this in turn implies the vaccuum equations of motion of 11d Einstein gravity., enhances them by cancelling the obstruction to making the M2-brane and M5-brane WZW terms be globally defined. #### **Proposition** [dcct]: The isometry $\overline{\text{action}}$ on X lifts to an ∞ -action on \hat{X} . **Corollary**: The infinitesimal symmetries of $\mathbf{L}_{\mathrm{WZW}}^{\mathrm{M5}}$ are an extension of superisometries of spacetime by H^5 of the $K(\mathbb{Z},3)$ -bundle underlying $\mathbf{L}_{\mathrm{WZW}}^{\mathrm{M2}}$. Running the Serre spectral sequence, rationally this is $H^2(X) \oplus H^5(X)$. This is the traditional result for the *M*-theory super Lie algebra, the extension of the superisometries by BPS charges for the M2-brane and the M5-brane Sorokin-Townsend'97. The above analysis gives the finite global symmetries involving various (torsion) corrections to this. ### M5-brane on M2-brane extended superspacetime - Outlook **Proposition:** M5-cocycle descends equivariantly down to super-Minkowski spacetime By [NSS12a] this rational 4-sphere valued cocycle is in degree-7 twisted cohomology, the twist being the degree-4 class of the supergravity C-field. This structure of the M-theory C-field was conjectured in Sati'13 ### M5-brane on M2-brane extended superspacetime - Outlook All cocycles here are Spin -invariant. Hence we may ask for extending them from super-Minkowski to super-Poincaré $\mathfrak{iso}(\mathbb{R}^{10,1|32})$. Such extensions are given by shifting h_3 by an \mathfrak{so} -3-cocycle and μ_7 by an \mathfrak{so} -7-cocycle. The only such are $\propto \langle \omega^{\wedge 3} \rangle$, $\langle \omega^{\wedge 7} \rangle$: $$iso(\mathbb{R}^{10,1|32})$$ $$\downarrow \qquad \qquad (h_3 + \langle \omega^{\wedge 3} \rangle) \wedge (g_4 + \mu_4) + \frac{1}{15} \mu_7 + \langle \omega^{\wedge 7} \rangle$$ $$\mathbb{R}^{10,1|32} \xrightarrow{\qquad \qquad \qquad } b^6 \mathbb{R}/b^2 \mathbb{R}$$ This is then to be globalized not just over X, but over the frame bundle $\operatorname{Fr}(X)$. By the above obstruction theory, the parameterization of the WZW terms for $\langle \omega^{\wedge 3} \rangle$ and $\langle \omega^{\wedge 7} \rangle$ over the Frame bundle imposes String-structure and Fivebrane structure (cancelling the I_8 -one loop term). #### Conclusion - ► There is good general abstract theory for prequantized definite globalizations of higher degree forms over higher étale stacks. - ▶ Higher Lie theory provides prequantization of every L_{∞} -cocycle to a higher WZW term. - Applying this to the bouquet of cocycles emanating from the superpoint yields super-orbifolds equipped with Lorentzian structure solving the vacuum Einstein equations of 11-dimensional supergravity and equipped with the classical anomaly cancellation that makes the M2-brane and M5-brane sigma models globally well-defined. The group stack of symmetries of these structures encodes various torsion corrections to the BPS charge extension of the superisometries. The restriction to *vacuum* solutions (vanishing gravitino and C-field strength) could be circumvented by intervening by hand, but it is maybe noteworthy that these are the solutions relevant for realistic phenomenology (e.g. Acharya'02, Acharya'12). ## Thank you! For more details see course notes at ncatlab.org/schreiber/show/Structure + Theory + for + Higher + WZW + Terms - D. Fiorenza, U. Schreiber, J. Stasheff. Čech-cocycles for differential characteristic classes, Adv. in Theor. and Math, Phys., Volume 16 Issue 1 (2012) arXiv:1011.4735 - D. Fiorenza, C. L. Rogers, U. Schreiber, Higher geometric prequantum theory, arXiv:1304.0236 - D. Fiorenza, C. L. Rogers, U. Schreiber, L_{∞} -algebras of local observables from higher prequantum bundles, Homology, Homotopy and Applications, Volume 16 (2014) Number 2, p. 107142 arXiv:1304.6292 T. Nikolaus, U. Schreiber, D. Stevenson, Principal ∞ -bundles – General theory, Journal of Homotopy and Related Structures (2014), arXiv:1207.0248 D. Fiorenza, H. Sati, U. Schreiber, Super Lie n-algebra extensions, higher WZW models and super p-branes with tensor multiplet fields, Intern. J. of Geom. Meth, in Mod. Phys., Volume 12, Issue 02 (2015) 1550018 arXiv:1308.5264 U. Schreiber, Differential cohomology in a cohesive topos, arXiv:1310.7930, expanded version at: dl.dropboxusercontent.com/u/12630719/dcct.pdf