\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{category theoretic aspects of the theory of group schemes} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{group_functors_and_affine_group_schemes}{(Group) functors and affine (group) schemes}\dotfill \pageref*{group_functors_and_affine_group_schemes} \linebreak \noindent\hyperlink{group_schemes}{(Group) schemes}\dotfill \pageref*{group_schemes} \linebreak \noindent\hyperlink{constant_group_scheme}{Constant (group) scheme}\dotfill \pageref*{constant_group_scheme} \linebreak \noindent\hyperlink{formal_group_scheme}{Formal (group) scheme}\dotfill \pageref*{formal_group_scheme} \linebreak \noindent\hyperlink{examples_of_group_schemes}{Examples of (group) schemes}\dotfill \pageref*{examples_of_group_schemes} \linebreak \noindent\hyperlink{tale_group_scheme}{Étale (group) scheme}\dotfill \pageref*{tale_group_scheme} \linebreak \noindent\hyperlink{cartier_dual_of_a_finite_flat_commutative_group_scheme}{Cartier dual of a finite flat commutative group scheme}\dotfill \pageref*{cartier_dual_of_a_finite_flat_commutative_group_scheme} \linebreak \noindent\hyperlink{ptorsion}{p-torsion}\dotfill \pageref*{ptorsion} \linebreak \noindent\hyperlink{pdivisible_groups}{p-divisible groups}\dotfill \pageref*{pdivisible_groups} \linebreak \noindent\hyperlink{witt_rings_and_dieudonn_modules}{Witt rings and Dieudonné modules}\dotfill \pageref*{witt_rings_and_dieudonn_modules} \linebreak \hypertarget{group_functors_and_affine_group_schemes}{}\subsection*{{(Group) functors and affine (group) schemes}}\label{group_functors_and_affine_group_schemes} Let $k$ be a ring. Let $k.Ring$ denote the category of $k$-rings. Let $k.Fun$ denote the category of (contravariant) functors $X:k:Ring\to Set$. Let $k.Aff$ denote the category of representable $k$-functors; we call this category the \emph{category of affine $k$-schemes} and an object of this category we write as \begin{displaymath} Spec_k A:\begin{cases} k.Ring\to Set \\ R\mapsto hom(A,R) \end{cases} \end{displaymath} We obtain in this way a functor \begin{displaymath} Spec_k:k.Ring\to k.Fun \end{displaymath} This functor has a left adjoint \begin{displaymath} (O_k\dashv Spec_k):k.Ring\stackrel{Spec_k}{\to} k.Fun \end{displaymath} assigning to a $k$-functor its \emph{ring of functions}. This adjunction restricts to an adjoint equivalence \begin{displaymath} (O_k\dashv Spec_k):k.Ring\stackrel{Spec_k}{\to} k.Aff \end{displaymath} and it restricts moreover to an adjoint equivalence \begin{displaymath} (O_k\dashv Spec_k):k.Bi Ring\stackrel{Spec_k}{\to} k.Aff.comm.Gr \end{displaymath} between the categories of $k$-birings and the category of commutative affine $k$-group schemes. To see this be aware that a $k$-biring is a commutative ring object in ${k.Ring.comm}^{op}\simeq k.Aff.Sch$ (where the latter denotes the category of affine schemes). \hypertarget{group_schemes}{}\subsection*{{(Group) schemes}}\label{group_schemes} A $k$-functor is called a \emph{$k$-scheme} if it is a sheaf for the Zariski Grothendieck topology on $k.Ring^{op}$. We will consider the moral of this op-ing below. To give more details, recall that the closed sets of the Zariski topology on the [[nLab:spectrum]] $Spec A$ of a $k$-ring $A$ is defined by \begin{displaymath} V(I):=\{P\in Spec \, A|I\subseteq P\} \end{displaymath} We can characterize the the elements of $V(a)$ also by \begin{displaymath} e_a(P)=0\, iff\, P\in V(a) \end{displaymath} where \begin{displaymath} e_a:\begin{cases} Spec (A)\to Quot(A/P) \\ P\mapsto \frac{a\,mod\,P}{1} \end{cases} \end{displaymath} where $Quot(A/P)$ denotes the quotient field (aka. field of fractions) of the [[nLab:integral domain]] $A/P$. This construction generalizes to $k$-functors by defining an \emph{open subfunctor of a $k$-functor $X$} by \begin{displaymath} V(I):R\mapsto\{x\in X(R)| I\subseteq x\} \end{displaymath} where $I\subseteq O(X)$. By the above alternative characterization, the assigned set consists precisely of those $x$ for which $f(x)=0$ for all $f\in I$. \hypertarget{constant_group_scheme}{}\subsection*{{Constant (group) scheme}}\label{constant_group_scheme} $Sch_k$ is [[nLab:copower|copowered (= tensored)]] over $Set$. We define the \emph{constant $k$-scheme} on a set $E$ by \begin{displaymath} E_k:=E\otimes Sp_k k=\coprod_{e\in E}Sp_k k \end{displaymath} For a scheme $X$ we compute $M_k(E_k,E)=Set(Sp_k k,X)^E=X(k)^E=Set(E,X(k))$ and see that there is an adjunction \begin{displaymath} ((-)_k\dashv (-)(k)):Sch_k\to Set \end{displaymath} If $E$ is a group $E_k$ is a group scheme. We denote the category of $k$-schemes by $k.Sch$. A \emph{$k$-group scheme} is a [[nLab:group object]] in $k.Sch$. The category of $k$-group schemes we denote by $k.Grp$. \hypertarget{formal_group_scheme}{}\subsection*{{Formal (group) scheme}}\label{formal_group_scheme} Let $k$ be a field. A \emph{finite $k$-ring} is defined to be a $k$-algebra which is a finite dimensional $k$-[[nLab:vector space]]. The category of finite $k$-rings we denote by $fin.k.Ring$. A \emph{finite $k$-functor} is defined to be a covariant functor $X:fin.k.Ring\to Set$. The category of finite $k$-functors we denote by $fin.k.Fun$. A \emph{finite $k$-scheme} is defined to be $k$-scheme which is a finite $k$-functor. The category of finite $k$-schemes we denote by $fin.k.Sch$. Analogously we define the category of \emph{finite group schemes}. A \emph{formal group scheme} is defined to be a codirected colimit of finite $k$-schemes. Recall that we have a covariant embedding \begin{displaymath} Spec_k:k.Ring^{op}\to k.Fun \end{displaymath} but we equivalently an embedding \begin{displaymath} Spec^*:k.co Ring\to k.Fun \end{displaymath} where by $k.co Ring$ we denote the category of $k$-[[nLab:coring|corings]]. A \emph{coring} is a [[nLab:comonoid]] in the category of affine schemes (the latter is the opposite category of $k.Ring$). If we restrict to finite $k$-rings by linear algebra we have a bijection $A^*\otimes R=hom(A,k)\simeq hom(A,R)$ and can write \begin{displaymath} Spec_k C: R\mapsto\{u\in A^*\otimes R|\Delta_R u=u\otimes u, \epsilon_R u=1\} \end{displaymath} where $C$ is a $k$-coring, $R$ a finite $k$-ring, $\Delta_R$ the skalar-extended comultiplication, $\epsilon_R$ the skalar-extended counit. \hypertarget{examples_of_group_schemes}{}\subsubsection*{{Examples of (group) schemes}}\label{examples_of_group_schemes} [[examples of (group) schemes]] \hypertarget{tale_group_scheme}{}\subsection*{{Étale (group) scheme}}\label{tale_group_scheme} (see also [[nLab:Grothendieck's Galois theory]]) An étale group scheme over a field $k$ is defined to be a directed colimit \begin{displaymath} colim_{(k\hookrightarrow k^\prime)\in T\subseteq Sep} Spec\, k^\prime \end{displaymath} where $T$ denotes some set of finite separable field extensions of $k$. \hypertarget{cartier_dual_of_a_finite_flat_commutative_group_scheme}{}\subsection*{{Cartier dual of a finite flat commutative group scheme}}\label{cartier_dual_of_a_finite_flat_commutative_group_scheme} Let $G$ be a commutative $k$-group functor (in cases of interest this is a finite flat commutative [[nLab:group scheme]]). Then the \emph{Cartier dual} $D(G)$ of $G$ is defined by \begin{displaymath} D(G)(R):=Gr_R(G\otimes_k R,\mu_R) \end{displaymath} where $\mu_k$ denotes the group scheme assigning to a ring its multiplicative group $R^\times$ consisting of the invertible elements of $R$. This definition deserves the name [[nLab:duality]] since we have \begin{displaymath} hom(G,D(H))=hom(H,D(G))=hom(G\times H,\mu_k) \end{displaymath} \hypertarget{ptorsion}{}\subsection*{{p-torsion}}\label{ptorsion} Let $s:R\to S$ be a morphism of rings. Then we have an [[nLab:adjunction]] \begin{displaymath} (s^*\dashv s_*):S.Mod\stackrel{s_*}{\to} R.Mod \end{displaymath} from the category of $S$-[[nLab:module|modules]] to that of $R$-modules where \begin{displaymath} s^*:A\mapsto A\otimes_s S \end{displaymath} is called \emph{scalar extension} and $s_*$ is called \emph{scalar restriction}. If $X$ denotes some [[nLab:scheme]] over a $k$-ring for $k$ being a field of characteristic $p$, we define its $p$-torsion component-wise by $X^{(p)}(R):=X(s_* R)$. \hypertarget{pdivisible_groups}{}\subsubsection*{{p-divisible groups}}\label{pdivisible_groups} \hypertarget{witt_rings_and_dieudonn_modules}{}\subsection*{{Witt rings and Dieudonné modules}}\label{witt_rings_and_dieudonn_modules} \end{document}