\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{higher inductive type} 1Categorially a \emph{higher inductive type} in an extensional type theory is an initial algebra of an endofunctor. In intensional type theory this analogy fails. In particular $W$[[W-type|-type]]s in an extensional type theory correspond to initial algebras of [[nLab:polynomial functor]]s. Also this is not true for intensional type theories. This failure of intensional type theory can be (at least for $W$-types and some more general cases) remedied by replacing ``initial'' by ``homotopy initial''. This is the main result (to be found in §2) of \begin{itemize}% \item Steve Awodey, Nicola gambino, Kristina Sojakova, inductive types in homotopy type theory, \href{http://arxiv.org/abs/1201.3898}{arXiv:1201.3898} \end{itemize} \hypertarget{extensional_vs_intensional_type_theories}{}\subsection*{{Extensional vs. intensional type theories}}\label{extensional_vs_intensional_type_theories} The four standard forms of typing judgements are (1) $A:Type$ (2) $A=B:Type$ \emph{definitional equality for types} (3) $a:A$ (4) $a=b:A$ \emph{definitional equality for termes} There is also another notion of equality - namely \emph{propositional equality}: \hypertarget{rules_for_identity_types}{}\subsubsection*{{Rules for identity types}}\label{rules_for_identity_types} (1) $Id$-formation rule \begin{displaymath} \frac{A:Type\; a:A\; b:A}{Id_A(a,b):Type} \end{displaymath} (2) $Id$-introduction rule \begin{displaymath} \frac{a:A}{refl(a):Id_A(a,a)} \end{displaymath} (3) $Id$-elimination rule \begin{displaymath} \frac{\itexarray{a,y:A,u:Id_A(x,y)\vdash C(x,y,u):Type\\x:A\vdash c(x):C(x,x,refl(x))}}{x,y:A,u:Id_A(x,y)\vdash idrec(x,y,u,c):C(x,y,u)} \end{displaymath} (4) $Id$-computation rule \begin{displaymath} \frac{\itexarray{a,y:A,u:Id_A(x,y)\vdash C(x,y,u):Type\\x:A\vdash c(x):C(x,x,refl(x))}}{x:A\vdash idrec(x,x,refl(x),c)=c(x):C(x,xrefl(x))} \end{displaymath} One important effect of not having the \emph{identity-reflection rule} \begin{displaymath} \frac{p:Id_A(x,y)}{x=y:A} \end{displaymath} is that it is impossible to prove that the empty type is an initial object. There are some \emph{extensionality principles} which are weaker than the identity reflection rule: Streicher's K-rule, the \emph{Uniqueness of Identity Proofs} (UIP) which also has benn considered in context of Observational Type Theory. However these constructions seem to be ad hoc and lack a conceptual basis. \hypertarget{the_system_}{}\subsection*{{The system $\mathcal{H}$}}\label{the_system_} The dependent type theory $\mathcal{H}$ is defined to have -in addition to the [[rules of type theories|standard structural rules]]- the folowing rules: (1) the rules for identity types. (2) rules for $\Sigma$-types as presented in Nordstrom-Petterson-Smith §5.8 (3) rules for $\Pi$-types as presented in Garner §3.2 (4) the propositional $\eta$-rule for $\Pi$-types: the rule asserting that for every \$f:($\backslash$Pi x:A)B(x), the type \begin{displaymath} Id(f,\lambda x,app(f,x),app(g,x))\to Id_{A\to B}(f,g) \end{displaymath} is inhabited. (5) the Function extensionality axiom (FE): the rule asserting that for every $f,g:A\to B$, the type \begin{displaymath} (\Pi x:A) Id_B(app(f,x),app(g,x)))\to Id_{A\to B}(f,g) \end{displaymath} Comments: In Voevodsky's Coq files is shown that the $\eta$-rule for dependent functions and the function extensionality principle imply the corresponding function extensionality principle for $\Sigma$-types. is inhabited. The function extensionality axiom (FE) is implied by the univalence axiom. The system $\mathcal{H}$ does not have a global extensionality rule such as the identity reflection rule K or UIP \hypertarget{homotopical_semantics}{}\subsection*{{Homotopical semantics}}\label{homotopical_semantics} The \emph{transport function}: An identity term $p:Id(a,b)$ is interpreted as a path between the points $a$ and $b$. More generally an identity term $p(x):Id(a(x),b(x))$ with free variable $x$ is interpreted as a continuous family of paths, i.e. a \emph{homotopy between the continuous functions}. The identity elimination rule implies that type dependency respects identity: For a dependent type \begin{displaymath} x:A\vdash B(x):Type \end{displaymath} and an identity term $p:Id_A(a,b)$, there is a \emph{transport function} \begin{displaymath} p_!:B(a)\to B(b). \end{displaymath} For $x:A$ the function $refl(x)_!:B(x)\to B(x)$ is obtained by $Id$-elimination. (\ldots{}) \hypertarget{extensional_types}{}\subsection*{{Extensional $W$-types}}\label{extensional_types} The rules for $W$-types in extensional type theory are from the notes to Martin-Löf's lecture on intuitionistic type theories. (1) $W$-formation rule \begin{displaymath} \frac{A:Type\; x:A\vdash B(x):Type}{(Wx:A)B(x):Type} \end{displaymath} In the following we will sometimes abbreviate $(Wx:A)B(x)$ by $W$ (2) $W$-introduction rule \begin{displaymath} \frac{a:A\; t:B(a)\to W}{sup(a,t):W} \end{displaymath} (3) $W$-elimination rule \begin{displaymath} \frac{\itexarray{w:W\vdash C(w):Type\\ x:A, u:B(x)\to W, v:(\Pi y:B(x))C(u(y))\vdash\\ c(x,y,v):C(sup(x,y))}}{w:W\vdash wrec(w,c):C(w)} \end{displaymath} (4) $W$-computation rule \begin{displaymath} \frac{\itexarray{w:W\vdash C(w):Type\\ x:A, u:B(x)\to W, v:(\Pi y:B(x))C(u(y))\vdash\\ c(x,y,v):C(sup(x,y))}}{\itexarray{ x:A, u:B(x)\to W\vdash wrec(sup(x,u),c)=\\ c(x,u,\lambda y.wrec(u(y),c)):C(sup(x,u))}} \end{displaymath} Comments: We can think of $W$-types as free algebras for signatures with operations of possibly infinite arity, but no equations: (ad1) We consider the premises of this rule as specifying a signature which has the elements of $A$ as operations and in which the arity of $a:A$ is the cardinality of the type $B(a)$. (ad2) Then, the introduction rule -as always- specifies the canonical way of forming an element of the type in consideration. (ad3) The elimination rule can be interpreted as the propositions-as-types translation of the appropriate induction principle. In more detail, let $\mathcal{H}_ext$ denote the type theory obtained form $\mathcal{H}$ by adopting the identity reflection rule $\frac{p:Id_A(x,y)}{x=y:A}$ and let $\mathcal{C}(\mathcal{H}_ext)$ denote the category types as objects and function types $f:A\to B$ as morphisms where two maps are considered to be equal if they are definitionally equal. Then, the premisses of the introduction rule determine the [[nLab:polynomial functor|polynomial endofunctor]] $P:\mathcal{C}(\mathcal{H}_ext)\to \mathcal{C}(\mathcal{H}_ext)$ defined by \begin{displaymath} P(X)=_{def}(\Sigma x: A)(B(x)\to X). \end{displaymath} A \emph{$P$-algebra} is a pair $(C,s_C)$ where $C$ is a type and $s_C:PC\to C$ is a function called the \emph{structure map of the algebra}. The formation rule gives us an object $W=_{def} (Wx:A)B(x)$. The introduction rule combined with the rule for $\Pi$-types and $\Sigma$-types determines a structure map $s_W:PW\to W$. The elimination rule implies that the projection $\pi_1:C\to W$ where $C=_{def} (\Sigma w:W)C(w)$ has a section $s$ if the type $C$ has a $P$-algebra structure over $W$ The computation rule states that the section $s$ determined by the elimination rule is also a $P$-algebra homomorphism. \begin{displaymath} \itexarray{ PC&\stackrel{s_C}{\to}&C\\ \downarrow&&\downarrow^{\pi_1}\uparrow_s\\ PW&\stackrel{s_W}{\to}&W& } \end{displaymath} The previous elimination rule implies the \emph{simple \$W-elimination rule} \begin{displaymath} \frac{C:Type\; x:A,v:B(x)\to C\vdash c(x,v):C}{w:W\vdash simp-wrec(w,c):C} \end{displaymath} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Steve Awodey, Nicola gambino, Kristina Sojakova, inductive types in homotopy type theory, \href{http://arxiv.org/abs/1201.3898}{arXiv:1201.3898} \item S. Awodey, Type theory and homotopy, \href{http://www.andrew.cmu.edu/user/awodey/preprints/TTH.pdf}{pdf} \item T. Streicher, Investigations into intensional type theory, 1993, Habilitation Thesis. Available from the author’s web page. \item B. Nordstrom, K. Petersson, and J. Smith, \emph{Martin-Löf type theory} in Handbook of Logic in Computer Science. Oxford Uni- versity Press, 2000, vol. 5, pp. 1–37 \item R. Garner, On the strength of dependent products in the type theory of Martin-Löf, Annals of Pure and Applied Logic, vol. 160, pp. 1–12, 2009. \item V. Voevodsky, Univalent foundations Coq files, 2010, available from the author’s web page. \item P. Martin-Löf, Intuitionistic Type Theory. Notes by G. Sambin of a series of lectures given in Padua, 1980. Bibliopolis, 1984. \end{itemize} \end{document}