\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{monoidal quasicategory} (\ldots{}) (M1) $p:C^\otimes\to \Delta^{op}$ cocartesian fibration. (M2) $C^\otimes_{[n]}\simeq C^n$. \hypertarget{constructions_of_monoidal_structures}{}\subsection*{{Constructions of monoidal structures}}\label{constructions_of_monoidal_structures} \hypertarget{monoidal_structure_for_a_quasicategory_with_finite_products}{}\subsubsection*{{Monoidal structure for a quasicategory with finite products}}\label{monoidal_structure_for_a_quasicategory_with_finite_products} DAGII § 1.2 Idea: Take as $n$-sequences $n$-fold products to obtain $\tilde{C^\times}$ and extract $C^\times$ form $\tilde{C^\times}$ via (M2). Construction: Add intervals to $\Delta$: Let $\Delta^\times$ have as objects pairs $([n],i\le j)$ where $0\le i\le j\le n$. Define $\tilde{C^\times}$ by \begin{displaymath} hom(K\times_{N(\Delta)^{op}} N(\Delta^\times)^{op}, C)=:hom(K,\tilde{C^\times}). \end{displaymath} Denote the fiber over $[n]$ of $\tilde{C^\times}$ by $\tilde{C^\times}_{[n]}$. Denote the poset of intervals in $[n]$ by $P_n$. The we have $\tilde{C^\times}_{[n]}=Fun(N(P_n)^{op}, C)$. Let $C^\times$ denote the full simplicial subset on those functors $f(\{i,i+1,\dots,j\})\to f(\{k,k+1\})$ entailing $f(\{i,\dots,j\})=f(\{i,i+1\})\times \dots\times f(\{j-1,j\})$. Then $p:C^\times\to N(\Delta)^{op}$ is a monoidal structure iff $C$ admits finite products. Here $p$ is the restriction of the projection $\tilde{C^\times}\to N(\Delta)$. \hypertarget{monoidal_structure_for_endomorphism_algebras}{}\subsubsection*{{Monoidal structure for endomorphism algebras}}\label{monoidal_structure_for_endomorphism_algebras} DAGII §2.7 The purpose of the following construction is to realize an endomorphism object $End(m)$ as an algebra object in some quasicategory. More precisely we will have $End(m)=* \in Alg(C[m])$ is the terminal object in $Alg(C[m])$. So $End(m)$ is ``universal'' among all objects acting on $m$. Define the category $J\supset \Delta$ by adding intervals (then we have $\Delta^\times$ as above) or the point $*$ to $\Delta$. More precisely: An object of $J$ is a pair $([n],i\le j)$ or $([n],*)$. Morphisms are ``narrowings'': a morphism $a:([m],i\le j)\to ([n],i^\prime\le j^\prime)$ is a morphism $\underline{a}:[m]\to[n]$ satisfying $i^\prime\le a(i)\le a(j)\le j^\prime$; $hom(([m],i\le j), ([n],*)):=\emptyset$; $hom(([m],*), ([n],i\le j))=\{(a,k),a:[m]\to [n], i\le k\le j\}$; and $hom(([m],*),([n],*))=hom([m],[n])$. $\Delta$ can be identified with two different subcategories of $J$. Define \begin{displaymath} \psi:\begin{cases}J\to \Delta\\([n],i\le j)\mapsto [n]\end{cases} \end{displaymath} \begin{displaymath} \psi^\prime:\begin{cases}J\to \Delta^\prime\\([n],i\le j)\mapsto \{i,i+1,\dots,j\}\\([n],*)\mapsto [0].\end{cases} \end{displaymath} where $\Delta^\prime=\Delta$ are considered as subcategories of $J$ in different ways as indicated. Let $m\in M$ be an object. The category $\tilde{C[m]^\otimes}$ equipped with a map $\tilde{C[m]^\otimes}\to N(\Delta^{op})$ is defined by $hom_{N(\Delta)^{op})}(K,\tilde{C[m]^\otimes})$ being in bijection with diagrams of type \begin{displaymath} \itexarray{ K\times_{N(\Delta)^{op}}N(\Delta)^{op}&\to&\{m\}\\ \downarrow&&\downarrow\\ K\times_{N(\Delta)^{op}}N(J)^{op}&\to&M\\ \downarrow&&\downarrow\\ N(\Delta^\prime)^{op}&\stackrel{id}{\to}& N(\Delta^\prime)^{op} } \end{displaymath} where the vertical morphisms of the top square are inclusions. Define $J_{[n]}:=J\times_\Delta \{[n]\}$ which is either an interval $\i\le j$ in $\Delta[n]$ or $*$. A vertex of $\tilde{C[m]^\otimes}$ can be identified with a functor $f:N(J_{[n]})^{op}\to M^\otimes$ covering the map $N(J_{[n]})\to N(\Delta^\prime)$ induced by $\psi^\prime$. Define $C[m]^\otimes$ to be the full simplicial subset of $\tilde{C[m]^\otimes}$ spanned by the objects classifying those functors $f:N(J_{[n]})^{op}\to M^\otimes$ which satisfy (1) $qf(a)\in hom(\Delta^1 ,C^\otimes)$ is $p$-cocartesian for every $a\in J_{[n]}$. (2) $f(a)$ is $pq$-cocartesian for every $a:([n],*)\to ([n],i\le j)$ corresponding to $j\in \{i,\dots,j\}$. Finally define $C[m]:=C[m]_{[1]}^\otimes$. Then the above constructed map $C[m]^\otimes\to N(\Delta)^{op}$ is a monoidal category. The restriction to $\Delta^\prime\subseteq J$ induces a monoidal functor $C[m]^\otimes \to C^\otimes$. \hypertarget{the_composition_monoidal_structure_for_endofunctor_algebras_monads_dagii}{}\subsubsection*{{The composition monoidal structure for endofunctor algebras, monads (DAGII)}}\label{the_composition_monoidal_structure_for_endofunctor_algebras_monads_dagii} DAGII §3.1 (Notation 3.1.6): Define functors $E,\overline{E}:\Delta^{op}\to sSet$ by the following: (1) Let $n\ge 0$, $M,K\in sSet$. A morphism $K\to E([n])$ is given by a collection $(s_{ij}\in hom_K(K\times M,K\times M)_{0\le i\le j\le n}$ satisfying $s_{ii}=id$ and $s_{ij} s_{jk}=s_{ik}$ for $0\le i\le j\le n$. (2) Let $n\ge 0$, $M,K\in sSet$. A morphism $K\to \overline{E}([n])$ is given by two collection $(s_{ij}\in hom_K(K\times M,K\times M)_{0\le i\le j\le n}$ and $(t_{i}\in hom_K(K,K\times M)_{0\le i\le n}$ satisfying $s_{ii}=id$, $s_{ij} s_{jk}=s_{ik}$, and $t_i=s_ij t_j$ for $0\le i\le j\le n$. (3) Morphisms $E([n])\to E([m])$ resp. $\overline{E}([n])\to \overline{E}([m])$ are induced by composition with $a:[m]\to [n]$. (4) Define $End^\otimes(M):=N_E(\Delta^{op})$ and $\overline{End^\otimes}(M):=N_{\overline{E}}(\Delta^{op})$. Here $N_E(\Delta^{op}$ denotes the [[relative nerve]] of $\Delta^{op}$ relative $E$. (Proposition 3.1.7): Let $End_{[n]}^\otimes(M)$ denote the fiber of the projection $p:End^\otimes(M)\to N(\Delta^{op})$ over $[n]$. Let $\overline{End}_{[n]}^\otimes(M)$ denote the fiber of the projection $q:\overline{End}^\otimes(M)\to N(\Delta^{op})$ over $[n]$. Then in \begin{displaymath} \overline{End}^\otimes(M)\to N(\Delta^{op})\stackrel{q}{\to}End_{[n]}^\otimes(M)\stackrel{p}{\to}N(\Delta^{op}) \end{displaymath} we have that: (1) $p$ and $pq$ are cocartesian fibrations and $q$ is a categorical fibration. (2) $\overline{End^{\otimes}}_{[n]}(M)\simeq Fun(M,M)^n\times M$ and $End^\otimes_{[n]}(M)\simeq M^n$. (3) The restriction of the above diagram \begin{displaymath} M\to Fun(M,M)\to N(\Delta^{op}) \end{displaymath} exhibits $M$ as left tensored over $Fun(M,M)$ and $Fun(M,M)$ as a monoidal quasicategory. This monoidal structure is called \emph{composition monoidal structure}. (Definition 3.1.8): A \emph{[[monad on a quasicategory]] $M$} is defined to be an algebra object in the composition monoidal quasicategory $Fun(M,M)$. \hypertarget{the_composition_monoidal_structure_for_endofunctor_algebras_monads_higher_algebra}{}\subsubsection*{{The composition monoidal structure for endofunctor algebras, monads (Higher Algebra)}}\label{the_composition_monoidal_structure_for_endofunctor_algebras_monads_higher_algebra} In the language of $(\infty,1)$-operads the above description reads as follows: (Higher Algebra, Definition 4.2.1.1) Let ${LM}$ denote the colored operad defined by: (1) ${LM}$ has two objects $a$ and $m$. (2) $Mul_{LM}(\{X_i\}_{i\in I},a)$ is the collection of all linear orderings of the set $I$. $Mul_{LM}(\{X_i\}_{i\in I},m)$ is the collection of all linear orderings $\{i_1\lt\dots\lt i_n\}$ of the set $I$ such that $X_{i_n}=m$ and $X_{i_j}=a$ for $j\lt n$; if $I$ is empty also $Mul_{LM}(\{X_i\}_{i\in I},m)$ shall be empty. (3) The composition law on ${LM}$ shall be determined by composition of linear orderings (Definition 4.1.1.1). (Remark 4.2.1.3) There is a unique operation $\phi\in Mul_{LM}(\{a,m\},m)$. If $C$ is a symmetric monoidal category and $F:LM\to C$ is a map of colored operads, then we can identify the restriction $F| Ass:Ass\to C$ with an associative algebra object $A:=F(a)$ in $C$. In this case $F(\phi):F(a)\otimes F(m)\to F(a)$ exhibits $F(m)$ as a left $F(a)$-module. (Remark 4.2.1.4) The restriction of ${LM}$ to the object $a$ is a sub-colered operad of ${LM}$ which is isomorphic to the associative operad $Ass$.(\ldots{}) (Higher Algebra, Proposition 6.2.0.2) \hypertarget{reference}{}\subsection*{{Reference}}\label{reference} \begin{itemize}% \item Jacob Lurie, DAGII \item Jacob Lurie, Higher Algebra \end{itemize} \end{document}