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1 INTRODUCTION

When starting the AUTOMATH mathematics checking project in 1967, I
almost immediately gave a very central position to the idea that is now
often called ‘propositions as types’. It came down to treating proofs the
same way as objects.

Since logicians may wonder how such an idea dawned upon a mathematical
mind without any training in logic, I shall try to explain here how natural
that idea seemed to me. It will be a very personal account that will touch
several aspects of the matter.

Very central in this is the PAL system for writing at least a limited form
of mathematics. Having no lambda calculus facilities it will not be able to
represent the bulk of modern mathematics, but yet this PAL was for me
the core of‘all ideas about the various possibilities of the usage of typing.
For more detailed information about PAL reference can be given to 21,
(3], [5], [10], and for the AUTOMATH project in general to (5], [8]-

Essential for starting a thing like PAL was the basic feeling that mathemat-
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ical objects are typed, and that their typing should be an essential part of
the mathematical language, since machines that check the mathematical

texts should certainly know about the types.

Therefore this paper will start (sections 2 and 3) with some opinions,
partially very personal, about the role of types in mathematics. Most of
this was already given in [4].

The paper will also expose (in sections 15 and 16) some ideas about the
use of typing that were not involved in the early AUTOMATH concept.

2 UNTYPED SETS

The very natural idea to attach a type to a thing seems to have hardly pen-
etrated into today’s ideas of the formal presentation of mathematics. Since
about 1940 most mathematicians seem to claim that their work is based
on Cantor’s and Zermelo-Fraenkel’s theory of untyped sets, combined with
things like Boolean logic and Frege’s predicate calculus. Whether this un-
typed set-theoretical basis is relevant for the style of their work in math-
ematics, is open to some doubt, however.

Working mathematicians do not care much for their foundation. This is
not what non-mathematicians usually think: they expect that mathemati-
cians are fully aware of the total structure of the building they are working
at. Most mathematicians will say that their time is short, and that they
have more important things to do than digging into foundations, but I
think that this lack of interest is a sign that one is on the wrong track
with the presentation of the basis of mathematics. And I think that an
aspect that needs revision is the weird idea that everything is a set.

In the doctrine everything is a set the word set is clear. It is taken as
point in the Zermelo-Fraenkel universe (to be abbreviated as ZF). But
the words everything and is are harder. The word is does not seem to
say that things are sets but that they can be coded as sets. It entirely
depends on the coding system what particular sets are to be taken, and
different people may have different codings. Theoretically, it seems to be
perfectly legitimate to ask whether the union of the cosine function and
the number e (the basis of natural logarithms) contains a finite geometry,
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but the question has no meaning at all as-long as the codings have not
been explicitly stated. -

But how far should one go with everything? Is a theorem a set? Is a proof
a set? And a proposition, an assumption, an axiom, a variable, a formula,
a contradiction, a predicate, a geometrical construction? All these things
can easily be coded in ZF, but most mathematicians will object to calling
them sets. They would even object to talking about a set of theorems as
a set!

Among mathematicians there seems to be a feeling that there is a world
of mathematical objects with some Platonistic existence, and that these
things are sets. And words like theorem, proof, variable, are considered
to have a meaning in their discussion about those objects. They- are not
objects themselves. So not everything that can be coded in ZF is to be
considered as an object. And what is worse, ZF itself is not an object.

The acceptance of ZF as a basis of mathematics is a social thing, and
not more than that. The idea that ZF is interesting and important, is a
self-fulfilling prophecy. Its more esoteric parts create many hard problems
which challenge many clever mathematicians and logicians. But what is
the use of it for the world outside? ZF may be an early example of a black
hole, which is a cluster of matter in which mutual attraction is so immense
that not even light is able to get out.

My personal opinion of ZF is a rather negative one. Cantor built a par-
adise by means of language that he did not properly define. Whatever he
did was mixing language and metalanguage. This procedure was known
to create several paradoxes, but as long as one did not come too close -
to the paradoxes, life seemed to be safe. The system was codified later
by a set of restricting axioms which had as their main purpose to turn
Cantor’s shaky edifice into a solid sky scraper. One of the things that at-
tracted people to ZF was the undeniable fact that well-ordering of sets like
the continuum provided fast and elegant proofs for important theorems in
ordinary analysis. And as usual in mathematics, elegance generates addic-
tion: things that can be treated with the elegant method are called elegant
and important, so the method becomes more and more indispensable.

On the other hand, if I have to be honest I have to admit that some of
my feelings against ZF already hold for much simpler situations involving
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infinity. I find it hard to live in peace with the fact that it is undecidable
whether there is a set of sets of natural numbers whose cardinality lies
“between the one of the set of all natural numbers and the set of all sets of
natural numbers.

Why did the mathematicians so eagerly embrace untyped set theory around
the middle of the twentieth century?

There were different kinds of people involved in this, of course. First there
‘were the serious foundationalists, forming a kind of subculture. Once a
subject is accepted in such a subculture and once it generates a consid-
- erable amount of serious work, it gets automatically important, and no
further motivation is required.

Secondly, there were those involved in teaching mathematics on various
levels. Of course, these people usually act on the signals of fashion too,
but there is more to it. The general trend in mathematics was one of
increasing rigour. But how can one give a rigorous treatment of the basis of
mathematics without having to treat logic? The language of mathematics
uses propositions and predicates, but mathematicians had no training in
treating them seriously. One felt on much safer grounds when talking
about mathematical objects. From a predicate one immediately passed to
the set of objects satisfying that predicate. The predicates were treated
quite informally, but once the transition to the sets was achieved, rigor
could start.

Almost always the teacher as well as the students were somehow thinking
in terms of typed sets, but no reference to types was ever made. I have
never been able to understand what goes on in the minds of mathemat-
ical novices when' confronted with untyped sets. I fear that in today’s
foundation-free mathematical education students just accept everything
that is offered, rapidly training themselves in showing the behavior that
is expected from them.



TYPES IN MATHEMATICS 31

3 TYPED SETS

1 believe that thinking in terms of Zypes and typed sets is much more
natural than appealing to untyped set theory. Here the word natural of
course refers to our mathematical culture and not to the nature of things
or to the nature of mathematics. In our mathematical culture we have
learned to keep things apart. If we have a rational number and a set
of points in the Euclidean plane, we cannot even imagine what it means
to form the intersection. The idea that both might have been coded in
ZF with a coding so crazy that the intersection is not empty seems to be
ridiculous. If we think of a set of objects, we usually think of collecting
things of a certain type, and set-theoretical operations.are to be carried
out inside that type. Some types might be considered as subtypes of some
other types, but in other cases two different types have nothing to do with
each other: That does not mean that their intersection is empty, but that.
it would be insane to even talk about the intersection.

A very clear case of thinking in terms of types can be found in Hilbert’s
axiomatization of geometry. He started by saying that he assumes there
are certain things which will be called points and certain things to be
called lines. Nothing is said about the nature of these things. In partic-
ular, no statement is made about lines being sets of points, and nothing
expresses that these points and lines somehow live in a common ‘plane’.
In type-theoretical terminology one might formulate Hilbert’s take-off as
the introduction of two types, point and line, taken as primitives at the
start of the theory.

Once the notion of a type is accepted, one can introduce typed sets by
means of predicates running over such types.

Is there the drawback that working with typed sets is much less economic
then with untyped ones ? If things have been said for sets of apples, and
if these same things hold, mutatis mutandis, for sets of pears, does one
have to repeat all what had been said before? No. One just takes a type
variable, £ say, and expresses all those generalities for sets of things of
type £. Later one can apply all this by means of a single instantiation,
replacing £ either by apple or by pear.

I believe that the ordinary working mathematlaan pays lip-service to ZF,
but still thinks in terms of typed sets. A superficial layer of formal training
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in ZF has not changed it. And I believe that much of the “New Math”
rage of the middle of this century is caused by the lack of & generally
accepted formal way to deal with predicates and types. The idea was that
“sets” are no-nonsense objects with a kind of Platonistic existence.

Quite often there is no reason at all to use set terminology. And indeed,
even quite rigid textbooks on analysis written in the first half of this
century used the word set only when strictly necessary.

-4 TYPES IN NATURAL LANGUAGE

My own feeling is that types are strongly related to the structure of some
of the sentences in natural languages. Many English sentences contain the
word is followed by an indefinite article (a or an), followed by a substantive
or by a group of words playing the same role as a single substantive.
Examples:

n is an integer,
n is a positive integer,
the intersection of V' and W is an n-dimensional space.

Let me call such sentences typing sentences. Note that instead of is one
can have variations which play a similar role, like in let z be a real number,
P and @ are regular polyhedra. Sentences with are can be ignored, since
they can be considered as a contraction of two sentences, like P is a regular
polyhedron and @ is a regular polyhedron.

Let me use the word substantive both for single substantives and for
substantive groups. So in these examples integer, positive integer, n-
dimensional space, real number, regular polyhedron are to be called sub-
stantives.

The group of words preceding the is a or is an will be called a name. So the
intersection-of V and W is a name. The name part of a typing sentence
is intended to give a complete identification of a particular thing, and
the substantive part of the typing sentence expresses what kind of a
thing it is.
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It.should be noted that not all sentences containing the word is are typing
sentences: In a sentence like 5 is-the-sum-of 2 and 3-the word-is-indicates. .
equality, and both 5 and the sum of 2 and 3 have the form of a name.
A more delicate case is 5 is the sum of two squares. It is a contracted
sentense saying that there exist two squares of which the sum is equal to
5. So the sum of two squares represents neither a substantive nor a name.
On the other hand, replacing the by a one can claim that the sentence 5 is
a sum of two squares is a typing sentence, where sum of two squares is a
substantive. The sentence certainly does not mean that there are squares’
a? and b? ‘such that 5 is a sum of them. L

For a detailed study of the grammar of the mixture of natural language
and mathematical formulas I refer to [1].

5 NOTATION FOR TYPING SENTENCES

Let me use the colon for the is a (or is an), and write 4 : B for the typing
_sentence A isa B. The colon notation will also be used for the declaration
of a variable of a given type: the sentence let T be a B will be written, as
z.: B. The distinction between = is a B and let x be a B Will have to be
~ expressed by other means, like the kind of place that the formula is given
- “in the text.

6 EXPLAINING MATHEMATICS TO A MACHINE

" Tn-the next sections I shall indicate how the idea of treating proofs as -
objects is almost forced upon anyone who tries to explain mathematics to

a machine.
All the mathematics presented to the machine is supposed to be written

in a sequence of lines, which together form a book. The machine has to
chieck the book line after line. :

, As a general principle I take it that the checking machine is never ex-
- pected to make an undirected search through previous parts of the book

for material it needs. It is the task of the human writer to provide the
references, and these references are to be considered as an essential part

of the text.
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7 EXPLICIT DEFINITION OF A FUNCTION, AND
- APPLICATION OF SUCH A DEFINITION

In modern analysis many functions are defined by means of operators
acting on known functions, but in more old-fashioned mathematics func-
tions were introduced only by explicit description-of the function value
for ‘arbitrary’ values of the argument or arguments. The following exam-
ple describes the definition of a real-valued function with values f(z,w),
where z is a real variable and w a complex one. One begins by saying let
z be a real number. This means that one has opened a contert in which
the letter z is treated as if it were a very particular real number.

A number of sentences to follow will be said in this context. In all those
sentences the z may occur. Whatever is said in this context is completely
independent of what particular number is represented by z. Therefore,
everything that is said may immediately be repeated later, with the z
replaced by some particular real number.

Inside the context of z one may open a new context by means of let w be a
complex number. In that context of z and w one may build an expression
E containing both z and w, and then it is possible to define a function by
saying that its value f(z,w) is given by E. This has the effect of defining
the function for all values of the variables, since it is allowed to replace
the z and w later by expressions A and B representing a real number and
a complex number, respectively, where it is agreed that f(4, B) is equal
to what the expression E becomes if z is replaced by A and w-by B.

In this setting it would be confusing to say that f is the function. I rather
call it the function identifier.

The sentences let « be a real number and let w be a complex number will
be called declarations of a (typed) variable.

It should be remarked that the expressions A and B need not represent
completely defined numbers: the function call f(A, B) may take place
inside some other context containing a number of variables, and the A4
and: B may be expressions containing those variables. The function call
might even take place in the context of z and w itself, with A and B being
expressions containing z and w.
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In the context of the first variable z, one can also consider expressions
containing = and representing types.- Having some type T'(x) one can start
a new comntext (inside the one of z) by saying let w be something of type
T(z). Example: let n be a natural number and let s be a set of n real
numbers. Again it is possible to define a function value, g(n, s) say, inside
this context. The matter of a later function call g(A, B) is now slightly
more complicated. In order to legitimate this call it has to be verified that
A is a natural number and that B is a set of A real numbers. So all the
time the machine has to check typings.

8 TELESCOPE TERMINOLOGY

The following notation can be used for handling the composite contexts
discussed in the previous section. The context let z be a real number and
let w be a complex number can be abbreviated as [z : R][w : C] (where
R and C represent the real and the complex type). In the case where the
type of the second variable contains the first variable one has something
like [z : P]lw : Q(z)]- Such a string is called a telescope (irrespective of
whether it is taken to represent a context or not). The word was inspired,
of course, by the old-fashioned optical instrument consisting of segments
that slide one into another. '

If in a context [z : P]lw : Q(z)] a function value f(z,w) is defined, a
later call f(A, B) can be made if A : P, B : Q(A4). This pair of typings

will be expressed by saying that the vector (4, B) fits into the telescope

[z : Pllw : Q(z)].
This terminology will be used likewise for longer strings. If in the context
[2:1 : Pl][.’tz : PQ(SL’l)][Zg, : P3(-’L'1,fl'2)] v [xk : Pk(mly ce 7$k-—1)] (1)

a function value f(z;,. .., zx) is defined, then a function call f(4s,... , Ar)
can occur later, provided that the vector (A, ..., Ax) fits into the tele-
scope, which means that

Ay 1 Py, Ag : Po(A1), As: P3(A1,A2) ..., Ak : Pe(Ar,.. . Ake)

Forming the function call f(A1,...,Ax) is called instentiation.
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9 BOOKS IN PAL

"PAL is a primitive form of AUTOMATH. Actually it is that part of Au-
TOMATH that does not use the lambda calculus. In spite of its primitivity,
it is able to represent the structure of mathematics with objects, types,
contexts, definitions, lemmas, theorems and axioms. Adding lambda cal-
culus to PAL is a step that requires quite some technicalities, but it need
not be discussed here, since the conceptual aspects of what mathematics
is, and what a machine can check, are largely covered by PAL.

Books in PAL are sequences of lines. Every line is written in a contert,
which has the form of a telescope. Usually one thinks of the context being
constant over a number of consecutive lines, and one usually thinks of only
small changes in context, where passing from a context of a line to the
context of the next line means either adding one item [--- : ---] at the far
right end of the telescope or just deleting the last item of the telescope.

The lines of the book all have more or less the same form. The standard

case is this one:
f = A:B.

The interpretation is that the A is a (usually composite) description of an
object, B is its type, and the (totally fresh) identifier f is a new name for
A. One can also say that f is an abbreviation for A, or that f is defined
by A. The line as a whole can be called a definition, or a definitional line.

The cases of one-item extensions of the context are interpreted as decla-
rations. They give an obligation: if a context (1) has to be extended by
[Zk+1 © Peg1(21,. .., z)] then it has to be required that in the context (1)
itself the expression Ppy1(z1,. ,xt) is a well-formed type.

It is easy to see how a PAL book can be continued once it is under way.
But in order to get it started, the following features have to be added:
primitive objects, type variables, type definitions and primitive types.

An example of a primitive object is the introduction of the number 1 in
the Peano axioms. Taking it for granted that there is a type called natural
number already, one proceeds by saying that there is a particular natural
number that will be called “1”, which will be treated as a known object.
It is in no way. stated what it is: it is not given by an expression in terms
of older known objects. So in a way this 1 looks like a variable, but it is
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not. The 1 is not obtained by a context extension, and it is never allowed
_ to replace 1 by any other natural number, like it would have been if it
were a variable.

In PAL the introduction of a primitive object of type T is written as a

book line
p:= PN : T

written in the empty context. It is called a primitive line. The symbol PN
is not to be manipulated like other expressions: it just has to stand there
in order to let the line look like an ordinary definitional line. In a way
the primitive line is treated as definitional line: the identifier p introduced
here will be a legitimate symbol of type T from now on. A definitional
line like ¢ := S : T is different from a primitive line in the sense that in
later lines one has the option to replace ¢ by its definition S. But in case
of a line p := PN : T the PN gives no answer to the question what p is.

It is also possible to write a primitive line in a non-empty context. The
line f := PN : T in the context [z : A][y : B(z)] can be interpreted as
the introduction of a primitive function of the variables z and y. In later
use the f will be available for instantiation with a vector (K, L) fitting
into the context, just as if the line had been a function definition. As
an example one can take the introduction of the successor of a natural
number in Peano’s axioms. In the context let £ be a natural number the
successor of z is taken as a primitive, and the primitive line expresses that
this successor is again a natural number. The instantiation mechanism
sees to it that the successor is treated as a function. And again, the PN
gives no answer if one wants to know what the value of the function is

exactly.

The issues type variables, primitive types and type definitions have in com-
mon that they handle types as if they were objects.

With the declaration of a type variable the context is extended. In natural
language one would say let € be a type. If £ is a type then it can be used
as a type for ordinary objects: one might say let £ be a type and let x
be a ¢.

In the declarational sentence let £ be a type the word type stands at the
place of the substantive, but one has to be careful: this type is not a type.
In order to try to avoid confusion the word type will be printed bold face
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when written in the book. So a context may be extended by [¢ : type].

- “The matter “of primitive types is now clear. "One just writes a line like
n := PN : type. This legimates the further use of 5 as a type. If the
line is written in a non-empty context, it introduces a primitive type-
valued function of a number of variables (which may now be either ob ject
variables or type variables).

Finally it can be said what type definitions are. They have the form
¢ := O : type, where the typing © : type has already been established. It
is nothing but an abbreviation of © to a new symbol (. If the abbreviation
is given in a non-empty context, then it describes ¢ as a function of a

- number of variables.

The standard way to get such expressions © is by instantiation of functions
that were either defined or proclaimed as primitive before.

With all these provisions, one can start off writing books in PAL.

Let me explain the notion of degree here. The term type is said to have
degree 1. If { is a type then £ is said to have degree 2. If moreover z : ¢
then z is said to have degree 3.

Lines in a PAL book are either “f := S :T” or “f := PN : T”. Such lines
are called lines of degree 2if T is type (and in that case f and S have
degree 2), and lines of degree 3 if T has degree 2 (and in that case f and
S have degree 3). So the degree of a line is the degree of the identifier in
front of the := sign.

Accordingly, a context item [z : T'] is said to have degree 2 if T is type,
and to have degree 3 if T' has degree 2. So the degree of a context item is

the degree of its variable.

Summarizing, in PAL the lines are either of degree 2 or 3, and they are
either definitional or primitive (PN-lines). Contexts can be mixed strings
of items of degrees 2 and 3.

The rule for the fitting of a vector into a telescope can be formulated as
before, without even mentioning the degrees.

Here is an example of a short PAL book. It represents the beginning of
the Peano axiom system, and the definition of the numbers 2 and 3. And,
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just for fun, a double successor is defined, and the number 4 is introduced
~by-means-of it.- In this layout there is.an asterisk in front each lize, and
the eontext telescope is printed to the left of it. :

* nat = PN : type

* 1 = PN : nat
[x:nat] x succ = PN :  nat

* 2 = succ(1) : nat

* 3 = succ(2) : nat
[x:nat] =+ doubsucc = succ(succ(x)) : nat

* 4 = doubsucc(2) : nat

I will not try to describe all the rules of the game here. Once the inter-
pretation is understood, it will be pretty obvious what the rules have to
be. I only want to say here that the notion of definitional equality is vital.
Two expressions are called definitionally equal if they can be reduced to a
common one, where reduction is taken in the sense of repeated application
of book definitions, and here application of f := A : B means, roughly
speaking, replacing all f’s by A. An example in the text above is that 3
is definitionally equal to doubsucc(1).

Definitional equality plays a role when a typing like.P : @ has to be
checked. The type of P can be evaluated algorithmically, and then the
question remains whether this evaluated type is definitionally equal to Q.

10 THEOREMS COMPARED TO DEFINITIONS OF
FUNCTIONS

Section 7 discussed the definition of a function of several variables by
means of the description of its value inside a (telescopic) context. Such a
piece of text might be called a blueprint: any application of that definition
can be seen as copying the text of the definition, replacing the variables
by specific values.

A theorem can be considered as a kind of blueprint too. Quite often a
theorem emerges from the fact that a piece of mathematics shows some
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repetitions. There can be a number of fragments which are very much
alike, and in such cases mathematicians rapidly discover that they can
" write a single blueprint of which all those fragments are copies, merely
adapted to the local situations. This is parallel to what is done with
functions. Instead of defining the logarithms of 3, 4 and 5 separately, the
logarithm of the real variable z is defined, and the logarithms of 3, 4 and
5 can be found by taking that definition and replacing all z’s first by 3,
then by 4, and then by 5.

The description of a theorem is similar to the one of a function. In gen-
eral, a mized context has te be taken. Not all segments that build up
the telescopic context are declarations of variables. Some will be assump-
" tions. These two different kinds of segments will be called declarational
and assumptional context extensions, respectively.

Here is an example of a theorem:

Let n be a natural number, let w be a complex number and € a
positive real number. Assume that |w™| < 1. Then there exists a
positive integer k such that jw*| < e.

A proof of this theorem will have the following form. Inside the context
formed by the declarations of the variables n, w and & a new context is
opened by the assumption |w™| < 1. Throughout that context the letters
n, w and € are considered as natural, complex, and positive real numbers,
respectively, and the the assumption |w™| < 1 is considered as a true
statement from which further truths can be derived. And in that context
it is shown that there exists a positive integer k such that jw*| < e.

What has to be done in order to apply that theorem later? Then there
are, in some context or other (let it be called the new context), expressions
A, B, C, representing a natural number, a complex number and a positive
real number, respectively. And in that context it is known. that |BA| < 1.
By application of the old theorem one concludes that there exists a positive
integer k such that |[B¥| < C.

How does one explain to a machine that this application of the theorem is
legitimate? It is easy to let the machine check whether the substitutions
satisfy the rules. And, though less easy, the very essential matter of type-
checking (here for the types of 4, B, C) can be left to a machine too. But
how should the machine be convinced that |B4| < 1 is satisfied?
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One has to require that |[B#| < 1 is not only #rie in the new context,
but that it-has already been stated and proved-earlier-in the book. If in-
a mathematical argument one wants to use some particular proposition,
a mere appeal to the fact that the proposition is true will not do. It
should have been proved somewhere in the past, or else it should have
been introduced in an assumption of the context.

According to the general principle explained in section 6, the application
of our theorem should somehow mention a reference to the place where this
IBA! < 1 was proved or assumed. In what form should such a reference

be given?

The statement of the theorem was given in a mixed context of declarations
(of typed variables) and assumptions. If it is only a matter of declarations,
the full context of the theorem can be written as a telescope, and the the-
orem is applied by instantiation, i.e.; by giving a vector that fits into that
telescope. Can the references to proofs that assumptions are valid in the
particular application, be expressed by means of that fitting mechanism
as well? The matter of assumptions and proofs of their validity has some
of the characteristics of the instantiation already. Can it be brought in
exactly the same form?

It may help to visualize the theorem application as a kind of dialogue be-
tween mathematician and machine. The mathematician claims a certain
application, and the machine asks questions about if. Let the theorem be
formulated as a statement T'(z,y, z) made in'the context of a variable z
of type Pi, an assumption A;(z), a variable y of type P2(z), an assump-
tion Ay(z,vy), a variable z of type P3(z,y) and an assumption As(z,y, 2).
What questions will the machine ask if the mathematician claims an ap-
plication of the theorem? The following dialogue (in which X, Y and Z
are expressions, not necessarily variables) might take place.

MACHINE. — Give me something of type P, that can play the role
of z.

MATHEMATICIAN. — X.

MACHINE. — OK, I see that X : P;. Next I have to check the
validity of the assumption A;(z), but it has to be updated. So
convince me of the validity of A;(X).

MATHEMATICIAN. — Formula (27).
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MACHINE. — OK. Now give me something of type P; (X) that can
play the role of y.

MATHEMATICIAN. — Y.

MACHINE. — OK. I see that Y : P,(X). Updating A,(z, y), I want
to be convinced of the validity of A2(X,Y).

MATHEMATICIAN. — Formula (21).

MACHINE. — OK. Now give me something of type P;(X,Y) that
can play the role of z.

"MATHEMATICIAN., — Z.

MACHINE. — OK, I see that Z : P;(X,Y). Now convince me of the
validity of A3(X,Y, Z).

MATHEMATICIAN. — Formula (24).

MACHINE. — OK, I now accept the theorem application T(X,Y,Z)
as having been proved.

Instead of the answer Formula (24) the situation is often slightly more
complicated. Instead of this reference, it might be a composite reference,
like a reference to a formula (18) that indicated a statement Z (u,v) given
in a declarational context let u : U, v : V. And the mathematician has
two expressions K and L such that the vector (K, L) fits into that context
[u:U]lv: V]. Instead of the reference Formula (24) he might have given
Formula (18), with u and v replaced by K and L. Tt looks like instantiation
of the vector (K, L) into a function, where the reference Formula (24) plays
the role of the function identifier. The machine has to check that (K,L)
fits into the telescope [u : Ul[v : V], and that Z(K, L) is the same thing
as A3 (X ’ Y7 A )

This matter of composite references is comparable to ordinary function
calls in cases where the instantiations are made by means of expressions
which are instantiations themselves, like in f (9(z;9),9, h(z)).

It is clear that a reference like Formula (21) is not a reference to a propo-
sition but to a place where that proposition is proved. One might say that
this proof reference is a name for a proof. It is of the same kind as a name
for a mathematical object and is manipulated similarly.

In the dialogue the machine required the mathematical expressions to have
the right type. Similarly it requires something from a proof reference like
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~ Formula (27): this has to indicate a proof of the proposition A1(X). And
the machine wants to check that the place referred to indeed p_rov,es,exact,,ly,
that proposition. This will be just another case of type checking:

11 THE VARIOUS ASPECTS OF THE PARALLEL

‘To start with, it helps to express the situation in natural language. Some-
times the machine has to to check that a certain thing isa rational number,
sometimes it has to verify that a certain piece.of text is a proof of a certain
statement. The machine wants to convince itself that formula (27) is a
proof of A;(X). So Formula (27) is grammatically a name, and proof of
Aq(X) is a substantive. - V

The parallel now becomes clear. Proofs correspond to objects, and have to
get names that are manipulated in the same way as the (often composite)
names of objects.

Assumptions correspond to'declarations. Let me compare assume P (where
P is some. proposition) to the declaration let z be an A. The declaration
contains the type information A as well as an identifier z that will be
treated as if it were an object, always the same object throughout the
context opened by the declaration. In order to treat the assumptional
contexts similarly, one has to introduce an identifier like u, and to inter-
pret assume P as let u be a proof of P. This u can be used throughout the
context as if it were a proof of P. Just like the z above, the u is available
all through the context, and is not to be used outside.

Having a proof of the proposition P is to be taken as having something of
type proof of P. In particular, if in some context -y there is a line

v x h := © : proof of P

then that means that P is proved in that context. The context may be
a sequence of declarations and assumptions, and in applications of the
theorem a fitting vector should be produced.

All this reveals the full parallel between function 'deﬁnitions (as in sec-
tion 7) and theorems. :
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And what is an axiom? An axiom is like a theorem, but it just pretends
that there is a proof instead of giving a proof. It is completely parallel

to the introduction of a primitive object (see section 9). If one wants to
proclaim the proposition @ as an axiom in some context -y, one writes a
line

v % a = PN : proof of Q.

The text presented to the machine does not mention names of theorems
like in ordinary mathematical writings. Instead, it handles names of proofs,
which is rather unconventional. And in the case of an axiom it handles
the name of a pretended proof. In all respects the name of the proof plays
- the same role as the name of an object.

When exploiting the object-proof parallel the way described here, one can
say that mathematics is nothing but handling abbreviations. Abbrevia-
tions for composite names of objects are piled up, and so are composite
names of proofs.

It is also due to these abbreviations that the proof of an ordinary math-
ematical theorem can be written in a single short line. All the previous
. material of the proof has meanwhile been abbreviated, and can be referred
to by means of short expressions in the final proof line.

But how do get things like proof of @} into our PAL book in the first place?
One way to do it is by means of the introduction of a function proof acting
on propositions. There is a primitive type called propositon, and saying
that P: proposition of course means that P is a proposition. It was the
AUTOMATH tradition to write bool (for boolean) instead of proposition,
and with that notation the text goes like this:

* bool = PN type
[b:bool] = proof = PN type

So from now on the substantive proof of P gets into the book as the type
proof(P). If u is a proof of P, one writes u:proof(P). So proof(P) has
degree 2, and v has degree 3.

Two different kinds of lines will appear in the book: object lines and proof
lines. The machine does not have to bother of what kind the lines are,
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since it treats both kinds the same way. If the middie part of the line is

- -pot PN, the-line is-called-a definition (or_abbreviation).in the object case,

and a theorem (or lemma) in the proof case. If the middle part is PN, the
line is the introduction of a primitive object (mathematical tradition does
ot seem to have coined a word for such lines) in the object case, and an
axiom in the proof case.

Sﬁrﬁlarly, there are two kinds of context items, the declarational and the
assumptional ones.

12 HEYTING'S INTERPRETATION OF IMPLICATIONS

It was only after having formed all these ideas about the use of PAL in
1967, that I recalled discussions I had with A. Heyting in the fifties (I was
a close colleague of Heyting at the University ‘of Amsterdam from 1952
to 1960). He considered a proof of an implication P, — P, as a kind
of procedure that, when given a proof of Py, was able to get a proof of
P,. In other words, it is a kind of function that maps proofs of P into
proofs of P;. In the latter version, one might say that a proof can be
a function argument as well as a function value, and that suggests that
" proofs are considered as objects. But I do not think that Heyting would

have formulated it that way.

Whether this idea played a role on the back of my mind when developing
PaL, I really do net know. ' :

In PAL such a proof of an implication follows this scheme:

*x P = bool
x Py = bool-
[u:proof(P)]  * v = proof(Ps)

The notion of implication, as a function of two boolean variables, can be
introduced as a primitive in PAL:

[b : bool][bz : bool] * impl = PN: bool
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But if one wants to express in PAL, albeit by some kind of axiom, that
__the above Heyting-type implication proof v leads to some line

x w e et pI‘OOf(impl(P17P2))

then this requires lambda-abstraction, a thing that PAL does not provide.
The situation is the same as with functions. If in PAL one gives the explicit
definition of some function that maps ob jects of type A to objects of type
B, then the fact that it is a function from A to B is metalanguage of PAL.
There is no way to derive in PAL that this definition leads to an object of
- which the type is mapping(A, B).

There is the similar situation with universal quantification. .In PAL one
can write that for every = of type A there is a proof of the proposition
P(z), just by a line [z : A]%u :=---: proof (P(z)), but it requires lambda
abstraction to write (stepping out of the context [z : A]) that there now is
something of a type like All(A, P*) (where P* is a predicate corresponding
to the function identifier P).

The great similarity between functional abstraction, universal quantifica-
tion and derivation of implication certainly played a role in inventing the
proofs-as-objects philosophy.

13 WRITING DIRECTLY IN TERMS OF PROOF TYPES

As said before, in a PAL book there are two kinds of lines: ob ject lines and
proof lines. They are treated alike, but there is still a lack of symmetry. In
the object world there were lines of degrees 2 and 3, but thus far the lines
in the proof world have degree 3 only. The only exception was the line
[b : bool] x proof := PN : type of section 11. And thus far the expressions
of degree 2 in the proof world all had the form proof (P). But if one starts
from a type variable, there is no way to say that it has the form proof(P)
where P is a proposition. Already in an early stage of the AUTOMATH
project this was one of the reasons why a second term of degree 1 was
adopted. It was called prop, but I now think that something like prtype
might have been a better notation. _
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This prop plays the same role in the proof world as type plays in the
object-world- : : i

With prop one can introduce proof types without saying to what propo-
sitions they belong. When writing mathematics one hardly ever has to
mention propositions: everything can be done directly in terms of the
proof types. Writing in this fashion is called prop-style (in contrast to
taking the propositions themselves as basic, what is called bool-style).

For example, conjunction and axioms for conjunction can be introduced
directly in terms of the proof types:

CON :=PN : prop
AX1 :=PN : CON(,n)
AX2 =PN :¢

AX3 =PN :7

. [¢:prop ][n:prop |

. [¢:prop |[m:prop J[u: ¢][v : 7]

_ [¢:prop ][n:prop ]fw:CON(¢,n)]
__[¢:prop ][n:prop |[w:CON(&,7)]

* % ok b

The idea of propositions and proof types of propositions can be added
nevertheless. It is the same thing as in section 11, with the only difference
that in the second line there has to be prop instead of type: ‘

*  bool PN : type
‘~[b:bool] % proof = PN prop

' ]jiscovering the possibility to write in prop-style is just another case of
an idea suggested by analogies in formal notation.

14 OTHER USES FOR THE PAL SYSTEM

Thus far I considered books where two kinds of lines, object lines and proof
lines, are interwoven, and where the context telescopes can be mixed as
well, forming sequences of declarations and assumptions. It is natural to
ask whether there are more than those two opportunities.

Indeed there are. Historically, the first thing that should be mentioned is
the tradition of geometrical constructions with ruler and compass. Just
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- like the situation with objects and proofs, constructions can be expressed
as instantiations of simpler constructions. The book can describe such

constructions, and can express that --- is a construction of P, where P
is some geometrical point. This phrase contains the typical is a, and
therefore construction of P can be considered as a substantive. It is a
parametrized substantive, of the same kind as the proof of P where P was
a proposition.

Accordingly, one has the same options as with bool and prop. Either one
starts with “construction(P):type”, or one takes a new basic expression
constr of degree 1, comparable with type and prop.

- Primitive lines “c := PN : construction(P)” can be seen as the procla-
mation of the possibility of fundamental constructions (like taking the
intersection of two lines that have been constructed already). And what
would a context item let C be a construction of P mean? It means a
pretended construction, that is, the point P is just falling out of the blue
air. In ordinary words, it means take an arbitrary point P.

It is a very subtle interplay between geometrical objects, proofs and geo-
metrical constructions. There are various ways to play the game in PAL.
I refer to [6] for details.

Another thing that might be mentioned is to handle two or more different
notions of proof in a mathematical text. One might take as basic expres-
sions of degree 1 prop for classical proofs and intprop for intuitionistic
proofs. A book might contain both kinds of proofs, and the two might
support each other. It is a bit similar to having, in the book of geometri-
cal constructions, descriptions of constructions with ruler alone along with
the ordinary ones. Constructions with ruler and compass might make use
of earlier constructions with ruler alone, and the other way around.

The art of geometrical constructions is about constructions with a pencil
on paper with ruler and compass, and all these are idealized. Similarly,
theoretical computer science is about programs executed by an idealized
computer.

And indeed, the matter of syntax and semantics of computer programs
shows much of the old spirit of the Greek geometry. It describes construc-
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tions (computer programs) and proves that they actually achiéve what is

- promised-in-the-program-specifications.-One can-try to- arrange that the

mathematics, the logic, the program description and the program correct-
ness proofs are all put into one and the same book, which can be checked
in just a single run. I refer to [7] for this.

‘ ]5 GENERALIZATIONS OF PAL

PAL can be generalized by adding new features, allowing what was not
allowed before. The most important one among such features is of course
the lambda calculus, but I already said I want to ignore that here since
most ideas about the roles of typing can be explained in a lambda-free

setting.

A‘}quite obvious extension of PAL is allowing more degrees than the usual
degrees 1,2,3.

In section 14 there appeared the beginning of an avalanche of expressions
of degree 1: type, prop, intprop, and constr. One might dislike that
such things have to be declared beforehand in the language definition. One
might feel that the right to introduce such expressions should be delegated
- £6 the user, just like the user already had the right to introduce things of
degree 2, like nat and bool. -

This is easily achieved by allowing expressions of degee 0, and adopting a
symbol supertype of degree 0. Consequently, the symbols type, prop,
etc. are no longer needed in the language definition. The user can intro-
duce them in book lines:

* type = PN : supertype
* prop = PN supertype
* constr = PN supertype

Such lines are not necessarily restricted to the beginning of the book. They
can also be written later. In particular they may be given in a context,
like this:

[nnat] »  typ = PN supertype
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which gives the right to use infinitely many expressions of degree 1, ob-
tained by instantiation:

typ(1), typ(2), typ(3), ...

16 GIVING UP UNIQUENESS OF TYPES

As mentioned at the end of section 9, the PAL system maintains the prin-
ciple of uniqueness of types. Roughly speaking, this has the effect that if
somewhere in the book a typing A : B is valid, and somewhere else C : D,
where A and C are definitionally equal, then B and D are definitionally
- equal too.

The main reason for this uniqueness requirement was the general idea (cf.
section 6) that the machine should be able to check the book without any
further hints. But this is not a serious objection, since there might be good
notational system for such hints, and as such they might become part of
the language. After all, PAL has this nature itself already: a substantial
part of a PAL book consists of things that would be considered as informal
hints in standard mathematics.

When typing is seen as an is a relation between a name and a substantive
(section 4), there is no need to require that relation to be a function
from names to substantives, where the substantive is always the uniquely
determined function value. The ordinary usage of is a does not require
this. One can say that 3 is a positive rational and 3 is a non-zero complex
number, without requiring that the substantives positive rational and non-
zero complex number are definitionally equal.

In an example like this one can try to explain things in terms of subtypes.
One can claim that there is a more universal type like number of which
both positive rational and that non-zero complex number are subtypes. In
(1] T called such a universal type an archetype. Subtypes can be described
by means of predicates on the archetype. The archetype of an object is
unique, and by means of a simple system of hints the checking machine
is able to find that archetype. It only remains to check that the object
satifies the predicate that belongs to the subtype in question.

So uniqueness is not really given up in this subtype system, it is just hid-
den. But one might think of a modification of PAL where things can have
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several different types which are not embedded in a common archetype.

- One-can-think of admitting book lines which express that some pis.defined ...

as E and typed both by A and B. And one might think of context items
of the form let z be of type C or D. The substitution and instantiation
mechanism of PAL would easily handle this kind of thing. The question is
only whether it would ever be of any use for the mathematical sciences.

Non-uniqueness seems to be more essential if the notion of typing is gen-
eralized to the fitting of vectors in telescopes.

Mathematicians use is a for building sentences which can not be directly

" interpreted as typings in PAL. In the sentence let G be a group the word
group cannot be related to just a type. And the G is more than a simple
name. What G stands for is a vector, which may contain (depending on the

“taste of the user) a type, a predicate on that type (together determining
a :s'két), a ternary relation product on that set, a unit element, and ﬁn_a.lly
a number of entries providing proofs for the group properties.

Tt is possible to extend PAL to a language in which names (like group)
are given to telescopes. Such names can be introduced in a new kind of
~ book lines on the left of the := symbol. A corresponding facility is the
_ abbreviation of vectors of arbitrary length by means of a single symbol.
‘Both kinds of abbreviations can be given inside a context, and then the
instantiation mechanism can be applied to form new telescopes and new
vectors. In such a language enriched with telescopes and vectors the fitting
of a vector into a telescope can be seen as a generalization of typing (but
in order to get things straight this requires that ordinary typing p: T has
to be rephrased as p: [z : T) .

- Around 1974 J. Zucker\ (cf. [11]) wrote a considerable fragment of math-

" ematics in terms of AUT-II with the use of abbreviations for vectors
_and telescopes, directly corresponding to the colloquial usage in standard
" mathematics. This AuT-IL is a lambda calculus extension of PAL, but the

v_ ~spirit of telescope handling is independent of lambda calculus.

~ In [9] I described how mappings of a telescope into another one (like a
. function that attaches a field to every abelian group) can be treated by a
. é'@lculus that is completely analogous to the treatment of ordinary map-
pings from some type into some other type.
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I quote this matter of telescopes here since it is quite workable in spite
of the fact that the analog of uniqueness of typing fails. Zucker gave a

simple example that kills it convincingly: if (v1, vs) fits into the telescope
[z : Plly : Q(z)], then it also fits into [z : P][y : Q(v1)], and these two
telescopes can in no way be considered as deﬁnltlonally equal.

17 EPILOGUE

From the way I exposed the idea of proofs as objects in the central sections
- of this paper the reader will understand that I find the term propositions
as types somewhat misleading.

If p is a proposition, then the parallel is as follows. In the object world
there are the typings of degree 3 and 2, respectively:

3 : nat, nat : type
In the proof world there are corresponding typings:
u : proof(p), proof(p) : prop

So it is not the proposition p itself that plays a role similar to the one of
the type nat, but proof(p). When writing prop-style, this is not different.
Then there are typings like

u : P, P : prop

and P is not a proposition but a particular kind of substantlve for which
I know no grammatical term.

In the prop-style writing tradition of the AUTOMATH project it was cus-
tomary to use identifiers that were more or less copies of standard names
for the corresponding propositions. This was also done in section 13 above,
where the identifier “CON” was chosen to play the following role: if
u : CON(&,n) then u is a proof of the conjunction of the two proposi-
tions of which £ and 7 are proofs. So “CON” is related to the proposition
that would normally be denoted by “con” but it is certainly not to be
identified with it.
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A related remark is that I would not like to identify a type with a class. In

* 4 natural language like English there is a-clear-distinetion between a sub-

stantive (like bottle) and the corresponding class (the class of all bottles).
The substantive is the generic name for the class. When abbreviating
substantive and class by S and C, respectively, it is reasonable to identify
C with the class of all S’s, and S with the substantive element of S. But
S ar‘id'.C.‘ should not be identified.
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