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We show that there is a stable orthogonal factorization system (E ,M) where E is
the class of n-connected functions andM is the class of functions with homotopy fibers
of level n. Shulman1 also worked on this topic, using arbitrary modalities instead [Shu].

1 Prerequisites
In this document we assume that Type is a univalent universe. We are typically ambigu-
ous and universe polymorphic.

Lemma 1.1. Suppose f ∶ A→ B and g ∶ B→C are functions and let c ∶C. Then there
is an equivalence

hFiber(g○ f ,c) ≃∑(w ∶ hFiber(g,c)), hFiber( f ,proj1w).
with underlying function λ ⟨a, p⟩.⟨⟨g(a), p⟩,⟨a, idg(a)⟩⟩. Also, if f ,g ∶ A→ B are
homotopic then

hFiber( f ,b) ≃ hFiber(g,b)
for every b ∶B. The underlying function of this equivalence is λ ⟨a, p⟩.⟨a, p●H(a)−1⟩,
where H ∶ f ∼ g is the

Lemma 1.2. Suppose f ∶∏(x ∶ A), P(x)→Q(x) is a fiberwise transformation and
define ΣA f to be the function λ ⟨a,u⟩.⟨a, f (u)⟩ ∶∑(x ∶ A), P(x)→∑(x ∶ A), Q(x).
There is an equivalence

hFiber(ΣA f ,⟨x,v⟩) ≃ hFiber( f (x),v)
for any x ∶ A and v ∶Q(x).

∗These are notes for a talk at the IAS during the special year on the univalent foundations of mathematics.
1See https://github.com/mikeshulman/HoTT/blob/master/Coq/Subcategories/

and http://golem.ph.utexas.edu/category/2011/12/reflective_subfibrations_
facto.html
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Definition 1.3. A function g ∶ A→ B is said to be a retract of a function f ∶ X → Y if
there is a diagram

A X A

B Y B

s r

gfg

s′ r′

for which there are

i. a homotopy R ∶ r ○ s ∼ idA.

ii. a homotopy R′ ∶ r′ ○ s′ ∼ idmapB.

iii. a homotopy L ∶ f ○ s ∼ s′ ○g.

iv. a homotopy K ∶ g○ r ∼ r′ ○ f .

v. paths H(a) witnessing the commutativity of the square

g(r(s(a))) r′( f (s(a)))

g(a) r′(s′(g(a)))
g(R(a)))

K(s(a))

R′(g(a))

r′(L(a))

for every a ∶ A. ⧫
Remark 1.4. The above lemma guarantees that each f (x) is of level n if and only if
ΣA f is of level n, see the definition of homotopy levels below, and that each f (x) is
n-connected if and only if ΣA f is n-connected, see the definition of n-connectivity below.
Likewise, both n-connected and n-truncated maps are closed under retracts. ★

Lemma 1.5. If a function g ∶ A → B is a retract of a function f ∶ X → Y , then
hFiber(g,b) is a retract of hFiber( f ,s′(b)) for every b ∶ B, where s′ ∶ B → Y is
as in definition 1.3.

Definition 1.6. We define the space isLevel(−2,A) ≡ isContr(A) and

isLevel(n+1,A) ≡∏(x,y ∶ A), isLevel(n,x↝ y)
for n ≥ −2. A function f ∶ A→ B is said to be of homotopy level n if all of its homotopy
fibers are of level n. Likewise, a dependent type is said to be of level n if all of its fibers
are of level n. ⧫
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Proposition 1.7. The type

nType ≡∑(X ∶Type), isLevel(n,X)
is of homotopy level n+1.

For any type A there is a type ∥A∥n of homotopy level n, called the n-truncation of A.
This type is defined as a certain higher inductive type with one of the basic constructors
being ∣− ∣n ∶A→ ∥A∥n. We will not give this construction here and assume that the reader
is already familiar with it. The useful (universal) property of ∥A∥n is:

Proposition 1.8. Suppose that A is a type and that P ∶ ∥A∥n→Type is a dependent
type over ∥A∥n+1 with fibers P(w) of homotopy level n. Then there is an equivalence

(∏(w ∶ ∥A∥n), P(w)) ≃ (∏(x ∶ A), P(∣x∣n))
with underlying function λ s.s○ ∣− ∣n. Consequently, n-truncation has the universal
property that there is an equivalence

(∥A∥n→ B) ≃ (A→ B)
for every type B of level n, also given by precomposition with ∣− ∣n.

Lemma 1.9. For any dependent type P ∶ A→Type there is an equivalence

∥∑(x ∶ A), P(x)∥n ≃ ∥∑(x ∶ A), ∥P(x)∥n∥n
Proposition 1.10. For any type A and any n ∶N, there is an equivalence

(∣x∣n+1↝ ∣y∣n+1) ≃ ∥x↝ y∥n
for each x,y ∶ A.

PROOF. We begin by constructing a dependent type

P ∶ ∥A∥n+1→ ∥A∥n+1→ nType.

Since nType is of homotopy level n+1, it suffices to define P(∣x∣n+1, ∣y∣n+1) for each
x,y ∶ A. So we define

P(∣x∣n+1, ∣y∣n+1) ≡ ∥x↝ y∥n.
Now we have the equivalences

∏(w,w′ ∶ ∥A∥n+1), P(w,w′)→ (w↝w′) ≃∏(x,y ∶ A), ∥x↝ y∥n→ (∣x∣n+1↝ ∣y∣n+1)≃∏(x,y ∶ A), (x↝ y)→ (∣x∣n+1↝ ∣y∣n+1).
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We find a term of the latter type by path induction. Note that to show that P(w,w′) ≃(w↝ w′) for each w,w′ ∶ ∥A∥n+1, it suffices to show that ∑(w′ ∶ ∥A∥n+1), P(w,w′) ≃∑(w′ ∶ ∥A∥n+1), w↝w′. The latter space is contractible, so it suffices to show that

∏(w ∶ ∥A∥n+1), isContr(∑(w′ ∶ ∥A∥n+1), P(w,w′)),
which is equivalent to

∏(x ∶ A), isContr(∑(w′ ∶ ∥A∥n+1), P(∣x∣n+1,w′))
The natural candidate for the center of contraction is ⟨∣x∣n+1, ∣idx∣n⟩, i.e. we will show
contractibility by showing that there is a function of type

∏(w ∶ ∥A∥n+1)(u ∶ P(w)), ⟨w,u⟩↝ ⟨∣x∣n+1, ∣idx∣n⟩.
Since the type ∏(u ∶ P(w)), ⟨w,u⟩↝ ⟨∣x∣n+1, ∣idx∣n⟩ is of homotopy level n for each
w ∶ ∥A∥n+1, we may apply the universal property of n+ 1-truncation to reduce the
problem to ∏(y ∶ A)(u ∶ ∥x↝ y∥n), ⟨∣y∣n+1,u⟩↝ ⟨∣x∣n+1, ∣idx∣n⟩,
which is by yet another application of the universal property of n-truncation equivalent
to the type ∏(y ∶ A)(u ∶ x↝ y), ⟨∣y∣n+1, ∣u∣n⟩↝ ⟨∣x∣n+1, ∣idx∣n⟩,
A term of this type can be found by an application of path induction.

2 Orthogonal factorization in type theory

2.1 Connectivity
Definition 2.1. A function f ∶ A→ B is said to be n-connected if there is a term of type

connn( f ) ≡∏(b ∶ B), isContr(∥hFiber( f ,b)∥n).
A type A is said to be n-connected if the unique function A! ∶ A→ unit is n-connected.
Likewise, a dependent type P ∶A→Type is said to be n-connected if P(x) is n-connected
for every x ∶ A. ⧫
Remark 2.2. Note that a type A is n-connected precisely when there is a term of type
isContr(∥A∥n). Thus, a function f ∶ A→ B is n-connected if and only if hFiber( f ,b) is
n-connected for every b ∶ B. A dependent type P ∶ A→ Type is n-connected precisely
when proj1 ∶∑(x ∶ A), P(x)→ A is an n-connected function.

Note that every function is −2-connected and that a function is −1-connected pre-
cisely when it is surjective.2 forall André Joyal proposed to call n-connected functions
n-covers. ★

2A function f ∶ A→ B is surjective if there is a term of type surj( f ) ∶=∏(b ∶ B), ∥hFiber( f ,b)∥1.
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Lemma 2.3. Suppose that f ,g ∶ A → B are homotopic functions. Then f is n-
connected if and only if g is n-connected.

PROOF. Since f and g are homotopic, there is an equivalence hFiber( f ,b)≃hFiber(g,b)
for any b ∶ B and hence ∥hFiber(g,b)∥n is contractible if and only if ∥hFiber( f ,b)∥n is
contractible.

Lemma 2.4. Suppose that f ∶ A→ B is n-connected and that g ∶ B→C. Then g is
n-connected if and only if g○ f is n-connected.

PROOF. Let c ∶C. Note that we have the equivalences

∥hFiber(g○ f ,c)∥n ≃ ∥∑(w ∶ hFiber(g,c)), hFiber( f ,proj1w)∥n≃ ∥∑(w ∶ hFiber(g,c)), ∥hFiber( f ,proj1w)∥n∥n≃ ∥hFiber(g,c)∥n.
Therefore it follows that ∥hFiber(g,c)∥n is contractible if and only if ∥hFiber(g○ f ,c)∥n
is contractible.

A basic example of an n-connected function is the function ∣− ∣n ∶ A→ ∥A∥n for any
type A. The other prime example is the canonical function A→ imn( f ) for any function
f ∶ A→ B, where imn( f ) is the n-image of f . We will see the details of this example in
section 2.2.

The fact that ∣− ∣n ∶ A→ ∥A∥n is n-connected is an immediate corollary of the follow-
ing proposition:

Proposition 2.5. A function f ∶ A→ B is n-connected if and only if for every depen-
dent type P ∶ B→Type of homotopy level n, the function

ϕ ∶ (∏(b ∶ B), P(b))→ (∏(a ∶ A), P( f (a)))
defined by ϕ(s) ≡ s○ f is an equivalence.

PROOF. Suppose that f is n-connected and let P ∶ B→Type be a dependent type over
B. Then we have the equivalences

∏(b ∶ B), P(b) ≃∏(b ∶ B), ∥hFiber( f ,b)∥n→ P(b)
≃∏(b ∶ B)(a ∶ A)(p ∶ f (a)↝ b), P(b)
≃∏(a ∶ A), P( f (a)).

It can be checked by the reader that this equivalence is indeed given by λ s.s○ f .
For the other direction, suppose that the function λ s.s○ f from (∏(b ∶ B), P(b))

to (∏(a ∶ A), P( f (a))) is an equivalence for each dependent type P ∶ B→ Type of
homotopy level n. Considering the dependent type

b ∶ B ⊢ ∥hFiber( f ,b)∥n ∶ nType,
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we obtain from the assumed equivalence a term c of type ∏(b ∶ B), ∥hFiber( f ,b)∥n
with c( f (a))↝ ∣⟨a, id f(a)⟩∣n. To show that each ∥hFiber( f ,b)∥n is contractible we will
find a function of type

∏(b ∶ B)(w ∶ ∥hFiber( f ,b)∥n), w↝ c(b).
Note that by the universal property of n-truncation we obtain that the above type is
equivalent to ∏(b ∶ B)(a ∶ A)(p ∶ f (a)↝ b), ∣⟨a, p⟩∣n↝ c(b).
By path induction this is equivalent to the type

∏(a ∶ A), ∣⟨a, id f(a)⟩∣n↝ c( f (a)).
This property holds by our choice of c( f (a)).

Corollary 2.6. For every number n ∶ N and every type A, the canonical function∣− ∣n ∶ A→ ∥A∥n is n-connected.

PROOF. For every dependent type P ∶ ∥A∥n→ nType, the requested equivalence exists
by proposition 1.8.

The following two corollaries are mere reformulations of proposition 2.5:

Corollary 2.7. A function f ∶ A→ B is n-connected if and only if for every function
g ∶ X → B of homotopy level n, the function

ϕ ∶ (∏(b ∶ B), hFiber(g,b))→ (∏(a ∶ A), hFiber(g, f (a)))
defined by ϕ(s) ≡ s○ f is an equivalence.

Corollary 2.8. A function f ∶ A→ B is n-connected if and only if for every function
g ∶ X → B of homotopy level n, the function

ϕ ∶ (∑(h ∶ B→ X), g○h ∼ idmapB)→ (∑(k ∶ A→ X), g○k ∼ f )
defined by ϕ(h,H) ≡ ⟨h○ f ,H ○ f ⟩ is an equivalence.

When we apply the above proposition to functions with codomain unit we obtain an
assertion which is in itself not very interesting, but it gives some intuition on how we
should look at proposition 2.5:

Corollary 2.9. A type A is n-connected if and only if there is an equivalence

(A→ B) ≃ B

for every type B of homotopy level n.
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Lemma 2.10. Let B be a type of homotopy level n and let f ∶ A→ B be a function.
Then the induced function g ∶ ∥A∥n → B is an equivalence if and only if f is n-
connected.

PROOF. Note that f is homotopic to g ○ ∣− ∣n. By corollary 2.6 we know that ∣− ∣n
is n-connected, so we get from lemma 2.4 that f is n-connected if and only if g is
n-connected. Since g is a function between types of homotopy level n, the homotopy
fibers of g are of level n. Hence it follows that g is n-connected if and only if g is an
equivalence.

A useful variation to lemma 2.4 is:

Lemma 2.11. Suppose that f ∶ A→ B is a function, that P ∶ A→Type and Q ∶ B→
Type are dependent types and that g ∶∏{a ∶ A}, P(a)→ Q( f (a)) is a fiberwise
n-connected function, i.e. each g(a) is assumed to be n-connected. Then the function

ϕ ≡ λ ⟨a,u⟩.⟨ f (a),g(u)⟩ ∶ (∑(a ∶ A), P(a))→ (∑(b ∶ B), Q(b))
is n-connected if and only if f is n-connected.

PROOF. For b ∶ B and v ∶Q(b) we have

∥hFiber(ϕ,⟨b,v⟩)∥n ≃ ∥∑(a ∶ A)(u ∶ P(a))(p ∶ f (a)↝ b), f (p) ⋅g(u)↝ v∥n
≃ ∥∑(w ∶ hFiber( f ,b))(u ∶ P(proj1(w))), g(u)↝ f (p)−1 ⋅v∥n≃ ∥∑(w ∶ hFiber( f ,b)), ∥hFiber(g(proj1w), f (p)−1 ⋅v)∥n∥n≃ ∥hFiber( f ,b)∥n

where the transportations along f (p) and f (p)−1 are taken with respect to the dependent
type Q. Therefore, both of them are contractible whenever either of them is contractible.

Proposition 2.12. For every two functions f ∶ A → X and g ∶ B → X there is an
equivalence

∥∑(x ∶ A)(y ∶ B), ∥ f (x)↝ g(y)∥n∥n+1 ≃ ∥A∥n+1×∥X∥n+1
∥B∥n+1.

PROOF. We have an obvious equivalence

(∑(a ∶ A)(b ∶ B), ∥ f (a)↝ g(b)∥n) ≃ A×∥X∥n+1
B

and the canonical map

A×∥X∥n+1
B→ ∥A∥n+1×∥X∥n+1

∥B∥n+1

is n+1-connected by lemma 2.11 above (taking the functions g(a) of the lemma to be
the appropriate identity maps). Hence the induced function

∥∑(a ∶ A)(b ∶ B), ∥ f (a)↝ g(b)∥n∥n+1→ ∥A∥n+1×∥X∥n+1
∥B∥n+1

is an equivalence.
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Remark 2.13. It follows from the above proposition that ∥− ∥n+1 cannot preserve
pullbacks for n ≥ −2, i.e. it cannot be a lex modality. As a simple example to see why−1-truncation is does not preserve pullbacks, consider the pullback of the functions
true, false ∶ unit→ bool. This pullback is evidently the proposition ∅, while the pullback
of their −1-truncations is evidently unit. ★

Corollary 2.14. For every function f ∶ A→ B and any b ∶ B there is an equivalence

∥∑(a ∶ A), ∥ f (a)↝ b∥n∥n+1 ≃ hFiber(∥ f ∥n+1, ∣b∣n+1)
As a consequence, hFiber(∥ f ∥1,y) ≃ ∥A∥1 for any y ∶ ∥B∥1.

Corollary 2.15. For any dependent type P ∶ A → Type and any n ∶ N there is a
dependent type Qn+1 ∶ ∥A∥n+1→Type for which there are equivalences

∑(x ∶ ∥A∥n+1), Qn+1(x) ≃ ∥∑(a ∶ A), P(a)∥n+1

and
Qn+1(∣a∣n+1) ≃ ∥∑(a′ ∶ A)(u ∶Qn+1(∣a′∣n+1), ∥a′↝ a∥n∥n+1

for any a ∶ A.

We leave a direct proof of this assertion to the reader. For an indirect proof we use
that functions are dependent types, via fibrant replacement.

Lemma 2.16. For any f ∶A→B, if ∥ f ∥n+1 ∶ ∥A∥n+1→ ∥B∥n+1 is an equivalence, then
f is n-connected.

PROOF. Suppose we have such a function f ∶ A→ B and let b ∶ B. By assumption we
have that hFiber(∥ f ∥n+1, ∣b∣n+1) is contractible. Using lemma 2.14, we get equivalences

unit ≃ ∥∑(a ∶ A), ∥ f (a)↝ b∥n∥n+1≃ ∥∑(a ∶ A), ∥ f (a)↝ b∥n∥n≃ ∥hFiber( f ,b)∥n,
showing that ∥hFiber( f ,b)∥n is contractible for each b ∶ B.

Lemma 2.17. For any f ∶ A→ B and g ∶ B→C, if g and g○ f are n+1-connected,
then ∥ f ∥n+1 is an equivalence and hence f is n-connected.

PROOF. Suppose that f ∶A→B and g ∶B→C are such that g and g○ f are n+1-connected
and let b ∶ B. Then we have that ∥g∥n+1 and ∥g○ f ∥n+1 are equivalences. Since there is a
homotopy ∥g○ f ∥n+1 ∼ ∥g∥n+1 ○∥ f ∥n+1 it follows by the 3-for-2-rule that ∥ f ∥n+1 is an
equivalence. By lemma 2.16, it follows that f is n-connected.

Proposition 2.18. For every function f ∶ A→ B, the codiagonal ∇ f ∶ B+A B→ B is
n+1-connected whenever f is n-connected.
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PROOF. Suppose that f ∶ A→ B is n-connected. We have to show that

∏(b ∶ B), isContr(∥hFiber(∇ f ,b)∥n+1)
For each b ∶ B we have ⟨ j(b), idb⟩ ∶ hFiber(∇ f ,b), so we have to show that

∏(b ∶ B)(w ∶ ∥hFiber(∇ f ,b)∥n+1), w↝ ∣⟨ j(b), idb⟩∣n+1.

Since ∑(b ∶ B), hFiber(∇ f ,b) is equivalent to B+A B, the above type is equivalent to
the type ∏(x ∶ B+A B), ∣⟨x, id∇ f (x)⟩∣n+1↝ ∣⟨ j(∇ f (x)), id∇ f (x)⟩∣n+1.

We may use the induction principle of B+A B. Thus, it suffices to show that

u ∶∏(b ∶ B), ∣⟨i(b), id∇ f (i(b))⟩∣n+1↝ ∣⟨ j(∇ f (i(b))), id∇ f (i(b))⟩∣n+1

v ∶∏(b ∶ B), ∣⟨ j(b), id∇ f ( j(b))⟩∣n+1↝ ∣⟨ j(∇ f ( j(b))), id∇ f ( j(b))⟩∣n+1

w ∶∏(a ∶ A), α(a) ⋅u( f (a))↝ v( f (a)).
Note that since ∇ f (i(b)) ≡ b and ∇ f ( j(b)) ≡ b, the above assertions simplify to

u ∶∏(b ∶ B), ∣⟨i(b), idb⟩∣n+1↝ ∣⟨ j(b), idb⟩∣n+1

v ∶∏(b ∶ B), ∣⟨ j(b), idb⟩∣n+1↝ ∣⟨ j(b), idb⟩∣n+1

w ∶∏(a ∶ A), α(a) ⋅u( f (a))↝ v( f (a)).
To find u, recall that f is assumed to be n-connected. Hence it suffices to find a function
of type

∏(b ∶ B), ∥hFiber( f ,b)∥n→ (∣⟨i(b), idb⟩∣n+1↝ ∣⟨ j(b), idb⟩∣n+1)
By the universal property of n-truncation we get the equivalent type

∏(b ∶ B), hFiber( f ,b)→ (∣⟨i(b), idb⟩∣n+1↝ ∣⟨ j(b), idb⟩∣n+1)
which is equivalent to the type

∏(a ∶ A), ∣⟨i( f (a)), id f(a)⟩∣n+1↝ ∣⟨ j( f (a)), id f(a)⟩∣n+1

It suffices to find a function of type

∏(a ∶ A), ⟨i( f (a)), id f(a)⟩↝ ⟨ j( f (a)), id f(a)⟩
We have α(a) ∶ i( f (a))↝ j( f (a)) and α(a) ⋅ id f(a) ↝ ∇ f (α(a))↝ id f(a) for each
a ∶ A, giving us the desired function u. For v we can just apply reflexivity. Because
u( f (a)) has been defined entirely in terms of α(a) and canonical paths associated to it,
we also get the function w automatically.

The other direction seems desirable, but with the current tools it is hard to achieve:
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Corollary 2.19. If a type X is n-connected then S(X) is n+1-connected.

PROOF. A type X is n-connected if and only if the function X! ∶X → unit is n-connected.
By the previous proposition it follows that ∇X! ∶ unit+X unit→ unit is n+1-connected
whenever X is n-connected. The type unit+X unit is by definition the suspension of X .

Corollary 2.20. The n-sphere is n−1-connected.

PROOF. By induction. The empty type ∅ is −2-connected and the 0-sphere is the
suspension of ∅. The induction step follows immediately from the previous corollary
because the n+1-sphere is the suspension of the n-sphere.

2.2 Orthogonal factorization through the n-image.
Definition 2.21. Suppose that f ∶ A→ B is a function. The n-image of f is defined as

imn( f ) ≡∑(b ∶ B), ∥hFiber( f ,b)∥n
We also define im⋆( f ) ≡∑(b ∶ B), hFiber( f ,b) and we denote im1( f ) by im( f ). ⧫

Proposition 2.22. Let P,Q ∶A→Type be dependent types over a type A and consider
a fiberwise transformation

f ∶∏(a ∶ A), P(a)→Q(a)
from P to Q. Then ΣA f is n-connected if and only if each f (a) is n-connected.

PROOF. Recall that we have the equivalence

hFiber(ΣA f ,⟨x,v⟩) ≃ hFiber( f (x),v)
for each x ∶ A and v ∶Q(x). Hence ∥hFiber(ΣA f ,⟨x,v⟩)∥n is contractible if and only if∥hFiber( f (x),v)∥n is contractible.

Proposition 2.23. For any function f ∶ A→ B and any n ∶N, the canonical function
f̃n ∶ A→ imn( f ) is n-connected. Also, the canonical function f̃⋆ ∶ A→ im⋆( f ) is an
equivalence. Consequently, any function factors as an n-connected function followed
by a function of homotopy level n.

PROOF. Note that A ≃∑(b ∶ B), hFiber( f ,b). The function f̃n is the function on total
spaces induced by the fiberwise transformation

λb.∣− ∣hFiber( f ,b)
n ∶∏(b ∶ B), hFiber( f ,b)→ ∥hFiber( f ,b)∥n.

Since each ∣− ∣n is n-connected by corollary 2.6, the statement follows from proposition
2.22.
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In the following proposition we set up some machinery to prove the unique factor-
ization theorem.

Proposition 2.24. Suppose we have a commutative diagram of functions

A B

X1

X2

g1 h1

g2 h2

with H ∶ h1 ○g1 ∼ h2 ○g2, where g1 and g2 are n-connected and where h1 and h2 are
of homotopy level n. Then there is an equivalence

E(H,b) ∶ hFiber(h1,b) ≃ hFiber(h2,b)
for any b ∶B such that the underlying map E(H,h1(g1(a))) of E(H,h1(g1(a))maps⟨g1(a), idh1(g1(a))⟩ to the term ⟨g2(a),H(a)−1⟩, for any a ∶ A.

PROOF. Let b ∶ B. Then we have the following equivalences:

hFiber(h1,b) ≃∑(w ∶ hFiber(h1,b)), ∥hFiber(g1,proj1w)∥n≃ ∥∑(w ∶ hFiber(h1,b)), hFiber(g1,proj1w)∥n≃ ∥hFiber(h1 ○g1,b)∥n
and likewise for h2 and g2. Here, the first equivalence holds because g1 is assumed
to be n-connected; the second equivalence holds because h1 is assumed to be of level
n and the third equivalence holds by lemma 1.1. Also, since we have a homotopy
H ∶ h1○g1 ∼ h2○g2, there is an obvious equivalence hFiber(h1○g1,b)≃hFiber(h2○g2,b).
Hence we obtain

hFiber(h1,b) ≃ hFiber(h2,b)
for any b ∶B. By analyzing the underlying functions, we get the following representation
of what happens to the term ⟨g1(a), idh1(g1(a))⟩ after applying each of the equivalences
of which E is composed:

⟨g1(a), idh1(g1(a))⟩↦ ⟨⟨g1(a), idh1(g1(a))⟩, ∣⟨a, idg1(a)⟩∣n⟩↦ ∣⟨⟨g1(a), idh1(g1(a))⟩,⟨a, idg1(a)⟩⟩∣n↦ ∣⟨a, idh1(g1(a))⟩∣n↦ ∣⟨a,H(a)−1⟩∣n↦ ∣⟨⟨g2(a),H(a)−1⟩,⟨a, idg2(a)⟩⟩∣n↦ ⟨⟨g2(a),H(a)−1⟩, ∣⟨a, idg2(a)⟩∣n⟩↦ ⟨g2(a),H(a)−1⟩
Remark 2.25. The equivalences E(H,b) are such that E(H−1,b)↝ E(H,b)−1. ★
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Theorem 2.26. Let f ∶ A→ B be a function. Then the space factorizations(n, f )
defined by

∑(X ∶Type)(g ∶ A→ X)(h ∶ X → B), (h○g ∼ f )×connn(g)× isLevel(n,h)
is contractible. By proposition 2.23 we know that there is the term

⟨imn( f ), f̃n,proj1,θ ,ϕ,ψ⟩ ∶ factorizations(n, f )
where θ ∶ proj1 ○ f̃n ∼ f is the canonical homotopy, where ϕ is the proof of proposition
2.23, and where ψ is the obvious proof that proj1 ∶ imn( f )→ B has homotopy fibers
of level n.

PROOF. By proposition 2.23 we know that there is a term of factorizations(n, f ), hence
it is enough to show that factorizations(n, f ) is a proposition. Suppose we have two
n-factorizations

⟨X1,g1,h1,H1,ϕ1,ψ1⟩ and ⟨X2,g2,h2,H2,ϕ2,ψ2⟩
of f . Then we have the homotopy H ≡ H−1

2 ○H1 ∶ h1 ○g1 ∼ h2 ○g2. By the univalence
axiom, it suffices to show that

i. there is an equivalence e ∶ X1 ≃ X2,

ii. there is a homotopy ζ ∶ e○g1 ∼ g2,

iii. there is a homotopy η ∶ h2 ○e ∼ h1,

iv. there is a homotopy H1 ○(h1 ○ζ)−1 ○(η ○g2) ∼H2.

where e is the function underlying the equivalence. We prove these four assertions in
that order.

i. By proposition 2.24, we have a fiberwise equivalence.

∏(b ∶ B), hFiber(h1,b)→ hFiber(h2,b).
This induces an equivalence of total spaces, i.e. we have

∑(b ∶ B), hFiber(h1,b) ≃∑(b ∶ B), hFiber(h2,b)
Of course, we also have the familiar equivalences X1 ≃∑(b ∶ B), hFiber(h1,b)
and X2 ≃∑(b ∶ B), hFiber(h2,b). This gives us our equivalence e(H) ∶ X1 ≃ X2.
The reader may verify that the underlying function e(H) of e(H) is defined by

e(H,x) ≡ proj1E(H−1,h1(x))(⟨x, idh1(x)⟩)
ii. By proposition 2.24 we have ζ(a) ∶ e(H,g1(a))↝ g2(a).

12



iii. For every x ∶ X1, we have

proj2E(H−1,h1(x))(⟨x, idh1(x)⟩) ∶ h2(e(H,x))↝ h1(x),
giving us a homotopy η ∶ h2 ○e ∼ h1.

iv. By proposition 2.24 we have η(g1(a)) ≡H(a)−1 and by ii. we have h2(ζ(a)) ≡
idh2(g2(a)). Thus we have

(H1 ○(h2 ○ζ)−1 ○(η ○g1))(a) ≡H1(a)●h2(ζ(a))−1 ●η(g1(a))≡H1(a)●H(a)−1

↝H2(a).

2.3 Images are stable under pullbacks
In this section we will show that pullbacks and images commute.

Lemma 2.27. Suppose that the square

A C

B D

gf

h

is a pullback square and let b ∶ B. Then hFiber( f ,b) ≃ hFiber(g,h(b)).
PROOF. This follows from pasting of pullbacks, since the type X in the diagram

X A C

unit B D

gf

b h

is the pullback of the left square if and only if it is the pullback of the outer rectangle:
hFiber( f ,b) is the pullback of the square on the left and hFiber(g,h(b)) is the pullback
of the outer rectangle.
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Theorem 2.28. Consider functions f ∶ A→ B, g ∶C→D and the diagram

A C

imn( f ) imn(g)

B D

g̃n

proj1

f̃n

proj1

h

Then the outer rectangle is a pullback if and only if the bottom square is a pullback.
In either of these equivalent cases, the top square is also a pullback. Consequently,
images are stable under pullbacks.

PROOF. Suppose first that the outer square is a pullback. Note that we have the
equivalences

B×D imn(g) ≡∑(b ∶ B)(w ∶ imn(g)), h(b)↝ proj1w

≃∑(b ∶ B)(d ∶D)(w ∶ ∥hFiber(g,d)∥n), h(b)↝ d

≃∑(b ∶ B), ∥hFiber(g,h(b))∥n.≃∑(b ∶ B), ∥hFiber( f ,b)∥n≡ imn( f ).
In the last equivalence we have used lemma 2.27.

Now suppose that the bottom square is a pullback, of which we denote the top arrow
by ψ . By the pasting lemma for pullbacks, it suffices to show that the top square is a
pullback. We have the equivalences

imn( f )×imn(g)C ≡∑(w ∶ imn( f ))(c ∶C), ψ(w)↝ g̃n(c)≃∑(b ∶ B)(w ∶ imn(g))(p ∶ h(b)↝ proj1w)(c ∶C), w↝ g̃n(c)≃∑(b ∶ B)(c ∶C), h(b)↝ g(c)
≃∑(b ∶ B), hFiber( f ,b)≃ A.

Corollary 2.29. The class of n-surjective functions is stable under pullbacks.

By analogy to what happens in an ∞-topos [REZ10, Lur09], Shulman defines
internally3 a reflective subcategory R of the category Type such that for all X in R
and P ∶ X → R, ΣXP in R. He shows that these reflections are equivalent to modalities.

3We should be careful here, as we do not yet properly understand what should be the ∞-category of Type.
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Any such modality ◯ should define a stable factorization system with E the class of
functions such that:

E◯( f ) ≡∏(b ∶ B), isContr(◯hFiber( f ,b)).
and M◯ the class of functions all whose fibers are modal. Our truncation is a special
case of this where we consider the modality ∥−∥n. Shulman defines the type of these
maps and the lift (in Coq). We plan to check whether our proof of Theorem 2.26
generalizes to modalities.
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