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The aim of this paper is to prove that the fundamental group of the circle is isomorphic
to the group of integers Z. Recall that the circle S1 is the space generated by a point e
and a path ` from e to itself:

•e `

S1

We will actually prove a bit more, namely that the loop space of S1 at e is equivalent to
Z. Using the fact that Z is a set, the result will follow easily.

We start by constructing a particular fibration over S1:

Definition 1. Let S̃1 � S1 be the fibration over S1 whose fiber over e is Z and such that
for every n ∈ (S̃1)e = Z, transporting n along ` gives n+ 1. Such a fibration exists because
the map (n 7→ n+ 1) : Z→ Z is an equivalence.

The total space of this fibration is not very explicit and difficult to work with so we will
first show that it has a more explicit presentation. Let R be the space generated by a point
in for every n ∈ Z and a path pn from in to in+1 for every n ∈ Z:

. . .

. . .

• • • • •
. . .

. . .

i0 i1 i2i−1i−2

p−2 p−1 p0 p1

R

Then we have the following:

Lemma 2 (flattening lemma). The spaces S̃1 and R are equivalent.
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The idea is that the total space of the fibration S̃1 � S1 can be flattened to give the space
R (whose definition can be deduced from the definition of S̃1 � S1). A similar lemma can
be proved every time we have a space A generated by some points and paths constructors
and a fibration Q � A defined by giving the fibers at the distinguished points and the
action of the distinguished paths on the fibers.

Proof. We will construct two functions f : R→ S̃1 and g : S̃1 → R and we will prove that
they are inverse to each other.
For f we take the function sending each point in to n̂, where n 7→ n̂ is the inclusion

Z = (S̃1)e ↪→ S̃1, and sending each path pn to the path in S̃1 above ` corresponding to the
transport of n to n+ 1.
To define g, we will define gx : (S̃1)x → R for every x ∈ S1. For x = e, we have (S̃1)e = Z

and we define ge : Z→ R by ge(n) = in. When x varies along l, the map gx varies from ge

to the map g′e : Z→ R such that g′e(n) = in+1 (by definition of the fibration S̃1 � S1), so
we need a path from in to in+1 for every n ∈ Z and we take pn.

We now prove that f and g are inverse to each other.
Let’s first consider the composite g ◦ f : R→ R. For n ∈ Z, we have g(f(in)) = g(n̂) =

in. We also have g(f(pn)) = pn because by definition g sends the path in S̃1 above `
corresponding to the transport of n to n+ 1 to pn. Hence g ◦ f = idR.
For the other composite, we will prove that for all x ∈ S1, the map f ◦ gx : (S̃1)x → S̃1

is equal to the inclusion (S̃1)x ↪→ S̃1. For x = e, we have (S̃1)e = Z and f(ge(n)) = n̂

for all n ∈ Z. When x varies along `, the inclusion (S̃1)x ↪→ S̃1 varies from n 7→ n̂ to
n 7→ n̂+ 1. Moreover, f ◦ gx varies from f ◦ ge to the map f ◦ g′e and for n ∈ Z we have
f(g′e(n)) = f(in+1) = n̂+ 1.

Lemma 3. The space S̃1 is contractible.

Proof. Thanks to the flattening lemma, we can just prove that R is contractible. Hence
we want to construct for every x ∈ R a path cx from i0 to x.
For x = i0, we take the constant path:

ci0 = 1i0

For x = in+1 with n ≥ 0, we take the composite of the path from i0 to in (which has
already been constructed by induction on n) with pn:

cin+1 = cin ? pn (n ≥ 0)

For x = in with n < 0, we take the composite of the path from i0 to in+1 with the
opposite of pn:

cin = cin+1 ? pn (n < 0)
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Finally we need to prove that this choice of paths is stable by composition with the paths
pn: we need to prove that cin ? pn = cin+1 for all n ∈ Z. This is true by definition for n ≥ 0
and for n < 0 we have cin ? pn = cin+1 ? pn ? pn = cin+1 .

The previous property is very interesting because of the following lemma:

Lemma 4. Let (A, a) be a pointed space and Q � A a fibration over A with Qa pointed.
If Q is contractible, then ΩaA (the space of paths from a to itself in A) is equivalent to Qa.

Proof. Consider the following commutative diagram

PaA

!! !!

f // Q

����
A

where PaA � A is the fibration whose fiber over x ∈ A is the space of paths from a to x
and f is the map transporting along its argument the distinguished point of Qa. The total
space of the fibration PaA � A is the space of pairs (x, p) where x ∈ A and p is a path
from a to x. This space is contractible because every such pair is equal to the pair (a, 1a)
by moving back along p.
The map f is then a map between contractible spaces, so it’s an equivalence. Given

that the diagram is commutative, PaA → A and Q → A are equivalent when considered
as maps with codomain A, so they have the same homotopy fiber at a. But these maps
are fibrations, hence homotopy fibers are just fibers and (PaA)a ' ΩaA ' Qa.

We can now deduce the fundamental group of the circle.

Theorem 5. We have ΩeS1 ' Z and π1(S1, e) ' Z (as spaces).

Proof. The first result is obtained by applying the previous lemma to the pointed space
(S1, e) and the fibration S̃1 � S1 (where (S̃1)e = Z is pointed by 0) and using lemma 3 and
the fact that (S̃1)e = Z.
For the second result, recall that π1(A, a) is defined as the set of connected components

of ΩaA. But Z is a set, hence we also have π1(S1, e) ' Z.

Theorem 6. We have π1(S1, e) ' Z (as groups).

Proof. By definition, the map π1(S1, e)→ Z applied to some loop p corresponds to trans-
porting 0̂ along p in the fibration S̃1 � S1. In particular, if p = `?n is an iterated compo-
sition of the distinguished loop `, for n ∈ Z, the image of p in Z is n.
Hence every element of π1(S1, e) is equal to `?n for some n ∈ Z, and `?n ? `?m = `?(n+m)

by an easy induction on n, so the map π1(S1, e)→ Z is a group isomorphism.
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