Some notes for a talk on extensional interpretation of type theory

1 Motivation of the Takeuti-Gandy interpretation

1.1 Identity type
We have different versions of type theory
1972 version [4], with no Identity type
1973 version [6], introduction of Identity type (as we use it now)

Type theory without function extensionality does not seem appropriate to represent the notion of
homotopy level. For representing intuitions from homotopy theory, and for having a convenient repre-
sentation of mathematical notions (e.g. category theory) we need at least function extensionality and
sometimes the univalence axiom.

It is remarkable that the explanation of CZF in Type Theory, interpreting a set as a well-founded
tree up to bissimulation, does not use the Identity type, so it is an interpretation of CZF in the 1972
version of type theory.

We are looking similarly for a translation which explains the axiom of function extensionality and
the axiom of univalence. The model will be a generalization of Takeuti-Gandy’s interpretation [1] of
extensional simple type theory in intensional simple type theory. So we are looking for a translation of
type theory with the extensionality axiom in the 1972 of type theory.

1.2 Type theory as a formal system
All rules of type theory are justified following the pattern

1. The introduction rules give the meaning to the logical connectives (they are represented by con-
structors, following the terminology of functional programming)

2. The elimination rules are justified w.r.t. the introduction rules (they are represented by defined
functions)

3. These justifications take the form of computation rules (the function is defined by case analysis)

A proof t of a type/proposition A is supposed to be a method to produce a canonical proof of A.
This method is quite uniform in type theory: given a term t of type A, we unfold the definitions until we
reach a canonical proof. In functional programming terminology, such a proof is represented as a term
starting with a constructor, and the method of computation is head reduction.

An important point is that the computation rules can all be seen as unfolding definitions. If we have
a type N of natural numbers, an empty type Ny we can define = : U — U by -A = A — Ny. This
definition of = can be seen as a computation rule (unfolding of definitions).

The situation is similar if we define a function f : Iz : N.C(z) by the equations

FO=a:CO) fm+1l)=gn(fn):Cn+1)

These equations define a function f.
A related point is that the typing/provability relation ¢ : A is decidable. To decide this relation is
reduced to the problem of comparing two given terms of the same type and this can be done by unfolding



definitions (which can be interpreted as “computing” the meaning of the two terms), and comparing the
result. For instance, if we define
F0=A, FMnh+1l)=-4

then F' 2 = (A — Ny) — Ny : U since F' 2 is by definition — (F' 1) which is by definition (F' 1) — Ny
and F' 1 is by definition - (F 0) which is ' 0 — Ny and F' 0 is A.

One can argue that the conversion rule (At)o = A(tp, q) is not compatible with this idea of unfolding
definition [5, 4]. On the other hand, the rules in Figure 1 can be seen as a formal description of basic
rules of definitional equality.

Type theory

The rules of the version of Type Theory we interpret are presented in Figure 1. This is a variation of the
version of type theory presented in the references [6, 5]. Besides the usual judgement ' H, T'+ A, T'
a: A it is convenient to have the judgement I' - F' : (A)Type for families of types over a given type.

So far, we have formalized only the first level of the semisimplicial set model, giving a computational
interpretation of invariance under isomorphisms. We have a formal proof that if A and B are isomorphic
types and T'(X) is a definable type forming operations then T(A) and T'(B) are also isomorphic. We can
transport for instance any monoid structure on A to a monoid structure on B, and transport any proof
of a property of this monoid to the one of B.

However the definitions are uniform and should extend at all levels, and if we have arbitrary levels,
give a formal version of univalence. We have proved formally that the collection of all Kan semisimplicial
set truncated at level 1 form a Kan semisimplical set of level 2.

For interpreting definitional equalities, it seems crucial to interpret the equality of two Kan semisim-
plical sets as a relation between these two sets satisfying some properties. Our model is a submodel of the
model of logical relation. For function space, the definition of equality used in the setoid and groupoid
model (two functions are equal if they are equal on each argument) does not preserve definitional equal-
ity while the relational definition (two functions are equal if they send equal elements to equal values)
preserves definitional equality.

The rules for equality that we validate in our formalized model are

'-A T'Fa:A TFu:A '-A Thka:A
I'-Eqy au I'krefa:Eqyaa

F'te:Eqqau THF:(A)Type Tt p:app(F,a)
'-Jep:app(F,u)

and
'FF:(A)Type TtrFa:A TFp:app(F,a)

Ik Edapp(ray (4 (ref a) p) p

These rules express the rules of identity type (where the computation rule is expressed as propositional
equality). We have also the extensionality rule (formulated in a name-free way

P-f:Fun A F P'kg:Fun A F I'Fp:Fun A (Ad app(fp,q) app(gp,q))
Fhextp:Eapyn a4 r [ 9

The substitution rules are then

(ld Aawu)o=Id Ao ac uo (ext u)o = ext uo (Je)g=Jeo

2 Applications of the model

1. We can add a small type of propositions where equality is defined to be logical equivalence. (This
is a weak form of univalence.)

2. It is then possible to justify in the model the description operator for unique existence



'+ c:A—=T §:0—=A

1:T =T 06:0 =T
r-A c:A—=>T TFt:A c:A—=T THFF:(A)Type c:A—=T
At Ao Atto: Ao AF Fo: (Ao)Type
' TFA 'kA 'kA
OF Ak p:I"A—-T Ak q: Ap
c:A—=T TFHA Alu:Ao
(o,u): A—=T.A
'HA T.Av-B FFF:(A)Type Tta:A
I'F AB: (A)Type 'k app(F,a)
A TFF:(A)Type T.AFb:app(Fp,q) I'Fw:Fun A F 'Fu:A
'k Fun A F F'FXo:Fun AF I'F app(w,u) : app(F,u)

lo=0=0l (cd)v = o(dv)

(o,u) = (00, ud) plo,u) =0 q(o,u) =u
(Ao)d = A(cd) Al=A (a0)d = a(od) al=a
app(w,u)d = app(wd, ud) app(F,u)d = app(Fd, ud)

app((Ab)o, u) = b(o, u) app((AB)o,u) = B(o,u)

Figure 1: Rules of WMLTT

3. We can also add quotient (and truncation operations in the general model) without using impred-
icative definitions, this has been implemented at the first level

4. We may add the fact that the type of propositions is impredicative. We can then give a compu-
tational interpretation of topos theory and of unique existence, but the computations are carried
out in a type system with a type of all types (we conjecture that normalization still holds)

5. Given two isomorphic setoids, we can transport any structure and any proof of properties of this
structure from one setoid to the other in a computational way

6. At the next level, we have programs to transport properties of equivalent groupoids (and categories)
from one to the other (but this is not yet implemented)
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