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1 Introduction

The aim of this article is two fold. First we offer a pictorial description of the
categorical semantics of dependent types, the essence of which was known since the
mid seventies, after the works of Cartmell [Cart] along a computer science line, and of
Seely [Se] along a categorical logic line. These early ideas have been revisited by
several authors, including Ehrhard [Ehr], Jacobs [Jac], Lamarche [Lam], Obtulowicz
[Ob], Pavlovic [Pav], Streicher [Stre], and Taylor-Hyland-Pitts [HyPi, Tay]. The goals
were to accommodate these semantics with domain theory on one hand, and
Grothendieck fibrations on the other hand, and to lift them to semantics of the calculus
of constructions of Coquand-Huet. We follow here Seely's semantics in locally
cartesian closed categories.

The exposition is biased towards a second aim, which is to solve a difficulty arising
from a mismatch between syntax and semantics: in locally cartesian closed categories,
substitution in types is modelled by pullbacks (more generally pseudo-functors), that
is, only up to isomorphism, unless split fibrational hypotheses are imposed. Many
semantics, like those based on families of sets, or of domains, as described by Dybjer
[Dyb], and Palmgren and Stoltenberg-Hansen [PalmStol], do satisfy such hypotheses,
but not all semantics do satisfy them, and in particular not the general description of the
interpretation in an arbitrary locally cartesian closed category. In the general case, we
have to show that the isomorphisms between types arising from substitution are
coherent in a sense familiar to category theorists. Due to this coherence problem at the
level of types, we are lead to:

- switch to a syntax where substitutions are explicitly present (in traditional
syntaxes substitution is a meta-operation, defined by induction);

- include type equality judgements in this modified syntax: we consider here only
equalities describing the stepwise performance of substitution.

These changes introduce a new "flaw", In the first-order A-calculus, typing proofs
are unique. This is not true anymore when type equality judgements are added: there are
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now different proofs that a given term has a given type. This happens because there is a
rule which says that if a term M has type O, and if O is equal to O', then M has also
type O, so that at any stage in a proof of well-typing of a term M, one may intersperce
type equality judgements. Thus coherence arises not only at the level of types, but also
at the level of terms.

We already investigated coherence problems in a different setting (a system with
polymorphism and type inclusion, joint work with G. Ghelli) [CuGhe]. As in [CuGhe]
we attack this problem with tools of rewriting theory. We exhibit equivalences between
typing proofs which are valid in any locally cartesian closed category (and, we believe,
in more general models like relatively locally cartesian closed categories [HyPi], or D-
categories [Ehr]), and are complete in the sense that the following, informally stated
coherence properties hold:

- any two proofs of the same type equality are provably equal,

- any two proofs establishing that a given term is well-typed derive provably equal
types for this term,

- any two proofs deriving the same type for the same term are provably equal.

To our knowledge, the work presented here is the first solution to this problem,
which, until very recently, had not even been clearly identified, mainly due to emphasis
on interesting mathematical models rather than on syntactic issues.

Prerequisites are the notion of locally cartesian closed category, whose definition is
recalled in Section 2, and of a calculus of dependent types (a first source and agreeable
reference is [Mar]). Syntax is given when needed in the text. We assume some
experience of categorical logic (including the quantifiers-as-adjoints paradigm: the
source reference [Law] is a nice reading). We also refer to the survey paper [Cur2],
where an effort is made to suggest the categorical structures from suitable presentations
of syntax. In particular the reader may find there (but also in [Curl], and in the source
paper [Brui]) an account of De Bruijn's nameless notation, which is also adopted here,
and which we now briefly recall.

De Bruijn's notational convention consists in replacing variable occurrences by a
natural number recording their place in the environment, added to their binding depth,
as illustrated by the following example: in the environment {t=..., z=...}, the terms t
and Ax.(hy.y)z become 1 and A.(A.1)3, respectively. In order to find z's binder one
has to "pass” over Ax and the top t of the environment, viewed as a stack. This
operational flavor has been exploited in the Categorical Abstract Machine [CouCurMau]
(see also [ACCL] for more recent work on machine-oriented syntax).

In Section 2, we give a pictorial account of the interpretation of the syntax of the
calculus of first-order dependent types in locally cartesian closed categories. In Section
3, we raise the mismatch problem quoted in the abstract, and prove our coherence
results. We conclude in Section 4.
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2 Interpreting dependent types in locally cartesian closed categories:

We recall successively the notion of locally cartesian closed category (Section 2.1),
and the syntax of first-order A-calculus with dependent types (that is, the kernel of
Martin-L6f type theory, without identity types and without universes) (Section 2.2).We
then turn to a name-free syntax (Section 2.3), which is more appropriate to describe the
interpretation. Finally, we give a pictorial account of the semantics of this calculus in
locally cartesian closed categories (Section 2.4).

ally cartesi ri

Let C be a category, and A be an object of C. The slice C/A is the category whose
objects are the arrows f:B—=A with codomain A, and whose homsets (C/A)E, )
consist of the arrows h such that goh =f.

Definition 1: A locally cartesian closed category (LCCC for short) is a category C
which has a terminal object, and is such that all slices C/A are cartesian closed.

In particular a LCCC is cartesian closed, noticing that C and C/1 are equivalent
categories. The LCCC's admit a characterization by adjunctions, extending the
characterization of categories with pullbacks.

Proposition 2: A category C is locally cartesian closed iff it has a terminal object, and
for any k: A—>B the functor Yk: C/A — C/B defined by (Zk)(f) = kof admits two
successive right adjoints, written k*, [Tk, thatis:

- ¥k — k* —Jlk.
Proof: See [Fre].

We actually make use of this second definition,

Notation: We often write ofk] for k*o, and Yk.f for (Fk)(f) (and similarly for [T).

A feature which is crucially used in the sequel is the pseudo-functorial character of
the pullback. This can be explained as follows. For each pair of composable arrows t
and s, there exists a natural is0 Y : (set)* — t*e s* (L for short), and those isos are
coherent in the sense that the transformation between two paths connecting the same
points in any commuting diagram, obtained by pasting those elementary isos, is
independent of the decomposition of the pasting. This is made clear by the following
example picture, which contains the essence of this coherence property. The picture
shows the two ways to fill the space between the path k k' k" and the path

k'"'=(k"ok")ek..
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Figure 1

The two decompositions induce an equality of natural transformations: in the following
equation, we use * to denote the vertical composition of natural transformations:

" Wik * Wik = KWy e ¢ Y
The two equated transformations are from k'"*o k™o k* to k™*.

It is well known that the satisfaction of this equation is sufficent to ensure that all
pastings are coherent 2.

Why are pullbacks only pseudo-functorial? The point is that pullback diagrams
compose, but chosen pullbacks do not in general. The isomorphism 1 can be
constructed in two ways:

1) By a direct, "pointwise" argument, as illustrated on Figure 2, where the two
inner squares and the outer rhombus are the chosen pullback diagrams of sand 0, t
and o[s], and st and O, respectively. One first constructs the mediating arrow ' of
(set)' and teO[set] (not shown on the picture), and then the mediating arrow \, (§ for
short) of ' and oOfset].

Figure 2

(5ot}

Y

a[50t]
afsil als] a

Y

2) By making use of the adjunctions Yk — k* and of the obvious (but special)
property that X(sot) = Xs o Xt .The two inverse natural transformations obtained by this
more abstract argument are given on Figures 3 and 4:

ZThe coherence of pseudo-functors can be reduced to the coherence in bicategories (which is the same
as coherence of monoidal categories) [MacLaPar).
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Figure 3
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This way of representing natural transformations (more generally 2-cells) is known
as pasting. It has been proved to be mathematically well defined only recently [Pow].
A pasting is a labelled planar graph (with additional properties, see [Pow]): points are
categories (0-cells), arcs are functors (one-cells) and (bounded) regions are natural
transformations (2-cells). In the pictorial representation of pastings adopted in Figures
3 and 4, the vertical lines are irrelevant, and the unlabelled horizontal lines are identity
functors. The domain and the codomain of a natural transformation are retrieved by
reading its upper and lower boundary. The limit between the upper and lower boundary
is given by the leftmost and rightmost vertical lines of the boundary, respectively. We
have represented the upper and lower boundaries of 1 explicitly in Figure 3.

In Annex A.1 we give a pictorial evidence that these transformations are inverse. In
Annex A.2 we prove the coherence condition displayed on Figure 1. The technique
used is pasting rewriting: it has been conceived, and used in mathematical practice for at
least twenty years, by the algebraists of the University of Santiago de Compostela. The
rewritten pastings are called "Rodeja carpets” after the name of their initiator.
Independently, another, dual notation is also since long in use among theoretical
physicists working intensively with tensorial calculus. These dual pastings are called
"Penrose diagrams", after their initiator. Lafont suggested that Penrose diagrams are
more practical than Rodeja carpets (see Annex A.2). The theoretical study of the
geometry of Penrose diagrams has been the subject of recent interest ([Bur, Laf,
JoyStrel, JoyStre2]).
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Remark: Pseudo-functoriality arises also for the identities: in the category Set of sets
and functions, with the usual way of choosing pullbacks (take {(x,y)l s(x)=0(y)}, we
get that ofid] is not id. So one should also consider canonical isos between ofid] and
id, and assume as a second coherence condition that the isos k*cid*+=(id-k)* (=k*) and
k*oid*«>idok* (=k*) coincide. In the present paper we assume though, for simplicity,
that id* is id, which can be done by choice. This choice is safe, since it is then clear that
the iso id*ok*<=>(idok)* is the identity, by the uniqueness of mediating arrows. Thus,
when choosing id* as id, we may freely forget about the second ccherence condition.
Actually we assume more widely, still by choice, that 1* is E{L_]} for any iso v (this is
used in the proof of theorem 8, see Annex B.4).

Remark: When restricting attention to special classes of pullbacks, functoriality of
pullbacks can be obtained. This happens in some models of dependent types, based on
the idea of families of sets. We refer to [Dyb, PalmStol], and also to [Cur2] for details,
and content ourselves here with the following hint. We restrict, in Set, the functors k*:
Set/B — Set/A to arrows o which are first projection functions, that is, the domain of
O is a subset of a cartesian product BxC, and o is the (restriction of) the first projection
function. The pullback of k and o can then be chosen, not as

{(x,(y,z))| kix)=y and (y,z) is in the domain of o},
but more simply as

{(x,z)l (k(x),z) is in the domain of o}.
For this choice, o[set] and ofs][t] coincide.

The adjunctions Yk — k*, together with the pseudo-functoriality of *, determine
for each commuting square a natural transformation (Zo[s])es'* — s*o(Z0), as shown
on Figure 5:

Figure 5
n
Io o* §'* Zofs]
s* of sj*
E

Figure 5 is based on the right inner pullback square of Figure 2. (At this stage we only
use that it is a commuting diagram.) A more traditional way of describing this natural
transformation is _
(Zolsles™) 1) » ((Zofs]) L (Z0)) » (e (s*Z0)). _
This construction works in more general indexed categories than the indexed
category of slices of a category with pullbacks. In the particular case where * is
pullback, there is a more direct way of describing this natural transformation, and
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moreover it is iso. One may start from the general form above, and open the middle
"black box" rectangle, which consists of the composition of a P! with codomain
(0es’)*, and of a \y with domain (se0[s])*. After two ne-cancellations of the kind
described in Annex A.1, we arrive at

Zoals] s M

5

To show that this transformation is iso, we go down one level of abstraction. We
picture its pointwise inverse below. The picture is just an a-conversion of Figure 2.
The component at T of the natural transformation s*o(Zg) — (Z0[5])e5"™ is exactly the
canonical \: (0-T)* — T*e0* (but now it is in the slice over the domain of s, instead
of being over the domain of T). The right inner square is a pullback by assumption. The
left inner square and the outer rhombus are pullbacks by construction.

Zar)s]
Zofs]xfs]

yr

1:1 sli ﬂE 5"

O-T=L0,T

The property that the transformation (Za[s])es* — s¥*o(Z0) is iso is known as
Beck-Chevalley condition. The notion is important for categorical logic, since it allows
to interpret substitution across quantifiers. But it also appears in other geometric or
topological applications of category theory. There exist more abstract versions of this
condition [Gui]. The Beck-Chevalley condition can also be expressed in a synthetic
way, using the notion of fibered adjunction [Jac].

Symmetrically, the right adjoints to pullbacks yield canonical transformations
s*o(I1a) — (I1o[s])es'*.

Lemma 3: The canonical transformations (Z0[s])es™* — s*o(Z0) are iso iff the

canonical transformations s*=(Ilo) — (Ilo[s])=s"* are iso.
Proof: See Annex A.3.

5 T i - P il Bt mmdam b Aanlanloe srith damandant fimae Wa nracant a nnre firck.
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Figure 6
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order A-calculus with dependent types. That may seem a rather frustrating calculus,
because without some dependent constants, no true dependency arises (as was formally
shown in [MeyRein]). But the syntax is prepared to accept such constants. The typical
example from computer science is list(n), the type of lists of length at most n, a type
depending on the type nat of natural numbers. The main conceptual step is independent
of the specific choice of those constants. Dependent types, unlike simple types, have to
be proved well-formed. One first defines a syntax of raw (or pre-well-formed) types
and terms, given by

o:=K|[[x0.01¥x:0.0 (k base type)
M = x | Ax:o.M | MM | (M,M) | fst(M) | snd(M) .

Dependency arises when a dependent constant K can be formed from terms M (cf.
list(n) above, or the equality type I(M,N) of Martin-Lif).

The typing rules are as follows. A context C is a sequence of assertions of the form
x:0. We say that x is defined in C if x:0 occurs in C, for some o We denote by C(x)
the first such o, starting from the right. There are three kinds of judgements:

C context, C+ otype,and C+ M:o.

Context formation rules
& context

ChF otype (x not defined in C)

C, x:0 context

- Type formation rules
[Const]

(for true dependency one would have an inference: CH- Mj:01,..., CF Mj:0, entail
C F x(My,....M,) type)
(1l (and symmetrically [¥]) -

C,x:0 F Ttype

C F [[x:oxtype
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Term formation rules

[Var]
Ccontext  (C(x) defined)
C F x:C(x)
[Abs]
C,xo F Mx
C F oM [[x:o1
[App]
CF M]Jxox CF Nwo
C + MN: t[N/x]
[Pair]
CF Mo CF NaM/Ak]
C F MN): ¥ xiox
[fst]
CF M:3xox
C +fstM): o
[snd]
C - M:¥x:ot
C F snd(M): T[M/x]
2.3 Name-free syntax Next we turmn to a name-free syntax, which is well-suited to the

description of the interpretation. Also, as quoted in the introduction, we pay particular
attention to substitution, which is modelled in general only up to isomorphism. So we
include an explicit syntax of substitutions, as already undertaken in [ACCL). We refer
to [ACCL] for an operational explanation of the notation and of the operations. But the
reader can get a "graphical” insight from the pictures which follow.

Types: o:z=xI]Jool Fo.o! ofs]
Terms: M:=11hoM I MM | (M M) | fst(M) | snd(M) | M[s]
Substitutions:  su=idl {1 Mslses

The contexts are now just sequences of types. There are four kinds of judgements:
C context, CF otype,CFH M:g,and CF s:C.
Context formation rules
& context

Ck otype

C,0 context
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Type formation rules

[Const]

K type
(I (and symmetrically [¥])

C,o F Ttype

C + [loxtype
[0Clos]

CksC CF otype

C + ofs] type
Term formation rules
[Var]

C + otype

C.o F l:o[1]
[Abs]

Co - Mz

C F AoM: [Jox
[Appl

CkF MJJox CF No
C F MN: 7[N.id]

[Pair]
CF Mo CF NM.id]
C F (MN): Jox
| fst]
C + M:Yox
C FfstM): o
[snd]
CHF MYox
C FsndM): <[fst(M).id]
[MClos] |

CEl CFMp
C FM]s]: ofs]
(As a hint for the "mutation" of ¢ in Var, notice that in the hypothesis o has its De

Bruijn indices refering to the sequence C, whereas o[ 1] in the conclusion refers to the
larger context C,0; see the rules MClos and 1 below.)
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Substitution formation rules
[id]
C context
€ Hid:
(1]
C F oupe
Co F1:C
[Cons]
CFsC CFotype C F M: ofs]
CHMs: Co
[Comp]
C'ks€ €Fgl
C = gog: C"
2.4 Semantics in LCCC's We turn to a "pictorial” interpretation of the calculus just

defined in a locally cartesian closed category. A context is mapped to a sequence of
consecutive arrows, the last one going into the (chosen) terminal object 1. A type is
interpreted likewise, but setting a "marker” just after the first arrow of this sequence,
the rest of the sequence being the meaning of the context with respect to which the type
is well-formed.

The basic semantic ingredient here is "type-as-(projection) arrow": think of list(n)
as represented by the first projection (n,1)>>n on the infinite sum {(n,l) | I€list(n)}.
Alternatively one may think of the interpretation of C |- O type as a meta (or global)
sum "ZC.0" (to be contrasted to the “local” sums, say £0.T with C,0 - T type).

Judgements C - s: C' are mapped to (commuting) triangles:

Finally judgements C - M:0 are mapped to kites, which we define to be figures
like the one below (where T is the identity):
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We often represent this picture in the following degenerate way:

We stress that we do not give meanings to judgements, but to proofs of
judgements. This does not matter at present, since there is only one way to prove a
judgement, but will matter when we come to the discussion of equations. We present
the definition of the interpretation rather informally, and make a notational confusion
between syntax and meaning.

[Const] A basic type is mapped to an arrow into the terminal object.

(T} (and symmetrically [¥]) The meaning of the [ [ and 2, constructors is given by the
adjoints Sk and [Tk (thus we freely confuse, say [Jo.t and ([Jo)¥)).

afs]

To illustrate the pullback as substitution idea, let us take o=list(n), and s=succ. The
obvious interpretation for list(n+1) is the first projection on {(m,D)l I€list(m+1)}; the
latter set is in one-to-one correspondence with {(m,(n,)l (I€list(n) and) n=m+1},
which is the pullback of succ and (n,l)»—n.

We turn to the interpretation of terms.

[Var] The meaning of 1 is the mediating arrow of id and id relative to the pullback of O
and ©. See the case 1 for a justification of the arrow named of 1] on the picture.
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[Abs] We write A for the natural bijection associated with the adjunction k* — [k,
and we use that o*(Id)=Id.

e i
]'Iu\ Id Id
e A/D / M
* ______ +__ \

T

[App] This is the most complex picture in the translation:

- the intermediate arrow f is the mediating arrow for M and N relative to the
pullback square 1;

- Proj is the counity of the adjunction k* — [Tk;

- MN is obtained as the mediating arrow of Proj » f and id relative to the pullback
square 2.

We anticipate the description of the meaning of [Cons] which justifies the
identification made between N.id and N, viewed as a global triangle C -» C,0.

. l'l-:'-'r/;'!r \

. S Q" \ po

-:ere \

[Pair] Again M.id is identified with M as a global triangle C—C,0. (M,N) is the
composed arrow M' e N, where M' is the last side of the pullback square of M and T.

—_—
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[fst] fst(M) is obtained as T « M.

M
c >
< - ———-=— < —<
._0} T

[snd] snd(M) is obtained as the mediating arrow of M and id along the pullback square
of T and fst(M). On the figure, ' is T[fst(M).id].

[MClos] The picture for M[s] is obtained by further decorating the picture for ofs].
Specifically, M[s] is obtained as the mediating arrow of id and Mo s with respect to the

pullback square of O and s.

e
C i - 2
M[s]
Finally we interpret substitutions.
id
[id] 5
*.. _______
‘. T
g » id
C T~ -
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[Cons] The meaning of M.s is s'= M in the following picture:

C
o ——— = = - —
A
“
~
-
M
O o~
.,
LY
[Comp]
C
- - - - - - — =
e
k = Sy g
- ~
y - e
o C -
“\
~
c* o~ g
b

3 The coherence problem

We first describe the equations of the namefree syntax (Section 3.1). We show the
validity of one of the simplest equations (Section 3.2), and arrive on the way to the
coherence problem. We are lead to add more typing rules (Section 3.3), and to design
an intermediate syntax where the proofs of type equalities are recorded (Section 3.4).
We state the coherence results (Section 3.5) and defer the detailed, pictorial treatment of
some typical cases to the Annexes B.1-4.

Warning: For the sake of simplicity, we forget Z-types in this section, They do not
introduce any additional problem.

3.1 The equational theory In the usual syntax with variable names, the rules are (§ and
n. But in the namefree syntax (cf. [Curl,CouCurMau,ACCL]) P is decomposed in

Beta? (AM)N — M[N.id]

3Srictly speaking, the right hand side is not well-typed. The reader may check that we need to
replace it with M[N[id].id]. However, we already assumed that Id* is the identity.
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followed by the application of a number of rules to actually perform the substitutions
Here is the list of rules considered in [ACCL]:

Varld 1[id] = 1 IdL ides—>s

VarCons 1[M.s] = M Shiftld 1 oid — 1

App (MN)[s] — M[s])(N[s]) ShiftCons 1 o [M.s] —= s

Abs (ho.M)[s] — Ao.(M[1.s-1]) Map (M.s) ot = M[t] .(s0 t)

Clos M[s][t] = M[set] Ass ($1¢ 89) o83 —> 810 (59583)

In the same way, substitution is distributed in types, giving rise to the following
rules:

ITAbs (ITo.t)[s] — [To[s].x[1.sc1] (and similarly ZAbs)
Pseudo ofs][t] = oOfsst]

(When a dependent constant is eventually reached, the rule (x(M,N)[s] —=
K(M[s],N[s]) should be applied.)

3.2 Validity of VarCons (The details of this subsection may be skipped at first
reading.) We prove the validity of VarCons, whose intent should be clear: the value of

variable 1 is to be found as the top M of the environment M.s. All the actors are drawn
on the picture below:

\/7

We know that 1[M.s] is defined as a mediating arrow into the pullback square of
o[1] and s' « M. Standard "categorical handwaving" goes like this: of 1] is already a
pullback of o along o. Thus the pullback of of1] alongs'« M is the pullback of O
along

OosoM=5 o0[s]c M=5,
that is, ofs], which is expected since the right hand side to be matched is M, which has
type oO[s]. Formally, the fourth side of this square is the arrow f into the pullback of O
and 0 which mediates s'e M ¢ O[s] and s', as shown in the next picture:
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/%Jlr\

— o —

- -—
o oft1[s"= M] als]
/ ‘\
-

5

All we have to do is to check that M is mediating 1 o s’ M and id relatively to the
pullback of o[%] and s' « M. This amounts to checking:

- O[s] « M = id (by induction, because M has type o[s]),
-fe M =105 M, which is easily checked by composing with g and o[ 1]
respectively.

3.3 Introducing type equality judgements The proof in Section 3.2 implicitly used the
“equation” of f][M.s] "=" ofs], where the crucial step is o[1][M.s] "=" of{  (M.s)],
which is only an isomorphism by the pseudo-functoriality of the pullback.

This point can be seen directly from the syntax, as it stands so far: 1[M.s] and M
have respective types of 1 ][M.s] and ofs]. If we want to include the rule formally in
the syntactic theory, we need to introduce type equality judgements C - o=t type,
together with the reflexivity, symmetry and transitivity (or cuf) rule (whose obvious
description we omit), and to add the rule:

[EqType]
CkH Mo ClF g=ttype
C FM=x

With the help of this new rule, we can derive the type ofs] for both 1{M.s] and M.,
The addition of the seemingly innocent rule EqType raises a coherence problem: now
the same judgement can be proved well-formed in different ways. For example when
typing A0.M, we may first show that M has type T, then that the same M has type T
for some T; by EqType. The typing would then proceed with Abs, yielding type
Io.t) for Ao.M. But we could also apply Abs right after the derivation of type T for
M, getting Ao.M: Ilo.x, and then apply EqType 1o obtain Ao.M: ITo:xy. On the way
we have used a congruence rule:

[[TCong]
Ck o=0'type C,0 | T=Ttype
C FIlox =TIlo"T type

This rule presents a mismatch. One expects (as a metatheorem on syntax) that if C -
O1=07 type is derivable, then also C - 0y type and C |- 05 type are derivable. But

from the hypotheses of ITCong we get C,0 F T type, and not C,0' - 7' type, which
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we need in order to show C + ITo'.' type. This suggests to complete our extension
of syntax by yet another kind of judgement: F C=C' context, and to add a
"contravariant” counterpart of EqType (we state one for type judgements, but there
should be one for each kind of judgement):

[CongCont]
CF o=0'type F C=C'context
- C,o=C,0' context

[EqCont]
CF otype I C=C'context
C I otype

Finally, there is another congruence rule, which creates type equalities from
substitution equalities:

[ClosCong]
Ct s=:C C' I otype
C  ofs]=olt] type

we

We extend our pictorial semantics in the following way. We interpret judgements C
I o=t type by an isomorphism L between (the domains of) o and T, and similarly we
interpret judgements - C=C' context by an isomorphism v between (the domains of) C
and C\.

[EqType] If M abbreviates the meaning of (the proof of) C - M:g, then the meaning of
C+ M:t is M composed with .
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[EqCont] This is dual to EqType.
C o
.{.. _______ ,.H_
iy P L |
e C'Fatype
Foog |

We decompose the congruence in two cases.

[TICong,o fixed] The meaning of C F ITo.x =Ilo.x" type is II5(1) if L interprets
T=T".

[TICong, fixed] The meaning of C I Mot = I1o'x type is the inverse (notice the
contravariance) of the instance at T of the following natural transformation, where the
2-cell is the canonical IT transformation associated with the pullback square 0o t =1Id o
o (1 is as in the figure for CongCont). Notice that since we have chosen t"1# as 2,
the picture describes a transformation ITo's Zu — Ilo.

ZL [§1s]

{hd [l

[ClosCong] This rule does not create isomorphic types, but equal ones: equal
substitutions s and t (and terms) of the same type are interpreted by equal arrows (se¢
Section 3.4), thus ofs] and oft] coincide, being both the chosen pullback of the same
pair of arrows.

3.4 Explicit syntax The point of coherence is that we have to show that the meaning of
a term or of a type equality does not depend on its proofs of well typing. To establish
this result, we introduce an intermediate language where we keep an explicit track of the
whole proofs of well-typings. The following case is added to the syntax of terms:

M= ch{M},
and EqType is replaced in this explicit language by

: Tyeol CFH Mo Cik o=ttype

C F ca;:‘:M:":‘

The equational theory of Section 3.1 has to be revised, in order to be able to map
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both sides of each equality to strictly equal meanings. For example:

VarCons  Cop4ymsy o) <HMSI> =M
App ¢1<(MN)[s]> —= (cp<M[s]>)(N[s) where
€1 = CeN.id)fs)x(1.s-1)[N[sLid] 20 €2 = C([Jo.1)(s) [ols)xl1.001).

We call these new equations the explicit versions of the rules of Section 3.1.
Strictly speaking, we should be even more explicit, and develop a language for
describing coercions, that is, the various proofs of, say o=t. Such a completely
explicit syntax, where each syntactic construct has at most one proof of well-typing,
may be found, for a different calculus, in [CuGhe). We should also have included in
the syntax traces of the uses of EqCont {""C,C'{“}")' We refrain here to do so, to
avoid a heavy notational apparatus, but some of the discussion below assumes that we
work in such a completely explicit syntax.

3.5 Coherence The coherence results can be now stated and proved. Some lemmas are
needed on the way.

Lemma 4: The explicit version of the equations Beta, Varld, VarCons, App, Abs, Clos,
and Ass are valid (up to equality) in all LCCC's.

Proof: We proved this for VarCons using standard categorical reasoning. We detail
another case (App) in Annex B.1, with a graphical proof technique.

Remark: We should stress here the power of the Beck-Chevalley condition. When
dependent types are interpreted in split fibrations (that is when the substitution functor
is truly functorial), one has to require both that ITAbs is interpreted up to equality, and
that the counities of the lirl'l-zutijuru::!.in‘.:rrls are preserved on the nose by substitution (cf.
[CoqEhr]), whereas this second condition comes for free in the general non split
setting. The point is that in split fibrations the power of the formulation "the canonical
transformation ... is iso” is lost.

Lemma 5: The rewriting system defined on closed types by [1Abs+ZAbs+Pseudo is
confluent and strongly terminating.

Proof: We refer to Annex B.3 for the only critical pair (there is also one for Z).
Termination is proved by a straightforward recursive path ordering, or a polynomial

argument.

Theorem 6: For any C, 0, and T, any two proofs of C I o=T type receive equal
interpretations in any LCCC.
Proof: The proof follows essentially the same line as the proof of coherence of, say
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monoidal categories. We first transform any proof into a proof where cuts occur only at
the end (notice that this is converse to usual proof-theoretic cut elimination). The crucial
part of the justification that these transformations leave the meaning unchanged is
described in Annex B.2, where the two proofs

Chro=c"type Cl o'=0"type

CtF o=0" type C,ol T type

C + INo.x=Ilo".T type

and
CF o=0'type CF o'=0" type

CF Io.t=Ilo"T type Ct Io'.t=I1c"T type

CH INo.x=I1o"T type

are shown equal in all imcrpmtaﬁons“,

We further restrict our attention to the proofs where not only the cuts occur at the
end, but also the types connected by the sequence of cuts form a rewriting sequence
(according to the rules ITAbs,Pseudo and all the rules on terms and substitutions,
accessed through ClosCong). These proofs are in one-to-one correspondence with
rewriting sequences of types. The coherence proof then follows exactly the Knuth-
Bendix completion procedure [Hue]: one needs to consider the critical pairs, to
complete them, and to check that the proofs corresponding to the two paths of the local
confluence diagram receive the same meaning. Since the rule ClosCong is interpreted
up to equality, we don't have to care for the critical pairs arising from rules on terms
and substitutions3, We are left with just one critical pair, between ITAbs and Pseudo.
The analysis of this critical pair is presented in Annex B.3.

Finally we use Lemma 5 to extend the coherence result to all proofs where the cuts
occur at the end, and corresponding to zigzags between the connected types. One
shows by induction on the length of the zigzag that the iso pasted along the zigzag,
composed with the iso pasted along any path from the end point of the zigzag to its
normal form, is equal to the iso pasted along any path from the start point of the zigzag
to its normal form.

4we already noticed in 3.3 that, by contravariance of II in its first argument, an iso o—>0'
determines an iso I1o't—Ilo.t . Thus to describe the natural transformations "witnessing”
rewritings of arbitrary sub types (and subterms), we may need to reverse the directions of arrows: in
particular Beck-Chevalley condition (which states that a canonical armow is 1s0) 18 essential,

5To make this argument completely precise, we should state and prove a postponment lemma,
saying that the rewriting of terms and substitutions appearing as subterms of types can all be done at
the end.
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Before stating coherence at the level of terms, we need one more lemma.

Lemma 7 If [Mo.tand ITo'.t" are provably equal, then so are ¢ and ', T and T,
respectively.

Proof: Obsarve that when rewriting both ITo.t and ITo".¥" to their common normal
form I1o" ", the head form IT_._ is untouched. It follows easily that o—=*0" and
o'—*g", and similarly for T, T, T".

Theorem 8: For any C and M, if C- M:o and CF M:o' are provable, then 0=0"is
provable. Moreover, for any C, M, and 0, any two proofs of C - M:0 receive equal
interpretations in any LCCC (and similarly for C, s, C).

Proof: By induction on the sum of the lengths of these proofs, and by cases on the
shape of M. We have to generalize the siatement to take care of the possible uses of
EqType and EqCont. What we prove is actually:

- For any C, M, and C, if C - M:0, C'F M:0" and b C=C' are provable, then
O=0' is provable.

- For any C, M, o, C', and @' such that - C,o0 = C',0" is provable, any two
proofs of C - M:o and C' - M:0', respectively, receive interpretations which become
equal when composed with the isos C<>C and o<>0', appropriately oriented (and
similarly for C, s, C').

The case for application essentially amounts to check that the two proofs (cf. the
rule App' of [CuGhe]) (we keep T fixed, and omit contexts, for simplicity)

o=0'
M: o TMox=Ilo't
M: [lo't N:o'
MN:T[N.id]
and
a=a'
N:o' o'=0
M:Ilot N:o
MN:T[N.id]

are equal in all interpretations. This is shown in Annex B.4 . Notice that, hidden behind
this equality of proofs, is the following other equality of proofs:

-r[cﬂ.ﬂr.:N:-‘id] = C(C.al(C mm[N.id] .
Similarly, for the case of abstraction one has to check the equality of the proofs given at
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the beginning of Section 3.4 to illustrate coherence of proofs (this corresponds to the
rule A of [CuGhel]).

4. Conclusions and future work

Beyond the technical coherence result, we believe that the graphical representations
of proofs whith which we leamed to play while writing the paper provide an interesting
geometric view of syntax. It urges the need for software tools to automate the
construction and manipulation of such drawings.

We would like to extend the results to more complicated calculi, like the calculus of
constructions. Without going so far, the treatment of constants should be made more
precise. The resistance of the coherence results to the introduction of equality types of
various flavours should be investigated too.
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Annex A1 {Pseudo-funcioriality of puliback), Here is a hopefully self-explanatory
rewriting sequence of pastings establishing one direction of the proof that the
ransformations t*e 5% == (s00)* exhibited in Figurcs 3 and 4 are inverse. Redexes are
highlighted (the graphical definition of adjunction is by rje-cancellation). At the end,
after the two last cancellations (which can be performed in parallel), we amive at the
identity s%e1* —= 5%ot®,
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S(set n w] »

It px]
g#* il B X Ty s* *
(sot)* F(set)
E
E E
n
n
=t 5
pAEEN] g* | 1*

2 vl () SR

\\\\

i

Annex A2 (Coherence of pullbacks). The two pastings k¥ok'*ok"*—= [k =k sk )*
are cqual. Following a suggestion of Lafont, we use the "dual” notation of Penrose
diagrams, which is more convenient to handle. Natral transformations are now points
(actually horizontal lines), The arcs are still functors, but now they connect the natural
transformations previously pasted on both sides, and the regions (not named in the
drawings below) are now the previous points, that is, categories. Redexes are isolated
by appropriately stretching a "dual pasting diagram”, bath horizontally and vertically,
The redisplay after reduction is straightforward with this representation. In the
presentation by pastings, after an ne-cancellation has occurred, it is not always
immediate to see how to redisplay the neigbouring arcs and regions after the reduction.

The Penrose diagram corresponding to the lefi-hand side Yoy y- - * Wy ok of the
coherence equation is:

15
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ke k'* k*
7
) T (ko)
Ik
E
1
ek Z(k"sk)
E
- rk"i' ri
K
£ k"
E
(k"ok'ak)*
By performing the highlighted reductions, we successively obtain:
e | K k*
n
i ik ak'ek)
| XK
Iki £
E e
3
E
[}{"ﬂ:lk'ﬂk}*
and
ku* k':l- k*
n
- Bk ok'k)
K
; %~
£ by
E
£
(k"sk'ak)*

And similarly for the right hand side k" o = Yy o

We shall use Penrose diagrams in Annexes B.1, B.2, and B4,
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Annex A3 (Pictorial proof of Lemma 3}, First we define as candidate for the
inverse of the canonical IT transformation ¢ (Figure 6) the following transformation .,
built with the help of the inverse of the canonical Z rransformation.

g* MMofs] Zs o o g%

¥

ofs]*

As a first step towards showing that ¢ - 3 = Id, we paste the drawings together,

n
M n
g IMofs] X a* Mo g alsj*  Tlofs]
ols]* Y (2 5
E
E E

There is an encouraging central ne-cancellation. But we also have to make the
canonical transformation Es's afs]* — 0% Zs explicit. For this purpose we 1j&-
cxpand the down right s'*;

R

Mofs] o

[Tofs]

]

After removing the two areas which are highlighted, the inner (outer) 1) and £ come
in contact, so that all the figure gets squeczed to the identity.

Annex B.1 (Validation of App) (Lemma 4). In order to validate the rules of the
explicit calculus, we have to reexpress the semantic interpretation in 2-categorical
terms. If k is an arrow into A, we denote by k the constant functor with value k from
the terminal category 1 to the slice C/A. We have then (Z1)o('k)="(i-k) and
g*a('k)="k[g], for | and g of appropriate types. We represent an arrow f: k—1 of C/A
as a natural transformation from 'k to 1. The main tool used in Section 2.4 for the
description of the interpretation is the notion of mediating arrow. Here is a pictorial
e resentation of the mediating arrow of M and N with respect to the pullback diagram
of 5 and O, considered as an arrow N—0fs]:

17
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M

a 5*

Now we can express MN as a natural transformation. In the following Penrose
diagram, the upper and lower v correspond 1o the two successive mediating arrows
used in the construction of the interpretation of MN in Section 2.4.0

Yid
|
N
m
Zo
M_L ot
Tlax
Mo E
T
N*
"T{N]
and similarly for the meaning of N[s]:
id
n
_ h2
's
5 ——
id
N —
‘T g

‘ols]
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Now we are able to draw ¢ <(MN)[s]>, and to rewrite it,

‘id
TI n
s
N | zo "
's
g =t
id
i ) N* 5+
Tlox
Mo o*
E
b 1 s*  IN[s]*
(The redex is a variant of Figure 7, see Annex B.2.)
id
M n
ul
EN[s]| Zofs] |Zs
s*| ofs)* M[s]*
Is
IN o
5
5 =1
id
i o N | s*
= Tox
Mo
E
T

§* N[s]*

79
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“id
N n
n
| =NIs)| Zofs] | 55
[ s |ofs]*
= e
5
e
M id
1. a*
N Tlox
Mo
E
'T g'* M[s]*
id
n il
L |
EN[s]| Zofs] | Zs
- 51‘ u[g]i
's
5 —+—
‘id
M_L
_ Tlox
h a*
[lo
£
T 5¥ Ms]*

We leave the reader check that the drawing obtained by ne-cxpanding the verncal ofs]*
line is (co<M[s]=)(NIs]) .

Annex B.2 (Contravariant congruence of type equality) (Theorem 6). Denoting by ¢
the canonical IT wansformations of Figere 6, as in Annex A3, we want to show

Zfrar)

g

L

b

b

Mo

(rat)

[la"

Io
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We use the following equation, which is easily derivable from the definition of 1
(Figure 4).

Figure 7
m | n
5% 5 B {1k
- i\
E{lak) 1= | k*® Z(l=k) =1 k*
We are reduced o show:
na
Mo

&
'+

Mo

B = $
1.-.
(LaL)® Ilo
(FoL)* Mo

Now, expanding in the left hand side the definition of ¢, we get, after an ne-
cancellation:

"
|
TMo"
o el n
ot
g ]oes | il
pobo ,
E
{1 a)* I
{L'=1)® Mo

which is the expansion of the nght hand side.

Annex B.3 (The critical pair ITAbs-Pieudo) (Theorem 6). The notation is taken
from Figure 2. We first describe the completion of the critical pair, then we build and
paste the isomorphisms along one path (we have reversed one direction for
convenience). Finally we perform pasting rewritingss until we reach the iso
corresponding to the other path  (TTo.x)[501] — TTofset].t](s-t)"].
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n
(5:t)* 1d* | ofset]* Tlofset)

Mo ————— e

(s1)*

Annex B4 (Permutation of application and type equality) We check the equality of
the interpretations of (cy<M>)N and of M(ca<N>), where

- €3 proves a=a,

- ©5 is g followed by symmetry, and

-e 1% €3 followed by ITCong (T fixed).
The natural iso (¢ I,N}" e N¥ ! *. which we include in the Penrose diagram
representing M(cy<N=>), accounts for the equality

ﬂccr,n“‘N;'*"d] = ‘:{cm,(c.a‘}“:’midl
("EqType, then Cons, then oClos = EqCont and Cons, ther 0Clos"). We rewrite this
drawing until we get the representation of (c<M=)N:

‘id
- L
My ;
i 1 fnd ] b
= e
g 4
M_L
1. Tlat
Mo
E
b s l-l* MW+
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"id
1
ﬁ-l
EN U]
g
o
M 1
_ TlaxT
[:l Mo
E
' 1, N*
(We expand the inverse iso [lo += o' = 21 )
‘id
M ]
En_l
Tlat N n
0
I % 4
? at € {ITo
i Mo |a*
E i
‘T 4 N*
id
M n
—_ i
IB% i
Tlat by : i |
Eq o*
Ilo
o* *
I IMa
E
-1 M*
L ®
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id
M |
T- n
I-l-[u.-_[
o'
= -
Mo
: a*
] n’i &
n| |me -
- *
. : ¥y |
{(We recall that Zu= L‘I'.}
"id
M n
= B mn
Tlox N
o'
_ o
Mo
I
E
i p L*
. ®
G R N

After the obvious reduction, we get M{cg<N=).
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