Zoran Skoda Ptolemy from addition

Want to prove

sin(α+β)sin(β+γ)=sinαsinγ+sinβsinδ. sin(\alpha+\beta) sin(\beta+\gamma) = sin\alpha sin\gamma+sin\beta sin\delta.

from the addition formulas. We know δ=π(α+β+γ)\delta = \pi-(\alpha+\beta+\gamma), so with sinα=asin\alpha = a, sinβ=bsin\beta = b and sinγ=csin\gamma = c and cosα=acos\alpha = a' etc.

sinδ=abcabc+abc+abc sin\delta = a b' c' - a b c + a' b'c + a' b c'
sin(α+β)=ab+ab sin(\alpha+\beta) = a b' + a' b
sin(β+γ)=bc+cb sin(\beta+\gamma) = b c' + c' b

Thus, LHS

(ab+ab)(bc+bc)=abbc+abbc+abbc+abbc (a b' + a' b)(b c' + b' c) = a b b' c' + a b' b' c + a'b b c' + a' b b' c

and RHS

ac+b(abcabc+abc+abc)=a(1bb)c+abbc+abbc+abbc a c + b (a b' c' - a b c + a' b'c + a' b c') = a (1- b b) c + a b b' c' + a' b b' c + a' b b c'

The two are the same thanks to the basic trigonometric identity 1bb=bb1-b b = b' b'.

Created on August 5, 2024 at 21:19:11. See the history of this page for a list of all contributions to it.