Zoran Skoda Sandbox4

Let SS and TT be two Ore sets in a domain RR and i T:RT 1Ri_T:R\to T^{-1}R the canonical map. Then i T(S)i_T(S) is left Ore in T 1RT^{-1}R if for every rRr\in R, tTt\in T and sSs\in S, there are sSs'\in S, rRr'\in R and tTt'\in T such that st 1r=t 1rss' t^{-1} r = t'^{-1}r' s in T 1RT^{-1} R.
(This can be written as t 1rs 1=s 1t 1rt^{-1}r s^{-1} = s'^{-1}t'^{-1}r' in the module T 1S 1T 1RT^{-1}S^{-1}T^{-1}R.) We claim that it is sufficient to have this condition satisfied for r=1r = 1. Indeed, t 1rs 1=t 1s˜ 1r˜=s 1 1t 1 1r 1r˜t^{-1} r s^{-1} = t^{-1}\tilde{s}^{-1}\tilde{r} = s_1^{-1}t_1^{-1}r_1\tilde{r}, that is s 1t 1r=t 1 1(r 1r˜)ss_1 t^{-1} r = t_1^{-1}(r_1\tilde{r})s where s 1t 1=t 1 1r 1s˜s_1 t^{-1} = t^{-1}_1 r_1 \tilde{s} and s˜r=r˜s\tilde{s}r = \tilde{r}s.

Last revised on August 5, 2024 at 18:33:34. See the history of this page for a list of all contributions to it.