Zoran Skoda
Yetter-Drinfeld module algebra
Yetter-Drinfeld modules form a monoidal category. Yetter-Drinfeld algebra is a monoid in that category. It is an algebra and a comodule with the YD condition and the property that the coaction ρ : M → M ⊗ H op \rho : M\to M\otimes H^{op} is an algebra map.
Let H H be a Hopf algebra. The compatibility of the left action ▸ \blacktriangleright and the right coaction ρ : X ↦ X [ 0 ] ⊗ X [ 1 ] \rho : X\mapsto X_{[0]}\otimes X_{[1]} for the left-right Yetter-Drinfeld H H -module M M compatibility is
( h ( 1 ) ▸ X [ 0 ] ) ⊗ h ( 2 ) X [ 1 ] = ( h ( 2 ) ▸ X ) [ 0 ] ⊗ ( h ( 2 ) ▸ X ) [ 1 ] h ( 1 ) ,
(h_{(1)}\blacktriangleright X_{[0]})\otimes h_{(2)} X_{[1]} =
(h_{(2)}\blacktriangleright X)_{[0]} \otimes (h _{(2)}\blacktriangleright X)_{[1]} h_{(1)},
for all h ∈ H h\in H and X ∈ M X\in M .
Proposition. If ρ : M → M ⊗ H op \rho:M\to M\otimes H^{op} in other to check the YD module property it is sufficient to check it on the generators of algebras H H and M M .
Proof. It is clear that the YD condition is linear. We therefore have to check the compatibility for products if the factors satisfy it. For the products X Y X Y in M M we compute
( f ( 1 ) ▸ ( X Y ) [ 0 ] ) ⊗ f ( 2 ) ( X Y ) [ 1 ] = ( f ( 1 ) ▸ ( X [ 0 ] Y [ 0 ] ) ) ⊗ f ( 2 ) Y [ 1 ] X [ 1 ] = ( f ( 1 ) ▸ X [ 0 ] ) ( f ( 2 ) ▸ Y [ 0 ] ) ⊗ f ( 3 ) Y [ 1 ] X [ 1 ] = ( f ( 1 ) ▸ X [ 0 ] ) ( f ( 3 ) ▸ Y [ 0 ] ) [ 0 ] ⊗ ( f ( 3 ) ▸ Y [ 0 ] ) [ 1 ] f ( 2 ) X [ 1 ] = ( f ( 2 ) ▸ X ) [ 0 ] ( f ( 3 ) ▸ Y ) [ 0 ] ⊗ ( f ( 3 ) ▸ Y [ 0 ] ) [ 1 ] ) f ( 2 ) ▸ X ) [ 1 ] f ( 1 ) = ( ( f ( 2 ) ▸ X ) ( f ( 3 ) ▸ Y ) ) [ 0 ] ⊗ ( ( f ( 2 ) ▸ X ) ( f ( 3 ) ▸ Y ) ) [ 1 ] f ( 1 ) = ( f ( 2 ) ▸ ( X Y ) ) [ 0 ] ⊗ ( f ( 2 ) ▸ ( X Y ) ) [ 1 ] f ( 1 ) , \array{
(f_{(1)}\blacktriangleright (X Y)_{[0]})\otimes f_{(2)} (X Y)_{[1]} &=&
(f_{(1)}\blacktriangleright (X_{[0]} Y_{[0]}))\otimes f_{(2)}Y_{[1]} X_{[1]}
\\
&=&(f_{(1)}\blacktriangleright X_{[0]})
(f_{(2)}\blacktriangleright Y_{[0]})\otimes f_{(3)}Y_{[1]} X_{[1]}
\\
&=&(f_{(1)}\blacktriangleright X_{[0]})(f_{(3)}\blacktriangleright Y_{[0]})_{[0]}\otimes
(f_{(3)}\blacktriangleright Y_{[0]})_{[1]} f_{(2)} X_{[1]}
\\
&=& (f_{(2)}\blacktriangleright X)_{[0]}(f_{(3)}\blacktriangleright Y)_{[0]}\otimes
(f_{(3)}\blacktriangleright Y_{[0]})_{[1]})f_{(2)}\blacktriangleright X)_{[1]} f_{(1)}
\\
&=& ((f_{(2)}\blacktriangleright X)(f_{(3)}\blacktriangleright Y))_{[0]}\otimes
((f_{(2)}\blacktriangleright X)(f_{(3)}\blacktriangleright Y))_{[1]} f_{(1)}
\\
&=& (f_{(2)}\blacktriangleright (X Y))_{[0]}\otimes
(f_{(2)}\blacktriangleright (X Y))_{[1]} f_{(1)},
}
and for the products f g f g in H H we compute
( f g ) ( 1 ) X [ 0 ] ⊗ ( f g ) ( 2 ) X [ 1 ] = ( f ( 1 ) ▸ ( g ( 1 ) ▸ X [ 0 ] ) ) ⊗ f ( 2 ) ( g ( 2 ) X [ 1 ] ) = ( f ( 2 ) ▸ ( g ( 2 ) ▸ X ) [ 0 ] ) ⊗ ( f ( 2 ) ▸ ( g ( 2 ) ▸ X ) [ 1 ] ) g ( 1 ) = ( f ( 2 ) ▸ ( g ( 2 ) ▸ X ) ) [ 0 ] ⊗ ( f ( 2 ) ▸ ( g ( 2 ) ▸ X ) ) [ 1 ] f ( 1 ) g ( 1 ) = ( ( f g ) ( 2 ) ▸ X ) [ 0 ] ⊗ ( ( f g ) ( 2 ) ▸ X ) [ 1 ] ( f g ) ( 1 ) \array{
(f g)_{(1)} X_{[0]}\otimes (f g)_{(2)} X_{[1]} &=&
(f_{(1)}\blacktriangleright (g_{(1)}\blacktriangleright X_{[0]}))\otimes f_{(2)} (g_{(2)} X_{[1]})
\\
&=& (f_{(2)}\blacktriangleright (g_{(2)}\blacktriangleright X)_{[0]})\otimes (f_{(2)}
\blacktriangleright (g_{(2)}\blacktriangleright X)_{[1]}) g_{(1)}
\\
&=& (f_{(2)}\blacktriangleright (g_{(2)}\blacktriangleright X))_{[0]}\otimes (f_{(2)} \blacktriangleright (g_{(2)}\blacktriangleright X))_{[1]} f_{(1)} g_{(1)}
\\
&=&
((f g)_{(2)}\blacktriangleright X)_{[0]}\otimes ((f g)_{(2)}\blacktriangleright X)_{[1]} (f g)_{(1)}
}
Braided commutativity:
X [ 0 ] ( X [ 1 ] ▸ Y ) = Y X
X_{[0]} (X_{[1]}\blacktriangleright Y) = Y X
Products on the left
X [ 0 ] X ′ [ 0 ] ( X ′ [ 1 ] ▸ ( X [ 1 ] ▸ Y ) ) = X [ 0 ] ( X [ 1 ] ▸ Y ) X ′ = Y X X ′
X_{[0]}X'_{[0]}(X'_{[1]}\blacktriangleright(X_{[1]}\blacktriangleright Y)) =
X_{[0]}(X_{[1]}\blacktriangleright Y) X' =
Y X X'
Products on the right
X [ 0 ] ( X [ 1 ] ▸ ( Y Y ′ ) ) = X [ 0 ] ( X [ 1 ] ▸ Y ) ( X [ 2 ] ▸ Y ′ ) = Y X [ 0 ] ( X [ 1 ] ▸ Y ′ ) = Y Y ′ X
X_{[0]} (X_{[1]}\blacktriangleright (Y Y')) =
X_{[0]} (X_{[1]}\blacktriangleright Y)(X_{[2]}\blacktriangleright Y')
= Y X_{[0]} (X_{[1]}\blacktriangleright Y')
=Y Y' X
Last revised on June 22, 2015 at 21:45:59.
See the history of this page for a list of all contributions to it.