Zoran Skoda Zbl076835085

DE076835085 Zbl76835085

Porta, Mauro; Sala, Francesco, Two-dimensional categorified Hall algebras, J. Eur. Math. Soc. (JEMS) 25, 1113–1205 (2023) doi

Classification: 14A20 17B37 55P99

Keywords: Hall algebras; Higgs bundles; flat bundles; local systems; categorification; stable \infty-categories


For a small Abelian category 𝒜\mathcal{A} of finite cohomological dimension and with finite Hom\mathrm{Hom}- and Ext i\mathrm{Ext}^i-groups, one classically defines its Hall algebra as an associative algebra whose vector space basis is given by isomorphism classes of objects and equipped with structure constants defined in terms of counting extensions. More flexible approaches and generalizations are in place with important examples including quantum groups, Yangians, algebras of BPS-states in physics, cohomological Hall algebras of quivers etc. A cohomological Hall algebra attached to 𝒜\mathcal{A} is defined via a diagram 𝒜× 𝒜p 𝒜 extq 𝒜\mathcal{M}_{\mathcal{A}}\times\mathcal{M}_{\mathcal{A}}\stackrel{p}\leftarrow\mathcal{M}_{\mathcal{A}}^{\mathrm{ext}}\stackrel{q}\rightarrow\mathcal{M}_{\mathcal{A}} where 𝒜\mathcal{M}_{\mathcal{A}} and 𝒜 ext\mathcal{M}_{\mathcal{A}}^{\mathrm{ext}} are moduli stacks of objects and of extensions in 𝒜\mathcal{A} and p,qp,q are natural projections. The multiplication is then defined on Borel-Moore homology classes as a pull-push (convolution) product q *p *:H * BM( 𝒜)H * BM( 𝒜)H * BM( 𝒜)q_*\circ p^*\colon H_*^{\mathrm{BM}}(\mathcal{M}_{\mathcal{A}})\otimes H_*^{\mathrm{BM}}(\mathcal{M}_{\mathcal{A}})\to H_*^{\mathrm{BM}}(\mathcal{M}_{\mathcal{A}}). This construction works under some regularity assumptions on pp which hold if 𝒜\mathcal{A} has cohomological dimension 11 but may fail if 𝒜\mathcal{A} has cohomological dimension 22. A uniform satisfactory approach in dimension 22 to the construction of Hall multiplication is proposed in the article under review by replacing moduli stacks 𝒜, 𝒜 ext\mathcal{M}_{\mathcal{A}}, \mathcal{M}_{\mathcal{A}}^{\mathrm{ext}} by certain derived enhancements 𝒜, 𝒜 ext\mathbb{R}\mathcal{M}_{\mathcal{A}}, \mathbb{R}\mathcal{M}_{\mathcal{A}}^{\mathrm{ext}}. In fact, a categorification of Hall multiplication is constructed: instead of working with homological or K-theoretic classes, the convolution formula gives a tensor product q *p *:Coh b( 𝒜)Coh b( 𝒜)Coh b( 𝒜)q_*\circ p^*\colon\mathrm{Coh}^{\mathrm{b}}(\mathbb{R}\mathcal{M}_{\mathcal{A}})\otimes\mathrm{Coh}^{\mathrm{b}}(\mathbb{R}\mathcal{M}_{\mathcal{A}})\to\mathrm{Coh}^{\mathrm{b}}(\mathbb{R}\mathcal{M}_{\mathcal{A}}) of an 𝔼 1\mathbb{E}_1-monoidal structure on the dg-category of coherent sheaves on 𝒜\mathbb{R}\mathcal{M}_{\mathcal{A}} with bounded cohomology. Coherences for this 𝔼 1\mathbb{E}_1-monoidal structure would be probably too hard to construct using deformation theory in terms of triangulated categories; throughout, the setup of stable \infty-categories is used instead.

Given a smooth and proper scheme SS, authors construct a derived moduli stack Coh(S)\mathbf{Coh}(S) of coherent sheaves on SS and its categorical Waldhausen S-construction 𝒮 Coh(S)\mathcal{S}_\bullet\mathbf{Coh}(S), a simplicial object in stable \infty-category of derived stacks satisfying 2-Segal condition, where 𝒮 1Coh(S)=Coh(S)\mathcal{S}_1\mathbf{Coh}(S)=\mathbf{Coh}(S) and 𝒮 2Coh(S)=Coh ext(S)\mathcal{S}_2\mathbf{Coh}(S)=\mathbf{Coh}^{\mathrm{ext}}(S) is the derived moduli stack of extensions of coherent sheaves. The corresponding convolution diagram is Coh(S)×Coh(S)( o, 1)Coh ext(S) 1Coh(S)\mathbf{Coh}(S)\times\mathbf{Coh}(S)\stackrel{(\partial_o,\partial_1)}\longleftarrow\mathbf{Coh}^{\mathrm{ext}}(S)\stackrel{\partial_1}\rightarrow\mathbf{Coh}(S). The construction in the article builds on an insight of Dyckerhoff and Kapranov how 2-Segal simplicial objects induce Hall type structures [Dyckerhoff, T., Kapranov, M.: Higher Segal Spaces. Lecture Notes in Math. 2244, Springer, Cham (2019) Zbl1459.18001 MR3970975].

Hall-type 𝔼 1\mathbb{E}_1-monoidal structure on the stable \infty-category Coh pro b(Coh(X))\mathrm{Coh}^{\mathrm{b}}_{\mathrm{pro}}(\mathbf{Coh}(X)) is constructed if XX is a complex scheme of dimension 11 or 22 or the Betti, de Rham or Dolbeault stack of a smooth projective curve. Derived stacks of coherent sheaves on the latter stacks (Simpson’s shapes) enhance classical stacks of local systems, flat vector bundles and Higgs sheaves on XX, respectively. This enables introducing the Hall monoidal products for the latter. An analytic version of the formalism is developed as well and a cohomological Hall algebra version of the derived Riemann-Hilbert correspondence is proven as an equivalence of stable E 1\mathbf{E}_1-monoidal \infty-categories, relating the de Rham and Betti side in analytic setup. A version of non-abelian Hodge correspondence at the categorified Hall algebra level is demonstrated as well, in terms of Deligne shape interpolating between the de Rham and Dolbeault shape. These constructions are introduced with rich motivation from previously known cohomological Hall algebra structures in dimensions 11 and 22. Paths to decategorifications like KK-theoretic Hall algebras are studied to make connections to the earlier known Hall algebras and missing conjectured cases. One of the motivations was to relate different categorifications of quantum groups, which have Hall algebra interpretations.

The technical part of the paper are numerous auxiliary results in derived algebraic geometry, including methods of deformation theory in construction of derived moduli stacks. These are refining and adapting known techniques (including some from earlier papers of the authors) to the present needs. Such needs are concisely but explicitly articulated. The wealth of new and background material is presented precisely, clearly and sufficiently motivated even for non-specialists.


You can also compare the MathReviews for the paper MR4577961

References cited in the article

  1. Arinkin, D., Gaitsgory, D.: Singular support of coherent sheaves and the geometric Langlands conjecture. Selecta Math. (N.S.) 21, 1–199 (2015) Zbl 1423.14085 MR 3300415
  2. Bartocci, C., Bruzzo, U., Hernández Ruipérez, D.: Fourier–Mukai and Nahm Transforms in Geometry and Mathematical Physics. Progr. Math. 276, Birkhäuser Boston, Boston, MA (2009) Zbl 1186.14001 MR2511017
  3. Bernstein, J.: Algebraic theory of D-modules. Lecture notes, available as ps file at this link (1983)
  4. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. Duke Math. J. 161, 1171–1231 (2012) Zbl 1286.16029 MR2922373
  5. Calaque, D.: Three lectures on derived symplectic geometry and topological field theories. Indag. Math. (N.S.) 25, 926–947 (2014) Zbl 1298.81345 MR3264781
  6. Conrad, B.: Grothendieck Duality and Base Change. Lecture Notes in Math. 1750, Springer, Berlin (2000) Zbl 0992.14001 MR1804902
  7. Davison, B.: The critical CoHA of a quiver with potential. Quart. J. Math. 68, 635–703 (2017) Zbl 1390.14056 MR3667216
  8. Davison, B., Meinhardt, S.: Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras. Invent. Math. 221, 777–871 (2020) Zbl 1462.14020 MR4132957
  9. Diaconescu, D.-E., Porta, M., Sala, F.: McKay correspondence, cohomological Hall algebras and categorification. arXiv:2004.13685 (2020)
  10. Douady, A.: Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ph.D. thesis, Paris (1966) MR0210935
  11. Dyckerhoff, T., Kapranov, M.: Higher Segal Spaces. Lecture Notes in Math. 2244, Springer, Cham (2019) Zbl 1459.18001 MR3970975
  12. Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry. Vol. I. Correspondences and Duality. Math. Surveys Monogr. 221, Amer. Math. Soc., Providence, RI (2017) Zbl 1409.14003 MR3701352
  13. Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry. Vol. II. Deformations, Lie Theory and Formal Geometry. Math. Surveys Monogr. 221, Amer. Math. Soc., Providence, RI (2017) MR3701353
  14. Gepner, D., Haugseng, R.: Enriched ∞-categories via non-symmetric ∞-operads. Adv. Math. 279, 575–716 (2015) Zbl 1342.18009 MR3345192
  15. Ginzburg, V., Rozenblyum, N.: Gaiotto’s Lagrangian subvarieties via derived symplectic geometry. Algebras Represent. Theory 21, 1003–1015 (2018) Zbl 1398.53084 MR3855670
  16. Gothen, P. B., King, A. D.: Homological algebra of twisted quiver bundles. J. London Math. Soc. (2) 71, 85–99 (2005) Zbl 1095.14012 MR2108248
  17. Grojnowski, I.: Affinizing quantum algebras: From D-modules to K-theory. Unpublished manuscript, available at the author’s webpage (1994)
  18. Halpern-Leistner, D.: Derived Θ-stratifications and the D-equivalence conjecture. arXiv:2010.01127 (2020) MR3821155
  19. Halpern-Leistner, D., Preygel, A.: Mapping stacks and categorical notions of properness. arXiv:1402.3204 (2014) MR4560539
  20. Harvey, J. A., Moore, G.: On the algebras of BPS states. Comm. Math. Phys. 197, 489–519 (1998) Zbl 1055.81616 MR1652775
  21. Hinich, V.: Yoneda lemma for enriched ∞-categories. Adv. Math. 367, 107129, 119 (2020) Zbl 1454.18003 MR4080581
  22. Holstein, J., Porta, M.: Analytification of mapping stacks. arXiv:1812.09300 (2018)
  23. Hotta, R., Takeuchi, K., Tanisaki, T.: D-Modules, Perverse Sheaves, and Representation Theory. Progr. Math. 236, Birkhäuser Boston, Boston, MA (2008) Zbl 1136.14009 MR2357361
  24. Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves. 2nd ed., Cambridge Math. Library, Cambridge Univ. Press, Cambridge (2010) Zbl 1206.14027 MR2665168
  25. Kapranov, M., Vasserot, E.: The cohomological Hall algebra of a surface and factorization cohomology. J. Eur. Math. Soc. (online, 2022)
  26. Khovanov, M., Lauda, A. D.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009) Zbl 1188.81117 MR2525917
  27. Khovanov, M., Lauda, A. D.: A categorification of quantum sl(n). Quantum Topol. 1, 1–92 (2010) Zbl 1206.17015 MR2628852
  28. Khovanov, M., Lauda, A. D.: A diagrammatic approach to categorification of quantum groups II. Trans. Amer. Math. Soc. 363, 2685–2700 (2011) Zbl 1214.81113 MR2763732
  29. Kontsevich, M., Soibelman, Y.: Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants. Comm. Number Theory Phys. 5, 231–352 (2011) Zbl 1248.14060 MR2851153
  30. Lauda, A. D.: A categorification of quantum sl(2). Adv. Math. 225, 3327–3424 (2010) Zbl 1219.17012 MR2729010
  31. Laumon, G., Moret-Bailly, L.: Champs algébriques. Ergeb. Math. Grenzgeb. (3) 39, Springer, Berlin (2000) Zbl 0945.14005 MR1771927
  32. Lurie, J.: Higher Topos Theory. Ann. of Math. Stud. 170, Princeton Univ. Press, Princeton, NJ (2009) Zbl 1175.18001 MR2522659
  33. Lurie, J.: Derived algebraic geometry V: Structured spaces. Available at J. Lurie’s webpage (2011)
  34. Lurie, J.: Derived algebraic geometry IX: Closed immersions. Available at J. Lurie’s webpage (2011)
  35. Lurie, J.: Higher algebra. Available at J. Lurie’s webpage (2017)
  36. Lurie, J.: Spectral algebraic geometry. Available at J. Lurie’s webpage (2018)
  37. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. Amer. Math. Soc. 3, 447–498 (1990) Zbl 0703.17008 MR1035415
  38. Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Amer. Math. Soc. 4, 365–421 (1991) Zbl 0738.17011 MR1088333
  39. Macpherson, A. W.: A bivariant Yoneda lemma and (∞,2)-categories of correspondences. arXiv:2005.10496 (2020) MR4520676
  40. Minets, A.: Cohomological Hall algebras for Higgs torsion sheaves, moduli of triples and sheaves on surfaces. Selecta Math. (N.S.) 26, art. 30, 67 pp. (2020) Zbl 1444.14079 MR4090584
  41. Neguţ, A.: Exts and the AGT relations. Lett. Math. Phys. 106, 1265–1316 (2016) Zbl 1348.14030 MR3533570
  42. Neguţ, A.: The q-AGT-W relations via shuffle algebras. Comm. Math. Phys. 358, 101–170 (2018) Zbl 1407.16029 MR3772034
  43. Neguţ, A.: Hecke correspondences for smooth moduli spaces of sheaves. Publ. Math. Inst. Hautes Études Sci. 135, 337–418 (2022) Zbl 07531906 MR4426742
  44. Neguţ, A.: Shuffle algebras associated to surfaces. Selecta Math. (N.S.) 25 (2019), no. 3, art. 36, 57 pp. Zbl 1427.14023 MR3950703
  45. Nitsure, N.: Moduli space of semistable pairs on a curve. Proc. London Math. Soc. (3) 62, 275–300 (1991) Zbl 0733.14005 MR1085642
  46. Pădurariu, T.: K-theoretic Hall algebras for quivers with potential. arXiv:1911.05526 (2019) MR4272333
  47. Pantev, T., Toën, B.: Poisson geometry of the moduli of local systems on smooth varieties. Publ. RIMS Kyoto Univ. 57, 959–991 (2021) Zbl 07445182 MR4322004
  48. Porta, M.: GAGA theorems in derived complex geometry. J. Algebraic Geom. 28, 519–565 (2019) Zbl 1453.14004 MR3959070
  49. Porta, M.: The derived Riemann–Hilbert correspondence. arXiv:1703.03907 (2017)
  50. Porta, M., Sala, F.: Simpson’s shapes of schemes and stacks. Available at this link
  51. Porta, M., Yu, T. Y.: Higher analytic stacks and GAGA theorems. Adv. Math. 302, 351–409 (2016) Zbl 1388.14016 MR3545934
  52. Porta, M., Yu, T. Y.: Representability theorem in derived analytic geometry. J. Eur. Math. Soc. 22, 3867–3951 (2020) Zbl 1456.14018 MR4176782
  53. Porta, M., Yu, T. Y.: Derived Hom spaces in rigid analytic geometry. Publ. RIMS Kyoto Univ. 57, 921–958 (2021) Zbl 1487.14060 MR4322003
  54. Porta, M., Yu, T. Y.: Non-archimedean quantum K-invariants. arXiv:2001.05515 (2020)
  55. Rapčák, M., Soibelman, Y., Yang, Y., Zhao, G.: Cohomological Hall algebras, vertex algebras and instantons. Comm. Math. Phys. 376, 1803–1873 (2020) Zbl 07207197 MR4104538
  56. Ren, J., Soibelman, Y.: Cohomological Hall algebras, semicanonical bases and Donaldson–Thomas invariants for 2-dimensional Calabi–Yau categories (with an appendix by Ben Davison). In: Algebra, Geometry, and Physics in the 21st Century, Progr. Math. 324, Birkhäuser/Springer, Cham, 261–293 (2017) Zbl 1385.16012 MR3727563
  57. Rouquier, R.: 2-Kac–Moody algebras. arXiv:0812.5023 (2008)
  58. Rouquier, R.: Quiver Hecke algebras and 2-Lie algebras. Algebra Colloq. 19, 359–410 (2012) Zbl 1247.20002 MR2908731
  59. Safronov, P.: Quasi-Hamiltonian reduction via classical Chern–Simons theory. Adv. Math. 287, 733–773 (2016) Zbl 1440.53096 MR3422691
  60. Sala, F., Schiffmann, O.: Cohomological Hall algebra of Higgs sheaves on a curve. Algebr. Geom. 7, 346–376 (2020) Zbl 1467.14034 MR4087863
  61. Schiffmann, O.: Canonical bases and moduli spaces of sheaves on curves. Invent. Math. 165, 453–524 (2006) Zbl 1142.17004 MR2242625
  62. Schiffmann, O.: Lectures on canonical and crystal bases of Hall algebras. In: Geometric Methods in Representation Theory. II, Sémin. Congr. 24, Soc. Math. France, Paris, 143–259 (2012) Zbl 1356.17015 MR3202708
  63. Schiffmann, O., Vasserot, E.: Hall algebras of curves, commuting varieties and Langlands duality. Math. Ann. 353, 1399–1451 (2012) Zbl 1252.14012 MR2944034
  64. Schiffmann, O., Vasserot, E.: Cherednik algebras, W-algebras and the equivariant cohomology of the moduli space of instantons on A2. Publ. Math. Inst. Hautes Études Sci. 118, 213–342 (2013) Zbl 1284.14008 MR3150250
  65. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the K-theory of the Hilbert scheme of A2. Duke Math. J. 162, 279–366 (2013) Zbl 1290.19001 MR3018956
  66. Schiffmann, O., Vasserot, E.: On cohomological Hall algebras of quivers: Yangians. arXiv:1705.07491 (2017) MR4069884
  67. Schiffmann, O., Vasserot, E.: On cohomological Hall algebras of quivers: generators. J. Reine Angew. Math. 760, 59–132 (2020) Zbl 1452.16017 MR4069884
  68. Schlichting, M.: A note on K-theory and triangulated categories. Invent. Math. 150, 111–116 (2002) Zbl 1037.18007 MR1930883
  69. Schürg, T., Toën, B., Vezzosi, G.: Derived algebraic geometry, determinants of perfect complexes, and applications to obstruction theories for maps and complexes. J. Reine Angew. Math. 702, 1–40 (2015) Zbl 1320.14033 MR3341464
  70. Shan, P., Varagnolo, M., Vasserot, E.: Coherent categorification of quantum loop algebras: the SL(2) case. J. Reine Angew. Math. 792, 1–59 (2022) Zbl 07612786 MR4504090
  71. Simpson, C. T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994) Zbl 0891.14005 MR1307297
  72. Simpson, C. T.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1994) Zbl 0891.14006 MR1320603
  73. Simpson, C.: The Hodge filtration on nonabelian cohomology. In: Algebraic Geometry (Santa Cruz, 1995), Proc. Sympos. Pure Math. 62, Amer. Math. Soc., Providence, RI, 217–281 (1997) Zbl 0914.14003 MR1492538
  74. Simpson, C.: Geometricity of the Hodge filtration on the ∞-stack of perfect complexes over XDR. Moscow Math. J. 9, 665–721 (2009) Zbl 1189.14020 MR2562796
  75. The Stacks Project Authors: Stacks Project. http://stacks.math.columbia.edu
  76. Thomason, R. W.: The classification of triangulated subcategories. Compos. Math. 105, 1–27 (1997) Zbl 0873.18003 MR1436741
  77. Toën, B.: The homotopy theory of dg-categories and derived Morita theory. Invent. Math. 167, 615–667 (2007) Zbl 1118.18010 MR2276263
  78. Toën, B.: Proper local complete intersection morphisms preserve perfect complexes. arXiv:1210.2827 (2012)
  79. Toën, B., Vaquié, M.: Moduli of objects in dg-categories. Ann. Sci. École Norm. Sup. (4) 40, 387–444 (2007) Zbl 1140.18005 MR2493386
  80. Toën, B., Vezzosi, G.: A remark on K-theory and S-categories. Topology 43, 765–791 (2004) Zbl 1054.55004 MR2061207
  81. Varagnolo, M., Vasserot, E.: Canonical bases and KLR-algebras. J. Reine Angew. Math. 659, 67–100 (2011) Zbl 1229.17019 MR2837011
  82. Yang, Y., Zhao, G.: The cohomological Hall algebra of a preprojective algebra. Proc. London Math. Soc. (3) 116, 1029–1074 (2018) Zbl 1431.17013 MR3805051
  83. Yang, Y., Zhao, G.: Cohomological Hall algebras and affine quantum groups. Selecta Math. (N.S.) 24, 1093–1119 (2018) Zbl 1431.17012 MR3782418
  84. Yang, Y., Zhao, G.: On two cohomological Hall algebras. Proc. Roy. Soc. Edinburgh Sect. A 150, 1581–1607 (2020) Zbl 1446.14036 MR4091073
  85. Zhao, Y.: On the K-theoretic Hall algebra of a surface. Int. Math. Res. Notices 2021, 4445–4486 Zbl 1475.19005 MR4230402

Last revised on November 14, 2023 at 22:25:47. See the history of this page for a list of all contributions to it.