Borel algebra, Jordanian twist exp(H⊗ln(1+ξE))exp(H\otimes ln (1+\xi E))
Ogievetsky
[H,E]=E[H, E] = E
Frobenius algebra, add A i,B iA_i,B_i, extended Jordanian twist
parameters α i+β i=1\alpha_i + \beta_i =1
[H,A i]=α iA i[H,A_i] = \alpha_i A_i, [H,B i]=β iB i[H,B_i] = \beta_i B_i;
[E,A i]=[E,B j]=0[E,A_i] = [E,B_j] = 0
[A i,B j]=δ ijγ iE[A_i,B_j] = \delta_{i j}\gamma_i E
can have several pairs
ϕ=exp(A⊗B(1+ξE) −γ)exp(H⊗ln(1+ξE)\phi = exp(A \otimes B(1+\xi E)^{-\gamma}) exp(H \otimes ln (1+\xi E)
Kulish Lyakhovski Mudrov 1995 or so
σ=ln(1+ξE)\sigma = ln (1+\xi E)
Δ ϕ(H)=H⊗e −σ+1⊗H\Delta_{\phi}(H) = H\otimes e^{-\sigma}+ 1\otimes H
lightcone basis kappa Mink H=M +−H = M_{+-}
E=P +=P 0+P 3E=P_+ = P_0+P_3
M +aM_{+a}, P aP_a
Created on November 19, 2013 at 01:39:04. See the history of this page for a list of all contributions to it.