A partial bibliography related to a proposal centered on geometry of foliations, Spring 2021; non-cleaned additions at fol-lit2. See also foliation, Haefliger groupoid and Rankin-Cohen bracket.
A. Agrachev and Y. Sachkov, Control Theory from the Geometric Viewpoint. Springer 2004.
I. Androulidakis and G. Skandalis. The holonomy groupoid of a singular foliation. J. Reine Andew. Math. 626 (2009) 1–37.
Ya.V. Bazaikin, A.S. Galaev, Losik classes for codimension one foliations. J. Inst. Math. Jussie, 1-29, arXiv:1810.01143 doi
Ya.V. Bazaikin, A.S. Galaev, and P. Gumenyuk, Non-diffeomorphic Reeb foliations and modified Godbillon-Vey class, arXiv:1912.01267.
Ya.V. Bazaikin, A.S. Galaev, N.I. Zhukova. Chaos in Cartan foliations. CHAOS 30 (2020), no. 10, 103116.
R. Bott, A. Haefliger On characteristic classes of -foliations. Bull. AMS, 78 (1972), 1039–1044.
R. Bott, On characteristic classes in the framework of Gelfand-Fuks cohomology. Colloque analyse et topologie, Astérisque, no. 32-33 (1976), 27 p.
H. Bursztyn, A. Cabrera, M. del Hoyo, Vector bundles over Lie groupoids and algebroids. Adv. Math. 290 (2016), 163–207.
D. Calegari, Foliations and the Geometry of 3-Manifolds. Oxford University Press. 2007
A. Candel and L. Conlon, Foliations II, Amer. Math. Soc., Providence, RI, 2003.
A. Connes, Noncommutative Geometry. Academic Press 1994.
B. L. Feigin, Characteristic classes of flags of foliations. Funct. Anal. Appl., 9 (1975)
A. S. Galaev, Comparison of approaches to characteristic classes of foliations, arXiv:1709.05888.
I. M. Gelfand, The cohomology of infinite dimensional Lie algebras; some questions of integral geometry, Actes, Congr`es intern. Math., 1970. Tome 1, pp. 95–111.
A. Hamasaki, Continuous cohomologies of Lie algebras of formal -invariant vector fields and obstructions to lifting foliations. Publ. RIMS, Kyoto Univ. 20 (1984), 401–429.
A. Hamasaki, Cohomologies of Lie algebras of formal vector fields preserving a foliation. Publ. Res. Inst. Math. Sci. 24 (1988), 639-652.
M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton Univ. 1992.
S. Hurder, Dynamics and the Godbillon-Vey class: a History and Survey, In Foliations: Geometry and Dynamics, World Sci. Pub. Co. Inc., River Edge, N.J., 2002, 29–60.
S. Hurder and R. Langevin, Dynamics and the Godbillon-Vey class of foliations, J. Math. Soc. Japan 70 (2018), no. 2, 423–462, arXiv:1403.0494
V. Jurdjevic, Geometric Control Theory. Cambridge Univ. Press, 1997.
F.W. Kamber, Ph. Tondeur, Foliated bundles and characteristic classes, Lecture Notes in Mathematics, Vol. 493, Springer-Verlag, Berlin-New York, 1975.
A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems. Cambridge Univ. Press, 1995.
A. S. Khoroshkin, Lie algebra of formal vector fields extended by formal g-valued functions. J. Math. Sci. (N. Y.) 143 (2007) 2816–2830.
A. S. Khoroshkin, Characteristic classes of flags of foliations and Lie algebra cohomology. Transformation Groups 21 (2016) 479–518.
M. Kontsevich, Rozansky-Witten invariants via formal geometry. Compos. Math. 115 (1999).
M. Kontsevich, Formal (non)-commutative symplectic geometry, The Gelfand Mathematical. Seminars, 1990-1992, Ed. L.Corwin, I.Gelfand, J.Lepowsky, Birkhauser 1993, 173–187.
A. Kotov, M. Grigoriev, Gauge PDE and AKSZ–type sigma models, Fortschr. Phys. 67 (2019)
A. Kotov, T. Strobl, Curving Yang-Mills-Higgs gauge theories, Phys. Rev. D 92 (2015)
A. Kotov, T. Strobl, Gauging without initial symmetry, J. Geom. Phys. 99, 184–189 (2016)
A. Kotov, T. Strobl, Integration of quadratic Lie algebroids to Riemannian Cartan-Lie groupoids, Lett. Math. Phys. 108 (3), 737–756 (2018)
A. Kotov, T. Strobl, Lie algebroids, gauge theories, and compatible geometrical structures, Reviews in Mathematical Physics 31(4), 1950015 (31 pages), 2019.
A. Kotov, T. Strobl, Universal Cartan-Lie algebroid of an anchored bundle with connection and compatible geometries, J. Geom. Phys. 135, 1–6 (January 2019)
C. Laurent-Gengoux, S. Lavau, T. Strobl. The universal Lie -algebroid of a singular foliation, arXiv:1806.00475
A. Giaquinto, J. J. Zhang, Bialgebras, twists and deformation formulas, J. Pure Appl. Alg. 128 (1998) 133–151, arXiv:hep-th/9411140
J.A. L'opez, H. Nozawa. Secondary characteristic classes of transversely homogeneous foliations. arXiv:1205.3375v4
M. V. Losik, A certain generalization of a manifold and its characteristic classes. Funct. Anal. Appl. 24 (1990), no. 1, 26–32
M.V. Losik, Categorical differential geometry, Cah. Top. G'eom. Diff. Cat. 35 (1994) 274–290.
M.V. Losik, Orbit spaces and leaf spaces of foliations as generalized manifolds, arXiv:1501.04993
T. Machon, The Godbillon-Vey invariant as topological vorticity compression and obstruction to steady flow in ideal fluids. Proc. Royal Sci. A-Math. 476 (2020)
T. Machon, The Godbillon-Vey invariant as a restricted Casimir of three-dimensional ideal fluids. J. Phys. A-Math. Teor. 53 (2020)
V. E. Marotta, R. J. Szabo, Born sigma-models for para-Hermitian Manifolds and generalized T-duality, arXiv:1910.09997
D. Meljanac, S. Meljanac, Z. Škoda, R. Štrajn, Interpolations between Jordanian twists, the Poincar'e-Weyl algebra and dispersion relations, Int. J. Mod. Phys. A 35:8 (2020) 2050034
S. Meljanac, Z. Škoda, M. Stojić, Lie algebra type noncommutative phase spaces are Hopf algebroids, Lett. Math. Phys. 107:3, 475–503 (2017); D. Pištalo, Z. Škoda, Exponential map and realizations for Lie groupoids, in preparation; S. Meljanac, Z. Škoda, Hopf algebroid twists for deformation quantization of linear Poisson structures, SIGMA 14 (2018), 026.
I. Moerdijk, Models for the leaf space of a foliation, Eur. Cong. Math. 2000, vol. I, 481–489. (Barcelona), Progr. Math., 201, Birkhauser, Basel, 2001.
T. Mizutani, S. Morita and T. Tsuboi, The Godbillon-Vey classes of codimension one foliations which are almost without holonomy, Annals Math. 113 (1981), 515–527.
S. Morita and T. Tsuboi, The Godbillon-Vey class of codimension one foliations without holonomy, Topology, 19 (1980), 43–49.
P. Molino, Riemannian foliations, Progr. Math. 73, Boston, 1988.
D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time. Oxford~2015.
R. Rochberg, X. Tang, Y. Yao, A survey of Rankin-Cohen deformations, Perspectives on Noncommutative Geometry, Fields Inst. Commun. 61:7 (2011) arXiv:0909.4364
G. Teschl, Ordinary Differential Equations and Dynamical Systems. Providence: AMS 2012.
A.M. Torpe, K-theory for the leaf space of foliations by Reeb components, J. Func. Anal. 61 (1985) 15–71.
W. Thurston, Non-cobordant foliations on . Bulletin Amer. Math. Soc. 78 (1972), 511–514.
I. Vaisman, Lectures on geometry of Poisson manifolds. Springer, 1994.
P. Walczak, Dynamics of Foliations, Groups and Pseudogroups. Springer, 2004.
G. M. Webb, A. Prasad, S.C. Anco, et al. Godbillon-Vey helicity and magnetic helicity in magnetohydrodynamics. J. Plasma Phys. 85 (2019)
Last revised on October 12, 2022 at 10:01:29. See the history of this page for a list of all contributions to it.