nLab
Albert Schwarz

Albert Schwarz is a mathematician and a theoretical physicist born in Soviet Union and now Professor at University of California-Davis (web). He was one of the pioneers of Morse theory and brought up a first example of a topological quantum field theory. Schwarz worked on some examples in noncommutative geometry. He is “S” of the famous AKSZ model.

Selected publications

(See also the list of arXiv articles of A. Schwarz.)

  • The partition function of a degenerate functional, Commun. Math. Phys. 67, 1 (1979)

  • M. Alexandrov, M. Kontsevich, A. Schwarz, O. Zaboronsky, The geometry of the master equation and topological quantum field theory, Int. J. Modern Phys. A 12(7):1405–1429, 1997, hep-th/9502010

  • Albert Schwarz, Oleg Zaboronsky, Supersymmetry and localization, Comm. Math. Phys. 183, 2 (1997), 463-476, euclid

  • Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys. 155, 249 (1993), euclid

  • Semiclassical approximation in Batalin-Vilkovisky formalism, Comm. Math. Phys. 158 (1993), no. 2, 373–396, euclid

  • monograph: Quantum field theory and topology, Grundlehren der Math. Wissen. 307, Springer 1993. (translated from Russian original Kvantovaja teorija polja i topologija, Nauka, Moscow, 1989. 400 pp.)

  • scientific reminiscences, pdf

  • V. Kac, A. Schwarz, Geometric interpretation of the partition function of 22D gravity, Phys. Lett. B 257 (1991), no. 3-4, 329–334, doi

  • A. A. Belavin, A. M. Polyakov, A. S. Schwartz, Yu. S. Tyupkin, Pseudoparticle solutions of the Yang-Mills equations, Phys. Lett. B 59 (1975), no. 1, 85–87, http://dx.doi.org/10.1016/0370-2693(75)90163-X

  • S. N. Dolgikh, A. A. Rosly, A. S. Schwarz, Supermoduli spaces, Comm. Math. Phys. 135 (1990), no. 1, 91–100, euclid

  • V. N. Romanov, A. S. Švarc, Anomalies and elliptic operators, (Russian) Teoret. Mat. Fiz. 41 (1979), no. 2, 190–204.

  • Математические основы квантовой теории поля, Atomizdat, Moscow, 1975. 368 pp.

category: people

Revised on July 18, 2012 19:26:10 by Urs Schreiber (131.220.203.120)