Homotopy Type Theory HoTT book real numbers > history (Rev #10)

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR. The HoTT book real numbers H\mathbb{R}_H are a homotopy initial R +R_{+}-Cauchy structure, i.e. an R +R_{+}-Cauchy structure such that for every other R +R_{+}-Cauchy structure SS, the type of R +R_{+}-Cauchy structure homomorphisms with domain H\mathbb{R}_H and codomain SS is contractible.

As a higher inductive-inductive type

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR. The HoTT book real numbers H\mathbb{R}_H are inductively generated by the following:

  • a function inj:R Hinj: R \to \mathbb{R}_H

  • a function lim:C( H,R +) Hlim: C(\mathbb{R}_H, R_{+}) \to \mathbb{R}_H, where C( H,R +)C(\mathbb{R}_H, R_{+}) is the type of R +R_{+}-indexed nets in H\mathbb{R}_H that are R +R_{+}-Cauchy approximations.

  • a dependent family of terms

a: H,b: Heq H(a,b):( ϵ:R +(a ϵb))(a= Hb)a:\mathbb{R}_H, b:\mathbb{R}_H \vdash eq_{\mathbb{R}_H}(a, b): \left( \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \right) \to (a =_{\mathbb{R}_H} b)

and the R +R_{+}-premetric type family \sim is simultaneously inductively generated by the following:

  • a dependent family of terms

    a:R,b:R,ϵ:R +μ R,R(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:R, b:R, \epsilon:R_{+} \vdash \mu_{R, R}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
  • a dependent family of terms

    a:R,b:C( H,R +),ϵ:R +,η:R +μ R,C( H,R +)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:R, b:C(\mathbb{R}_H, R_{+}), \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{R, C(\mathbb{R}_H, R_{+})}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
  • a dependent family of terms

    a:C( H,R +),b:R,δ:R +,ϵ:R +μ C( H,R +),R(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(\mathbb{R}_H, R_{+}), b:R, \delta:R_{+}, \epsilon:R_{+} \vdash \mu_{C(\mathbb{R}_H, R_{+}), R}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
  • a dependent family of terms

    a:C( H,R +),b:C( H,R +),δ:R +,ϵ:R +,η:R +μ C( H,R +),C( H,R +)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b))a:C(\mathbb{R}_H, R_{+}), b:C(\mathbb{R}_H, R_{+}), \delta:R_{+}, \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{C(\mathbb{R}_H, R_{+}), C(\mathbb{R}_H, R_{+})}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))
  • a dependent family of terms

    a:R,b:R,ϵ:R +π(a,b,ϵ):isProp(a ϵb)a:R, b:R, \epsilon:R_{+} \vdash \pi(a, b, \epsilon): isProp(a \sim_{\epsilon} b)

In set theory

A premetric space is a set SS with a ternary relation \sim on the Cartesian product +×S×S\mathbb{Q}_{+} \times S \times S, where

+{x|0<x}\mathbb{Q}_{+} \coloneqq \{x \in \mathbb{Q} \vert 0 \lt x\}

is the set of positive rational numbers. A Cauchy approximation in SS is an function xS +x \in S^{\mathbb{Q}_{+}}, where S +S^{\mathbb{Q}_{+}} is the set of functions with domain +\mathbb{Q}_{+} and codomain SS, such that

δ +.η +.x(δ) δ+ηx(η)\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.x(\delta) \sim_{\delta + \eta} x(\eta)

The set of all Cauchy approximations is defined as

C(S){xS +|δ +.η +.x(δ) δ+ηx(η)}C(S) \coloneqq \{x \in S^{\mathbb{Q}_{+}} \vert \forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.x(\delta) \sim_{\delta + \eta} x(\eta)\}

A Cauchy structure is a premetric space SS with a function ratS +rat \in S^{\mathbb{Q}_{+}} and a function limS C(S)lim \in S^{C(S)} such that

aS.bS.((ϵ +.a ϵb)a=b)\forall a \in S.\forall b \in S.((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b)
a.b.ϵ +.(|ab|<ϵrat(a) ϵrat(b))\forall a \in \mathbb{Q}.\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.(\vert a - b \vert \lt \epsilon \implies rat(a) \sim_\epsilon rat(b))
a.bC(S).ϵ +.η +.(rat(a) ϵb(η)rat(a) ϵ+ηlim(b))\forall a \in \mathbb{Q}.\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(rat(a) \sim_\epsilon b(\eta) \implies rat(a) \sim_{\epsilon + \eta} lim(b))
aC(S).b.ϵ +.δ +.(a(δ) ϵrat(b)lim(a) δ+ϵrat(b))\forall a \in C(S).\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon rat(b) \implies lim(a) \sim_{\delta + \epsilon} rat(b))
aC(S).bC(S).ϵ +.δ +.η +.(a(δ) ϵb(η)lim(a) δ+ϵ+ηlim(b))\forall a \in C(S).\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon b(\eta) \implies lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two Cauchy structures SS and TT, a Cauchy structure homomorphism is a function fT Sf\in T^S such that

aS.bS.ϵ +.(a ϵb)(f(a) ϵf(b))\forall a \in S.\forall b \in S.\forall \epsilon \in \mathbb{Q}_{+}.(a \sim_{\epsilon} b) \to (f(a) \sim_{\epsilon} f(b))
r.f(rat(r))=rat(r)\forall r\in \mathbb{Q}.f(rat(r)) = rat(r)
rC(S).f(lim(r))=lim(fr)\forall r\in C(S).f(lim(r)) = lim(f \circ r)
aS.bS.(((ϵ +.a ϵb)a=b)((ϵ +.f(a) ϵf(b))f(a)=f(b))\forall a \in S.\forall b \in S.(((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b) \implies ((\forall \epsilon \in \mathbb{Q}_{+}.f(a) \sim_\epsilon f(b)) \implies f(a) = f(b))

The set of HoTT book real numbers H\mathbb{R}_H is the initial object in the category of Cauchy structures and Cauchy structure homomorphisms.

See also

References

Revision on April 13, 2022 at 22:01:03 by Anonymous?. See the history of this page for a list of all contributions to it.