Homotopy Type Theory HoTT book real numbers > history (Rev #11)

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

The set of HoTT book real numbers H\mathbb{R}_H is the initial object in the category of Cauchy structures and Cauchy structure homomorphisms.

In homotopy type theory

The HoTT book real numbers H\mathbb{R}_H are a homotopy initial Cauchy structure, i.e. a Cauchy structure such that for every other Cauchy structure SS, the type of Cauchy structure homomorphisms with domain H\mathbb{R}_H and codomain SS is contractible.

As a higher inductive-inductive type

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers. The HoTT book real numbers H\mathbb{R}_H are inductively generated by the following:

  • a function inj: Hinj: \mathbb{Q} \to \mathbb{R}_H

  • a function lim:C( H) Hlim: C(\mathbb{R}_H) \to \mathbb{R}_H, where C( H)C(\mathbb{R}_H) is the type of Cauchy approximations in H\mathbb{R}_H.

  • a dependent family of terms

a: H,b: Heq H(a,b):( ϵ: +(a ϵb))(a= Hb)a:\mathbb{R}_H, b:\mathbb{R}_H \vdash eq_{\mathbb{R}_H}(a, b): \left( \prod_{\epsilon:\mathbb{Q}_{+}} (a \sim_{\epsilon} b) \right) \to (a =_{\mathbb{R}_H} b)

and the premetric type family \sim is simultaneously inductively generated by the following:

  • a dependent family of terms

    a:,b:,ϵ: +μ ,(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:\mathbb{Q}, b:\mathbb{Q}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, \mathbb{Q}}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
  • a dependent family of terms

    a:,b:C( H),ϵ: +,η: +μ ,C( H)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:\mathbb{Q}, b:C(\mathbb{R}_H), \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, C(\mathbb{R}_H)}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
  • a dependent family of terms

    a:C( H),b:,δ: +,ϵ: +μ C( H),(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(\mathbb{R}_H), b:\mathbb{Q}, \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{C(\mathbb{R}_H), \mathbb{Q}}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
  • a dependent family of terms

    a:C( H),b:C( H),δ: +,ϵ: +,η: +μ C( H),C( H)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b))a:C(\mathbb{R}_H), b:C(\mathbb{R}_H), \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{C(\mathbb{R}_H), C(\mathbb{R}_H)}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))
  • a dependent family of terms

    a:,b:,ϵ: +π(a,b,ϵ):isProp(a ϵb)a:\mathbb{Q}, b:\mathbb{Q}, \epsilon:\mathbb{Q}_{+} \vdash \pi(a, b, \epsilon): isProp(a \sim_{\epsilon} b)

See also

References

Revision on April 14, 2022 at 00:15:05 by Anonymous?. See the history of this page for a list of all contributions to it.